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Chapter O
Primer on topology

It is the purpose of this introductory chapter to recall sdrasic facts about metric
spaces, sequences in metric spaces, compact metric spadespntinuous func-
tions between metric spaces. Most of the material shouldnmevk, and if it is
not known in the context of metric spaces, it has certaingnbietroduced orRY.
The generalization to metric spaces should be straigh#fatybut it is nevertheless
worthwhile to spend some time on the examples.

We also introduce some further notions from topology whichyrbe new; see
for example the definitions of density or of completion of aficespace.

0.1 Metric spaces

Let M be a set. We call a functiash: M x M — R, ametric or adistanceon M if
foreveryx,y,ze M

() d(x,y)=0ifandonlyifx=y,
(i) d(x,y) =d(y,x) (symmetry), and
(i) d(x,y) <d(x,z)+d(zy) (triangle inequality).

A pair (M, d) of a setM and a metriadd on M is called ametric space
It will be convenient to write onlyM instead of(M,d) if the metricd on M is
known from the context, and to speak of a metric spdce

Example 0.1.1. LetM C R% and

d
dxy) ::_Zlm =¥l

or
1

d 3
d(Xay) = <Z|Xl yi|2> .
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Then(M,d) is a metric space. The second metric is callecBhelidean metric.
Often, if the metric orRY is not explicitly given, we mean the Euclidean metric.
. LetM C C([0,1]), the space of all continuous functions on the intef@al], and

d(f,g) == sup [f(x) —g(x)|.
xe(0,1]

Then(M,d) is a metric space.

. LetM be any set and
dixy) 0 ifx=y,
X,Y) =
Gy 1 otherwise

Then(M,d) is a metric space. The metricis called thediscrete metric.
. Let(M,d) be a metric space. Then

d(x,y)

da(xy) = 1+d(xy)

and
dz(x,y) ;= min{d(x,y), 1}

define also metrics ohl.
. LetM = C(R), the space of all continuous functionsBnand let

dn(f,g):= sup [f(x)—g(x)| (neN)

xe[—n,n|

and
dn(f,0)

Z\,Zn1+dnfg

Then(M,d) is a metric space. Note that the functiahsare not metrics for any
ne Nl
. Let(M,d) be a metric space. Then any sub¥eC M is a metric space for the
induced metric . .
dxy) =d(xy), X yeM.

We may sometimes say thiéltis asubspaceof M, that is, a subset and a metric
space, but certainly this is not to be understood in the sehligear subspaces
of vector spacedM need not be a vector space).

. Let(Mpn,dn) be metric spacesi€ N). Then the cartesian produdt:= @,y Mn
is a metric space for the metric

dix.y) == % 27" min{dn(Xn,¥n),1}.

neN

Clearly, in a similar way, every finite cartesian product aétric spaces is a
metric space.
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Let (M,d) be a metric space. For everyc M and everyr > 0 we define the
open ballB(x,r) :={y e M :d(x,y) < r} with centerx and radiug. A setO C M
is calledopen if for every x € O there exists some> 0 such thaB(x,r) C O. A
setA C M is calledclosed if its complementA® =M \ Aiis open. A setd C M is
called aneighbourhood of x € M if there exists > 0 such thaB(x,r) CU.

Remark 0.2.(a) The notionopen closed neighbourhoodlepend on the séi!!
For exampleM is always closed and open M. The setQ is not closed iR (for
the Euclidean metric), but it is closed @ for the induced metric! Therefore, one
should always say in which metric space some given set is opelpsed.

(b) Clearly, a se© C M is open (inM) if and only if it is a neighbourhood of every
of its elements.

Lemma 0.3.Let (M, d) be a metric space. The following are true:

a) Arbitrary unions of open sets are open. That mean&jji¢ is an arbitrary
family of open sets (no restrictions on the index set I), thenO; is open.

b) Arbitrary intersections of closed sets are closed. Thatmsed (A))ic| is an
arbitrary family of closed sets, thgn A is closed.

c) Finite intersections of open sets are open.
d) Finite unions of closed sets are closed.

Proof. (a) Let(O;)ici be an arbitrary family of open sets and @t= {J;. O;. If
x € O, thenx € O; for somei € |, and sinced; is openB(x,r) C O; for somer > 0.
This implies thaB(x,r) C O, and therefor® is open.

(c) Next let(Oy)ici be a finite family of open sets and IBt:= N, G;. If x€ O,
thenx € O; for everyi € . Since theD; are open, there exigtsuch thaB(x,r;) C O;.
Letr := minig r; which is positive since is finite. By constructionB(x,r) C O; for
everyi € |, and therefor®(x,r) C O, that is,O is open.

The proofs for closed sets are similar or follow just from ttedinition of closed
sets and the above two assertions.

Exercise 0.4 Determine all open sets (respectively, all closed setshodtiic space
(M, d), where d is the discrete metric.

Exercise 0.5 Show that a ball Bx,r) in a metric space M is always open. Show
also that

B(x,r):={yeM:d(xy) <r}
is always closed.
_ Let (M,d) be a metric space and |& C M be a subset. Then the set
S:=N{A: AC M is closed andS C A} is called theclosure of S The set

S :=U{O:0C Misopenand C S} is called thanterior of S. Finally, we call
0S:={xeM:Ve > 0B(x,e)NS# 0 andB(x,&) NS # 0} theboundary of S.

By Lemma 0.3, the closure of a sgts always closed (arbitrary intersections of
closed sets are closed). By definiti@is the smallest closed set which contas
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Similarly, the interior of a seBis always open, and by definition it is the largest
open set which is contained # Note that the interior might be empty.

Exercise 0.6 Give an example of a metric space M and soraeM, r > 0, to show

thatB(x,r) need not coincide with the closure ofs8r).

Exercise 0.7 Let (M, d) be a metric space and consider the metriggdd ¢ from
Example 0.X4). Show that the set of all open subsets, closed subsets drrrig
hoods of M is the same for the three given metrics.

The set of all open subsets is also calledtibygology of M. The three metrics d,
di and @ thus induce the same topology. Sometimes it is good to kredwitle can
pass from a given metric d to a finite metrig @hd d take only values betwedn
and 1) without changing the topology.

0.2 Sequences, convergence

Throughout the following, sequences will be denotedXyy. Only when it is nec-
essary, we make precise the indexisually,n > 0 orn > 1, but sometimes we will
also consider finite sequences or sequences index&d by

Let (M,d) be a metric space. We call a sequefigg C M a Cauchy sequence
if for every € > 0 there existsp such that for everm, m > ng one hagd (xn,Xm) < €.
We say that a sequen¢r,) C M converges to some element € M if for every
€ > O there exists such that for everp > ng one hasl(x,,X) < €. If (xn) converges
to X, we also write liMm_o Xn = X O Xy — X asn — oo,

Exercise 0.8Let C([0,1]) be the metric space from Example {2). Show that
a sequencéfy) C C([0,1]) converges to some f for the metric d if and only if
it converges uniformly. We say that the metric d inducesdpelbogy ofuniform
convergence

Show also that a sequen¢é,) C C(R) (Example 0.1(5)) converges to some
f for the metric d if and only if it converges uniformly on campsubsets oR.
In this example, we say that the metric d induces the topotddgcal uniform
convergence

Exercise 0.9 Determine all Cauchy sequences and all convergent seqaence
discrete metric space.
Lemma 0.10.Let M be a metric space ar(dn) C M be a sequence. Then:

a) limp_e X, = X for some element& M if and only if for every neighbourhood
U of x there existsisuch that for every & ng one has x € U.

b) (Uniqueness of the limitlf limp_,e Xq = X andlimp_ Xy =Y, then x=y.

Lemma 0.11.A set AC M is closed if and only it isequentially closed that is, if
for every sequende) C A which converges to someaM one has x A.
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Proof. Assume first thaA is closed and lefx,) C A be convergent ta € M. If x
does not belong té, then it belongs té&\° which is open. By definition, there exists
€ > 0 such thaB(x, &) C A®. Given thise, there existsiy such that, € B(x, €) for
everyn > ng, a contradiction to the assumption tlxate A. Hencex € A.

On the other hand, assume that{in, X, = x € A for every convergertx,) C A
and assume in addition thatis not closed or, equivalently, th&€ is not open.
Then there exists € A® such that for every € N the setB(x, %) N A is nonempty.
From this one can construct a sequefg C A which converges ta, which is a
contradiction becausec A°.

Lemma 0.12.Let(M,d) be a metric space, and letSM be a subset. Then
S={xeM:3(x,)CS s.t.lim X, = x}

= {xeM:d(x,S) = infd(x,y) = 0}.
yes

Proof. Let
A= {xeM:3(x) C Ss.t. nIi%m Xn = X}

and
B:={xeM:d(x,9) = infd(x,y) = 0}.
yesS

These two sets are clearly equal by the definition of the inf e definition of
convergence. Moreover, the $is closed by the following argument. Assume that
(xn) C Bis convergent tox € M. By definition of B, for everyn there existy € S
such that(x», yn) < 1/n. Hence,

limsupd(x,yn) < limsupd(x,Xn) + limsupd(X,,yn) = 0,
n—o n—oo n—oo
so thatx € B. 3
Clearly, B containsS, and sinceB is closed,B containsS. It remains to show
thatB C S If this is not true, then there exisks= B\ S. Since the complement of
Sis open inM, there existg > 0 such thaB(x,r) N S= 0, a contradiction to the
definition of B.

A metric spacéM,d) is calledcompleteif every Cauchy sequence converges.

Exercise 0.13Show that the spac&¢, C([0,1]) and QR) are complete. Show also
that any discrete metric space is complete.

Lemma 0.14.A subspace N M of a complete metric space is complete if and only
if it is closed in M.

Proof. Assume thalN C M is closed, and lefx,) be a Cauchy sequencelih By
the assumption th&dl is complete(x,) is convergent to some elemetd M. Since
N is closedx € N.

Assume on the other hand thdtis complete, and lefx,) C N be convergent to
some element € M. Clearly, every convergent sequence is also a Cauchy seguen
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and sinceN is complete(x,) converges to some elemgn& N. By uniqueness of
the limit,x=y € N. HenceN is closed.

0.3 Compact spaces

We say that a metric spa¢®l,d) is compact if for every open covering there exists
a finite subcovering, that is, whene\€ )¢, is a family of open sets (no restrictions
on the index sef) such thaM = [J;¢; O;, then there exists@nite subsety C | such
thatM = Ui€|0 0.

Lemma 0.15.A metric spac€M, d) is compact if and only if itisequentially com-
pact, thatis, if and only if every sequenfe,) C M has a convergent subsequence.

Proof. Assume thatM is compact and letx,) C M. Assume thaix,) does not
have a convergent subsequence. Then for exeri there existgx > 0 such that
B(x, &) contains only finitely many elements g%, }. Note that(B(x, &))xem is an
open covering oM so that by the compactnessMfthere exists a finite subskitC
M such thatM = [J,.n B(X, &). But this means thax,) takes only finitely many
values, and hence there exists even a constant subsequkicteisvin particular
also convergent; a contradiction to the assumptiofxgh

On the other hand, assume tiatis sequentially compact and 18D;)ic; be an
open covering oM. We first show that there exists> 0 such that for every e M
there existdy € | with B(x,€) C O;,. If this were not true, then for evenyc N
there existx, such thaB(xn, %) & O; for everyi € |. Passing to a subsequence, we
may assume thdl,) is convergent to some e M. There exists somi € | such
thatx € Oj,, and since0;, is open, we find some > 0 such thaB(x,&) C Oj,.
Let ng be such that% < §. By the triangle inequality, for eveny > ng we have

B(%n, 1) C B(x,€) C Oy, a contradiction to the construction of the sequepgi

Next we show thaM = (J}_; B(xj, €) for a finite family ofx; € M. Choose any
x1 € M. If B(x1,€) = M, then we are already done. Otherwise we fiadc M\
B(xq,€). If B(x1, &) UB(Xp, €) # M, then we even finds € M which does not belong
to B(x1,€) UB(x2,€), and so on. IfJ]_; B(xj, &) is never all ofM, then we find
actually a sequendg;) such that(xj,xc) > € for all j # k. This sequence can not
have a convergent subsequence, a contradiction to seglusmtipactness.

Since every of th8(x;, ) is a subset otDiXj for someiy; € I, we have proved that

M= U'J-‘:loiXj , i.e. the open coverin@;) admits a finite subcovering. The proof is
complete.

Lemma 0.16.Any compact metric space is complete.

Proof. Let (x,) be a Cauchy sequence . By the preceeding lemma, there ex-
ists a subsequence which converges to sgmeéM. If a subsequence of a Cauchy
sequence converges, then the sequence itself converges, to
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0.4 Continuity

Let (M1,d1), (M2,d) be two metric spaces, and Iet M; — My be a function. We
say thatf is continuous at some pointx € My if

Ve > 030 > 0Vy e B(x,0) : da(f(x), f(y)) <e.

We say thatf is continuous if it is continuous at every point. We say thétis
uniformly continuous if

Ve > 030 > 0Vx, y € My : di(xy) < & = da(f(x), f(y)) <e.
We say thaff is Lipschitz continuous if
IL>0Vx,ye M : da(f(x), f(y)) <Ldi(x,y).

Lemma 0.17.A function f: M; — M, between two metric spaces is continuous at
some pointx My if and only if itissequentially continuousat x, thatis, if and only
if for every sequence) C My which converges to x one hsip e f(Xn) = f(X).

Proof. Assume thaff is continuous ak € M; and let(x,) be convergent ta. Let
€ > 0. There exist® > 0 such that for every € B(x, d) one hasf (y) € B(f(x), ).
By definition of convergence, there existg such that for everyn > ng one has
Xn € B(x,9). For thisng and everyn > ng one hasf(x,) € B(f(x),€). Hence,
liMmpe f(Xn) = F(X).

Assume on the other hand thfais sequentially continuous atIf f was not con-
tinuous inx then there exists > 0 such that for every € N there exists, € B(X, %)
with f(xn) € B(f(X), €). By construction, lim_,. X, = . Sincef is sequentially con-
tinuous, lim_« f(xn) = f(X). But this is a contradiction td(x,) ¢ B(f(x),€), and
thereforef is continuous.

Lemma 0.18.A function f: M; — My between two metric spaces is continuous if
and only if preimages of open sets are open, that is, if ang ibfdr every open set
O C My the preimage f1(0) is open in M.

Proof. Let f : My — My be continuous and léD C M, be open. Lek € f*l(O).
SinceO is open, there exists > 0 such thaB(f(x), &) C O. Sincef is continuous,
there exist® > 0 such that for every € B(x, d) one hasf (y) € B(f(x), ). Hence,
B(x,8) C f~1(0) so thatf ~%(O) is open.

On the other hand, if the preimage of every open set is opem, fibr every
x € M; and everye > 0 the preimagéd —*(B(f(x),£)) is open. Clearlyx belongs to
this preimage, and therefore there exits 0 such thaB(x,8) C f~1(B(f(x),¢)).
This proves continuity.

Lemma 0.19.Let f: K — M be a continuous function from a compact metric space
K into a metric space M. Then:

a) Theimage fK) is compact.
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b) The function f is uniformly continuous.

Proof. (a) Let(Oj)ic| be an open covering df(K). Sincef is continuousf ~(0;)
is open inK. Moreover,(f~1(0))iq is an open covering df. SinceK is compact,
there exists a finite subcovering:= Ui¢), f~1(0y) for some finitelp C 1. Hence,
(Oi)iel, is a finite subcovering of (K).

(b) Lete > 0. Sincef is continuous, for every € K there exist®x > 0 such that
for all y € B(x, &) one hasf (y) € B(f(x),€). By compactness, there exists a finite
family (x)1<i<n C K such thakK = {L 1 B(xi, 0 /2). Letd =min{J/2:1<i <n}
and letx, y € K such thatd(x,y) < d. Sincex € B(xi, d/2) for some 1<i < n, we
find thaty € B(x;, oy ). By constructionf (x), f(y) € B(f(x),€) so that the triangle
inequality impliesd(f(x), f(y)) < 2e.

Lemma 0.20.Any Lipschitz continuous function: M; — M, between two metric
spaces is uniformly continuous.

Proof. LetL > 0 be a Lipschitz constant fdrand lete > 0. Defined := ¢/L. Then,
for everyx, y € M such thatl;(x,y) < d one has

dZ(f(X)a f(y)) < Ldl(xay) <¢g,

and thereford is uniformly continuous.

0.5 Completion of a metric space

We say that a subs® C M of a metric spacéM,d) is dense inM if D=M.
Equivalently,D is dense inM if for every x € M there exist{x,) C D such that
liMp—eoXn = X.

Lemma 0.21 (Completion).Let (M, d) be a metric space. Then there exists a com-
plete metric spacéM,d) and a continuous, injective:j]M — M such that

dexy) =d(i(x),i(y). xyeM,
and such that the imagéN1) is dense irM.

Let (M, d) be a metric space. A complete metric spéded) fulfilling the prop-
erties from Lemma 0.21 is calledcampletion of M.

Proof (Proof of Lemma 0.21).et
M := {(xa) € M : (x) is a Cauchy sequenge

We say that two Cauchy sequendes), (yn) C M are equivalent (and we write
(Xn) ~ (Yn)) if liM ne d(Xn,yn) = 0. Clearly,~ is an equivalence relation dv.
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We denote byi(x,)] the equivalence class M of a Cauchy sequende;), and
we let o -
M:=M/~={[(n)]: (%) € M}

be the set of all equivalence classes. If we define

(061 [n)]) = fim dxw,Y0).

thend is well defined (the definition is independent of the choiceepfesentatives)
and it is a metric oM. The fact thatl is a metric and also th&M, d) is a complete
metric space are left as exercises.

One also easily verifies that M — M defined byj(x) = [(x)] (the equivalence
class of the constant sequer{gg) is continuous, injective and in fact isometric, i.e.

d(x,y) = d(j (%), i(y))
for everyx, y € M. The proof is here complete.

Lemma 0.22.Let (M;,di) (i = 1, 2) be two completions of a metric spatd, d).
Then there exists a bijection: i, — M, such that for every X, § M,

CT]_(X, y) = d\Z(b(X)a b(y))

Lemma 0.22 shows that up to isometric bijections there &xisty one comple-
tion of a given metric space and it allows us to speathefcompletion of a metric
space.

Lemma 0.23.Let f: M1 — M be a uniformly (!) continuous function between two
metric spaces. Lé¥l; andM; be the comgletiAons otMind M, respectively. Then
there exists a unique continuous extensiarM; — M of f.

Proof. Sincef is uniformly continuous, it maps equivalent Cauchy seqasricto
equivalent Cauchy sequences (equivalence of Cauchy seegisdefined as in the
proof of Lemma 0.21). Hence, the functuﬁ(][(xn)]) [(f(xn))] is well defined. It
is easy to check thdtis an extension of and thatf is continuous (even uniformly
continuous).

The assumption of uniform continuity in Lemma 0.23 is neags$n general.
The functionsf (x) = sin(1/x) and f(x) = 1/x on the open interval0,1) do not
admit continuous extensions to the closed intej@gl] (which is the completion of

(0,1)).






Chapter 1
Banach spaces and bounded linear operators

Throughout, leiK € {R,C}.

1.1 Normed spaces

Let X be a vector space ové&t. A function || - || : X — R is called anorm if for
everyx,y € X and everyA € K

(i) ||x||=0ifandonlyifx=0,
(ii) [|Ax]} = [A[[x]], and
(i) | x+yll < [Ix]| + [ly|| (triangle inequality).
A pair (X,]| -||) of a vector spacX and a nornj| - || is called anormed space
Often, we will speak of a normed spaxXsf it is clear which norm is given oix.

Example 1.1. 1. (Finite dimensional spaces) ét= K9. Then

d 1/p
IX][p:= X7, 1<p<o,
2

X[l :="sup [x]
1<i<d

and

are norms orx.
2. (Sequence spaces) Letldp < o, and let

IPi={() CK: Y x| < oo}

with norm

11
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1/p
o= (S bP)
n

Then(IP, || - ||p) is a normed space.
3. (Sequence spaces) ébe one of the spaces

[°:={(X%) CK:sup|Xn| < o},
n
c:={(X) CK: rllmxn existg, or
co:={(x) CK: rllmxn =0}, or
Coo = {(Xn) CK: the set{n: x, # 0} is finite},

and let
[IX]|eo := sm:p|xn|.

Then(X, || - ||«) is @ normed space.
4. (Function spaces: continuous functions) Céfa, b]) be the space of all continu-
ous,K-valued functions on a compact interyalb] C R. Then

b i/p
Itpi= [1t00Pax) 1< p<e
Ja

and
[ flleo :== sup [f(x)]

xela,b]

are norms ot€([a, by).
5. (Function spaces: continuous functions) Keie a compact metric space and let
C(K) be the space of all continuous;valued functions oK. Then

[[f]leo := sup| f (x)]
xeK

is a norm orC(K).
6. (Function spaces: integrable functions) [@t <7, u) be a measure space and let
Xp=LP(Q) (1< p< ). Let

: 1/p
Ioi= ([ 1fPau) . 1<p<e

or
|| f|leo :=ess supf (x)| :=inf{ce Ry : u({|f| >c})=0}.

Then(Xp,|| - |lp) is @ normed space.
7. (Function spaces: differentiable functions) Let

Cl([a,b]) := {f € C([a,b]) : f is continuously differentiable



1.1 Normed spaces 13

Then|| - || and
e = [ flleo+ [ f'l]en

are norms o€ ([a, b]).
We will see more examples in the sequel.

Lemma 1.2.Every normed spacgX, || - ||) is a metric space for the metric

d(X,y) = ||X7yHa Xayex-

By the above lemma, also every subset of a normed space beeamegric space
in a natural way. Moreover, it is natural to speak of closedpen subsets (or linear
subspaces!) of normed spaces, or of closures and intefistubeets.

Exercise 1.3 Show that in a normed space X, for everg X and every r> 0 the

closed ballB(x,r) coincides with closur®(x,r) of the open ball.

Also the notion of continuity of functions between normedags (or between a
metric space and a normed space) makes sense. The follaanfiyy$t example of
a continuous function.

Lemma 1.4.Given a normed space, the norm is a continuous function.
This lemma is a consequence of the following lemma.

Lemma 1.5 (Triangle inequality from below). Let X be a normed space. Then,
for every x, ye X,

=yl = [[Ix]] = Iyl
Proof. The triangle inequality implies

IXI = lIx=y+yl

< Ix=yll+ IIvll,

so that

X = IVl < lIx=y]I-
Changing the role af andy implies

IVl =[x < {ly = x]| = [Ix = y]I,

and the claim follows.

A notion which can not really be defined in metric spaces buommed spaces
is the following. A subseB of a normed spacX is calledboundedif

sup{||x|| : x € B} < oo.

Itis easy to check that X is a normed space, aldl is a metric space, then the set
C(M;X) of all continuous functions frorvl into X is a vector space for the obvious
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addition and scalar multiplication. M is in addition compact, thefi(M) C X is
also compact for every such function, and heh@d) is necessarily bounded (every
compact subset of a normed space is bounded!). So we can iggve @example of a
normed space.

Example 1.6. 8. (Function spaces: vector-valued continuous functites) X, || -
|I) be a normed space and kthe a compact metric space. LEet= C(K;X) be
the space of alK-valued continuous functions d& Then

[ f]leo := sup|| f (x)]]
xeK

is a norm orC(K; X).

Also the notions of Cauchy sequences and convergent seggiarake sense in
normed spaces. In particular, one can speak araplete normed spacgthat is,
a normed space in which every Cauchy sequence convergesnplete normed
space is called Banach space

Example 1.7.The finite dimensional spaces, the sequence spa¢as< p < =), c,
andcy, and the function spacé€([a,b]), || - [|«), (LP(Q),||- ||p) are Banach spaces.
The spacesco, || - [|«), (C([a,b]), ] - ||p) (1 < p < «) are not Banach spaces.

If X is a Banach space, then al&(K; X),|| - ||) is a Banach space.

We say that two normp-||1 and|| - || on a real or complex vector spaikeare
equivalentif there exist two constants C > 0 such that for every € X

c[[xfl1 < x|z < Cx1.
Lemma 1.8.Let| - ||1, || - |2 be two norms on a vector space X (o¥€r. The fol-
lowing are equivalent:

(i) Thenormg|-||1, || - ||2 are equivalent.

(i) A set OC X is open for the nornjj - ||; if and only if it is open for the norm
|- |l2 (and similarly for closed sets).

(iii) A sequencéxn) C X converges td® for the norm|| - || if and only if it con-
verges td for the norm|| - || 2.

In other words, if two norm§ - ||1, || - |2 on a vector spack are equivalent, then
the open sets, the closed sets and the null sequences assrtbeWe also say that
the two norms define the san@pology In particular, ifX is a Banach space for
one norm then it is also a Banach space for the other (equiyaderm.

Exercise 1.9 The normg| - || and|| - || p are not equivalent on (0, 1]).

Theorem 1.10.Any two norms on a finite dimensional real or complex vectacsp
are equivalent.
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Proof. We may without loss of generality consid&F. Let || - || be a norm ork®
and let(e)1<i<g be the canonical basis &¢. For everyx ¢ K¢

d
IxI =113 el
i=
d
<3 pullel
i=

<CXla,

whereC := sup.j-q4|/&]| < e and||-||1 is the norm from Example 1.1.1. By the
triangle inequality from below, for eveny y € K¢,

X = IV < lIx =Yl < Clx = Y]]

Hence, the nornil - || : (K9, || - ||1) — R, is continuous (orK® equipped with the
norm|| - ||1). If S:= {x € K¥: ||x||; = 1} denotes the unit sphere for the nojim|y,
thenSis compact. As a consequence

c:=inf{||x|| :x€ S} >0,
since the infimum is attained by the continuity|of||. This implies
cllx||ly < ||Ix|| for everyx e K¢.

We have proved that every norm & is equivalent to the norri- ||1. Hence, any
two norms orK¢ are equivalent.

Corollary 1.11. Any finite dimensional normed space is complete. Any fimteai
sional subspace of a normed space is closed.

Proof. The spacéKKY, || - ||1) is complete (exercise!). If-|| is a second norm oK
and if (xn) is a Cauchy sequence for that norm, then it is also a Cauchiesegq
in (KY,||-|]1) (use that the normi$- || and|| - || are equivalent), and therefore con-
vergent in(K9, | - ||l1). By equivalence of norms again, the sequefgg is also
convergentinKY, || -||), and therefor¢K¢, || - ||) is complete.

LetY be a finite dimensional subspace of a normed spaead let(x,) CY be a
convergent sequence with= limp_,. Xn € X. Since(X,) is also a Cauchy sequence,
and sinceY is complete, we find (by uniqueness of the limit) thatY, and therefore
Y is closed (Lemma 0.11).

Let (xn) be a sequence in a normed spaceWe say that the serieg, x, is
convergent if the sequencey j<, xj) of partial sums is convergent. We say that the
seriesy , X, is absolutely convergentif 3, {|Xn|| < oo.

Lemma 1.12.Let (x,) be a sequence in a normed space X. If the se¥igs, is
convergent, then necessariign,, . X, = 0.
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Note that in a normed space not every absolutely convergersss convergent.
In fact, the following is true.

Lemma 1.13.A normed space X is a Banach space if and only if every ab$plute
convergent series converges.

Proof. Assume thak is a Banach space, and Igf x, be absolutely convergent. It
follows easily from the triangle inequality that the copeading sequence of partial
sums is a Cauchy sequence, and siKde complete, the seri€g, x, is convergent.
On the other hand, assume that every absolutely convergees $s convergent.
Let (xn)n>1 C X be a Cauchy sequence. From this Cauchy sequence, one can ex-
tract a subsequencgn, )x>1 such that|xn,, , — Xn, || < 2K k>1. Letyg = X, and
Yk = Xne,1 — X K> 1. Then the serie§ oYk is absolutely convergent. By as-
sumption, it is also convergent. But by constructitf_,yi) = (X, ), SO that(xn, )
is convergent. Hence, we have extracted a subsequence Qfatlehy sequence
(xn) which converges. As a consequeng, is convergent, and sindg,) was an
arbitrary Cauchy sequence,is complete.

Lemma 1.14 (Riesz).Let X be a normed space and letYX be a closed linear
subspace. If ¥ X, then for every > 0 there exists x X\ Y such thaf/x|| =1and

dist(x,Y) =inf{|x—y|:ye Y} >1-4.
Proof. Letze X\ Y. SinceY is closed,
d:=dist(z)Y) > 0.

Let & > 0. By definition of the infimum, there exisys= Y such that

d
—yl < —.
2=y < =

Letx:= Hiz\\ . Thenxe X\, [x|| = 1, and for everyu € Y

Ix—ul| = [|z—y|| " z— (y+ [z yllu)||
>z—y|td > 1-9,

since(y+|z—y|u) €Y.

Theorem 1.15.A normed space is finite dimensional if and only if every aose
bounded set is compact.

Proof. If the normed space is finite dimensional, then every closmthtled set
is compact by the Theorem of Heine-Borel. Note that by TheotelO it is not
important which norm on the finite dimensional space is agreid. By Lemma
1.8, the closed and bounded sets do not change.

On the other hand, if the normed space is infinite dimensjahah, by the
Lemma of Riesz, one can construct inductively a sequérgeC X such that
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[Xa|| = 1 and distxn1,%) > 2 for everyn € N, whereX, = span{x : 1 <i < n}
(note thatX, is closed by Corollary 1.11). By constructidr,) belongs to the closed
unit ball, but it can not have a convergent subsequence (@ea Cauchy subse-
guence). Hence, the closed unit ball is not compact. We #stasteesult separately.

Theorem 1.16.In an infinite dimensional Banach space the closed unit Isafigt
compact.

Lemma 1.17 (Completion of a normed space)or every normed space X there
exists a Banach spacé and a linear injective j X — X such that]|j(x)| = |||
(xe X) and j(X) is dense inX. Up to isometry the Banach spac¥ is unique (up
to isomorphism). It is called theompletion of X.

Proof. It suffices to repeat the proof of Lemma 0.21 and to note tleatdmpletion
X of X (considered as a metric space) carries in a natural way arlsteucture:
addition of - equivalence classes of - Cauchy sequencesis ¢hmponentwise
addition, and also multiplication of - an equivalence clas$ a Cauchy sequence
and a scalar is done componentwise. Moreover, for elery], one defines the
norm

)]l = fim [l

Uniqueness oX follows from Lemma 0.22.

1.2 Product spaces and quotient spaces

Lemma 1.18 (Product spaces)Let (X;)ic| be a finite (!) family of normed spaces,
and let.Z" := Q¢ X be the cartesian product. Then

1/p
IXIp = %% (1<p<w»),
p ; ill%

[1X]]o := sUP|]|
i€l

and

define equivalent norms oft”. In particular, the cartesian product is a normed
space.

Proof. The easy proof is left to the reader.

Lemma 1.19.Let (X)ici be a finite family of normed spaces, and#&t:= Q¢ Xi
be the cartesian product equipped with one of the equivaientns|| - ||, from
Lemma 1.18. Then a sequerfg®) = ((x");) C £ converges (is a Cauchy sequence)
if and only if (x") C X; is convergent (is a Cauchy sequence) for every.i

As a consequence?” is a Banach space if and only if all thg dre Banach
spaces.
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Proposition 1.20 (Quotient space).Let X be a vector space (!) ové¢, and let
Y C X be a linear subspace. Define, for everg X, the affine subspace

X+Y:={x+y:yeY},
and define theuotient spaceor factor space

X/Y :={x+Y:xeX}.
Then X/Y is a vector space for the addition

X+Y)+ (z+Y) == (x+2z+Y),
and the scalar multiplication
A(X+Y) == (AX+Y).

The neutral elementisY.

For the definition of quotient spaces, it is not important thea consider real or
complex vector spaces.

Examples of quotient spaces are already known. In fatis such an example.
Usually, one defines
LP(Q, 1)

to be the space dll mesurable function$ : Q — K such thatf,, |f|P du < co.
Moreover,

N:={f e.i”p(Q,;z%,u):/Q|f|p:0}.

Note thatN is a linear subspace a¥P(Q,.«7, ), and thatN is the space of all
functionsf € .ZP which vanish almost everywhere. Then

LP(Q, o/ p) :== LP(Q, o, u)/N.

Proposition 1.21.Let X be a normed space and letlYX be a linear subspace.
Then
[x+Y[:=inf{[x—y||:yeY}

defines a norm on X if and only if Y is closed in X. If X is a Banach space and
Y C X closed, then XY is also a Banach space.

Proof. We have to check tha}- || satisfies all properties of a norm. Recall that
Ox,y =Y, and that for alk € X
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IX+Y| =0
<inf{||x—y||:yeY}=0
< 3(yn) SV r'\man:X

< (= if Yclosed :xeY
SX+Y=Y.

Second, for every € X and everyA € K\ {0},

[AX+Y) | = [[Ax+Y]
=inf{||Ax—y||:ye Y}
=inf{A(x=y)[|:yeY}
=|Alinf{[x=yl[:yeY}
= |AlIx+ Y]]

Third, for everyx, z€ X,

[(X+Y) +(z+Y)[| = l(x+2) + Y|
=inf{|[x+z—-y|:yeY}
=inf{|[x+z—y1— V2| :y1, Y2 € Y}
<inf{|x—yal[ +lz—y2ll : y1, Y2 € Y}
<inf{|x—y|:yeY}+inf{|z—y| :ye Y}
=[x+Y[+[lz+Y].

Hence X/Y is a normed space ¥ is closed.

Assume next thaK is a Banach space. Lék,) C X be such that the series
Sn>1%n+ Y converges absolutely, that i$,-4 ||, + Y|| < c. By definition of the
norm in X /Y, we find (y,) C Y such thatl|x, — yn|| < |[¥n+ Y| +2". Replacing
(Xn) by (%) = (X0 —Yn), We find thatx, + Y = X, +Y and that the serieF,-o%n
is absolutely convergent. Sindeis complete, by Lemma 1.13, the linfit,»1 X, =
X € X exists. As a consequence, -

1Y) = 3 @)l = fl(x—
k=1

)+ Y|

M s

1

>

< ||X7 kkH - Oa
k=1

that is, the serie§ -1 X, +Y converges. By Lemma 1.1X,/Y is complete.
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1.3 Bounded linear operators

In the following a linear mapping between two normed spatemdY will also

be called dinear operator or justoperator. If Y = K, then we call linear opera-
tors alsdinear functionals. If T : X — Y is a linear operator between two normed
spaces, then we denote by

kerT :={xe X:Tx=0}
its kernel or null space and by
ranT :={Tx:x € X}

its range or image Observe that we simply writ€xinstead ofT (x), meaning that
T is applied tax € X. The identity operatoX — X, X+ X is denoted by.

Lemma 1.22.Let T: X — Y be a linear operator between two normed spaces X
and Y. Then the following are equivalent
(i) T is continuous.
(i) T is continuous ad.
(i) TBisboundedinY, whereBB(0,1) denotes the unit ball in X.
(iv) There exists a constant€ 0 such that for every x X

T < ClIx.

Proof. The implication (i}=(ii) is trivial.

(iiy=-(iii). If T is continuous at 0, then there exists sadne 0 such that for every
x € B(0,9) one hasT x € B(0,1) (so thee from thee-d definition of continuity is
chosen to be 1 here). By linearity, for every B=B(0,1)

1 1
== < =
ITX) = 5 IT(8X)] < 5,

and this means thatB is bounded.
(iii) =(iv). The sefT B being bounded iiY means that there exists some constant
C > O such that for every € B one hag|Tx|| <C. By linearity, for everyx € X\ {0},

X

T =T
Xl

I[IXI] < CIx]|.
(iv)=(i). Let x € X, and assume that lim,. x, = X. Then
[T —=TX| =T —X)|| <C||Xn—X|| =0 asn— oo,

so that lim e TX =TX
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We call a continuous linear operafér: X — Y between two normed spacks
andY also abounded operator(since it maps the unit ball of to a bounded subset
of Y). The set of all bounded linear operators is denotedd¥X,Y). Special cases:
If X=Y, thenwe writeZ (X, X) =: Z(X). If Y =K, then we writeZ(X,K) =: X'.

Lemma 1.23.The setZ(X,Y) is a vector space and

[IT]| :=inf{C>0:|Tx| <C|x| forallx € X} (1.1)
= sup{[[Tx| : x| <1}
= sup{[[Tx| : [Ix| = 1}

is a normonZ(X,Y).

Proof. We first show that the three quantities on the right-hand efd@.1) are
equal. In fact, the equality

sup{(| T : [Ix|] <1} = sup{[|Tx] : [Ix]] = 1}
is easy to check so that it remains only to show that
A:=inf{C>0:||TX| <C|x| forall xe X} =sup{||TX| : ||X|| = 1} =: B.

If C > A, then for everyx € X\ {0}, || TX| <CJx| or ||TH—§H|\ <C.HenceC>B

which implies thatA > B. If C > B, then for everyx € X \ {0}, || T%: || <C, and

IIX]
thereforel| T x|| < C||x||. HenceC > A which implies thatA < B.
Now we check thaf - || is a norm onZ(X,Y). First, for everyT € .Z(X,Y),

IT)| =0« sup{[Tx| : x| < 1} =0
evxeX, x| <1:|Tx|=0
< (]| -|lisanormony)vxe X, |[x]| <1:Tx=0
< (= linearity of T)¥xe X : Tx=0
& T=0.

Second, for ever§ € Z(X,Y) and every e K

AT = sup{[[(AT)x] : [Ix]| <1}
= sup{|A[[|Tx] : [Ix]] < 1}
= AT

Finally, for everyT, Se Z(X,Y),

IT+ S| = sup{[[(T + x| - |IxI| < 1}
<sup{[[TX] +[[SX| - x| <1}
<|TI+[ISH
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The proof is complete.

Remark 1.24.(a) Note that the infimum on the right-hand side of (1.1) in ben
1.23is always attained. Thus, for every operdtear .2 (X,Y) and every € X,

T < TP

This inequality shall be frequently used in the sequel! Nb&& on the other hand
the suprema on the right-hand side of (1.1) are not alwaget. (b) From Lemma
1.23 we can learn how to show that some oper&toX — Y is bounded and how to
calculate the nornfiT||. Usually (in most cases), one should prove infirgt step
some inequality of the form

[T <Clx[, xeX,

because this inequality shows on the one handThiatbounded, and on the other
hand it shows the estimafd|| < C. In thesecond stejpne should prove that the
estimateC was optimal by finding somee X of norm||x|| = 1 such thaf| T x|| =C,

or by finding some sequenée,) C X of norms||xp|| < 1 such that limf_« || TX|| =

C, because this shows thgE || = C. Of course, the second step only works if one has
not lost anything in the estimate of the first step. There mfact many examples
of bounded operators for which it is difficult to estimateithreorm.

Example 1.25.1. (Shift-operator). OhP(N) consider thaeft-shift operator
Lx =L(Xn) = (Xn4+1)-

Then

ILoclo= (5 boial) " (5 bl?) ”

so thatl is bounded anglL|| < 1. On the other hand, for= (0,1,0,0,...) one
computes thatx||p, = 1 and||Lx||p = ||(1,0,0,...)||p = 1, and one concludes that
L =1.
2. (Shift-operator). Similarly, one shows that thight-shift operator Ron IP(N)
defined by
Rx= R(Xn) = (O,XO,X]_, c )

is bounded an¢/R|| = 1. Note that actually{RX|p = ||x||p for everyx € IP.
3. (Multiplication operator). Letm € |* and consider ohP the multiplication op-
erator

Mx=M(Xn) = (MXn).
4. (Functionals o). Consider the linear functional : C([0,1]) — K defined by

¢'(f)::/02f(x) dx.

Then



1.3 Bounded linear operators 23

B0 [7 11001 dx< 31

so that¢ is bounded andi¢|| < % On the other hand, for the constant function
f =1 one hag/f||» =1 and|¢(f)| = 3, so that|¢|| = 1.

Lemma 1.26.Let X, Y, Z be three Banach spaces, and let I¥(X,Y) and Se
Z(Y,2). Then STe .Z(X,Z) and

ISTIF<[ISIHIT-

Proof. The boundedness &T is clear since compositions of continuous functions
are again continuous. To obtain the boundsdn we calculate

STl = sup [ISTH|
[x[<1

< sup ST

Ixl<1

< IS

Lemma 1.27.If Y is a Banach space the#(X,Y) is a Banach space.

Proof. Assume thaty is a Banach space and I€l,) be a Cauchy sequence in
Z(X,Y). By the estimate

[[Tox = TonxX{| = [ (Tn = Tm)X]| < [ Ta = Ten| [IXI],

the sequencéTyx) is a Cauchy sequence Yhfor everyx € X. SinceY is complete,
the limit limp_. ToX exists for every € X. DefineTx = limp_,, Thx. Clearly,T :
X =Y is linear. Moreover, since any Cauchy sequence is boundeting that

ITX]| < sup||Tax]| < C|X]|
n

for some constar@ > 0, that is,T is bounded. Moreover, for everye N we have
the estimate

IT—Thll = sup [[Tx—Tnx]|

lIxI<1
< sup sup|| Tmx — TrX||
[X[<1m=>n

< sup||Tm—Tall-

m>n

Since that right-hand side of this inequality becomes gahily small for largen,
we see that lim,» Tn = T exists, and so we have proved tH#&(X,Y) is a Banach
space.

Remark 1.28.The converse of the statement in Lemma 1.27 is also truejghat
if Z(X,Y) is a Banach space then necessa¥ilig a Banach space. For the proof,
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however, one has to know that there are nontrivial operatag8(X,Y) as soon as
Y is nontrivial (that is)Y # {0}). For this, we need the Theorem of Hahn-Banach
and its consequences discussed in Chapter 3.

Corollary 1.29. The space X= #(X,K) of all bounded linear functionals on X is
always a Banach space. The spacds<alled thedual spaceof X.

Let X, Y be two normed spaces. We cd@llle .Z(X,Y) anisomorphism if T is
bijective andT ~1 € .Z(Y, X). We callT € Z(X,Y) anisometry if || Tx| = ||| for
everyx € X. We say that spack¥ andY areisomorphic (and we writeX 22Y) if
there exists an isomorphisine .Z(X,Y). We say thaiX andY areisometrically
isomorphic if there exists an isometric isomorphisine £ (X.,Y).

Remark 1.30. 1. Two norms|| - ||1, || - ||2 on aK vector space& are equivalent if
and only if the identity operatdr: (X, || - |l1) = (X,]| - ||2) is an isomorphism.

2. Saying that twanormedspacesxX andY are isomorphic means that they are
not only 'equal’ as vector spaces (in the sense that we findeathie linear
operator) but also as normed spaces (that is, the bijeciooritinuous as well
as its inverse).

3.If T € Z(X,Y) andSe .Z(Y,Z) are isomorphisms, theBT € .Z(X,Z) is an
isomorphism andST) "1 = T-1S1,

4. Every isometryT € Z(X,Y) is clearly injective. If it is also surjective, then
T is an isometric isomorphism, that is, the invefise! is also bounded (even
isometric).

5. Clearly, if T € .Z(X,Y) is isometric, then it is an isometric isomorphism fram
onto rarl, and we may say that is isometrically embeddedinto Y (viaT).

Example 1.31.The right-shift operator from Example 1.25 (2) is isometbiat not
surjective. In particulatP is isometrically isomorphic to a proper subspacéof

Exercise 1.32Show that the spaceg, || - ||») of all convergent sequences and
(Co, || - |l») of all null sequences are isomorphic.

Exercise 1.33Show that(cy, || - ||») is (isometrically) isomorphic to a linear sub-
space ofC([0,1]), || - ||«), that is, find an isometry Tco — C([0, 1]).

Lemma 1.34 (Neumann series)Let X be a Banach space and letcT.#(X) be
such that|T|| < 1. Then I-T is boundedly invertible, that is, it is an isomorphism.
Moreover,(I —T) 1 =5,.,T".

Proof. SinceX is a Banach spaceZ(X) is also a Banach space by Lemma 1.27.
By assumption offf T||, the series o T" is absolutely convergent, and hence, by
Lemma 1.13, it is convergent to some elem®&at.# (X). Moreover,

n

(I-T)S= lim (I fT)k;Tk = lim (I =T =1,

n—oo n—oo

and similarly,S(1 = T) =1.
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Corollary 1.35. Let X and Y be two Banach spaces. Then thes%gX,Y) of all
isomorphisms inZ(X,Y) is open, and the mapping 7 T~ is continuous from
J(X,Y) onto.# (Y, X).

Proof. Let .# C Z(X,Y) be the set of all isomorphisms, and assume t#as not
empty (if itis empty, then itis also open). LEte .#. Then for evense B(T, HT—%lH)
we have

S=T+S-T=T(1+T }S-T)),

and sincd|T~1(S—T)|| < ||[T~Y||S—T| < 1, the operator+T~1(S—T) € Z(X)

is an isomorphism by Lemma 1.34. As a composition of two isghisms Se .7,
and hences is open. The continuity is also a direct consequence of tloweab
representation db (and thus of its inverse), using the Neumann series.

1.4 The Arezk-Ascoli theorem

Itis a consequence of Riesz’ Lemma (Lemma 1.14) that thebatliin an infinite
dimensional Banach space is not compact; see also Theot®nBut compact sets
play animportantrole in many theorems from analysis, itipalar when one wants
to prove the existence of some fixed point, the existence olidisn to an algebraic
equation, the existence of a solution of a differential ¢igma the existence of a
solution of a partial differential equation etc. It is thiene important to identify
the compact sets in Banach spaces, in particular in thecé&anach spaces. The
Arezla-Ascoli theorem characterizes the compact sulided$K; X), where(K, d)
is a compact metric space aKds a Banach space.

We say that a subs& C C(K; X) is equicontinuous at some pointx € K if
for everye > 0 there exist® > 0 such that for every € K and everyf € B the
implication

dixy)<d = [f)-fyll<e

holds.

Theorem 1.36 (Arezh-Ascoli). Let (K,d) be a compact metric space, X be a Ba-
nach space and consider the Banach spa¢K;X) of all continuous functions
K — X equipped with the supremum nofftfi|le = Supck || f(X)||. For a subset

B C C(K;X), the following assertions are equivalent:

(i) The set B is relatively compact.
(i) The set B is equicontinuous at everg X and there exists a dense setTK
such that for every g D the set BR= {f(x) : f € B} is relatively compact.

We point out that, by the Heine-Borel theorem, the conditibpointwise relative
compactness d can be replaced by mere pointwise or global boundednes®as so
as the spacX is finite dimensional.
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Corollary 1.37 (Arezla-Ascoli). Let (K,d) be a compact metric space, and con-
sider the Banach space&;RY) of all continuous functions K+ RY equipped with
the supremum norf || = sup.x || f (x)||. For a subset BC C(K;RY), the follow-
ing assertions are equivalent:

(i) The set B is compact.

(i) The set B is closed, equicontinuous at evegyk and pointwise bounded in
the sense that for everyxK the set R = {f(x) : f € B} is bounded.

Proof (Proof of Theorem 1.36.he proof of the Arezla-Ascoli theorem is a nice
application of Cantor’'s diagonal sequence argument whiehsee here for the
first time, but which we will see again below when we prove thatry bounded
sequence in a reflexive Banach space admits a weakly comiesgbsequence.
Given a sequence, Cantor’s argument allows us to constrsigbsequence which
satisfies a countable number of properties. It is instrectv learn the idea of
Cantor’s argument since it can be help in various situations

We first assume th& C C(K; X) is relatively compact. Any relatively compact
subset of a Banach space is bounded, and ther&adsebounded, too. For every
x € K, the point evaluatio€(K; X) — X, f — f(x) is linear and continuous. Since
continuous images of relatively compact sets are relgtiveinpact, the image &
under the point evaluation, that is the Bet= { f(X) : f € B}, is relatively compact.

We show thaB is equicontinuous at every Assume that this was not the case.
Then there exisx € K ande > 0 such that for every > 1 there exisy, € K and
fn € Bsuch that(x,yn) < % and|| fn(X) — fa(yn)|| > €. SinceBis relatively compact,
there exists a subsequence(df) (which we denote for simplicity again byfn))
such that lim_.. fn = f in C(K; X). Then, by the triangle inequality from below,

liminf 1) — f (yn)l| = iminf || () = f(X) + fa() = fa(¥n) + falyn) = f (v0)|
= liminf (|| fa(x) = fa(yn) | = 2]/ f = foll)

> E.

This inequality, however, contradicts to the continuityf ¢hote that lim_c Yn = X),
and thereforeB is equicontinuous at everye K.

Assume now thaB satisfies the properties from assertion (ii). In order tossho
thatBis relatively compact, it suffices to show that every seqeéfig C Badmits a
convergent subsequence, thaBiss relatively sequentially compact. So [dh) C B
be an arbitrary sequence.

Recall that every compact metric space is separable. Mergevery subset of a
separable space is separable. Hence, there exists a sefugne.1 C D which is
dense irK.

Consider the sequen¢é(x1)) C By, C X. SinceB,, is compact by assumption,
there exists a subsequer(dg, n)) of (fn) such that lim« fy, ) (X1) exists.
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Consider next the sequentg, ) (x2)) € By, C X. SinceBy, is compact by as-
sumption, there emstsasubsequehka,g ) of (fg,n)) such that lim .« fy, ) (X2)
exists. Note that we have also the eX|stence of the limig ligf g, 1) (X1)-

Iterating this argument, we obtain for evemy> 2 a subsequencgfy, n)) of
(f¢m71(n)) such that lim_« f¢m(n)(>q) exists for every 1< i < m. These subse-
quences converge therefore pointwise at a finite numbeeaiahts oK.

We now consider thdiagonal subsequencéy ) = (4, n))- This diagonal sub-
sequence has the property of being a subsequencig gf,) for everym> 1, up
to a finite number of initial elements perhaps. It enjoys ¢fane the property that
liMp_e f¢(n) (xm) exists for everym > 1, that is, it converges pointwise on a dense
subset oK. We will show that(fy ) converges everywhere and uniformly Kn
SinceC(K; X) is complete, it suffices to show thély ) is a Cauchy sequence in
C(K;X).

Lete > 0. SinceB is equicontinuous at everyc K, for everyx € K there exists
Ok > 0 such that for every € K and everyf € B the implication

dixy)<d = [f-fy)ll<e (1.2)

is true. We clearly havi = U,k B(X, c&& and sinceK is compact, we find finitely
many pointsxy, ..., X such thatk = UiZ; B(x, &) (with & = &). Since the se-
quence(xm) is dense inK, for every 1< i < k there existsmy > 1 such that
Xm € B(X,d). Since the sequenddy ) converges pointwise ofxm), there ex-
istsng > 0 such that

for everyn, n’ > ng and every i <k 1 f6(n) (Xm ) — o) (Xm) || < €.

Let nowx € K be arbitrary. Them € B(x;, &) for some 1< i < k. Hence, for every
n, n’ > ng, by the preceding estimate and by the implication (1.2),

o) 0 = Fo ) O < [ o) () — ( x)lI+
+1fp(n (><) (m) (X [+
+ [ o () (xm ) — f¢ ) (m )|+

+ | fp vy i) = Fo oy () 1+
+ | fomry O4) = Fo ) (X
< Be.

Sinceng > 0 did not depend om € K, and sinces > 0 was arbitrary, this proves
that(fy ) is @ Cauchy sequence G(K; X). We have therefore proved that every
sequence i admits a convergent subsequence. SBiteclosed, we obtain th&

is sequentially compact, and hence compact.






Chapter 2
Hilbert spaces

LetH be a vector space ov&t.

2.1 Inner product spaces

Afunction{-,-) : H x H — Kiis called arinner product if for everyx, y,z€ H and
everyAd e K

(i) (x,x) >0 foreveryxe H and(x,x) =0 if and only ifx=0,

(i) (xy) = (¥,
(i) (Ax+y,2 =A(x2)+ (2.
A pair (H,(-,-)) of a vector space oveék and a scalar product is called amer
product space

Example 2.1.1. On the spackl = K¢,

d

xy) = ;Xiﬁ

defines an inner product.
2. Onthe spackl =12 := {(x)) CK: ¥ %[> < w},

(xy) =3 %o

defines an inner product.
3. On the spackl = C([0, 1]), the Riemann integral

-1

(f.9) = [ 109909 ox

29
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defines an inner product.
4. On the spackl = L?(Q), the integral

(1.9):= [ g

defines an inner product.

Lemma 2.2.Let{(-,-) be an inner product on a vector space H. Then, for every x, y,
ze HandA €K

(iv) (x,Ay+2 = )T<x,y> + (X,2).
Proof.

(xAy+2) = Ay+2x) = A 70 + 23 = A (xY) + (x.2).
In the following, if H is an inner product space, then we put

X := vV {(x,x), x€H.

Lemma 2.3 (Cauchy-Schwarz inequality). Let H be an inner product space.
Then, for every x, ¥ H,

[ < XV
and equality holds if and only if x and y are colinear.

Proof. LetA € K. Then
0< (X+Ay,X+Ay)
= <X7X> + <AY7X> + <X5Ay> + |/\ |2<y7y>
= (XX +AY) +A XY+ [APY),

that is, _
0.< x+Ay|?=|[x|*+2ReA (x,y) + A [ly]* (2.1)

Assuming thaty £ O (for y = 0 the Cauchy-Schwarz inequality is trivial), we may
putA := —(x,y)/|ly|%. Then

(x,y) (x,y)
0< {x— X —
S T e

2
e [
N

which is the Cauchy-Schwarz inequality. The calculatisoahows that equality
holds if and only ifx = Ay, that is, ifx andy are colinear.

y)

Lemma 2.4.Every inner product space H is a normed linear space for themno

Xl = V{x,x), xeH.
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Proof. Properties (i) and (ii) in the definition of a norm follow frothe properties
(i) and (iii) (together with Lemma 2.2) in the definition of amer product. The only
difficulty is to show that| - || satisfies the triangle inequality. This, however, follows
from puttingA = 1 in (2.1) and estimating with the Cauchy-Schwarz ineqyalit

X+ YIIZ < ([1X]| + Iyl
A complete inner product space is calleHiidbert space.

Example 2.5.The spacek (with Euclidean inner product)? and L?(Q) are
Hilbert spaces. More examples are given by the Sobolev spbefned below.

Lemma 2.6 (Completion of an inner product space)Let H be an inner product
space. Then there exists a Hilbert space K and a boundedlops=ator j: H — K
such that for every x, g H

6YIH = (1), i(Y)k

and such that (H) is dense in K. The Hilbert space K is uniquie to isometry It
is called thecompletionof H.

Lemma 2.7 (Parallelogram identity). Let H be an inner product space. Then for
every x, ye H
X+ Y1+ [[x = IIZ = 2([XII> + [|yI1?).

Proof. The parallelogram identity follows immediately from (21y puttingA =
+1 and adding up.

Exercise 2.8 (von Neumann)Show that a norm satisfying the parallelogram iden-
tity comes from a scalar product. That means, the paralleogidentity charac-
terises inner product spaces.

A subsetK of a real or complex vector spageis convex if for everyx, y € K
and evenyt € [0,1] one hagx+ (1—-t)y e K.

Theorem 2.9 (Projection onto closed, convex sets)Given a nonempty closed,
convex subset K of a Hilbert space H, and given a poiatx, there exists a unique
y € K such that

Ix—y| = inf{|x—2z: ze K}.

Proof. Letd :=inf{|[x—2|| : z€ K}, and choos¢yn) € K such that

lim [x—yn|| = d. (2.2)

Applying the parallelogram identity tox — yn

s

/2 and(x—ym)/2, we obtain

yn+ymH2+

2
- [

[Ix— +{1x = yiml[®).

(Ix=yn

NI =

1
L—lHyn—ymH2 =
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SinceK is convex, 25" € K and hence|x — ¥¥n |2 > d2. Using this and (2.2),
the last identity implies thafy,) is a Cauchy sequence. Sinideis completey :=
limn_e Yn €Xists. Sinck is closedy € K. Moreover||x—y|| = liMmp e [|[X—Yn|| =d,

so thaty is a minimizer for the distance t To see that there is only on such
minimizer, suppose that € K is a second one, and apply the parallelogram identity
tox—yandx—vy.

LetH be aninner product space. We say that two veotors H areorthogonal
(and we writex L y), if (x,y) = 0. Given a subse3 C H, we define therthogonal
spaceS' :={yec H:x Lyforall xe S}. If S=K is a linear subspace ¢f, then
we callK* also theorthogonal complementof K.

Theorem 2.10.Let H be a Hilbert space, S H be a subset and K a closed linear
subspace. Then:
a) S'isaclosed linear subspace of H,

b) K and K' are complementary subspaces, i.e. evegykk can be decomposed
uniquely as a sum of amx K and an x € K+,

c) (KH)*=Kand(S")* =spars.
d) sparS is dense in H if and only if'S= {0}.

Proof. (a) It follows from the bilinearity of the inner product th&t is a linear
subspace Ofi. Let (yn) € S* be convergent to somec H. Then, for everyk € S,
by the Cauchy-Schwarz inequality,

<X) y> = I’|1E>TJ>O<X, yn) = Oa

thatis,y € S- and therefor&" is closed.
(b) For everyx € H we letxg € K be the unique element (Theorem 2.9) such that

X=Xl = inf{[Ix—y|| 1y € K}.
Putx; = X— Xp. For everyy € K and evernyA € K, by the minimum property ofp,
HMWSHMfANZ_
= [xa[|* — 2ReA (xa,y) + A [*[ly]|>.

This implies thatx,y) = 0, thatisx; € K+. Every decompositior = Xg + X; with
Xo € K andx; € K is unique since € KNK* implies (x,x) = 0, that isx = 0.
(c) and (d) follow immediately from (a) and (b).

Lemma 2.11 (Pythagoras).Let H be an inner product space. Whenever g, ki
are orthogonal, then
Xyl = [1x1+ Iyl

Proof. The claim follows from (2.1) and putting = 1.
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We call an operatdP : X — X on a linear spac¥ aprojection if P? = P.

Lemma 2.12.Let X be a normed space and leERZ (X) be a bounded projection.
Then the following are true:

a) Q=1—Pisa projection.
b) EitherP=0or ||P|| > 1.
c) The kernekerP and the rangeanP are closed in X.

d) Every xe X can be decomposed uniquely as a sum of@aa kerP and an
X1 € ranP, and X kerP @ ranP.

Proof. (@) Q°=(1-P)2=1-2P+P?’=1-P=Q.

(b) follows from||P|| = ||P?|| < ||P||2.

(c) Since{0} is closed inX and sincé® is continuous, keP = P~1({0}) is closed.
Similarly, ranP = ker(l — P) is closed.

(d) For everyx € X we can writex = Px+ (I — P)x= X3 + X2 with x; € ranP and
X2 € kerP. The decomposition is unique sincexiE kerPNranP, thenx = Px= 0.
This proves that theectorspaces< and kelP @ ranP are isomorphic. That they are
also isomorphic as normed spaces follows from the contirodiP.

Lemma 2.13.Let H be a Hilbert space and K H be a closed linear subspace. For
every xe H we let ¥ = Px be the unigue element in K which minimizes the distance
to x (Theorem 2.9). Then:AH — H is a bounded projection satisfyirrgnP = K.
MoreoverkerP = K. We call P theorthogonal projectiomnto K.

2.2 Orthogonal decomposition

We call a metric spacgeparable if there exists a countable dense subset.

Example 2.14.The spac&®® (or C%) is separable: one may tal as an example
of a dense countable subset. It is not too difficult to see shbsets of separable
metric spaces are separable (note, however, that in gegherdense subset has to
be constructed carefully), and that finite products of sgiplar metric spaces are
separable.

Lemma 2.15.A normed space X is separable if and only if there exists aesarpi
(Xn) € X such thatspan{x, : n € N} is dense in X (such a sequence is in general
called atotal sequence).

Proof. If X is separable, then there exists a sequérgeC X such thafx,: ne N}
is dense. In particular, the larger set span: n € N} is dense.

If, one the other hand, there exists a total sequéxgeC X, and if we puD =Q
in the casé&K =R andD = Q+iQ in the cas&K = C, then the set

m
{Z)\ixni :meN, A €D, n eN}
i=
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is denseirX (in fact, the closure contains all finite linear combinaiofithex,, that
is, it contains spafw, : n € N}). It is an exercise to show that this set is countable.
The claim follows.

Corollary 2.16. The spacé€C([0,1]), || - ||l~) is separable.

Proof. By Weierstrass’ theorem, the subspace of all polynomialgléase in
C(]0,1]) (Weierstrass’ theorem says that every continuous fundtiof0,1] — R
can be uniformly approximated by polynomials). The polyias) however, are the
linear span of the monomials(t) = t". The claim therefore follows from Lemma
2.15.

Corollary 2.17. The spacef is separable ifl < p < «. The spaceis separable.

Proof. Let &, = (& )k € IP be then-th unit vector inlP (heredyk denotes the Kro-
necker symbold. = 1 if n=k anddn = 0 otherwise). Thesparn{e,: n€ N} =cgo
(the space of all finite sequences) is densiiifi 1 < p < . The claim forl P fol-
lows from Lemma 2.15. The argument f@yis similar.

Lemma 2.18.The space® is not separable.

Proof. The set{0,1}" C I of all sequences taking only values 0 or 1 is uncount-
able. Moreover, whenevery € {0,1}Y, x#y, then

X =Ylles = 1.

Hence, the ballB(x, %) with centersce {0,1}" and radiu% are mutually disjoint.
If 1 was separable, that is, if there exists a dense countalile@sét, then in each
B(x, %) there exists at least one elemgrt D, a contradiction.

Definition 2.19.Let H be an inner product space. A familg);c; C H is called

a) anorthogonal systerif (g,e) = 0 whenevet # Kk,

b) anorthonormal systenif it is an orthogonal system anjfk || = 1 for every
lel,and

¢) anorthonormal basidf it is an orthonormal system and spga: | € 1} is
dense irH.

Lemma 2.20 (Gram-Schmidt process)Let (x,) be a sequence in an inner prod-
uct space H. Then there exists an orthonormal sysnsuch thatspaqxn} =

spar{en}.

Proof. Passing to a subsequence, if necessary, we may assumeelia)tiare
linearly independent.

Lete; := x1/||x1||- Thene; andx; span the same linear subspace. Next, assume
that we have constructed an orthonormal systegn <k<n such that

span{x:1<k<n}=span{e:1<k<n}.
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Let €1 = Xny1 — Yp1(Xn+1,&)&. Since thex, are linearly independent, we
find €, , # 0. Leteny1 = €,,,//|€,,4]|. By construction, for every X k < n,
(ént1,&) =0, and

span{x:1<k<n+1}=spanfe:1<k<n+1}.
Proceeding inductively, the claim follows.
Corollary 2.21. Every separable inner product space admits an orthonorraai

Example 2.22.Consider the inner product spa€€—1, 1]) equiped with the scalar
product(f,g) = /%, f(t)g(t) dt and resulting nornf - ||». Let fo(t) :=t" (n > 0), so
that spad f,} is the space of all polynomials on the interyall, 1]. Applying the
Gram-Schmidt process to the sequeff;g yields a orthonormal sequen¢py) of
polynomials. Thep, are called_egendre polynomials

Recall that the space of all polynomials is dens€ih-1,1]) by Weierstrass’
theorem (even for the uniform norra;fortiori also for the nornj| - ||2). Hence, the
Legendre polynomials form an orthonormal basi€if-1,1]).

Lemma 2.23 (Bessel's inequality) Let H be an inner product spacéen)neny € H
an orthonormal system. Then, for everg K,

> l(xen)[? < X1

neN

Proof. LetN € N. Putxy = X— SN_; (x,en)en so thatxy L e, for every 1< n < N.
By Pythagoras (Lemma 2.11),

N
2 2 2
(1317 = [Pl =+ [ 5 (% en)enl]
n=1

N
= [xllP+ Y [(x.en)l?
n=1

N

> 3 |(xenl

n=1
SinceN was arbitrary, the claim follows.
Lemma 2.24.Let H be a (separable) Hilbert spacen)neny € H an orthonormal
system. Then:
a) Forevery xe H, the seriesy hci (X, en)en converges.
b) P:H —H,X— Ynen(X en)en is the orthogonal projection on®pan{e, : n e
N}.

Proof. (a) Letx € H. Since(e,) is an orthonormal system, by Pythagoras (Lemma
2.11), for everyt > k> 1,
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I k |

IS (xenen— S (xenen]=|| Z (X, €n)en]?
n=k+1

n=1 n=1
|

= Z | (%, en)?.
n=k+1

Hence, by Bessel's inequality, the sequefigk._; (x, en)en) of partial sums forms a
Cauchy sequence. Sinkkis complete, the seri€s, (X, €n)en converges.
(b) is an exercise.

Theorem 2.25.Let H be a (separable) Hilbert spacg,)ney an orthonormal sys-
tem. Then the following are equivalent:

() (en)nen is an orthonormal basis.
(i) Ifx L e, forevery ne N, then x=0.
(i) X= Shen(X en)en for every xe H.

(V) (XY) = Tnen(X,n)(en,y) for every x, ye H.
(v) (Parseval's identity) Forevery& H,

X1 =3 [(xen)?.

neN

Proof. (i)=(ii) follows from Theorem 2.10.

(i) =(iii) follows from Lemma 2.24 (i). In fact, lekg = S nen (X, €n)en (Which
exists by Lemma 2.24 (i)). Thefx— xp,en) = 0 for everyn € N, and by assumption
(i), this impliesx = Xp.

(i) = (iv) follows when multiplyingx scalarly withy, applying also the Cauchy-
Schwarz inequality for the sequendés, g )), ((g,y)) € I2.

(iv)=(v) follows from puttingx =y.

(v)=(i). Let x € spar{e, : n € N}-. Then Parseval’s identity impligi||? = 0,
that is,x = 0. By Theorem 2.10, spds, : n € N} is dense irH, that is,(ey) is an
orthonormal basis.

A bounded linear operattt € £ (H,K) between two Hilbert spaces is called a
unitary operator if it is invertible and for every, y € H,

<X7y>H = <UXaUy>K'

Two Hilbert spaces! andK areunitarily equivalent if there exists a unitary oper-
atorU € Z(H,K).

Corollary 2.26. Every infinite dimensional separable Hilbert space H is aniliy
equivalent tof.

Proof. Choose an orthonormal bag)nen of H (which exists by Corollary 2.21),
and defineJ : H — 12 by U(X) = ({(X,en))nen. Then (x,y)n = (U(x),U(y));2 by
Theorem 2.25; in particulal] is bounded, isometric and injective. The fact tbiat
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is surjective, that is, that , cnen converges for everg = (cy) € 12, follows as in the
proof of Lemma 2.24 (i).

Clearly, if a sequencée,) in a Hilbert spaceH is an orthonormal basis, then
necessarilyH is separable by Lemma 2.15. Hence, the equivalent statsnoént
Theorem 2.25 are only satisfied in separable Hilbert spac@sost of the applica-
tions (if not all'), we will only deal with separable Hilbespaces so that Theorem
2.25 is sufficient for our purposes.

However, what is true in general Hilbert spaces? The folhmnsequence of re-
sults generalizes the preceeding results to arbitraryertikpaces.

Let X be a normed spaceéx )ici be a family. We say that the serigs| x; con-
vergesunconditionally if the setlg := {i €| : x; # 0} is countable, and for every
bijectived : N — Ig the series 3 Xy (n) converges.

Corollary 2.27 (Bessel’s inequality, general case)Let H be an inner product
space,(8)1e; € H an orthonormal system. Then, for everg X, the set{l €1 :
(x,&) # 0} is countable and

Z|<X,a>|2 < [Ix2. (2.3)

Proof. By Bessel's inequality, the sefs € | : |(x,g)| > 1/n} must be finite for
everyn € N. The countability of | € | : (x,g) # 0} follows. The inequality (2.3) is
then a direct consequence of Bessel's inequality.

Lemma 2.28.Let H be a Hilbert spacdg ) C H an orthonormal system. Then:

a) Forevery xe H, the seriesy || (X, )g converges unconditionally.
b) P:H—H,x— 5 (X a)e isthe orthogonal projection on&pan{e : | € 1}.

Corollary 2.29. Every Hilbert space admits an orthonormal basis.

Proof. If H is separable, the claim follows directly from the Gram-Sahtmprocess
and has already been stated in Corollary 2.21. In generaly@y argue as follows:
The set of all orthonormal systems lihforms a partially ordered set by inclu-
sion. Given a totally ordered collection of orthonormalteyss, the union of all
vectors contained in all systems in this collection formsipremum. By Zorn's
lemma, there exists an orthonormal systém) <, which is maximal. It follows
from Bessel's inequality (2.3) that this system is actuatiyorthonormal basis.

Theorem 2.25 remains true for arbitrary Hilbert spaces whplacing the count-
able orthonormal systelf@,)nen by @n arbitrary orthonormal systef® )| .

2.3 * Fourier series

In the following we will identify the spack!(0, 2rr) with
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2n
L3-(R) := {f : R — C measurable, &-periodic :/ [f] dA < oo}.
0

Similarly, we identifyL2(0, 2mr) with L, (R), and we define
Con(R) :={f € C(R) : f is 2rr-periodig.
For everyf € L1(0,2m) = L} (R) and everyn € Z we call

f(n) = %T/Oznf(t)e*im ot

the n-th Fourier coefficient of f. The sequencé = (f(n)) is called theFourier
transform of f. The formal series\/%T S nez f(n)e™ is called theFourier series of
f.

Lemma 2.30.For every fe L1(0,2m) = L} (R) we havef € 1°(Z) and theFourier
transform™:L(0,2m) — 1° is a bounded, linear operator. More precisely,

. 1
Ifllee < = lIFll1, e L1(0,2m).

Proof. For everyf ¢ L1(0,2m) and evenyn € Z,

0=l [ 10 et < o [0t
2 Jo — 2mJo '

This proves thaf € |° and the required bound dff ||... Linearity of"is clear.

Lemma 2.31 (Riemann-Lebesguelor every fe L1(0,2m) = L}, (R) we havef ¢

co(Z), i.e. A
lim |f(n)]=0.

n|—e
Proof. Let f € L}(0,2m) = L, (R) andn € Z, n# 0. Then

2n .
(n) = %T/O f(t)e ™ ot

_ i/znf(t)e*im(l—ei"%) ot
41T Jo

f

1 2m r o m
:ET/O f(t)(e int _ g in(t n))dt
1 2 T, —int
= [ GO —fe+Dye ™,

so that
1

. on
<o [0 - fe
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Hence, if f = 1o € L1(0,27) for some open sed C [0,271], then f € co(Z) by
Lebesgue dominated convergence theorem. On the otherdinod spaflo: O C
[0,271 opent} is dense inL1(0,2m), since the Fourier transform is bounded with
values inl®(Z) (Lemma 2.30), and sinag(Z) is a closed subspace B5f(Z), we
find thatf € co(Z) for every f € L1(0,2m).

Remark 2.32.At the end of the proof of the Lemma of Riemann-Lebesgue, we
used the following general principle: T € . (X,Y) is a bounded linear operator
between two normed linear spacésy, and ifM C X is dense, thenrahC T(M).

We used in addition tha(Z) is closed in®(Z).

Theorem 2.33.Let f € Con(R) be differentiable in some pointsR. Then
fis)=S f(n)es.
2
Proof. Note that forfs(t) := f(s+1),

) = — /'an(sﬂ)e*im dt— — / T (e ot — dnsF(n)
S 21 Jo 21 Jo '

Hence, replacing by fs, if necessary, we may without loss of generality assume
thats= 0. Moreover, replacing by f — f(0), if necessary, we may without loss of
generality assume th&{0) = 0. We hence have to show thaffifs differentiable in
0 andiff(0) =0, theny 5 f(n) =0.

Let g(t) := 1%(}. Sincef is differentiable in 0,f(0) = 0, and sincef is 2
periodic, the functiorg belongs taCy(R). By the Lemma of Riemann-Lebesgue,
g € co(Z). Note that

R 2i . )
fim =5 [ —ee ™ ot = gm) — g1,
Hence,

3 0= 5 al-g

— =—n
=§(n)—§(-n—1)—0 (n— o).
This is the claim.

Corollary 2.34. For every fe C} (R) := Cor(R) NCY(R) and every t R
ft)y="3 f(ne™.
nez

Remark 2.35.We will see that the convergence in the preceeding coroitagyen
uniformint € R.
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Throughoutthe following, we equip the spacg0, 2m) = L (R) with the scalar
product given by

f 1 2"f g(t) dt
=— t)g(t

(19 i= 5 [ T0gd ot

which differs from the usual scalar product by the fat%qr

Lemma 2.36.The space & (R) is dense in B (R).

Proof. We first prove tha€([0,27]) is dense irL2(0,2m) = L3 (R). For this, con-
sider first a characteristic function= 1., € L2(0,2m). Let (gn) € C([0,211]) be
defined by

1, t €[ab],

1+n(t—a),tela—1/na),
1-n(t—b),te (b,b+1/n],
0]

an(t) ==

else

)

l0l.2

Itis then easy to see that lim. || f —gnl|, 2 = 0, so thatf =1, € C([0,2m))
In the second step, consider a characteristic funcfiea 15 of an arbitrary
Borel setA € #4([0,2m]), and lete > 0. By outer regularity of the Lebesgue mea-

sure, there exists an open €0 A such thai (O\ A) < £2. Recall thatO is the
countable union of mutually disjoint intervals. Sindéhas finite measure, there ex-
ist finitely many (mutually disjoint) interval§ay,bn) € O (1 < n < N) such that
A(O\UN_; (an,bn)) < €2. By the preceeding step, for every<in < N there exists
0n € C([0,27) such that| 1, b, — Onll2 < &. Letg:= $N_1 gn € C([0,271). Then

I —dll2 < [11a—=2oll2+ 20 = L (a2 1T (anbn) — 9ll2

N
Setet| Y (Lanon — )2
n=1

< 3e.

This proves A € C([0, 27'[])H'HL2 for every Borel seA € #([0,2)). Sincespan{1a :
Ac %([0,2m)} = L?(0,2m), we find thaiC([0, 21)) is dense in.%(0, 27).

It remains to show thatl (R) is dense inC([0,2m1]) for the norm|| - ||2. So
let f € C([0,2m]) and lete > 0. By Weierstrass’ theorem, there exists a function
do € C*([0,21]) (even a polynomial!) such thif — go||. < €. Letg; € CY(]0,271])
be such thagy (2m) = g;(2m) = 0, G1(0) = go(211) — go(0) andg; (0) = gy(2m) —
0p(0) and||g1||2 < €. Such a functiory; exists: it suffices for example to consider
functions for which the derivative is of the form

90(27-[) - gO(O) + Ct7 te [Oa hl]7
g1(t) = { 90(21) — go(0) +chy +d(t —hy), t € (hy, hp),
07 t € [h2527T]5
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with appropriate constants<0 h; < hy andc, d € C. Having choserg;, we let
g = go+ g1 and we calculate that

If—gll2<|f—0doll2+]g1]]2 < 2¢.

Sinceg extends to a function i€ (R), we have thus proved th@g (R) is dense
inL3 (R).

Remark 2.37.An adaptation of the above proof actually shows that foredex

p < « and every compact intervid, b] C R, the spac€([a,b]) is dense irLP(a,b).
A further application of Weierstrass’ theorem actually whdhat the space of all
polynomials is dense ibP(a,b). In particular, we may obtain the following result.

Corollary 2.38. The space B(a,b) is separable ifl < p < ». The space £(a,b) is
notseparable.

Corollary 2.39. Let &(t) := €™, n€ Z, t € R. Then(en)nez is an orthonormal basis
inL3 (R).

Proof. The fact that(en)nez is an orthonormal system is,(R) is an easy calcu-
lation. We only have to prove that spgey : n € Z} is dense in.2 (R). Note that

f(n) = (f,en) for every f € L3 (R) and everyn € Z. By Lemma 2.24, we know
that for everyf € L2 (R)

g:= EZ f(n)en exists inL3,(R).
ne

In particular, a subsequence @ﬁ}k f(n)en) converges almost everywheredo
But by Corollary 2.34 we know thdtz‘r‘]}k f(n)en) converges pointwise every-
where tof if f € C} (R). As a consequence, for evefye C1_(R),

k
lim 5 f(njen=finL3n(R),
n=—k

k—o0
so that spafie, : n € Z} is dense in(C},(R), || - iz )- SinceCl,(R) is dense in
L3,(R) by Lemma 2.36, we find thdtn)nez is an orthonormal basis s, (R).

Theorem 2.40 (Plancherel).For every fe L3 (R) we havef € 12(Z) and the
Fourier transfornf: L3 (R) — 1%(Z) is an isometric isomorphism. Moreover, for
every fe L3 (R),

Y f(nen=finL3(R),

nez
that is, the Fourier series of f converges to f in thfesense.

Proof. By Corollary 2.39, the sequen¢e,)cz is an orthonormal basis in%n(R).
Moreover, recall that for everf L%,TQR) and evenn € Z, ngn) = (f,en). Hence,
by Theorem 2.25{ € 12(Z), f = 3 ez T (N)en, and|\f||L§ =||f|||2 (the last property
being Parseval’s identity). "
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Corollary 2.41. Let f € Con(R) be such thaf e 11(Z). Then

%f(n)en = fin Con(R),

that is, the Fourier series of f converges uniformly to f.

Proof. Note that for everyr € Z, ||en|| = 1. The assumptioti € I1(Z) therefore
implies that the serie¥ .z f(n)e, converges absolutely i@,(R), i.e. for the uni-
form norm|| - ||. Since(Con(R), || - ||=) is complete, the serieS, .z, f(n)e, con-
verges uniformly to some elemegt C,;(R). By Plancherelg = f.

Remark 2.42.The assumptiori € 11(Z) in Corollary 2.41 is essential. For general
f € Con(R), the Fourier serieS ., f (n)e, need not not converge uniformly. Ques-
tions regarding the convergence of Fourier series (whiple tf convergence? for
which function?) can go deeply into the theory of harmonilgsis and answers are
sometimes quite involved. THe theory gives in this context satisfactory answers
with relatively easy proofs (see Plancherel’s theoremj) déatinuous functions we
state the following result without giving a proof.

Theorem 2.43 (Fejer). For every fe Con(RR) one has
B RS :
lllinm K k;n;k f(n)en = f in Con(R),

that is, the Fourier series of f converges in thésaro meanuniformly to f.

2.4 Linear functionals on Hilbert spaces

In this section, we discuss bounded functionals on Hilbgates. Compared to the
case of bounded linear functionals on general Banach spheesase of bounded
linear functionals on Hilbert spaces is considerably eagytthas far reaching con-
sequences.

Theorem 2.44 (Riesz-Fechet). Let H be a Hilbert space. Then for every bounded
linear functionalg € H’ there exists a uniqueq H such that

¢ (x) = (x,y) foreveryxeH.
Proof. Uniquenesd.ety;, y» € H be two elements such that
d(x) = (X,y1) = (x,y2) foreveryxcH.

Then(x,y1 —y2) = 0 for everyx € H, in particular also fox = y; — y». This implies
ly1 — 2|/ = 0, that is,y; = y».
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ExistenceWe may assume that # 0 since the cas¢ = 0 is trivial. Lety €
(kerg)+\ {0}. SinceH # ker¢ and since kep is closed, such g éxists. Next, let

y:= )/ 1519

Note thatg (y) = ||y||?> = (y,y). Recall that everx € H can be uniquely written as
X =X+ Ay Wwith Xo € kerg andA € K so thatAy € (kerg)*. Note that(ker¢)* is
one-dimensional. Hence, for everyg H,

¢(x)

$(x0+Ay)
$(X0) +AD(Y)
A

A

o(y)
y,y)

(Ay,y)
X

X0,Y) + (AY,Y)

=
= (X,Y).

The claim is proved.

Corollary 2.45. Let J: H — H’ be the mapping which maps to everg ¥ the
functional Jye H’ given by Jyx) = (x,y). Then J is antilinear if{ = C and linear
if K =R. Moreover, J is isometric and bijective.

Proof. The fact that] is isometric follows from the Cauchy-Schwarz inequality.
Antilinearity (or linearity in casek = R) follows from the sesquilinearity (resp.
bilinearity) of the scalar product oH. SinceJ is isometric, it is injective. The
surjectivity ofJ follows from Theorem 2.44.

Remark 2.46.The theorem of Riesz-Fréchet allows us to identify anyl]iddbert
spaceH with its dual spacél’. Note, however, that there are situations in which one
does not identifyH’ with H. This is for example the case wh¥ris a second Hilbert
space which embeds continuously and denselyhhtthat is, for which there exists

a bounded, injectivé : V — H with dense range.

2.5 Weak convergence in Hilbert spaces

Let H be a Hilbert space. We say that a sequeixge C H converges weakly to
some elemenk € H if for everyy € H one has lim_« (X, Y) = (X,y). We write

weak
Xn — X Or X, — Xif (xn) converges weakly t.
Theorem 2.47.Every bounded sequenfg) in a Hilbert space H admits a weakly
convergent subsequence, that is, there existdxand there exists a subsequence
weak
(Xn,) Of (Xn) such that ¥, .
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In the proof of this theorem, we will use the following geneesult.

Lemma 2.48.Let X and Y be two normed spaces,([Bf) € .Z(X,Y) be a bounded
sequence of bounded operators. Assume that there existssa det MC X such
thatlimp_. ToX exists for every g M. Thenlimp_,. Tox=: T x exists for every & X
and Te Z(X,Y).

Proof. DefineT x:= limy_,» T,x for everyx € sparM. Then

T = Jim, [[Tox| < sup([Tall X[,

thatis.T : sparM — Y is a bounded linear operator. Sindds dense irX, T admits
a unigue bounded extension X — Y.

Letx e X ande > 0. SinceM is dense irX, there existy € M such that|x—y|| <
€. By assumption, there existg such that for everp > ng we havel| Ty —Ty|| < €.
Hence, for every > ng,

[Tax = TX]| < [[Tox = Toy[[ + [ Try = Tyl + [Ty —TX]|
< supl[Tall X =yl + &+ [Tl Xyl

< s(sngTnll +1+(T),

and therefore lim,o Thx = TX.

Proof (Proof of Theorem 2.47As in the proof of the Arzela-Ascoli theorem (The-
orem 1.36), we use Cantor’s diagonal sequence argumentxiebe a bounded
sequence . We first assume that is separable, and we 16f,) C H be a dense
sequence.

Since ({(Xn,y1)) is bounded by the boundedness(gf), there exists a subse-
quence(Xy, (n)) of (xn) (¢1: N — Nis increasing, unbounded) such that

Am<x¢l(n),y1> exists.
Similarly, there exists a subsequernigg, ) of (X4, () such that
Am<x¢2(n>,y2> exists.
Note that for this subsequence, we also have that
Am<x¢2(n),y1> exists.

Iterating this argument, we find a subsequefgg,)) of (x4,(n)) and finally for
everyme N, m> 2, a subsequendey, n)) of (X, ,n)) Such that

Am(x%(n),yﬁ exists forevery K j <m.
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Let (x,) := (xg,(n)) b€ the 'diagonal sequence’. Thex,) is a subsequence of
(%n) and
,!m,%’ym) exists for everyn e N.
By Lemma 2.48 and the Riesz-Fréchet representation thre¢féneorem 2.44),
there existx € H such that

lim (xq,y) = (x.y) for everyy € H,
and the claim is proved in the case whtiis separable. N

If H is not separable as we first assumed, then one may replangH :=
span{x, : n € N} which is separable. By the above, there existsH and a subse-
quence of xn) (which we denote again bix,)) such that for every € H,

I’Ili~r>r10<xn7y> = <X) y>7

that is, (x,) converges weakly iii. On the other hand, for evegye H' and every
nl
(n,Y) = (xy) =0.

The decompositiorl = H @ H* therefore yields thafx,) converges weakly if.






Chapter 3
Dual spaces and weak convergence

3.1 The theorem of Hahn-Banach

Given a normed spacé, we denote byX’ ;= Z(X,K) the space of all bounded
linear functionals orX. It is called thedual spaceof X. Recall thatX’ is always a
Banach space by Corollary 1.29 of Chapter 1.

However,a priori it is not clear whether there exists any bounded linear func-
tional on a normed spacé(apart from the zero functional). This fundamental ques-
tion and the analysis of dual spaces (analysis of funct®rsdlall be developed in
this chapter.

The existence of nontrivial bounded functionals is guaradtby the Hahn-
Banach theorem which actually admits several versions.ddew before stating
the first version, we need the following definition.

LetX be areal or complex vector space. A functpnX — R is calledsublinear

if
() p(Ax) =Ap(x) for everyA > 0,x € X, and
(i) p(x+y) < p(x)+ p(y) for everyx,y € X.

Example 3.1.0n a normed spack, the norm|| - || is sublinear. Every lineap :
X — R is sublinear.

Theorem 3.2 (Hahn-Banach; version of linear algebra, real &se). Let X be a
real vector space, I X alinear subspace, and:X — R sublinear. Letp : U — R
be linear such that

d(x) < p(x) forallx e U.

Then there exists a linedr : X — R such thatp (x) = ¢ (x) for every xe U (that is,
@ is an extension of) and

#(x) < p(x) for all x € X. (3.1)

47
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The following lemma asserts that this version of Hahn-Béarnisatrue in the spe-
cial case wheiX /U has dimension 1. It is an essential step in the proof of Thore
3.2.

Lemma 3.3.Take the assumptions of Theorem 3.2 and assume in addit&n th
dimX/U = 1. Then the assertion of Theorem 3.2 is true.

Proof. If dim X /U = 1, then there existg € X\ U such that everx € X can be
uniquely written in the formx = u+ Axp with u € U andA € R. So we define
$: X —=Rhby

$(X) == P(u+Ax0) = d(u) +Ar,
wherer € R is a parameter which has to be chosen such that (3.1) holtsisth
such that foreverue U, A € R,

¢ (u)+Ar < p(u+Axo). (3.2)

If A =0, then this condition clearly holds for evany= U by the assumption og.
If A > 0, then (3.2) holds for eveny < U if and only if

Ar < p(u+Axg) — ¢ (u) foreveryu e U

sr< p(/\gﬂo)f(ﬁ(%

1< inf p(v+xo) — (V).

) for everyue U

Similarly, if A < 0, then (3.2) holds for evenye U if and only if

Ar < p(u+Axp) — ¢ (u) foreveryue U

& -r< p(% —Xo) — ¢(%) for everyu e U

S 1> supg (w) — p(W—Xp).

welU

So it is possible to find an appropriate R in the definition of@ if and only if
¢ (W) — p(w—x0) < p(V+Xo) — ¢(v) forall v, we U,
or, equivalently, if
¢ (W) + ¢ (V) < p(V+ Xo) + p(w— o) forall v, w € U.
However, by the assumptions ¢nandp, for everyv, we U,
¢ (W) + (V) = p(W+V) < p(W+V) = p(V+Xo+W—Xo) < P(V+Xo) + P(W—Xo).

For the second step in the proof of Theorem 3.2, we need therizeofi Zorn.

Lemma 3.4 (Zorn).Let (M, <) be a ordered set. Assume that every totally ordered
subset TC M (i.e. for every x, y& T one either has X y or y < x) admits an
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upper bound. Then for everyeM there exists a maximal elementax (that is,
an element m such that saim implies m= m for everym € M).

Proof (Proof of Theorem 3.2Define the following set

M:={(V,¢v):V C X linear subspact), CV, ¢y :V — R linear, s.t.
(X) =¢v(x) (xeU) anddy(x) < p(x) (x€ V)},

and equip it with the order relatiod defined by

(Vla ¢\/1) < (VZa ¢\/2) SViCV, and¢\/1(x) = ¢V2(X) forallx e V1.

Then(M, <) is an ordered set. La&t= ((, v ) )ics € M be a totally ordered subset.
Then the elemen(, ¢v ) € M defined by

V=V andgy (x) = ¢y (X) forxe V4
iel
is an upper bound of . By the Lemma of Zorn, the s&t admits a maximal element
(X0, 9x,). Assume thaXp # X. Then, by Lemma 3.3, we could construct an element
which is strictly larger thatiXo, ¢x, ), a contradiction to the maximality ¢Xo, ¢x,).
Hence X = X, and$ := ¢x, is an element we are looking for.

The complex version of the Hahn-Banach theorem reads asvigll

Theorem 3.5 (Hahn-Banach; version of linear algebra, comgx case).Let X be
a complex vector space, U X a linear subspace, and :pX — R sublinear. Let
¢ :U — C be linear such that

Re¢ (x) < p(x) forall x e U.

Then there exists a linedr : X — C such thatp (x) = ¢ (x) for every xe U (that is
@ is an extension of) and

Red (x) < p(x) for all x € X. (3.3)

Proof. We may consideX also as a real vector space. Note téx) := Re¢ (x) is
anR-linear functional onX. By Theorem 3.2, there exists an extensipnX — R
of  satisfying

P(x) < p(x) for everyx € X.

Let
A(X) :=P(x)—id(ix), xeX.

It is an exercise to show thétis C-linear, thatg (x) = §(x) for everyx € U and it
is clear from the definition that Rig(x) = /(). Thus,§ is a possible element we
are looking for.

Theorem 3.6 (Hahn-Banach; extension of bounded linear furtonals). Let X
be a normed space and U X a linear subspace. Then for every bounded linear
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U :U — K there exists a bounded linear extensidn X — K (that is, X|y = U')
such that|X'|| = ||U]|.

Proof. We first assume thaX is a real normed space. The functipn X — R
defined byp(x) := ||U/|| ||| is sublinear and

u'(x) < p(x) for everyx € U.

By the first Hahn-Banach theorem (Theorem 3.2), there eaifitearx’ : X — R
extendingu’ such that

X (X) < p(x) = ||U]| ||| for everyx € X.
Replacingx by —x, this implies that
X (X)| < [|U]| ||x|| for everyx € X.

Hence X is bounded andx/|| < ||U||. On the other hand, one trivially has

X[ = sup X' (x)| > sup X (x)| = sup|u'(x)| = |u].
xeX Xe Xe
IxI<1 IxI<1 IxI<1

If X is a complex normed space, then the second Hahn-Banaclethébheorem
3.5) implies that there exists a linedr. X — C such that

Rex (x) < p(x) = ||U|| ||x]| for everyx € X.
In particular,

IX(x)| = sup Rex'(e9x) < |u| ||| for everyx e X,
6<(0,271]

so that again is bounded and|X|| < ||u/||. The inequality||X|| > ||u|| follows as
above.

Corollary 3.7. If X is a normed space, then for everg X\ {0} there existsxc X’
such that

x|l = Land X(x) = ||
In particular, X’ separates the pointd X, i.e. for every x, X € X, X # Xp, there
exists xe X’ such that Xx1) # X (x2).

Proof. By the Hahn-Banach theorem (Theorem 3.6), there exists tam&onx' ¢
X’ of the functionalt’ : spar{x} — K defined byu/(Ax) = A||x|| such that|x| =
W =1.

For the proof of the second assertion,set x; — Xo.

Corollary 3.8. If X is a normed space, then for evergxX
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X[l = sup [X(x)]. (3.4)

Proof. For everyx' € X’ with ||X|| < 1 one has
X O < IXHIXIE< (1],

which proves one of the required inequalities. The othequadity follows from
Corollary 3.7.

Remark 3.9. The equality (3.4) should be compared to the definition ofrtbem
of an elemenk’ € X':
X[ = sup|x(x)].
xeX
X<t
From now on, it will be convenient to use the following notati Given a normed
spaceX and elements € X, X' € X', we write

(X ,X) == (X, X)xr o x 1= X (X).
For the bracket:, -), we note the following properties. The function
()X x X =K,
(X, X) = (X, X) = X (X)
is bilinear and for every’ € X’, x € X,
104,01 < X[ X

The bracket:, ) thus appeals to the notion of the scalar product on inneryatod
spaces, and the last inequality appeals to the Cauchy-$zlmweguality, but note,
however, that the bracket isot a scalar product since it is defined on a pair of
two different spaces. Moreover, everXif= H is a complex Hilbert space, then the
bracket differs from the scalar product in that it is bilin@estead of sesquilinear.

Corollary 3.10. Let X be a normed space, U X a closed linear subspace and
x € X\ U. Then there exists x X’ such that

X (X) # 0 and X(u) = O for every uc U.

Proof. Let : X — X /U be the quotient mapyx) = x+U). Sincex ¢ U, we have
m(x) # 0. By Corollary 3.7, there exisi € (X/U)’ such thatp (r1(x)) # 0. Then
X := ¢ o e X' is a functional we are looking for.

A linear operatoP : X — X on a linear spacX is called gorojection if P> =P.
A linear subspact of a normed spacX is calledcomplemented if there exists a
projectionP € £ (X) such thatraP =U.
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Remark 3.11.If P is a projection, thei® = | — P is also a projection and réh=
kerQ. Hence, ifP is a bounded projection on a normed space, theR iameces-
sarily closed. Thus, a necessary conditionfoto be complemented is thék is
closed.

Corollary 3.12. Every finite dimensional subspace of a nhormed space is cemple
mented.

Proof. LetU be a finite dimensional subspace of a normed spadeet (bj)1<i<n
be a basis df). By Corollary 3.10, there exist functionatse X’ such that

WIS ELIE!
7771 0 otherwise.

LetP: X — X be defined by

Px:= i(ﬁ,x)bi, xe X.

ThenPb = b for every 1< i < N, and thusP? = P, that is,P is a projection.
Moreover, raf® = U by construction. By the estimate

N
IPX] < _ZI(&-’,X>| [l

< (iilﬁll b3 1) 111,

the projectiorP is bounded.

The following lemma which does not depend on the Hahn-Batlagbrem is
stated for completeness.

Lemma 3.13.In a Hilbert space every closed linear subspace is complégaen

Proof. Take the orthogonal projection onto the closed subspacepassble pro-
jection.

Corollary 3.14. If X is a normed space such that i separable, then X is separa-
ble, too.

Proof. Let D’ = {x; : n € N} be a dense subset of the unit spher&bfFor every
n € N we choose an elemegyt € X such that|x,|| < 1 and|(x},, ,)| > 3. We claim
thatD := span{x, : n € N} is dense inX. If this was not true, i.e. iD # X, then,
by Corollary 3.10, we find an elemexite X'\ {0} such that<'(x,) = 0 for every
n € N. We may without loss of generality assume tiwf| = 1. SinceD’ is dense in
the unit sphere oX’, we findng € N such that|x' —x;, || < 7. Butthen
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%glod

Ng?

1
Xno)| = [ (X =X Xno) | < [[Xng = X[ 0o | < 7

which is a contradiction. HencB,= X andX is separable by Lemma 2.15 of Chap-
ter 2.

3.2 Weak' convergence and the theorem of Banach-Alaoglu

Let X be a Banach space. We say that a sequéxjgeC X’ converges weak to
some element’ € X’ if for every x € X one has lim_« (X,,X) = (X,X). We write

weaks
X, — X if (x,) converges weékto X'.

Theorem 3.15 (Banach-Alaoglu).Let X be a separable Banach space. Then every
bounded sequenda/,) C X" admits a weakconvergent subsequence, that is, there

weaks
exists xe X' and there exists a subsequerigg ) of (x,) such thatk — X.

Proof. As in the proof of the Arzela-Ascoli theorem (Theorem 1.86) the theo-
rem about weak sequential compactness of the unit ball inertispaces (Theorem
2.47), we use Cantor's diagonal sequence argumentx,ebe a bounded sequence
in X'.

SinceX is separable by assumption, we can choose a dense sedughceX.
Since({x,,x1)) is bounded by the boundednesgxif), there exists a subsequence
(X:pl(n)) of (x,) (¢1: N — N is increasing, unbounded) such that

Aﬂ(x&mm ,X1) exists.

Similarly, there exists a subsequenjxfgz(n)) of (x’¢1<n)) such that

lim (X,

lim (X, m)- X2) exists.

Note that for this subsequence, we also have that

rI]iglo<x’<,>2(n),xl> exists.
. . , , ,

Iterating this argument, we find a} subsequ?(n(&g(n)) of (x¢2<n)) and finally for

everyme Nym>2,a subsequenc{ez¢m(n)) of (x¢m71(n)) such that
Am<%¢m(n),xj> exists forevery K j <m.

Let (y,) := (x’¢n<n)) be the 'diagonal sequence’. Théy},) is a subsequence of

(x,) and
lim (Y, Xm) exists for everynm € N.
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By Lemma 2.48 of Chapter 2, there exigts X’ such that

lim (yp,,x) = (X, x) for everyx € X.

n—oo

This is the claim.

3.3 Weak convergence and reflexivity

Given a normed spack, we callX” := (X') = Z(X’,K) thebidual of X.

Lemma 3.16.Let X be a normed space. Then the mapping

J: X =X,
X (X = (X,X)),

is well defined and isometric.

Proof. The linearity ofX' — (X, X) is clear, and from the inequality
19x(X)| = [(X )] < [IX] 1],

follows thatdx € X" (that is,J is well defined) and|Jx|| < ||x||. The fact thatl is
isometric follows from Corollary 3.7.

A normed spac« is calledreflexive if the isometryJ from Lemma 3.16 is
surjective, i.e. ifJX = X". In other words: a normed spakds reflexive if for every
X" € X" there existx € X such that

X' Xy = (X,x) forall X € X',

Remark 3.17.1f a normed space is reflexive théhand X" are isometrically iso-
morphic (via the operatal). SinceX” is always complete, a reflexive space is nec-
essarily a Banach space.

Note that it can happen thatandX” are isomorphic withouX being reflexive
(the example of such a Banach space is however quite involWel point out that
reflexivity means that the special operalds an isomorphism.

Lemma 3.18.Every Hilbert space is reflexive.

Proof. By the Theorem of Riesz-Fréchet, we may identifywith its dualH’ and
thus alsdH with its bidualH”. The identification is done via the scalar product. Itis
an exercise to show that this identificationtbfvith H” coincides with the mapping

J from Lemma 3.16.

Remark 3.19.1t should be noted that for complex Hilbert spaces, the ifieation
of H with its dualH’ is only antilinear, but after the second identificatibf vith
H”) it turns out that the identification ¢4 with H” is linear.
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Lemma 3.20.Every finite dimensional Banach space is reflexive.
Proof. It suffices to remark that iX is finite dimensional, then

dimX = dimX' = dimX” < o,

Surjectivity of the mapping (which is always injective) thus follows from linear
algebra.

Theorem 3.21.The space B(Q) is reflexive ifl < p < o ((Q,</,) being an
arbitrary measure space).

We will actually only prove the following special case.
Theorem 3.22.The spacesPlare reflexive ifl < p < .
The proof of Theorem 3.22 is based on the following lemma.

Lemma 3.23.Let1 < p < o and let g:= prl be the conjugate exponent so that
% + % = 1. Then the operator

T:19- (1P,
(8n) > (%) = S ankn),
n
is an isometric isomorphism, that igFP)’ = 19.

Proof. Linearity of T is obvious. Assume firgb > 1, so thatg < «. Note that for
everya:= (a,) €19\ {0} the sequencex,) 1= (can|an|%2) (c = ||allq¥ ") belongs
tolP and

XI5 = HaHan jan| @ P = 1.

This particularx € IP shows that

- -1
ITal ey > Y awkn = [allg¥® Y anl? = [[alldP P = ||al]q.
n n

On the other hand, by Holder's inequality,

I Tallgpy = sup [ anxal < lag,
[Xlp<1 ‘™

so thafT is isometric in the casp € (1,»). The case = 1 is very similar and will
be omitted.

In order to show thal is surjective, letp € (IP)'. Denote bye, the n-th unit
vector inlP, and letan := ¢ (ey). If p=1, then(a,) € 1*° =19 by the trivial estimate

|an| = [¢(en)| < [@] l[enlls =[]
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If p> 1, then we may argue as follows. For evéhye N,

N N
3 [o0l"= 3 and a2
n=1 =

N
= Z anlan|%?en
R .
<1911 (3 lan an|(4UP) P
N 1
=191 (3 lanl)”.
which is equivalent to
N _1 1
(z|an|q) P — ZIfian )a
n=1

Since the right-hand side of this inequality does not depmnl € N, we obtain
thata:= (ay) € 19and|jal|q < ||®]l-
Next, observe that for everye | P one has

N
X=Y Xp&h = lim X
Z n€n N%‘”nzl n€n,

the series converging i (here we need the restrictign< «!). Hence, for every
x € IP, by the boundedness ¢f,

= lim ¢( ZXnen

N—o00

= lim Z Xnan

N—veo &

= Xnan
n
=Ta(x).
Hence,T is surjective.

Proof (Proof of Theorem 3.22By Lemma 3.23, we may identifft?)" with |9 and,

if 1 < p<oo(l),also(IP)” = (19 with IP. One just has to notice that this identifi-
cation of[P with (IP)” = IP (the identity map oriP) coincides with the operatdr
from Lemma 3.16, so thaP is reflexive if 1< p < .

Lemma 3.24.The spacest| L1(Q) (@ € RN) and ([0, 1]) are not reflexive.
Proof. For everyt € [0,1], let & € C([0,1])’ be defined by
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(&.f) = f(t), fec(o,1)).
Then||&|| = 1 and whenever# s, then

[&— o] =2

In particular, the uncountably many baBgd, %) (t € [0,1]) are mutually disjoint
so thatC([0,1])" is not separable.

Now, if C([0,1]) were reflexive, thel€([0,1])” = C([0,1]) would be separable
(sinceC(][0,1)) is separable), and then, by Corollary 3.C4/0,1])" would be sepa-
rable; a contradiction to what has been said before. ThiggerthatC(]0,1]) is not
reflexive.

The cases of! and L(Q) are proved similarly. They are separable Banach
spaces with nonseparable dual.

Theorem 3.25.Every closed subspace of a reflexive Banach space is reflexive

Proof. Let X be a reflexive Banach space, andUef X be a closed subspace. Let
u” € U”. Then the mapping”’ : X’ — K defined by

X' x) = (" Xlu), xeX,
is linear and bounded, i.&" € X”. By reflexivity of X, there existx € X such that
X, x) =" X|y), XeX. (3.5)

Assume thak ¢ U. Then, by Corollary 3.8, there existse X’ such that'|y =0
and(x,x) # 0; a contradiction to the last equality. Henges U. We need to show
that

(U Uy = (U,x),vu e U’ (3.6)

However, ifu’ € U’, then, by Hahn-Banach we can choose an extengierX’, i.e.
X|u = U'. The equation (3.6) thus follows from (3.5).

Corollary 3.26. The Sobolev spaces®(Q) (Q C RN open) are reflexive it <
p<o,keN.

Proof. For example, fok = 1, the operator

T:WHP(Q) - LP(Q)**N,
u— (u ﬂ ﬂ)
,OX]_,”"aXN ’

is isometric, so that we may considatP(Q) as a closed subspaceldf(Q)1*N
which is reflexive by Theorem 3.21. The claim follows from ©hem 3.25.

Corollary 3.27. A Banach space is reflexive if and only if its dual is reflexive.
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Proof. Assume that the Banach spaXeis reflexive. Letx” € X" (the tridual!).
Then the mapping : X — K defined by

X, x) = X" Ix(X)), X€EX,

is linear and bounded, i.&. € X’ (hereJx denotes the isometdy — X”). Letx” €
X" be arbitrary. Sinc& is reflexive, there existsc X such thatlyx = x’. Hence,

(X" X"y = (X", Ixx) = (X, x) = (X", X},

which proves thafly, X' = X", i.e. the isometndy : X’ — X" is surjective. Hence,
X' is reflexive.

On the other hand, assume tbétis reflexive. TherX” is reflexive by the pre-
ceeding argument, and therefofgconsidered as a closed subspacXbivia the
isometryl) is reflexive by Theorem 3.25.

Let X be a normed space. We say that a sequéxge_ X converges weaklyo
somex € X if
lim (X', %) = (X, x) for everyx € X'.
n—oo
Notations: if(x,) converges weakly tg, then we writex, — X, W— liMp_e Xn = X,
Xn — Xin g (X, X"), or x5 — x weakly.

Theorem 3.28.In a reflexive Banach space every bounded sequence admits a
weakly convergent subsequence.

Proof. Let (xy) be a bounded sequence in a reflexive Banach spad&fe first
assume thaX is separable. TheX” is separable by reflexivity, and is separable
by Corollary 3.14. Letx;,) C X’ be a dense sequence.

Since ((X3,%n)) is bounded by the boundedness(gf), there exists a subse-
quence(Xy, (n)) of (xn) (¢1: N — Nis increasing, unbounded) such that

rI]imx)(x’l, Xg,(n)) EXISLS.

Similarly, there exists a subsequertgg, ) of (x4, n)) such that

rlmo<X/27 X¢2(n) > exists.

Note that for this subsequence, we also have that

rI]imx)(x’l, Xg,(n)) EXISLS.

Iterating this argument, we find a subsequepgg ) of (X4,m)) and finally for
everyme N, m> 2, a subsequendey, n)) of (X, ,n)) Such that

rImg{)(x’J s Xgm(n)) EXists for every K j <m.
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Let (yn) := (Xg,(n)) e the 'diagonal sequence’. Théyn) is a subsequence of
(%n) and
l!im(}(x’m,yn) exists for everyn € N.

By Lemma 2.48 of Chapter 2, there exigtsc X" such that

(X, yn) = (X,X") for everyx' € X'.

lim
n—-o0

SinceX is reflexive, there exists € X such thatlx= x". For thisx, we have by
definition ofJ

lim (X', yn) = (X, X) exists for everyx' € X',
n—oo

that is,(yn) converges weakly tg. N

If X is not separable as we first assumed, then one may reilame X :=
Span{x, : n € N} which is separable. By the above, there existsX and a sub-
sequence ofxn) (which we denote again hix,)) such that for every’ € X’,
<%5Xn> = <%5X>7

lim
n—oo

that is, (xn) converges weakly iiX. If X € X', thenx|; € X/, and it follows easily
that the sequende,) also converges weakly M to the elemenx.

3.4 * Minimization of convex functionals

Recall from page 31 that subd€bf a real or complex vector spacecgnvexif for
everyx,y € K and everyt € [0,1] one hagx+ (1—-t)ye K.

Theorem 3.29 (Hahn-Banach; separation of convex sets)Let X be a Banach
space, KC X a closed, nonempty, convex subset, and X \ K. Then there exists
X' € X" ande > 0 such that

Re(X,x) + & < Re(X,X), xeK.

Lemma 3.30.Let K be an open, nonempty, convex subset of a Banach spa@h X su
thatO € K. Define theMinkowski functional p: X — R by

p(x) =inf{A >0: ; € K}.
Then pis sublinear, there exists MO such that
p(x) <MJx]|, xeX,
and K= {xe X: p(x) < 1}.

Proof. SinceB(0,r) C K for somer > 0, we find that
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1
p(x) < T ||x|| for everyx € X.

The propertyp(ax) = a p(x) for everya > 0 and every € X is obvious.

Next, if p(x) < 1, then there existd € (0,1) such thatx/A € K. Hence, by
convexityx=A % =A {4 (1—-A)0e K. On the other hand, ¥c K, then(1+ ¢)x €
K, sinceK is open. Hencep(x) < (1+¢)~1 < 1, so thaK = {x € X : p(x) < 1}.

Letfinally x,y € X. Then for everye > 0,x/(p(x) +€) € K andy/(p(y) +€) € K.
In particular, for every € [0, 1],

t X4 1-t
px)+¢&  ply)+e

Settingt = (p(x) + €)/(p(X) + p(y) + 2¢), one finds that

yeK

x+y
—— €K,
p(x) + p(y) +2¢

so thatp(x+y) < p(x) + p(y) + 2¢. Sincee > 0 was arbitrary, we fingh(x+y) <
p(x) + p(y). The claim is proved.

Proof (Proof of Theorem 3.29\e prove the theorem for the case wheérs a real
Banach space. The complex case is proved similarly.

We may without loss of generality assume that 8; it suffices to translat&
andxg for this. Sincex ¢ K and since is closed, we find that := dist(xp, K) > 0.
Put

Kq:={xe X :dist(x,K) < d/2},

so thatKy is an open, convex subset such that By. Let p be the corresponding
Minkowski functional (see Lemma 3.30).
Define on the one-dimensional subspllce= {Axy : A € R} the functionalu’ :
U —Rby (U,Axg) =A.Then
(U,u) < p(u), ueu.

By the Hahn-Banach theorem 3.2, there exists a linear ertexs: X — R such
that
X, x) < p(x), XeEX. (3.7)

In particular, by Lemma 3.30,
(X, )] <M x],

so thatX' € X’ and||X/|| < M. By construction{x’,Xp) = 1. Moreover, by (3.7) and
Lemma 3.30{X,x) < 1 for everyx € K C Ky, so that

(X, %) < (X, %) (=1), x€Kg.
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Replacing the above argument with— €)xg instead ofg (whereg’ > 0 is chosen
so small thaf1 — €')xy € Kq), we find that

(X, x) +€'(X,%0) < (X,x0), x€KCKq,
and puttings := &' = &/(X,xp) > 0 yields the claim.

Corollary 3.31. Let X be a Banach space andXKX a closed, convex subset (closed
for the norm topology). lfx,) C K converges weakly to somesxX, then xe K.

Proof. Assume the contrary, that is¢Z K. By the Hahn-Banach theorem (Theorem
3.29), there exist’ € X’ ande > 0 such that

Re(X,xn) + € < Re(X,x) for everyn € N,
a contradiction to the assumption tixat— x.

A function f : K — R on a convex subsét of a Banach spack is calledconvex
if for everyx, y € K, and every € [0,1],

f(tx+ (L—t)y) <t f(x)+(1—t) f(y). (3.8)

Corollary 3.32. Let X be a Banach space, K X a closed, convex subset, and f
K — R a continuous, convex function.(i,) C K converges weakly tog K, then

f(x) < l'nmJQf f(Xn).
Proof. For everyl € R, the se| := {xe K: f(x) <1} is closed (by continuity of
f) and convex (by convexity of). After extracting a subsequence, if necessary, we
may assume thdt:= liminfp_e f (X1) = liMn_e f(Xn). Then for everye > 0 the
sequencéx,) is eventually inK|¢, i.e. except for finitely many,, the sequence
(%n) lies inK|,¢. Hence, by Corollary 3.3k € K|_¢, which means thaft(x) <l +¢.
Sincee > 0 was arbitrary, the claim follows.

Let K C X be a convex subset of a real or complex vector space. A functio
f : K — Ris calledconvex if for everyx, y € K and everyt € [0,1] one has

f(tx+ (L—t)y) <t F(x) + (1—t) f(y).

It is calledstrictly convex if for everyx, y € K, x# y and everyt € (0,1) the above
inequality is strict.

Theorem 3.33.Let X be a reflexive Banach space, KX a closed, convex,
nonempty subset, and: K — R a continuous, convex function such that

HIiHm f(X) = 400 (coercivity)
xeK

Then there existspe K such that
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f(xo) =inf{f(x) : xe K} > —oo.

Proof. Let (x,) C K be such that lif,e f(Xn) = Inf{ f(X) : x € K}. By the coerciv-
ity assumption orf, the sequencex,) is bounded. SincX is reflexive, there exists
a weakly convergent subsequence (Theorem 3.28); we depoigthe limit. By
Corollary 3.31xg € K. By Corollary 3.32,

f(x0) < lim f(xy) =inf{f(x) : x € K}.

T n—o
The claim is proved.

Remark 3.34.Theorem 3.33 remains trueffis only lower semicontinuous, i.e. if

I|m2f f(xn) > f(x)
for every convergentx,) C K with x = lim x,. In fact, already Corollary 3.32 re-
mains true iff is only lower semicontinuous (and then Corollary 3.32 sénat t
lower semicontinuity of a convex function in the norm topgfamplies lower semi-
continuity in the weak topology). It suffices for example tamark that the sets
K ;= {f <I} (I € R) are closed as soon dss lower semicontinuous.

3.5 * The von Neumann minimax theorem

In the following theorem, we call a functioh: K — R on a convex subsd&t of a
Banach spack concaveif —f is convex, or, equivalently, if for every y € K and
everyt € [0,1],

f(tx+ (L—t)y) >t f(x)+ (1—t) f(y). (3.9)
A function f : K — R is calledstrictly convexresp.strictly concavif for everyx,
yeK,x#y, f(x) = f(y) the inequality in (3.8) (resp. (3.9)) is strict foe (0,1).

Theorem 3.35 (von Neumann minimax theorem)Let K and L be two closed,
bounded, nonempty, convex subsets of reflexive Banachssigaaad Y, respec-
tively. Let f: K x L — R be a continuous function such that

x— f(x,y) is strictly convex for everyg L, and
y— f(X,y) is concave for every K.

Then there exist&,y) € K x L such that
f(xy) < f(xy) < f(xy) forevery xe K,y € L. (3.10)

Remark 3.36.A point (x,y) € K x L satisfying (3.10) is called saddle pointof f.
A saddle point is a point oéquilibrium in a two-person zero-sum game in the
following sense: If the player controlling the strategynodifies his strategy when
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the second player plays he increases his loss; hence, it is his interest to play ~—
Similarly, if the player controlling the strategy modifies his strategy when the
first player playst, he diminishes his gain; thus it is in his interest to pjayf his
property of equilibrium of saddle points justifies their @sea (reasonable) solution

in a two-person zero-sum game ([Aubin (1979))]).

Proof. Define the functiorF : L — R by F (y) :=infyek f(X,y) (y € L). By Theorem
3.33, for every € L there existx € K such thaf (y) = f(x,y). By strict convexity,
this elemenk is uniquely determined. We denote= ®(y) and thus obtain

F(y)=inf f(xy) = f(®(y).y). yeL. (3.11)

By concavity of the functiory — f(x,y) and by the definition of, for everyy;,
y» € L and everyt € [0,1],

Ftyr+ (1—-t)y2) = f(@(tyr + (1 —t)y2),ty1 + (1 —t)y2)
>t f(@(tyr+ (1—-t)y2),y1) + (1 —1t) F(@(ty1 + (1 —1)y2),Y2)
>tF(y1) + (1-t)F(y2),

so thatF is concave. MoreoveF, is upper semicontinuous: I¢f,) C L be conver-
genttoy € L. For everyx € K and everyn € N one has=(yn) < f(x,yn), and taking
the limes superior on both sides, we obtain, by continuity,of

limsupF (yn) <limsupf(x,yn) = f(Xy).
n—oo n—oo

Sincex € K was arbitrary, this inequality implies limsyp., F (yn) < F(y), i.e.F is
upper semicontinuous.

By Theorem 3.33 (applied teF; use also Remark 3.34), there exigts L such
that

f(@(y).y) =F(y) = SuLpF(y)-
ye

We putx = @(y) and show thafx,y) is a saddle point. Clearly, for evere K,

f(xY) < F(x.9). (3.12)
Therefore it remains to show that for every L,
f(xy) > F(%y). (3.13)

Lety € L be arbitrary and puy, := (1— 1)y+ 1y andx, = ®(y,). Then, by
concavity,



64 3 Dual spaces and weak convergence

FO)=F(n) = f(XYn)
> (1— %)f(xn,yH%f(xn,y)

> (1= DF@+ )

or
F(y) > f(xn,y) for everyn e N.

SinceK is bounded and closed, the sequefixg C K has a weakly convergent
subsequence which converges to some elemenK (Theorem 3.28 and Corollary
3.31). By the preceeding inequality and Corollary 3.32,

F(y) > f(x0,y).

This is just the remaining inequality (3.13) if we can pravatik, = x. By concavity,
for everyx € K and everyn € N,

f(X,yn) > f(men)
> (1— %)f(xn,w+%f(xn,y)
> (1 %)f(xn,y)—i— %F(y)-

Letting n — oo in this inequality and using Corollary 3.32 again, we obtiat for
everyx € K,

f(xy) = f(x0,y).
Hencexy, = @(y) = xand the theorem is proved.



Chapter 4

Uniform boundedness, bounded inverse and
closed graph

This chapter is devoted to the other fundamental theoremsnictional analysis;
other than the Hahn-Banach theorem which has been discngbedrevious chap-
ter. These fundamental results are

¢ the uniform boundedness principle or the Banach-Steinteagsem,
¢ the bounded inverse theorem (and the related open mapmocgetin), and
e the closed graph theorem.

All these fundamental results rely on an abstract lemma ffrimspaces.

4.1 The lemma of Baire

Lemma 4.1 (Baire). Let (M,d) be a complete metric space, and (@) be a
sequence of open and dense subsets of M. €, is dense in M.

Proof. We can assume thM is not empty since the statement is trivial otherwise.
Let xo € M and¢ > 0 be arbitrary. We have to prove that, O, N B(Xo, €) is not
empty.

SinceO; is dense and open i, the intersectiorB(xg, &) N O1 is open and
nonempty. Hence, there exists> 0 (w.l.0.g.€1 < €/2) andx; € B(Xg, £)NO1 such
that

B(Xl,£l) - B(Xo,&) NO;.

Choosingg; a little bit smaller, if necessary, we can even assume that
B(Xl, &) C B(Xo, 8) NO;.

SinceO; is dense and open i, the intersectiorB(x,&1) N O, is open and
nonempty. Hence, there exists > 0 (w.l.0.g.& < €1/2) andx; € B(x1,£) N0y
such that

B(x2, &) C B(x1,&) N0z C B(Xp,€) NO1NOs.

65
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Proceeding inductively, we can construct sequeiiggsC (0,%) and(x,) €M
such that
() & <e&-1/2and

(i) foreveryneN

n
B(Xn, €n) € B(Xn-1,€0-1) NOn C B(X0,€) N [ O;.
j=1

In particularxm € B(Xn, &) for everym> nand limy_,» &, = 0. Hence, the sequence
(Xn) is @ Cauchy sequence M. SinceM is complete, there exisis.= liMp_e Xn €
M. By the above,

X € B(xn, &) for everyne N,

or
X € [)B(Xn, &) € B(X0,€) N[ On.
n n
The claim is proved.

Lemma 4.2 (Baire). Let (M,d) be a complete, nonempty, metric space, and let
(An) be a sequence of closed subsets in M such that [V}, An. Then there exists
no € N such that A, has nonempty interior.

Proof. Assume the contrary, i.e. that evely has empty interior. In this case, the
setsOn := M\ A, are open and dense. By assumption,

0:M\UAn:mon,

a contradiction to Lemma 4.1 and the assumptionlthéd nonempty.

Remark 4.3. The assumption in Lemma 4.1 or Lemma 4.2 thlhts complete is
necessary in general. For example,

Q= J{x},

xeQ

and this union is countable. Each one point{eétis closed but in this example,
none of these sets has nonempty interior.

Remark 4.4. As a corollary to the lemma of Baire one obtains for exampé th
there exists a continuous functidne C([0, 1]) which is nowhere differentiable. In
fact, the set of such functions is dens€€ifi0, 1] ); see [Werner (1997)].
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4.2 The uniform boundedness principle

Theorem 4.5 (Uniform boundedness principle; Banach-Steimaus). Let X, Y be
Banach spaces and I€T;)ici C Z(X,Y) be a family of bounded linear operators
such that

sup|| Tix|| < o for every xe X.

il

Then
sup||Ti[| < .
iel

Remark 4.6. Theorem 4.5 is in general not trueXfis only a normed space. For
example, letX = coo(=Y) be the space of all finite sequences equipped with the
supremum norm (or any other reasonable norm). Let

ToX = Tn(Xm) = (@nmXm)

mif m<n,
Anm = .
0 ifm>n.

with

Then sup||Tax|| is finite for everyx € X, but||T,|| = nis unbounded.

Remark 4.7. The factthatin Theorem 4.5 we suppose &lso be a Banach space is
notimportant. In fact, it is not complete, then we may embeéhto its completion
Y and consider every operafre £ (X,Y) also as an operator i€ (X,Y).

Proof (Proof of Theorem 4.5).et A, := {x € X : sup, ||Tix|| < n}. Since arbitrary
intersections of closed sets are closed, and by the bourdsdfitheT;, the setd\,
are closed for everg € N. By assumptionX = [J, An.

Hence, by the lemma of Baire (Lemma 4.2), there exigts N such that\,, has
nonempty interior, i.e. there exisg € N, xg € X ande > 0 such that

sup||Tix|| < ng for everyx € B(xo, €),
il

or, in other words, there existg € N, Xg € X ande > 0 such that
[|ITi (%o + &X)|| < ng for everyx € B(0,1),i € I.
This implies, by the triangle inequality,
eITix|| < ng+ || Tixol| < 2ng for everyx € B(0,1),i € 1.
The claim is proved.

Corollary 4.8. Let X, Y be Banach spaces and (&) C .Z(X,Y) be astrongly
convergensequence of bounded linear operators, i.e.
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Tx:= lim Tyx exists for every ¥ X.
n—oo

Thensup,ey || Tnl| =:M < e and Te Z(X,Y).

Proof. Linearity of T is clear. Sinc€Ty) is strongly convergent, the sequeri@gx)
is bounded for everx € X. By the uniform bounded principle (Theorem 4.5),
SURen || Tnl] = M < . As a consequence, for every X,

T = lim [[Toxl| < M x|,
so thafT is bounded.

Corollary 4.9. Every weakly convergent sequence in a Banach space is bdunde

Proof. Let X be a Banach space afxh) C X be weakly convergent. Considering
the x, as elements X" = Z(X’,K) by the embedding : X — X", the claim
follows from Corollary 4.8.

4.3 Open mapping theorem, bounded inverse theorem

Theorem 4.10 (Open mapping theorem).Let X, Y be two Banach spaces and let
T € Z(X,Y) be surjective. Then there exists-10 such that

TBx(0,1) D By(0,r). (4.1)
Proof. First step:We show that there exists> 0 such that
B(0,2r) C TB(0,1). (4.2)
For this, we remark first that by surjectivity,
Y =TX=[JTB(0,n)=JTB(O,n).
n n
By the Lemma of Baire, there existg such thafl B(0,ng) has nonempty interior,
i.e. there exisk € TB(0,ng) ande > 0 such that
B(x,£) C TB(0,no).

By symmetry,
B(—x,&) C TB(0,np),

and adding both 'inequalities’ together, we obtain
B(O7 8) CcT B(O7 no),

which implies the required inclusion (4.2) if we put 2er0
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Second stepiVe prove (4.1). Ley € B(0,r), wherer > 0 is as in (4.2) from the
first step. Then, by (4.2), for evely> 0 there existsc € B(0, 3) such that]y —
TX| < €. In particular, if we choose = %, then there exists; € B(0, %) such that
ly—Txl <3

Similarly, sincey — Tx; € B(0,5), there existsx, € B(O,%) such that||(y —
Tx) — Tx| < §. lterating this construction, we find a sequer{gg) such that
Xn € B(0,27") and such thafly — 31, Tx| < 27"r. SinceX is complete and
sincey , X, is absolutely convergent wit, ||xn|| < 1, the limitx = S, X, exists
andx € B(0,1). By the preceeding estimatély,— TX| = 0 or Tx=Yy. Thus we have
proved (4.1).

Remark 4.11.1t is not difficult to prove that if an operatdr € £ (X,Y) satisfies
(4.1), thenT Ois open for every ope® C X. A function which maps open sets into
open sets is calledpen whence the name of the open mapping theorem.

Corollary 4.12 (Bounded inverse theorem).Let X, Y be two Banach spaces and
let T € .Z(X,Y) be bijective. Then Tt € .Z(Y,X).

Proof. Linearity of T~1 is clear. By the open mapping theorem (Theorem 4.10), we
have

1
T-1By(0,1) C Bx (0, F)

for somer > 0. HenceT 1 is bounded.

Corollary 4.13. Let || - ||1 and || - || be two norms on a vector space X such that
(X, |- 1l2) and (X, || - ||2) are complete. If there exists a constant@ such that

[[X]|2 < C||x||1 for every xe X,
then the two norms are equivalent.

Proof. It suffices to consider the identity. (X, || - ||1) — (X, ]| -]|2). Itis bounded by
assumption, and clearly it is bijective. By the bounded isegheorem (Corollary
4.12),theinverse™1: (X, || -]|2) — (X, ]| ||») is bounded, i.e. there exists> 0 such
that

[IX||1 < c||x||2 for everyx € X.

4.4 Closed graph theorem

Let X, Y be two Banach spaces, and let dbra X be a linear subspace. A linear
operatofT : domT — Y is called aclosed operator if the graph

GraphTl :={(x,Tx) : xe domT }

is closed inX x Y.
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Lemma 4.14.A linear operator T: X O domT — Y is closed if and only if

domT > x, — xin X and
_ = xedomT and Tx=Y. 4.3)
Tx—yinY

Proof. Exercise.

Lemma 4.15.Every bounded linear operator € .Z(X,Y) (X, Y Banach spaces)
is closed.

Proof. This is an immediate consequence of Lemma 4.14.

Lemma 4.16.A linear operator T: X > domT — Y is closed if and only if the space
domT equipped with thgraph norm

[Xlldom := [IX[x + [[TXy, x€X,
is complete.

Proof. = Assume thafl is closed. Let(x,) be a Cauchy sequence jdomT, || -
lldomT)- Then(x,) is a Cauchy sequence K and(Tx,) is a Cauchy sequence in
Y. SinceX andY are complete, there existc X andy € Y such thatx, — x and
Tx, — V. SinceT is closed, and by Lemma 4.14, this implies domT andT x=.
Moreover,

1% — XldomT = (X0 —XlIx + [ 7% — Txly — 0,

so that(xn) converges ifdomT, || - ||gomt ). Hence, donT equipped with the graph
norm is complete.

< Assume thatdomT, || - ||gomT ) iS cOmplete. Assume that dof x, — x € X
andTx, — Yy €Y. Then(x,) and (Tx,) are Cauchy sequences ¥ andY, re-
spectively. By the definition of| - ||gomT. this implies that(x,) is a Cauchy se-
quence in(domT, || - |ldomT). By completeness, there existss domT such that
Xn — X in domT (with respect to the graph norm). Since convergencggf in
domT implies the convergence d¢k,) in X, and since(xn) converges to in X,
we find x = x € domT by the unigueness of the limit. Moreover, sinteis al-
ways bounded from doih (when equipped with the graph norm) into we have
Tx=Ilimp5e TX =Y. Hence, by Lemma 4.14; is closed.

Example 4.17.LetX =Y =C([0, 1]) be equipped with the supremum norm, and let
domT :=CX([0,1]) C X. LetT f := f’ for f € domT. ThenT is a closed operator.
In fact, the graph nornfj - ||gomt coincides with the canonical norm @%([0, 1)),
ie.

[ Fllct = 1o+ 11 [

and(C([0,1]), | - [|c) is complete.

Theorem 4.18 (Closed graph theorem).Let X, Y be two Banach spaces and let
T :X —Y be aclosed operator. Then T is bounded.
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Remark 4.19.The important assumption in Theorem 4.18, besides the gssum
tion thatT is closed, is the assumption that dom= X! The Example 4.17 shows
that closed operators need not be bounded in general; whesideved from
(domT, || - ||x) with values inY. Note that in Example 4.17, déhmis not complete
when equipped with the norm coming frof

Proof (Proof of Theorem 4.18By assumptior(X, || - ||x) is a Banach space, and
by closedness of and Lemma 4.16, als@X, || - ||gomt) IS @ Banach space, where
Il - lldomt denotes the graph norm. Moreover, trivially,

[IX]Ix < |IX||domT fOr everyx € X.

By Corollary 4.13, the two normf- ||x and|| - ||somT @re equivalent, that is, there
exists a constar@@ > 0 such that

[Xllx + [ TX|ly <C]|x||x for everyx € X.
As a consequencg, is bounded.
Example 4.20 (Sobolev embedding).et —» < a < b < . Then the embedding

J:WhP(a,b) — C([a,b]),
Ui U

is well defined and bounded, that is, there exists a con€tan® such that
U]l < C||ullep for everyu € WEP(a b).

Recall that this embedding is well defined since every famatic W'P(a, b) is
continuous orja, b] by Theorem 8.8 of Chapter 8.

In order to see thatis also bounded, we apply the closed graph theorem together
with the characterization in Lemma 4.14: let,) € W'P(a,b) be such that =
limp_w Uy €xists inWl’p(a, b) and such that = lim_.. Uy exists inC([a,b]). The
convergence iWw'P C LP implies thatu, — u almost everywhere if we extract a
subsequence. The convergenc€immplies thatu, — v everywhere. Henca = v
almost everyhwere, and since both functions are continweaiebtairu = v. Hence,
the embedding is closed. By the closed graph theorem, theduaitigW-P — C is
bounded.

Exercise 4.21Let T: X D domT — Y be a closed, injective operator. Define

domT1:=ranT = {Tx:xedomT} CY,
T~ ly:=x where xc domT is the unique element such that Ex.

Then T-1is a closed operator.
If in addition T is surjective, then T : Y — X is bounded.
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4.5 * Vector-valued analytic functions

Let X be a complex Banach space and({®et_ C be an open subset. We say that a
functionf : Q — X is analytic (or: holomorphic) if

exists for everyy € Q.
77y Z—7

We say thatf : Q — X is weakly analytic (or: weakly holomorphic) if X o f :
Q — Cis analytic for every’ € X'.

Theorem 4.22 A function f: Q — X is analytic if and only if it is weakly analytic.

Proof. Cleary, if f is analytic, therf is weakly analytic. So we only have to prove
the other direction.

By consideringX as a closed subspace Xf (via the embedding), and by
replacing therX by X” (so that the functiorf becomesX”-valued), we can assume
thatX is a dual space. But doing this, we no longer assumeftisatveakly analytic.
The assertion which we have to prove is then the following:

Let X be a complex Banach space, and{ébe its dual. Letf : Q — X' be such
that(f,x) : Q — C is analytic for everw € X. Thenf is analytic.

In fact, it suffices to prove that for fixery € Q there existdvl > 0 such that for
everyy, ze Q\ {7} 'close’ to z,

Hf(z)z_;o(zo) _ f(y})/_;(@H <Mz—y. (4.4)

LetK :=B(2,r) \ {20}, wherer > 0 is chosen so small th&t C Q. Let

K=(KxK)\{(z2):ze K}

be the cartesian product EfandK from which we take out the 'diagonal’.
By assumption, for every € X, the function(f,x) is analytic. Hence, for every

X € X we have
f(2-f(z0)  f(y-f(z)
sup < — Y% ,x> < 0o,

(y,2)eK y—z

By the uniform boundedness principle, this implies

f(2-f(z) _ fy-f(z)
=7 V=%

(v.2)eR y-2

=M< oo,

which actually implies (4.4) for every, z€ K.

By Theorem 4.22, many important properties of 'classicalalgtic functions
Q — C carry over to vector-valued analytic functiofss— X. For example:
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e Every analytic functiorf : Q — X is infinitely many times differentiable.
e Every analytic functiorf : Q — X can be locally developed into a power series
of the formy o an(z— 2)" with an € X. In fact:a, = = (" (z).

e Cauchy’'sintegral formuld(z) = % VL(TV)), dyholds true for appropriate patis

Note, however, that we have not yet defined integrals of vettued functions.

An important example of a vector-valued analytic functioii ae the resolvent of
an operatofl € .#(X); see the Chapter 5.






Chapter 5

Spectral theory of operators on Banach spaces,
compact operators, nuclear operators

5.1 Spectrum of closed operators

Let X be a Banach space. lkear operator between two Banach spacEsandY
is a pair(A,domA) where dormh C X is a linear subspace ad: domA — Y is a
linear mapping. We call dotthedomain of A. Furthermore, we define thernel,
therange, and thegraph of A respectively by

kerA:= {xe X : Ax= 0},
ranA:= {yeY:3xe domAs.t. Ax=y} and
graphA:= {(x,y) € X x Y : x € domA andAx=y}.

We say that a linear operator frok into Y is densely definedif its domain is
dense inX. If the domain is clear from the context, then we simply speak
linear operatoA on X. For a bounded, linear operatawe always assume, unless
otherwise stated, that dofn= X. Recall that an operatdk on X is closedif its
graph grapl is closed inX x X. We recall that an operatdk on X is closed if
and only if its domain, equipped with the graph norm, is cceteal We also recall
the Closed Graph Theorem (Theorem 4.18) which says thay elesed operatoh
with domain donA = X is automatically bounded.

For everyA € Kwe writeA —A:= Al — A wherel is the identity operator oK
and dom(A — A) := domA. We define theesolvent setof A by

p(A):={A €K: A —A:domA— X is bijective and
(A —A)~1is bounded oX}.

We emphasize that the inverge— A) ! is considered as an operator fréfinto X,
and not as an operator frokinto domA, although it effectively maps into dofn
For everyA € p(A) we write

R(ALA) :=(A —A)L

75
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and we callR(A,A) theresolvent of AatA. The mappingp(A) — Z(X), A —
R(A,A) is called theaesolventof A.
The set
o(A) ==K\ p(A)

is called thespectrum of A. Moreover, we define thgoint spectrum, theapprox-
imative point spectrum, thecontinuous spectrum and theresidual spectrum,
respectively, by

0p(A) :={A € K: A —Ais not injectivg
={A €K:3xe X\ {0} s.t. Ax=Ax}
Oap(A) :={A € K:3(%n) C domASs.t)|,|| = 1 and(A — A)x, — O},
oc(A) :={A € K: A — Aisinjective, has dense range, but
(A —A)~!:ranA — X is not bounde, and
or(A) :={A e K:ranA —A) is not dense iX}.

Our first lemma shows that if we look for operators with nonpgyrresolvent
set, then we necessarily have to search in the class of ohpmdtors.

Lemma 5.1.1f the resolvent set of a linear operator A on a Banach space xon-
empty, then A is closed.

Proof. Let Abe a linear operator on a Banach spAcAssume that the resolvent set
is non-empty, and lex € p(A). ThenA — Ais bijective and A — A)~1is a bounded,
linear operator oiX. In particular,(A — A)~is closed. This means that

graphA —A) 1= {(y,x) eXxX: (A —A)ly=x}

is closed inX x X. Hence,
graphA —A) = {(x,y) € X x X :xe domAand(A —A)x=y}
is closed inX x X. This easily implies tha& has closed graph.
Lemma 5.2 (Resolvent identity). For everyA, u € p(A) one has
R(A,A) ~R(1,A) = (1~ A)R(U,AR(A,A).
Proof. For everyA, i € p(A)
p=A=(H—-A)—(A-A).

Multiplying both sides byR(1,A) andR(A, A), one obtains the claim.

Lemma 5.3 (The resolvent is analytic)The resolvent sgi(A) is open inK and the
resolvento(A) — £ (X), A — R(A,A) is analytic, which means that it can locally
near every poinft € p(A) be developped into a power series which converges to
the resolvent itself.
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Proof. LetA € p(A) andu € K. Then
H—A=U—-A+A—-A=((L—A)RA,A+1)(A-A),

and the right-hand side is invertiblg ji —A | < 1/||R(A, A)|| by the Neumann series.

Hence,p(A) is open inK. The Neumann series precisely yields

[

R(1,A) = Z}(*l)”R()\ A=A,

n=

so that the functiod — R(A,A) can be locally developped into a power series. As
a consequence, this function is analytic.

Remark 5.4.One may also employ the resolvent identity in order to prinae the
functionA — R(A,A) is analytic; butin this case one should at least prove caityin
of the resolvenR(-,A).

Lemma 5.5 (Growth of the resolvent near the spectrum)For everyA € p(A)
one has
IR(A.A) = dist(A,0(A) ™.

Proof. As we have seen in the proof of the preceding Lemma 5.3} ferp(A) the
condition
IH=A[[RAA) <1

impliesu € p(A). The claim follows.

Lemma 5.6 (The topological boundary of the spectrum belong® the approxi-
mative point spectrum). For every linear operator A one has

00(A) C Gap(A).

Proof. If A € da(A), then there existAn) C p(A) such that lim_0An = A. By
Lemma 5.5, liM—« ||[R(An,A)|| = . By the definition of the operator norm, there
exists a sequendgn) C X, ||yn|| = 1, such that

1im [[R(An, A)ya| = .

Putx, := %, so thatx, € domA and||x,|| = 1. Then
Axe— (A — W
AXg— A% = (A —Ap)Xn+ TR Ayal =0 (n— ).

As a consequencg, € aap(A).
Lemma 5.7.For a bounded, linear operator € .Z(X) one has

{AeCAI> T} < p(T),
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and
RATI=S A>T
? n;))\n+1’ .

Proof. Use the identity
A-T=A(- X)
and the Neumann series.

Remark 5.8.In fact,A € p(T) as soon as
P ni_.
[A] >Ilm2f|\T [In =:r(T).
The number(T) > 0 is called thespectral radiusof T.

Lemma 5.9.For every bounded, linear operatord . (X) with X # {0} a complex
Banach space, the spectratil ) is nonempty and compact.

Proof. The compactness @f(T) follows Lemma 5.3 and 5.7. I§(T) was empty,
then, by Lemma 5.3, the resolvehi— R(A,T) is an entire function. On the other
hand, by Lemma 5.7,

lim ||R(A,T)||=0.

Ao

By Liouville’s theorem, this implieR(A, T) = 0, which is only possible K = {0}
is the trivial space.

Let (A,domA) be a densely defined, linear operator between two Banaclkspac
X andY. We defined thedjoint operator or dual operator (A’,domA’) between
Y’ andX’ by

domA":={y e Y':3x € X'¥x € domA: (X, X)x' x = (Y ,AX)y/v } and
Ay =X.

Lemma 5.10.For every linear operatofA,domA) between X and Y, the adjoint
operator(A’,domA’) between Yand X is closed.

Proof. Let (y,) be any sequence in dodsuch thaty, — y in Y/ andA’y,, — X' in
X'. Then, for everk € domA,

(X, X)xr x = |i[1n<A/)/n,X>x',x
= ”[P()/mAX)Y/,Y
= <)/5AX>Y/,Y-

By definition of the adjoint operator, this equality impligss domA’ andA'y = X'.
As a consequencéd’,domA’) is closed.
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Lemma 5.11.For every linear operatofA,domA) on a Banach space X, one has
dom(A —A) =domA’ and(A —A) =A —A

Proof. Exercise.

If T €. £(X,Y) is a bounded, linear operator between two Banach spaeesl
Y, then, forevery y € Y/, the linear mapping — K, x+— (¥, Tx) is bounded on
X. We denote this linear mapping Byy € X’. The resulting operatar’ : Y’ — X’
is just the adjoint operator as defined above; its domainToisiequal toY’. For
everyx € X and every €Y/,

<VI7TX>Y/,Y = <T/y,7X>X/,X-
Lemma 5.12.For every bounded, linear operator & .#Z(X,Y), the adjoint T :
Y’ — X’ is bounded and|T|| = || T’||.
Proof. For everyy €Y/,
Tyl = sup [(T'Y.x)[ = sup [y, Tx| < [T[[IY],

IxI<1 [Ix[<1

which proves thal’ is bounded and thafT’|| < ||T||. On the other hand, by Hahn-
Banach (Corollary 3.8 of Chapter 3),

Tl = sup I T'Y||
lly<1

= sup sup[(T'y,x)|
¥l x|<1

= sup sup [{y,TX)|
RENE

= sup ||Tx|

<1
=TI,
and the claim is proved.

Lemma 5.13.For every closed, densely defined, linear opergfgdomA) one has
o(A) =o(A'). For everyA € p(A) one has

R(A,A) =R(A,A).
Proof. LetA € p(A). For everyx' € domA’ and every € X we have

(RA,A) (A =AY, x) = (A = A)X,R(A,A)X)
=, (A —=ARA,A)X)
= <X,7X>a

so thatR(A,A)’ is a right-inverse oA — A’. Moreover, for everx’ € X’ and every
x € domA we have
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(A =A)R(A,A)X,x) = (RA,A)X, (A = A)X)
= (X, RA,A) A —A)X)
= (X,X).

Since donA is dense inX, this equality implies thaR(A,A)’ is also a left-inverse
of A —A'. HenceA € p(A') andR(A,A") = R(A,A).

Let X be a Banach space aid its dual. For every subs&t C X we define the
annihilator
ML= {X e X': (X,x) =0Vxe M}.

For every subseé¥l’ C X’, we define thepreannihilator
M = {xe X:({X,x) =0vX € M’}

Itis easy to show tha¥- andM’, are closed linear subspacesdfandX, respec-
tively.

Lemma 5.14.Let X be a Banach space and (&t domA) be a closed, linear oper-
ator on X. Then:

a) (ranA): =kerA.

b) ranA= (kerA),.

c) (kerA)* DranA

d) kerA= (ran¥),.

Proof. In order to prove (a), we observe

X € (ranA)t < Wxe X: (X,Ax) =0
& X € domA’ andvxe X : (AX,x) =0
& X € domA’ andA'X =0
<X e kerA.

(b) If x € ranA, x = Ay for somey € domA, and ifX' € kerA, then
(X,x) = (X, Ay) = (AX,y) = 0.

Hence, ra C (kerA'), and since the latter space is closed, we obtanT C
(kerT’) | . Assume that the inclusion is strict. Then there exigts (kerA’) | which
does not belong toanA. By Hahn-Banach (Theorem 3.29 of Chapter 3), there exist
X' € X" ande > 0 such that

Re(X,X) +& < Re(X,xg), XE&ranA. (5.1)

SinceranA is a subspace of, in particularx € ranA implies Ax € ranA for every
A € K, we deduce from this inequality that,x) = 0 for everyx € ranA. Hence, by
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(a),x € kerA'. But then(xX',xp) = 0, too, and this is a contradiction to (5.1). Hence,
we have proved (b).
(c) If X e ranA', X = A’y for somey € domA’, and ifx € kerA, then

(K%)= (RY %) = (y AX) = 0.

This implies ram® C (kerA)+, and since the latter space is closed, we obtain (c).
(d) Similarly as in (a), we observe

X € kerA < x € domA andAx=0
& xedomAandvx € X': (X,Ax) =0
& x € domAandvx € domA’: (AX,x) =0
& X€E (ranA) | .

Lemma 5.15.For every linear operatofA,domA) on X one has
0 (A) = ap(K).

Proof. LetA € oy(A). Then, by definition of the residual spectrum, (&n- A) is not
dense inX. By the Hahn-Banach theorem (see in particular Corollat@B.there
exists a bounded, linear functiondle X'\ {0} which vanishes on rgi — A), that
is,

(X, Ax— Ax) = 0 for everyx € domA.

In other words(ran(A — A))* # {0}. By Lemma 5.14 (a), this means k&r— A') #
{0}, or, by definition of the point spectrum,c o (A).

Conversely,ifA € o,(A'), thenkefA —A’) # {0}. Thisimplies(ker(A —A')), #
X. By Lemma 5.14 (b), this means that (An- A) is not dense irX. Hence A €
or(A).

5.2 Compact operators

A linear operatoiT : X — Y between two Banach spac¥sandY is called acom-
pact operator if TB(0,1) is relatively compact itY. The set of all compact linear
operators fronX into Y is denoted by (X,Y). We denote (X) := 22 (X, X).

Remark 5.16.A linear operatoiT : X — Y is compact if and only if for every se-
quencex,) C B(0,1) there exists a subsequence (again denotegy such that
(Tx) is convergent (or Cauchy).

Since relatively compact subsets of normed spaces aresaitedounded, ev-
ery compact operator is bounded.

Lemma5.17.Let X, Y, Z be Banach spaces. Then:
a) The set? (X,Y) is a closed linear subspace &f(X,Y).
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b) T e #(X,Y)and Se Z(Y,Z), then STe % (X, Z).
c) IfT € Z(X,Y)and Se 2 (Y,Z), then STe 7 (X, Z).
d) The set’# (X) is a two-sided ideal inZ(X).

Proof. (a) If T, Se J#(X,Y), A €K, then clearlyAT € #(X,Y). Moreoever, if

(xn) € B(0,1) is any sequence, then we can choose a subsequence (aga@ddeno
by (xn)) such tha{T x,) converges. From this subsequence, we extract another sub-
sequence (again denoted Py)) such thaiSx,) converges. Thefil x, + Sx) con-
verges, and thereforé + Se 7' (X,Y). Hence,.# (X,Y) is a linear subspace of
Z(X,Y).

In order to see thatz (X,Y) is closed inZ(X,Y), let (Tn) C # (X,Y) be con-
vergent to some element ih e .Z(X,Y). Let (x;) C B(0,1) be any sequence. A
diagonal sequence argument implies that we can choose aguédixe (again de-
noted by(x;)) such that

lim Tyx; exists for everyn € N.
oo

Let € > 0 be arbitrary, and choosec N so large such thalT — T,|| < €. Choose
jo € N so large thaf Tox; — Tox|| < € for everyj, k> jo. Then, for everyj, k> jo,

T =Tl < T =T [ 4 [ ToXj — Tl + ([ Tk = Tl < 3.

Hence,(Tx;) is a Cauchy sequence. Sin¢ds complete(TX;) is convergent. As
a consequence, for every sequefge C B(0,1) we have extracted a subsequence
(again denoted byx;)) such that(T x;) converges. This means thate .2 (X,Y).
Hence 7 (X,Y) is closed inZ (X,Y).

(b), (c) LetT € Z(X,Y) andSe Z(Y,Z). If T is compact, thed B(0,1) is
relatively compact, and sinc®is continuousSTBQO, 1) is relatively compact irZ
by Lemma 0.19 of chapter 0. Hen&&T € .# (X, Z). If on the other hand is only
bounded an&is compact, thef B(0, 1) is bounded irY, and therefor&THO, 1)
is relatively compact iz, i.e.STe 7 (X,Z).

(d) This is an immediate consequence of (b) and (c).

Lemma 5.18.Let X, Y be Banach spaces. Then:
a) IfT € £Z(X,Y) hasfinite rank, thatis, ifdimranT < o, then Te JZ'(X,Y).
b) If (Th) C 2 (X,Y) is a uniformly convergent sequence of finite rank operators,
then T:=liMp_e Tn € 2 (X,Y).

Proof. Assertion (a) follows from the Theorem of Heine-Borel, veh(b) is a con-
sequence of Lemma 5.17.

Example 5.19 (Ranki-operator). For everyx € X’ andy € Y we may define the
operatofT : X — Y by
Tx:=X,X)y (xeX).
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ThenT has rank 1 (unless€ = 0 ory = 0 in which casel = 0), and it is therefore
a compact operator. Operators of the form above are alsaeltbyx ©y. Every
rank-1-operator is of this form.

Lemma 5.20.A Banach space X is finite dimensional if and only if the idgnti
operator € Z(X) is compact.

Proof. This is an immediate consequence of Theorem 1.15 of Chapthich itself
was a consequence of the Lemma of Riesz (Lemma 1.14).

A difficult problem is in general to decide which operators aompact. By the
very definition of compact operators, it is thus importankimw which subsets
of (infinite dimensional) Banach spaces are relatively cachfBoundedness of the
subset alone does not suffice as the Lemma of Riesz showdgsab@apreceeding
lemma). In the case when the underlying Banach spacek$ (K a compact metric
space) we have already seen a satisfactory characteriz#tieelatively compact
subsets; see the Theorem of Arzela-Ascoli (Theorem 1.36).

Example 5.21 (Sobolev embedding)Consider the embedding : WP(a,b) —
C([a,b]) from Example 4.20 of Chapter 4. The closed graph theorem stidhat)
is bounded, i.e. there exigts> 0 such that

Ul < Cllulwep, uEeWP(a,b).
We can show in addition that the embedding is compagtif1. Let
M := {uc WP(a,b) : ||uljywpe < 1} = IB(0,1) C C([a,b])

be the image of the unit ball undé&rBy boundedness df M is bounded irC([a, b]).
Moreover, by Holder’s inequality (we assumpe- 1), for everyt, s€ [a,b] (t > s)and
everyue M,

—1

) - =| W d < [ W) drs p-9'7 < -9

This implies thatM is equicontinuous i > 1 (choose for everg > 0 thed equal
to £7°1 in order to check equicontinuity).

By the Arzela-Ascoli Theorem (Theorem 1.36Y| is relatively compact in
C([a,b]), and therefore the embeddiwg'P(a, b) — C([a,b]) is compact ifp > 1.

Exercise 5.22 (Sobolev embeddingShow that the embedding M{(a,b) —
C(Ja,b]) is not compact.

Exercise 5.23 (Multiplication operators in sequence spasg Let X = IP (1 <
p < o) or let X = cy. Let me 1” and define the associatedultiplication oper-
ator M € Z(X) by

Mx=M(n) = (MXn), X€EX.

Show that M is compact if and only if ency.
Hint: Use Lemma 5.18.
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Exercise 5.24 (Kernel operators)Let Q C R" be a compact (!) set. Let&kC(Q x
Q), and define the associat&drnel operator K € £(C(Q)) by

Kf(t):/gk(t,s)f(s)ds teQ, f eC(Q).

Then K is compact.

Theorem 5.25 (Schauder). An operator Te £ (X,Y) is compact if and only if
T e Z(Y',X’) is compact.

Proof. Assume thall € .7 (X,Y), and letk :=TBx(0,1) CY. ThenK is compact.
Let M := By/(0,1) be considered as a subseiCQ{K). Then clearlyM is bounded,
and it is not difficult to see tha¥! is also equicontinuous. By the theorem of Arzela-
Ascoli, M is relatively compact i€ (K). This means that for every sequerigg) €
By/(0,1) there exists a convergent subsequence (converg€kiji). If we denote
this subsequence again by,), then we obtain

0= Jm_ I¥o=Ynlog) 2 im_ SUP (6 =Y T = fim_[IT%5 =Tl
which just means thak’ is compact.

Assume on the other hand that € .# (Y’,X’). By what we have just proved,
this impliesT” € ¢ (X”,Y"). Hence, if(xn) € Bx(0,1) is any sequence, then there
exists a subsequence (again denotedxqy) such that T"x,) is convergent iry”
(note that we have considerég,) also as a sequence X{' via the embedding).
However,T”x, = T %, and the claim is proved.

Theorem 5.26 (Riesz-Schauder).Let X be a Banach space, and g 7 (X).
Then:

a) kell —T) is finite dimensional.

b) ranll —T)is closed andan(l — T) =ker(l —T'), .

c) kerl —T)={0}ifand onlyifran(l — T) = X.

d) dimkerl —T) =dimkerl —T’) =dim(X/ran(l —T)).

An immediate consequence of the Riesz-Schauder Theoreradf®&im’s alter-
native.

Corollary 5.27 (Fredholm alternative). Let X be a Banach space, andsT7 (X).
Then, either for every g Y the equation

X—Tx=Y, (5.2)

there exists a solution& X, and in this case the solution x is unique, or the homo-
geneous equation
X—Tx=0
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has a a finite number of linearly independent solutifn$:<i<, and the equation
(5.2)has a solution if and only if y satisfies n equations of orthwity (x/,y) =0,
where the ke ker(l — T') are linearly independent.

Remark 5.28.1f T € J#(X), then, by property (c) of Theorem 5.26- T is injec-
tive if and only if| — T is surjective. In finite dimensions, this property of linezap-
pings is well-known. This property of operators of the fdrmT with T compactis
however not shared by arbitrary bounded operators on ieftliitnensional Banach
spaces. For example, the left-sHifton |P(N) defined byLx = L(Xn) := (Xq+1) iS
surjective but not injective.

Remark 5.29.An operatorS € .Z(X,Y) such that ke§ is finite dimensional and
such that rag is closed and has finite codimension (that is, @yranS) < ) is
called aFredholm operator, and

indS:= dimkerS— dim(X/ranS)

is called theFredholm index of S. By Theorem 5.265=1 —-T € .Z(X) is a Fred-
holm operator of Fredholm index 0T € ¢ (X).

Proof (of Theorem 5.26§a) On kefl — T) we haveT =1, and sincel' is compact,
ker(I — T) must be finite dimensional.

(b) Let (xn) € X be such that, := X, — Tx, — u € X. We have to show that
ueran(l —T). Since kefl —T) is finite dimensional, for everg € N there exists
yn € ker(l —T) such that

dist(Xn, ker(l —T)) = ||Xn — Yn||-

We show that the sequenEe — yn) is bounded. Otherwise, after extracting a subse-
quence, we may assume that gk ||Xn — Yn|| = . Puttingwy, := ﬁ we find
thatw, — TWh = Un/||Xn — Yn|| — O. After extracting a subsequence, we may assume
thatTw, — z (T is compact). But them, — z, too, and thereforee ker(I — T). On

the other hand,

. dist(x,, ker(I — T
dist(wn, ker(l = T)) = (”’;n)(/n” )

=1

)

a contradiction. Hence, the sequelfge— yy) is bounded.
But then, by compactness ©f we can extract a subsequence (again denoted by
(Xn — ¥n)) such thafl (x, — yn) — v. Hence,

Xn—=Yn=Un+T(X—Yn) > U+ V.

We deduce thalT (u+Vv) =v, oru= (u+Vv) — T(u+v), so thatu € ranl —T).
Hence, rafl —T) is closed.

Since the equalityan(l — T) = ker(I — T’), always holds true (Lemma 5.14),
we have thus proved (b).
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(c) Assume first that — T is injective, i.e. kefl — T) = {0}. Assume thak; :=
ran(l — T) # X, that is,X; is a closed (by (b)) proper subspaceXofThenT |x, €
A (X1), so that, by (b) againé = (I — T)X; is a closed subspace &f. Since
| — T is injective,X, # X;. Iterating this argument and putting = (1 — T)"X, we
obtain a decreasing sequer(e@) of closed subspaces &f such thatX,,1 # Xn.
By the Lemma of Riesz, for every> 1 there existx, € X, such that|x,|| = 1 and
dist(Xn, Xn11) > 3. For everyn > mwe have

TX — Txn=—0—TX) + Xm— T Xm) + Xn — Xm
and
— (% — TXn) + (Xm— TXn) + Xn € X1

Hence || Tx— T Xn|| > % wheneven # m, a contradiction to the assumption tHat
is compact. Hence, rgh—T) = X.

Assume now on the other hand that (lar T) = X. Then, by Lemma 5.14,
ker( — T') = {0}. SinceT’ is compact by Schauder's theorem, this impliegran
T') = X’ by the preceeding step. By Lemma 5.14,(ker T) = {0}.

(d) For every closed subspadeof X the dual(X/U)" is isomorphic tdJ*. In
particular, fold = ran(l — T) one obtains (using Lemma 5.14)

ker(l = T') = (ran(l = T))* = (X/ran(l = T))' = X /ran(l — T).

The lastisomorphy holds since we know by the firstisomorpay / ran(l —T))’
is finite dimensional. In particular,

dimker(l — T') = dimX/ran(l —T),

so that we have proved the second inequality.
It remains to prove that

dimX/ranl — T) =dimkerl —T).

SinceT x= x for everyx € ker(l — T), we see thal leaves kefl — T) invariant. In
particular, the operator
T:X/ker(l = T) — X/ker(l = T),
x+ker(l =T)— Tx+kerl —T),
is well-defined and one easily checks tHais compact sincd is compact. By
construction, kel —T) = {0} so that, by (c), rafi — T) = X/ker(l —T). This
means that for every € X there existx € X andxp € ker(l — T) such that

or
y= (I =T)X+Xo =: X1+ Xo.
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In particular, every € X can be written as a suri + %o of an elemenx; € ran(l —
T) and an elemeny € ker(I — T). Hence,

dimker(l — T') = dimX/ran(l — T) < dimker(l —T).
ReplacingT by T’ (which is compact by Schauder’s theorem), we obtain
dimker(I —T”) <dimker(l — T") < dimker(l —T).
On the other hand, sinde- T” extendd — T, one trivially has
dimker(l — T) < dimker(| —T").
The claim is proved

Theorem 5.30 (Spectrum of a compact operator)_et X be a Banach space and
let T € # (X). Then:

a) If X is infinite-dimensional, the® € o (T).

b) o(T)\ {0} = op(T)\ {0}
c) Eithero(T)isfinite ora(T)\ {0} = {An:n e N} for some sequendd,) CC
such thatimp 0 An = 0.

Proof. (a) If 0 € p(T), thenT ! exists and is bounded. Hendes= TT~1 is com-
pact; a contradiction to the assumption tias infinite dimensional.

(b) LetA € o(T)\ {O}. If A & 0p(T), then ke(A —T) = {0}. By the Riesz-
Schauder Theorem (Theorem 5.26), this implief4anT) = X so thatA — T is
bijective; a contradiction to the assumptibre o(T).

(c) It suffices to prove thatr(T) N{A € C:|A| > R} is finite for everyR > 0. If
this was not the case, then we find a sequéigeC o (T)\ {0} such that\, # Am
for n# mand|An| > R> 0. By (b), for everyn € N there existsx, € X\ {0} such
thatAnxn — T X, = 0. Note that the familyx,) are linearly independent. Otherwise,
we find a smallesh € N such that the familyx;)1<i<n is linearly independent, but
Xnt1 = YiLq QiX for some scalars;. Then

n n

Zai)\n+1xi = At %41 = T X1 = ZGiAiXi,
i=

and this impliest; (An+1— Ai) = 0 forevery 1<i < n. SinceAp1 # Ai for1<i <n,
we obtaina; = 0; a contradiction to, 1 # 0. LetX, :=sparf{x : 1L <i <n}. Then
(Xn) is an increasing sequence of closed subspac&ssfch thatX, # X,1 (the
latter by linear independence of the vectays By the Lemma of Riesz, for every
n > 2 there existyy € X, such that|ys|| = 1 and distyn, Xp—1) > % Then, for every
n>m>2,
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ITYn— TYmll = | = (AnYn — T¥n) + (AmYm — T¥m) + AnYn — Amym||
> dist(Anyn, Xn—1)
An R

> —

> — .
-2 - 2

This is a contradiction to the compactnes§ ofind hence (c) is proved.

5.3 Nuclear operators

Let X andY be two Banach spaces. An operaforX — Y is callednuclear oper-
ator, if there exist sequencés,) in X" and(yx) in Y such that
() Skl Ykl < e, and
(i) Tx= (XX Yk for everyx e X.
Taking up the notation from Example 5.19 (Rank-1-operajtine condition (ii) is

equivalent to
T= Z Xk @ Yk,

the series converging absolutely #(X,Y), thanks to condition (i). Note that the
representation of in the above form is not unique in the sense that the sequences
(x,) and(yx) are not uniquely determined By. We denote by (X,Y) the space

of all nuclear operators frofX into Y; 4 (X) := A4 (X,X). When being equipped
with the norm

Tl o= inf{g Xl Iyl = %€ X,y €Y, T = Zx'k@yk},

the space/ (X,Y) becomes a Banach space (sic!).

Lemma 5.31.Every nuclear operator is compact, that is, in other words,
A (X,Y) C 2 (X,Y). Moreover, the embedding/’ (X,Y) — 2 (X,Y), T — T,
is continuous.

Proof. Let T € .4/(X,Y). By definition, there exist sequencie§)x in X’ and (yx)
in'Y such thaty [|X]| |y« < , and

T =2 X@¥%=Jim 5 X

k<K

the limit being taken with respect to the norm#i(X,Y). In particular,T is limit
in Z(X,Y) of the finite rank operator§, X, ® Yk, and hencél is compact by
Lemma 5.18.

Moreover,

T =1l lel<®yk|| < ZM@%H = Z 1] 1y
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for every representation df. Taking the infimum over all representationsigfwe
obtain||T|| < ||T|l.s, so that the embedding”(X,Y) C ¢ (X,Y) is continuous.

Exercise 5.32 (Multiplication operators in sequence spasg Let X = IP (1 <
p < o) or let X = cy. Let me I and define the associated multiplication opera-
tor M € .Z(X) as in Exercise 5.23:

Mx=M(n) = (MXn), X€EX.

Show that M is nuclear if and only if m ¢*.

5.4 Banach algebras

A normed spacd is called anormed algebraif it is an algebra, and if
|labl| < ||a|| ||b|| for everya, b € A.

A complete, normed algebra is also callga@inach algebra

Examples 5.33.1. Let X be a normed space. Then the space .Z(X) of all
bounded, linear operators ohis a normed algebra for the usual multiplication
which is the composition of operators (Lemma 1.26). It is a&# algebra as
soon asX is a Banach space (Lemma 1.27).

2. LetX be a Banach space. Then the spaee. 7 (X) of all compact, linear oper-
ators onX is a Banach algebra. Actually? (X) is a closed ideal inZ(X).

3. LetK be a compact, metric space. Thér= C(K) is a Banach algebra for the
usual (pointwise) multiplication of functions. Similasif Q is a locally compact,
metric space, then the space of continuous functidns K vanishing at infinity,
Co(Q), is a Banach algebra. Finally, M is an arbitray metric space, then the
space of continuous, bounded functidis+ K, C,(M), is a Banach algebra.

4. LetQ be a measured space. Thee= L*(Q) is a Banach algebra for the usual
(pointwise) multiplication.

5. LetA = LY(RN) be equipped with theonvolution product

frg0):= [ fo-yjamdy (.geL}®Y) xeRY).

ThenAis a Banach algebra.

Proof. Let f, g € LY(RN). By Tonelli's theorem,

Lo L 10 va dydx= [ ] 160 y)a) axay
= [ Iflax [ 10yl dy

= [fllaliglie < oo
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This inequality first implies thaf * g(x) exists for almost everx € RN, and
second that
115 0091ax< [l gl < o

that is, f x g € LY(RN). In particular, the convolution product is well-defined.
However, the above inequality also implies a particulaec#¥oung’s inequal-
ity

I+l < Il gl
which implies that.*(RN) equipped with the convolution product is a Banach
algebra.

6. LetA=LY(R,) be equipped with theonvolution product

fxgt):= /Ot f(t—s)g(s)ds (f,gel(R,), teRy).

ThenAis a Banach algebra.
7. LetAbe a Banach algebra, and lef A be a closed ideal. Then the factor space
A/l is a Banach algebra for the multiplication

(@+1)-(b+1)=ab+1 (a,beA);
note that this product is well-defined sinicis an ideal.

A Banach algebra is unital if it admits a neutral element for the multiplication,
usually denoted by 1 or by

Remark 5.34 (Adjunction of a unit). Let A be a Banach algebra without unit. Con-
sider the product space _
A:=AxC,

equipped with the sum norm. Thénis a unital Banach algebra for the multiplica-
tion given by

(@A) (b, p) == (ab+pa+Ab,Ap) ((aA), (b,u)€A).
The unit element is the eleme(t, 1).

Given a unital Banach algebrs we say that an elemete A is invertible
(respectivelyleft-invertible , right-invertible ), if there exists an elemehtc A such
that

ab=ba=1 (respectivelypba=1orab=1).

If ais invertible, then the elemebte A satisfyingab = ba= 1 is uniquely deter-
mined. We writeb =: a~1, and we calb* theinverseof a. We define theesolvent
setof an elemené € A by

p(a):={A €K:A —aisinvertible},
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and thespectrum by

o(@):=K\p(a).
For everyA € p(a) we write R(A,a) := (A —a)~%, and we callR(A,a) the
resolventof aatA. The functionR(+,a) is simply called the resolvent at

Several of the lemmas on the structure of the resolvent skthenspectrum of a
bounded, linear operator on a Banach space, which are s$tetteel first section of
this chapter, remain true in the general context of Banaghbahs and elements in
Banach algebras. We start with the resolvent identity.

Lemma 5.35 (Resolvent identity). Let A be a unital Banach algebra, and=aA.
Then, for every, u € p(a) one has
R(A,a) —~ R(1.a) = (M~ A)R(1,a)R(A,a).
Proof. For everyA, u € p(a)
p—A=(u—2a)—(A-a).
Multiplying both sides byR(,a) andR(A,a), one obtains the claim.

Lemma 5.36 (Neumann series)Let A be a unital Banach algebra, and letzaA
be such thafjaj| < 1. Thenl —ais invertible, and

[

a-ai=yd

the series being absolutely convergentin A.

Lemma 5.37 (The resolvent is analytic)Let A be a unital Banach algebra. For
every ac A the resolvent set(a) is open inK and the resolvenp(a) — A, A —
R(A,a) is analytic.

Proof. LetA € p(a) andu € K. Then
p-—a=p-A+A-a=((u-A)RA,a)+1)(A-a),

and the right-hand side is invertiblgjf — A | < 1/||R(A, a)|| by the Neumann series.
Hence,p(a) is open inK. The Neumann series (Lemma 5.36) precisely yields

[

R(w,a) = Z)(*l)”R()\ )M (= AN,

n=

so that the functiod — R(A,a) can be locally developped into a power series. As
a consequence, this function is analytic.

Lemma 5.38 (Growth of the resolvent near the spectrum)For everyA € p(a)
one has
IR(A.a)|| > dist(A,0(a))
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Proof. As we have seen in the proof of the preceding Lemma 5.3 fop(a) the
condition
[H=A[R(A,8)|| <1

impliesu € p(a). The claim follows.

Lemma 5.39.For every ac A one has
{AeC:Al>al} < p(a),

and
n

ROa) = 5 sor (A1 Jal).

Proof. Use the identity a
A—a=A(l- X>

and the Neumann series.

Remark 5.40.Similarly as in Remark 5.8, we can remark here that p(a) as
soon as .
[A| > liminf ||a"|7 =:r(a).
n—oo

As in the case of bounded, linear operators, the num(agr> 0 is called thespec-
tral radius of a.

Lemma 5.41.Let A# {0} be a complex, unital Banach algebra, Then for every
a € A the spectrunw(a) is nonempty and compact.

Proof. The compactness af(a) follows Lemma 5.37 and 5.39. tf(a) was empty,
then, by Lemma 5.37, the resolvent— R(A,a) is an entire function. On the other
hand, by Lemma 5.39,
lim ||R(A,a)|]| =0.
A | oo
By Liouville's theorem, this implie®(A,a) = 0, which is only possible iA = {0}
is the trivial algebra.

Theorem 5.42 (Gelfand-Mazur). Let A# {0} be a complex, unital Banach alge-
bra such that every elementa0 is invertible. Then A= C.

Proof. Leta € A. Then, by Lemma 5.41, there exigts= C such thatA — a is not
invertible. By assumption, this implies —a = 0, or, in other wordsa= A is a
scalar multiple of the unit element.

Anideall in a Banach algebra is calledaximal ideal if | # A and if there does
not exist an other idedlin Asuch that CJ C A.

Lemma 5.43.Every ideal in a unital Banach algebra is contained in a madim
ideal.
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Proof. Let| be an ideal in a unital Banach algel&avith unit denoted by 1. Define
the set# :={J:Jis anideal inA andl C J C A}, and equip it with the order
relation< given by inclusionJ; < J, & J; C ). Let ¢ C .# be atotally ordered
subset and defing:= (J,;c ,J. Then clearlyJ is an ideal inA which containd.

On the other hand] # A, since all the ideald are strictly contained i\, and
since therefore ¥ J for everyJ € _#. Hence,J € .#. Clearly,J is a supremum
for ¢, and we have proved that every totally ordered set admitpeeswm. By
the Lemma of Zorn,# admits a maximal element which, by definition, must be a
maximal ideal ofA.

Lemma 5.44.Every maximal ideal in a unital Banach algebra is closed.

Proof. Let | be a maximal ideal in a unital Banach algeltaBy the Neumann
series, the seB(A) of all invertible elements irA is open, and since & G(A),
this set is also nonempty. Clearlyp G(A) = 0, since ifl contained an invertible
element, then & I, which is only possible if = A. By the preceding two arguments,
I €1 C A\ G(A) # A, and clearly, the closure dfis also an ideal. Sinckis a
maximal ideal, we obtaih= I, that is,| is closed.

Let A be a Banach algebra. éharacter is a nonzero algebra homomorphism
A— K.

Lemma 5.45.Every character on a Banach algebra is automatically cambins.

Proof. Let Abe a Banach algebra, and jet A — K be a character. Assume first that
A'is unital. Sincey is an algebra homomorphism, then keis an ideal. Consider
the associated, commutative diagram

A XK

W
A/kerx Lk

whereqy, by andiy are the canonical surjection (quotient map) oAdkery, the
canonical bijection onto rgn (here K), and the canonical injection from rgrinto
K (here, the identity map). The kernel kehaving codimension 1b{ being bi-
jective), it must be a maximal ideal. By Lemma 5.44, kés closed, and hence
the canonical surjectioqy is continuous on the normed quotient spagekery.
Since the other two homomorphisimsandiy, are homomorphisms between finite-
dimensional (in fact: one-dimensional) normed spacesg; #re continuous, too.
Hence is continuous. .

If Ais not a unital Banach algebra, then we consider the unigahabA from
Remark 5.34, which results fromby adjunction of a unit element. We then define
the linear functional

)?:A_%K,
(@A) — x(a)+A.
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For every(a,A), (b,u) € Awe have, sincg is an algebra homomorphism,

X((@A)(b,u)) = x(ab+Ab+pa,Ap)
x(ab+Ab+pa)+Apu
x(@x(b)+Ax(b)+pux(@)+Au
=(x(a)+A)(x(b)+u)

=x@A)x(b,p),

so thaty is an algebra homomorphism. By the first part of the prgas, continuous,
which implies thaty is continuous, too.

Let A be a Banach algebra, and Ktbe its dual space. The set of all characters
is denoted byo(A), and it is called thepectrum of the algebra), or theGelfand
spaceof the algebra\. By the preceding lemma, the Gelfand space is a sub¥€t of
The following lemma says that the Gelfand space is in factaeiuof the unit ball
of A

Lemma 5.46.Let A be a Banach algebra. Then, for every charagter a(A) one
has|| x|la < 1, with equality if A is a unital Banach algebra and|it|| = 1.

Proof. Let x € o(A), and leta € A be such thafjal| < 1. Then, for everyn € N,

[ =[(x.a)"

=[(x,a")|

< lx/&
<|IxIllal"
< IxIl-

Since the right-hand side is finite, we necessarily obtgma)| < 1, and hence
Xl <1.

If Ais unital, and if||1|| = 1, then]|| x| > |{x,1)| = 1, which together with the
preceding inequality impliegy || = 1.

Remark 5.47.1f A is a unital Banach algebra, then one does not necessarigy hav
|11/ = 1. However, there always exists an equivalent Banach adgetmm|| - ||; for
which one had{1||1 = 1. This norm is given by

lal]1:= sup [|ab|.
lbl<1

By the preceding lemma, the Gelfand space of any Banachraldeis a sub-
set of the closed unit ball i&'. The closed unit ball i/, however, when being
equipped with the topology which is induced by the wetdpology onA, is, by
the Theorem of Banach-Alaoglu, a compact space. In theviollgp, we shall al-
ways consider the Gelfand space as a topological spacgpeginvith the topology
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which is induced by the weakopology on&', too. The following theorem, in com-
bination with Lemma 5.43, shows in particular that the Gedfapace of a complex,
commutative Banach algebra is nonempty.

Theorem 5.48 (Gelfand-Mazur). Let A be a complex, commutative Banach alge-
bra. If A# {0}, then the Gelfand spacgA) is nonempty. Moreover, there is a one-
to-one correspondence between the set of closed, maxieslkidnd the Gelfand
spacea(A). In fact, every closed, maximal ideal is the kernel of somquenchar-
acter, and, conversely, the kernel of every character iaad, maximal ideal.

Proof. We first prove the second part of the statement.ILe¢ a closed maximal
ideal of A. Assume first thafA is unital. SinceA is commutative, the left, right
and two-sided ideals all coincide, and hence there is nor déffieor right ideal
strictly included betweeh andA. As a consequence, the quotient algehrais a
complex, commutative, unital Banach algebra without amgld, except the trivial
one. Hence, every nonzero elemendifi is invertible. Sinced/I # {0}, and by the
first Theorem of Gelfand-Mazur (Theorem 5.48)] is isomorphic taC. Now, the
quotient magy : A— A/l = Cis a character, andd= kery. If Ais not unital, then
we consider the unital Banach algetrérom Remark 5.34, which we obtain from
A by adjunction of a unit. By Lemma 5.43, there exists a maxicheal| C A such
thatl O | x {0}, and by the first part of this paragraph, there exists a ckemg®on
A such that kex = |. The restriction ofy to A x {0} = Ais a character oA such
that kery = 1.

Conversely, ify € o(A) is a character, then kgris an ideal of codimension 1,
hence a maximal ideal. Moreover, singds continuous by Lemma 5.45, keris
closed.

The existence of a character in a complex, commutatinéal Banach algebra
now follows from this first part of the proof and the fact thag¢te exists a maximal
ideal (Lemma 5.43) and that every maximal ideal is closednfipa 5.44). IfA is
not unital, then we consider the unital Banach algebfeom Remark 5.34, which
we obtain fromA by adjunction of a unit. The Banach algebAas a complex,
commutativeunital Banach algebra, and hence admits a character. Flriction
of this character té\ = A x {0} is a character oA. Henceg(A) is nonempty.

Lemma 5.49.Let A be a Banach algebra. The s&tA) U {0} is a closed subset
of the closed unit balBy (0,1). If A is a unital Banach algebra, then the Gelfand
spaceo(A) itself is a closed subset By (0,1). In particular, if A is a unital Banach
algebra, then the Gelfand spacgA) is a compact space. In general, the Gelfand
space is a locally compact space.

Proof. Let (xa)a be a net ina(A) U {0}, which converges irBy(0,1) to some
element’. Then, foreverya, be A

(al,alb) = lim (X, ab)
=1lim(Xa,a) (X b)

= lim (d,a) (a,b).
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In other words@’ is a multiplicative functional, which means eith&rec o(A), or
a = 0. As a consequence(A) U {0} is closed inBy (0,1).

If, in addition, A is a unital Banach algebra, andj{+ )« is a net ino(A) which
converges to somé € By(0,1), then, by the preceding argumeat,c o(A), or
a = 0. However,

(@, 1) =lim (xa, 1) = 1,

which actually impliest’ € 6(A). Henceo(A) is closed inBy (0, 1).

Example 5.50 (Gelfand space o€(K)). We consider the Banach algel€K),
whereK is a compact space. We claim that

0(C(K)) is homeomorphic t&,

or, with a slight abuse of language, the Gelfand spa€ K is equal toK. In fact,
for everyx € K the Dirac functionady : C(K) — K, f — f(x) is a character, so that
K can be naturally identified with a subset®@fC(K)). On the other hand, every
character iro(C(K)) must be a Dirac functional. In fact, let us argue from the poin
of view of maximal ideals. Il is a maximal ideal, then there must be soxre K
such thatf(x) = 0 for every f € |. In fact, if this was not true, then there exists
f € 1 which never vanishes oK (sic!). By continuity of f and compactness ¢,

|f| is uniformly bounded away from 0, arfd exists inC(K). Sincel is an ideal,
we obtain 1= ff~1 ¢ I, and thereforé = C(K), a contradiction to the assumption
thatl is a maximal ideal. On the other hand, again sihisea maximal ideal, there
exists exactly on& € K such thatf (x) = 0 for everyf € |. Hence,| = kerdy for
the corresponding Dirac functional, and we have provedtistence of a bijection
betweerK anda(C(K)). The fact that this bijection is a homeomorphism is left to
the reader.

Examples 5.51 (Gelfand space df*(RN) or LY(R,)).

1. We consider the Banach algel'dRN), equipped with the convolution product
%, as in Example 5.33.5. The dual spac& &fRN) can be identified with® (RN),
the duality being given by

<fvg>L°°,L1::/ fg.
RN

Let x € L°(RN) be a character. Then, by Lemma 5.48]|» < 1, and by defini-
tion of character, for every, g € LY(RN),

WX dX/Nx(y)g(y) dy= (X, Fre 11 (X: G112
R R
< ’ fx g>L"°,L:L

X
= /‘Nx(x) /‘N f(x=y)g(y) dy dx
R JR

- /N/NX<X+Y>f(X)g(y) dy dx
JR R
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It is not difficult to deduce from this equality, that everyathctery satisfies the
functional equation

X(x+Yy) = x(x) x(y) for almost every, y € RN.

Since x is measurable, bounded and nonzero, this functional esquatiplies
that there exist§ € RN such that

X(x) = €% for everyx € RN.
Thus, the Gelfand space b#(RN) is given by
o(LYRN)) = {% : £ e RN}

One can show that this space, equipped with the Wegdology, is homeomor-
phic to the spac®&N, equipped with the usual Euclidean topology.

2. Now we consider the Banach algelirsR , ), equipped with the convolution
product, as in Example 5.33.6. As in the previous example stiows that every
charactery € L”(R.) satisfies the functional equation

X(t+s)= x(t) x(s) for almost every, se R..
This implies that there exists € C with ReA > 0 such that
x(t) =e* foreveryt e R, .
Hence,
o(LY(R,))={e?* :A €C,ReA >0}.
One can show that this space is homeomorphic to the closad haf-plane
{A € C:ReA >0}.

Let A be a Banach algebra with Gelfand spax@), and leta € A. Then we
define the function

d:0(A)uU{0} =K,
X —alx) = (x.a),

and we note that this function is continuous and vanishingpfatity. In fact, if
(Xa)a is a convergent net io(A) U {0}, limg xa =: X, then, by definition of the
weak topology,

im&(xa) = lim(Xa,a) = (X.8) = a(x)-

As a consequence,€ C(a(A) U{0}). In the following, we consider the function
a only to be defined on the Gelfand space itselfAlfs a unital Banach algebra,
theno(A) is already compact by the preceding lemma, ardC(c(A)). If Ais a
non-unital Banach algebra, then the Gelfand spa@® is only locally compact,
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and&a e Cy(o(A)), the space of continuous functions vanishing at infinitpc8i
C(K) = Cy(K) for every compact spad€, we may always write & Co(a(A)).

Theorem 5.52 (Gelfand). Let A be a complex, commutative Banach algebra, and
let a(A) be its Gelfand space (considered as a locally compact spadbé weak
topology). Then th&elfand transform

A= Co(o(A),

ar 4,
whered(x) := (x,a) (x € o(A)), is a bounded Banach algebra homomorphism.

Proof. We have already shown above that the Gelfand transform Isdeéhed. By
Lemma 5.46,

lallcy(o(ay = Sup |a(x)]
X€EO(A)

= sup [(x,a)]
X€O(A)

< sup [[x]/al
X€a(A)

<|lall,

so that " is actually a contraction. It is clear that " is lin@doreover, for evenga,
b € Aand everyy € a(A) one has

ab(x) = (x,ab)

= <Xa a> <Xa b>

=&(x)b(x),
that is,ab= ab. We have proved that " is an algebra homomorphism.

Theorem 5.53.Let A be a complex, commutative, unital Banach algebra. Ttoen
every ac A,

o(a) ={(x,a): x € a(A)}.

Proof. "C” Let A € a(a). ThenA — a s not invertible, which means that— a is
contained in some maximal ideal. Hence, there exists a cteapac o(A) such that
(x,A —a)=0. However{x,A) =A (x,1) = A, and hencad € {(x,a): x €a(A)}.

" D" Now assume that € {(x,a) : x € 6(A)}. Then there existg € o(A) such that
0=A—{(x,a) ={(x,A —a). In otherwordsA —ais contained in the kernel of some
charactely, or, equivalently, in some maximal ideal. As a consequekheeais not
invertible, thatisA € o(a).
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5.5 * The mean ergodic theorem

A bounded, linear operatdf on a Banach spack¥ is calledpowerbounded if
SURo || T"| < . Clearly, the spectral radius of a powerbounded linearatpeis
less than or equal to 1, which implies that its spectrum isaioed in the closed unit
diskD :={A € C: |A| < 1}. Here, we are particularly interested in the asymptotic
behaviour of orbits of powers @f, or, in other words, in the asymptotic behaviour
of the discrete, linear dynamical systém’).
Lemma 5.54.Let T € .Z(X) be a powerbounded operator. Then:

a) Forevery xe ker(I — T) and every re N one has Tx = x.

b) Forevery xc ranl — T) one has

1 N-1
lim — Y T"'x=0,
N—o N n;)
that is, the orbit(T"x) converges in the Cesaro meanto
c) kerl —T)nranl —T) = {0}.

Proof. (a) If xe ker(I —T), thenT x= x. An iteration givesl "x = x for everyn € N.
(b) Firstletx € ran(l — T). Thenx =y — Tyfor somey € X. Hence,

L5 = 15 gy 1y,
N n=0 N n=0
= %Nil(T”yfT”“y)
£
= %(yf ™)

—0asN — o,

due to the assumption thatis powerbounded. The assumption tfiats power-
bounded also implies that the Cesaro megig\_o T" are uniformly bounded. A
simple E-argument implies that

1 N-1
lim = ZOT”X:O
N—oo N &

for everyxeran(l —T).
(c) If xeker(l =T)nran(l —T), then, by part (a),

1 N—-1
X=— ZoTnX for everyN € N.
N &
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By part (b), the right-hand side of this equality converge®tasN — «. Hence
x=0.

Theorem 5.55 (Mean ergodic theorem).Let T € .#(X) be a powerbounded op-
erator. Then, for every g X, the following assertions are equivalent:

(i) xeker(l —T)@ranl —T), that is, x= X + x; for some ¥ € ker(l — T) and
some x cran(l —T).

(i) The limitimn_e & YN-g T"x exists in X.

(i) The limitlimn_e & Sh-g T"x exists weakly in X.

(iv) The sequenc@% zﬁ;olT”x) of Cesaro means has a weakly convergent subse-
guence.

If one of the equivalent conditions (i)—(iv) holds true,rihe

1 N—-1
lim = § T"x=xo.
N—o N nZO %o

We say that a sequen¢®,) in a Banach spac¥ converges in Cesaro meaito

some element € X if
N-1

lim - Xn = X
N%mNn; n—o

One can prove (exercise!) that if a sequefigg converges in the usual sense to
some elemenx € X, then it also converges in the Cesaro mean to the same ele-
ment. However, the converse is not true: the sequéfieg)") does obviously not
converge inR, but

. n_ o 11 Nt1y _
lim N HZO( 1) f'\llanmNz(lJr( 1M =0,
that s, this sequence converges in the Cesaro mean to 0s@/ea that the Cesaro
average of this sequence is 0.

If one of the equivalent conditions (i)—(iv) in the Mean Edip Theorem above
holds true, then the final conclusion is that the sequém€g) of iterates ofT ap-
plied tox converges in Cesaro meanxg Note that the sequend¢@& "x) need not
converge in the usual sense.

Proof (of Theorem 5.55T.he implication (i}=(ii) follows from Lemma 5.54, while
the implications (ii}=(iii) and (iii)=-(iv) are trivial. So let us prove the remaining
implication (iv)=>(i). Assume that the sequentg 3 - T"x) admits a weak accu-
mulation point. Then there existg € X and an increasing sequen@é) in N such
that

1 N1
w— lim — T™ = Xo.
k—eo N =

Since every bounded, linear operator is also weak-weakmanis, this implies



5.5 * The mean ergodic theorem 101

(1=T)x = W—I|m—ZOT (-7

1 M
=w— lim — E (Tx T )
n=

k—o0 N
.1

=w— lim — (x—TMx)
k—00 Ny

:07

so thatxp € ker(l — T). On the other hand, for evekyone has

Ne—1 Ne—1
Xx—— § T™x= x—T"
Nk & N n;)( )
1 Nk—1n—-1 J
- Ti0—T)x
SIDRLE

1 Nk—1n—-1 .
=(1-T) [N—k % ZOTJX} eran(l —T).
j=

Hence,

X— Xg = X— weak— I|m— Z)T”

= weak— I|m x—— T x
~>oo
=:xg eranl —T),

and we have proved that (i) holds.

Corollary 5.56 (Mean ergodic theorem in reflexive spaces)Let T € £(X) be a
powerbounded operator on a reflexive Banach space X. Then

X=ker(l -T)®ranl —T)

and if Pe .Z(X) denotes the projection onteer(l — T) alongran(l — T), then, for
every xe X

1 N—-1
lim = § T'x=P
N—o N nZO %

thatis, the iterates of T converge strongly, and in the Cesagan, to the projection
P. If 1is not an eigenvalue of T, then, for everg X,

lim = Z)T x=0.
N—o N
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Proof. If suffices to note that for evenye X the sequencgt 3N T"x) of Cesaro
means is bounded K. SinceX is assumed to be reflexive, this sequence thus admits
a weakly convergent subsequence by Theorem 3.28. The cthirssollow from

the Mean Ergodic Theorem (Theorem 5.55).

Since Hilbert spaces are in particular reflexive spacespwesdiately obtain the
following corollary, due to von Neumann.

Corollary 5.57 (von Neumann mean ergodic theorem).Let T be a contraction
on a Hilbert space H. Then, for everysfH, the Cesaro limit

1N,l
lim = EOT”f =: Pf
N—oo N =

exists in H, P being the projection onker(l — T) alongran(l —T). If 1is not an
eigenvalue of T, then, for everysfH,

1 N—-1
lim — Z)Tnf =0.
N—o N &

Convergence in the Abel mean of powerbounded operators

Let T € .Z(X) be a powerbounded operator, andNet- 0 be a constant such thiit"|| < M for
everyn > 0. From the Neumann series (see also the short proof of Lemvartl the Remark
5.8), we obtain for everj € K with [A| > 1 the estimate

RATI =S |
RAT =[S ——
n;A”+1

1

<M
- n;‘A‘n+l
1

Al=1

In particular,
(A —D)R(A,T)|| < M for every reald > 1. (5.3)

Lemma5.58.Let T € .Z(X) be a powerbounded operator. Then:
a) Forevery xc ker(I —T) and every real > 1 one hasA —1)R(A, T)x=x.
b) Forevery xeran(l —T) one hadim, 1, (A —1)R(A,A)x=0.
c) kel —T)nran(l —T) = {0}.
Proof. (a) Letx € ker(I —T). Then
0=Xx—Tx=—(A —1)x+ (A —T)xfor every reald > 1.

Multiplying this equality withR(A, T) yields the claim.
(b) Assume first that € ran(l —T), that is,x =y — Ty for somey € X. Then



5.5 * The mean ergodic theorem 103

lim (A —1)RA,T)x= lim (A —1)RA,T)(1=A)y+Ay—Ty)
A—=1+ A—=1+

= fim_[( = 1RO T)y+ (A - 1]

=0.

The full claim follows from this equality, from the estimaf& 3), and from a simple density argu-
ment (compare with Lemma 2.48).
(c) Letx € ker(I = T)nran(l — T). Then the previous two points yield

x= (A —1)R(A,T)xfor every reald > 1,

and
lim (A —1)R(A,T)x=0,
A—=1+

which is only possible ik = 0.

Theorem 5.59 (Mean ergodic theorem).Let T € £ (X) be a powerbounded operator. Then, for
every xe X, the following assertions are equivalent:

(i) xeker(l —T)@®ran(l —T), that is, x=Xo + X1 for some ¥ € ker(l — T) and some xe

ran(l —T).

(i) Thelimitlim, 1, (A — 1)R(A,A)x exists strongly (in X).

(i) The limitlim) 1, (A —1)R(A,A)x exists weakly.

(iv) The net((A — 1)R(A,A)x),~ 1 admits a weakly convergent subsequence in the sense that
there exists a sequenddn) in R, Ay — 14, such that((A, — 1)R(An, A)X)n converges
weakly.

N

(v) The limitlimy_e % n *olT”x exists strongly.

If one of the equivalent conditions (i)—(v) holds true, then
n—-1

. 1 K
lim (A —=DRA,A)x=Iim = § TX=xo.
Jim (A~ RO A= lim X

We say that a sequencr,) in a Banach spac¥ converges in Abel mearto some element
x € X if the power serie§ »_oXx:A" converges (absolutely) for evelye D, and if

lim (1-A AT =x.
A (-3) 3 "=

One can prove that if a sequenog) converges in Cesaro mean to some elemenk, then it also
converges in the Abel mean to the same element. The converseyver, is not true. In general,
we have thus the implications

(xn) converges in the usual sensexte X

4

(%) converges in the Cesaro mearxta X

I

(xn) converges in the Abel mean o= X.

The second Mean Ergodic Theorem (Theorem 5.59) says thatgabraic condition (i) is equiva-
lent to convergence in the Abel mean of the sequéice) of iterates ofT applied tox (condition
(iv)), which in turn is equivalent to convergence in the Gesaean (condition (v)). Hence, in this
special situation, convergence in the Abel mean and in tlsai@enean are equivalent.
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Proof (of Theorem 5.59)The implication (i}=(ii) follows from the preceding Lemma 5.54, as-
sertions (a) and (b). The lemma also yields the equality lim (A — 1)R(A,A)X = Xo.
The implications (ii}=(iii) and (i) =-(iv) are trivial.
(iv)=(i) We assume that there exists € X and a sequencéh,) in R, A, — 1+, such that
weak— limp(An — L)R(An, A)x = xo.Then, for every’ € X',
(X, %) = I'm<)( (An—DR(An, T)x)

= I|m< (A=A + A =T +T)(An—1)R(An, T)X)

=lim < ,—(An—1)?R(An, T)X+ (An — D)X+ T (An — DR(An, T)X)
= I|nm<>(,T()\n —1DR(An, T)X)
=X, Tx).

Hencexy = T, or, in other wordsxg € ker(I — T). It remains to show thak; := x—Xg €
ran(l — T). Note that for everyr one has

X—= (A= 1RAn, T)X=X— (A =T +T = 1)R(An, T)X
=(I=T)R(Ap, T)xeran(l —T).
Hence,
X1 =X—Xo
= X—weak- rlim (An—1)R(An, T)x
—00
= weak— rlimo[x— (A —DR(A, T)X eran(l —T),

which proves that (i) holds.
The equivalence (#>(v) follows from the Mean Ergodic Theorem 5.55.

The mean ergodic theorem for general resolvents

The preceding situation can still be generalized. We noveiciem a general closed, linear operator
(A, domA) on a Banach spacg, and we study the relation between the behaviour of thevesbl
of A near the boundary of the spectrum and some algebraic piegpef.

Lemma 5.60.Let(A,domA) be a closed, linear operator on a Banach space X Aget K be such
that there exists a sequenth,) in p(A) satisfyinglimy A, = Ag and ||(An — Ao)R(An, A)|| < M for
every n and some constant MO. Then:

a) For every xe ker(Ag — A) one has(An — Ag)R(An, A)x = X for every n.
b) For every xe ran(Ag — A) one hadim, (A, — Ag)R(An, A)x= 0.
c) kerAo—A)NranAo—A) = {0}.
Proof. (a) Letx € ker(Ag — A). Thenx € domA and
0= (Ao —A)x = (Ao — An)X+ (An — A)x for everyn.

Multiplying this equality withR(A,, A) yields the claim.
(b) Assume first that € ran(Ag — A), that is,x = (Ao — A)y for somey € domA. Then
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IiLn()\n —20)R(An, A)x = IiLn()\n —20)R(An,A) (Ao —An+An—A)y
= "'r;n [()‘n - AO)ZR()‘nvA)yJF (An— AO)V]
=0.
The full claim follows from this equality, from the assunmpii that the sequencgA, —
A0)R(An,A))n is bounded inZ(X), and from a simple density argument (compare with Lemma

2.48).
(c) Letx € ker(Ag — A) Nran(Ag — A). Then the previous two points give

X = (An—A0)R(An,A)x — 0 asn — oo,
that is,x = 0.

Theorem 5.61 (Mean ergodic theorem for resolvents)Let (A,domA) be a closed, linear oper-
ator on a Banach space X. L&g € K be such that there exists a sequelitg) in p(A) satisfying
limpAn = Ap and||(An — Ag)R(An, A)|| < M for every n and some constant MO. Then, for every
x € X, the following assertions are equivalent:

(i) xe€ker(An—A) @ranAg—A), that is, x= xg + x1 for some ¥ € ker(Ap — A) and some

X1 € ran(Ag —A).

(i) The sequencf A, — Ag)R(An, A)X)n converges strongly (in X).
(i) The sequencgAn — Ag)R(An, A)X)n converges weakly.

(iv) The sequencE A, — Ao)R(An, A)X)n admits a weakly convergent subsequence.

)

If one of the equivalent conditions (i)—(iv) holds true,rthe

lim (A — A0)R(An, A)x = Xo.

Proof. The implication (i}=(ii) follows from the preceding Lemma 5.60, assertions (&) ). It
also yields the equality lig{An — Ag)R(An, A)X = Xo.

The implications (ii}=(iii) and (i) =-(iv) are trivial.

So let us prove the implication (i (i). We assume tha(A, — Ag)R(An, A)X)n admits a weakly
convergent subsequence. After passing to a subsequeneeegsary, we may in fact assume that
the sequencé(An — Ag)R(An, A)X), itself converges weakly, say, to some element X. Then,

for everyx € X/,

(X, AoXo) = lim
I|

(X, A0(An — A0)R(An, A)X)

M (X, (Ao — An+An — A+ A) (An — Ag)R(An, A)X)

(X, (Ao — An)2R(An, A)X+ (Ao — An)X+ A(An — Ao)R(An, A)X)
= lim (X, A(An — A0)R(An, A)X)

= (X, A%)

SinceAs closed, this equality implies) € domA andAgx = Ax. In other wordxg € ker(Ag — A).
It remains to show that; := x—Xg € ran(Ag — A). Note that for everyr one hafk(An, A)x € domA
and

=lim

>

X— (An—DR(An, A)x = X— (A — A+ A—1)R(An, A)X
= (I = AR(An, A)x € ran(l — A).

Hence,
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X1 =X—Xp
= x—weak- lim (A, — L)R(An, A)X
n—oo
=weak- lim [x— (An — 1)R(An,A)X] € ran(l — A),
n—oo

which proves that (i) holds.
Corollary 5.62 (Mean ergodic theorem for resolvents in reflgive spaces)In addition to the
assumption of the preceding Theorem 5.61, assume that tleelyimg Banach space X is reflexive.

Then X= ker(Ag — A) @ ran(Ag — A) and the for every x X the limit

IiLn()\n —2A0)R(An, A)X=:X%o

exists, and the limitxcoincides with the projection of x onker(Ag — A) alongran(Ag — A).

Proof. By assumption, for every € X, the sequenc€A, — Ao)R(An, A)X)n is bounded. Sinc&
is reflexive and by Theorem 3.28, for everye X the sequencé(An — Ao)R(An, A)X)n admits a
weakly convergent subsequence. The claim follows from Téradb.61.



Chapter 6
Operators on Hilbert spaces

6.1 Spectral theorem for compact selfadjoint operators

LetH, K be two Hilbert space§, € £ (H,K). For everyy € K the mappingd — K,
x— (Tx YY)k is a bounded linear functional d# which admits a unique represen-
tation byT*y € H such that

(Txy)k = XTyu  (xeH).

The resulting linear operatdr* : K — H is called the(Hilbert space) adjoint of
T.

Lemma 6.1.Let Hy, Hy, and H; be three Hilbert spaces, T,&8.2(H1,Hy), Re
Z(Hz2,Hs) andA € K. Then:

a) (T+9*=T*+S"

b) (AT)*=AT".

c) (RT*=T*R".

d) T*e Z(Hy,Hy)and|T*|=T|.

e) T™=T.

D ITTI=TT=T|>

g) kerT = (ranTx)* andkerT* = (ranT )~ (orthogonal spaces).

Proof. The properties (a)—(c) are simple exercises. Concerningéde that

107
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IT)l:= sup [[T"Y[n,

IVl 2<1

= sup sup [(T7Y,X)n,|

[¥l42<1 IXl2<1

= sup sup [{y,TX)u,|

X1 <1 lI¥lly2<1

= sup [[TXm,
[l y1<1
= [T].
Next, for everyx € Hy, y € Ho,

(TX Y, = X, T Y)my
= (T*Y,X)H,
<y7TX>H2
= (TXY)H,,

which implies (e). Finally, note that
[T*T] = sup [T*Tx]|
lIxl<1

= sup sup ](T*T)gy)]
[xI<1lyll<1

= sup sup [(TxTy)|
[xI<1[lyll<1

> sup [(TxTx)|

[ <1

= sup || Tx?
Ixj<1

=TI,

while the inequalityl| T*T|| < || T*||||T|| = ||T||? (using also (d)) is trivial. Hence,
we have proved (f). The property () is also left as an exercis

Remark 6.2. Let .« be a complex Banach algebra. A mappings — < is called
aninvolution if for everya,be &, A € C,

(a+b)* =a*+b*, (ab)* =b*a*, (Aa)* = Aa", (a")* = a.
If a complex Banach algebra admits an involutiorx such that for everg € o7,
la“all = [|all?,

then. is called aC*-algebra.
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If H is a Hilbert space, thel’(H) is aC*-algebra for the involutiom — T*,
whereT* is the (Hilbert space) adjoint af. This follows from Lemma 6.1.

The simplesiC*-algebra isC (the involution being the complex conjugation).
In the space of matrice8N*N = .#(CN), the involution as defined above, that is,
the Hilbert space adjoint with respect to the Euclideaniimpreduct, is given by
A* = Al (complex conjugation and transposition).

Given a compact spade¢, the spacec(K) is also aC*-algebra for the usual
algebra structure and the involutidn— f* given by f*(x) := f(x) (x € K).

LetH be a complex Hilbert space. An operaloe £ (H) is calledselfadjoint
if T=T%, or, equivalently, if for every, y € H,

(Txy) = XTy).

We say that the operatdr is positive semidefinite and we writeT > 0, if it is
selfadjoint, and
(Tx,x) >0 foreveryxe H.

An operatofT € .Z(H) is callednormal if TT* =T*T. An operatot € .Z(H,K)
between two Hilbert spaces is calleditary if U is an isomorphism and*U = Iy
andUU* = k.

Remark 6.3.In everyC*-algebrass one can define that an elemeris selfadjoint

if a=a*. The selfadjoint elements a¥ = C are the real numbers. The selfadjoint
elements ofCN*N are the hermitian matrices, that is, the matridder which A =

AL

Theorem 6.4 (Hellinger-Toeplitz). Let T: H — H be linear andsymmetric, that
is,
(Txy) = (x, Ty) for every x y € H.

Then T is bounded.

Proof. Let (xy) C H be convergentt® € H and such thafT x,) convergesty € H.
Then, for everg e H,

(T2 = (T2 = Im (x,T2 = M (Tx,,2) = (%.2).

Hence,Tx=y. This means thaf is closed, and by the closed graph theoréng
bounded.

Lemma 6.5.Let T € Z(H) be a selfadjoint operator on a Hilbert space H. Then

o(T) CW(T) CR. (6.1)

where
W(T) = {(Txx) : [Ix] = 1}. (6.2)

is thenumerical rangeof T.
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Proof. Since(Tx,x) = (x, TX) = (T x,X) by symmetry, we obtaiV(T) C R.
LetA € K be such thatl := dist(A,W(T)) > 0. Then, for everx € H such that
X[ =1,

d=dx| <|]A = (Txx)| = [{(A =T)x [ < [|(A = T)x|.

By linearity, this estimates remains true for every H. This estimate then implies
thatA — T is injective and that raid — T) is closed. If rafA —T) # H, then there
existsxg € (ran(A —T))* such thaf|xo|| = 1. For thisxy we have

0= ((A —T)Xo,X) =A — (Tx0,X) >d >0,

a contradiction. Henceé, — T is invertible, orA € p(T). Thus we have proved also
the first inclusion in (6.1).

Lemma 6.6.Let T € .#(H) be a selfadjoint operator on a Hilbert space H. Then
supwW(T) € o(T) and infW(T) € o(T),
where WT) is the numerical range defined (6.2).

Proof. Let A := supW(T). By definition of W(T), the forma(x,y) := A{(x,y) —
(Txy) is sesquilinear in the case of a complex Hilbert space, ardal and sym-
metric in the case of a real Hilbert space. Moreover, thimfar positive semidefi-
nite, that isa(x,x) > 0 for everyx € H.

By the Cauchy-Schwarz inequality applied to the fafr y), for everyx,y € H,

NI

[AX=TxY)| < Ax=TxX)2 (Ay—Tyy)Z.

This inequality implies that there exists a constant 0 such that for every e H,
IAX—TX| < CAX—Txx)?.

Let (xn) C H, ||Xn]| = 1 be such thatT x,,X,) — A. Then the preceeding inequality
implies that limy_e ||A Xy — TXy|| = 0. HenceA € 04p(T) C o(T).
The proof that inW(T) € o(T) is similar.

Lemma 6.7.Let T € .Z(H) be a selfadjoint operator on a Hilbert space H. Then

[TII= sup [(Txx)|= sup |A].
Ix|=1 Aeo(T)

Proof. The second equality follows from Lemma 6.6 combined with bearb.5.
Moreover, the inequality

sup [(Txx)[ < || Tl

[[x]=1
is obvious, by the definition ofT || and the Cauchy-Schwarz inequality. Using the
fact thatT = T*, one easily calculates for evexyy € H,
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ARETXY) = (T(X+Y),x+Yy) — (T(X—Yy),x—y).
Hence,
T[] = sup ||Tx]|
x| =1
= sup supRe(Txy)
Ix=1 [ly|=1

_1 sup sUp[(T(X+Y),x+Yy) — (T(X—Yy),x—y)]
[xI=1 [lyll=1

1
< = sup sup[[(T(X+y),x+y)|+ [(T(x—y),x—y)|]
IXI=1 [ly|=1
1
< sup|(Tz2z)| 7 sup sup|[[x-+y[2+ |[x— Il
Iz|=1 IXI=1 [ly|=1

1
< sup|(Tz2)| 5 sup sup||x|*+|ly|?
lzl=1 Ix][=1 [lyll=1
< sup[(Tz2)],
lzl=1
which is just the remaining inequality.

Lemma 6.8.Let T € #(H) be a selfadjoint operator on a complex Hilbert space,
and let x, ye H be two eigenvectors corresponding to two distinct eigkres),
u € op(T). Then(x,y) =0.

Proof. SinceT is selfadjoint and\, 4 € R (Lemma 6.5),

AXY) = (AXYy) = (Txy) = (X, Ty) = (X, Hy) = H(X.Y).
SinceA # , this equality can only hold ifx,y) = 0.

Theorem 6.9 (Spectral theorem for compact, selfadjoint opmtors). Let H be
a separable Hilbert space, and letd .7 (H) be a compact, selfadjoint operator.
Then there exists an orthonormal ba&s)n of H, and a family(An), of real num-
bers such thalim,_,. An = 0 and

Tey=Aney foreveryn

that is, there is an orthonormal bas{s,), consisting only of eigenvectors of T. In
other words, T isunitarily equivalent to the multiplication operator M ¢Z — ¢2,
M (Xn)n := (An¥n)n, that is, there exists a unitary operatoriH — ¢ such that the
diagram

H—"> H

b e

2 M, e
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commutes

Proof. By the spectral theory of compact operatar@l ) is at most countable, every
u € o(T)\ {0} is an eigenvalue, and its eigenspatg := ker(u — T) is finite-
dimensional.

Let (un) be the (finite or countable) family ddll nonzero eigenvalues of
(Un # pm if n#£ m), and letd, := dimker(i — T) be their multiplicities. Let
(fd)1<k<d, be an orthonormal basis bf,, = ker(un —T). If the kernelHg := kerT
is nontrivial, then choose also an orthonormal b&§i$o<k<dimH, Of Ho. Next, let
(en) be the family which is obtained by taking successively thenover all eigen-
vectorsf,! and fy, and let(An) be the family which is obtained by taking the eigen-
values corresponding t}' or f,. For simplicity, assume that the ker¢j = kerT is
trivial. Thene; = f1, ..., eq, = fdll, € 11=T2, ..., €y rdy = fa’-z, etc., and\y = Uy,
oy Ady = H1, Ady+1 = M2, -, Ady+d, = Ha, €tC.

The family (ey) thus obtained is an orthonormal system by construction gnd b
Lemma 6.8. Moreover, by constructiohe, = Ane, for everyn. It remains only to
show that spafe, : n} =: HO is dense irH.

LetH! := (H?)' be the orthogonal complement. For every H' and everyn,
sinceT is selfadjoint,

(Tx,en) = (X, Ten) = (X,Anén) = An{X,€&n) = 0.

HenceTH! c H1, thatis,T leaves the spad¢! invariant. We may thus consider the
restrictionT! := Ty, € .Z(H') which inherits the property frofi to be compact
and selfadjoint. Sincall eigenvectors of are contained itH°, T* does not have
any eigenvalue. In other words(T?) C {0}. By Lemma 6.7, this implie3* = 0.
However, as we just remarke@l! does also not admit any eigenvector for the only
possible eigenvalue 0. Hendé! = kerT! = {0}, which implies thatH® is dense in
H.

To complete the proof, consider the operatbr. H — ¢? given by Ux :=
({(X,en))n. This operator does the work, that I4,is unitary andT = U*MU, as
one easily shows.

Remark 6.10.Let T € .#(H) be a compact, selfadjoint operator on a general (not
necessarily separable) Hilbert space. THen kerT @ (kerT)*, where(kerT)* =
ranT is separable (any compact, metric space is separable, afidsapanned by
the relatively compact sétBy (0,1). Applying the above spectral theorem (which
holds only on separable Hilbert spaces) to the restrictfiohto ranT, we obtain an
orthonormal basis of rah which consists only of eigenvectors ©f This (at most
countable) orthonormal basis can be completed by an orthwaddasis of keF,
which consists necessarily of eigenvectors to the eigeev@l As a conclusion, we
obtain an orthonormal eigenbasis léfwhich consists only of eigenvalues of
We thus see that the assumption of separabilityl @fan be dropped in the spectral
theorem.

We may immediately generalize the spectral theorem to tiget@lass of normal
operators. For this, we also need the following variant dfeicer’s theorem.
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Lemma 6.11.LetH, K be two Hilbert spaces andd.#(H,K). Then T is compact
if and only if T* is compact.

Proof. It is intructive to represent the Hilbert space adjdiritby using the Banach
space adjoinT’ € .Z(K’,H’) and the (antilinear) isomorphisngg, : H' — H and
@k : K’ — K which one obtains from the Theorem of Riesz-Fréchet (Tém@dt.44).
In fact,

T =T ot

If T is compact, thed’ is compact by Schauder’s theorem (Theorem 5.25), and
henceT * is compact due to the above representation. Conversdly,ig compact,
then, by what has just been said{* is compact. Howevel ** = T (Lemma 6.1
(e)), and the claim is proved.

Theorem 6.12 (Spectral theorem for compact, normal operat). Let H be a
complex, separable Hilbert space, and leT# (H) be a compact, normal op-
erator. Then there exists an orthonormal ba&g)ne) CH (I € N) of H, and a
sequencéAn)nel € C such thalimp_,. An = 0 and

Tey=Anen foreverynel,
that is, (en) is an orthonormal basis consisting only of eigenvectors.of T
Proof. We define

T+T* T-Tx

ReT = and ImT = -
2

SinceT is normal, the operators Reand ImT commute. Moreover, they are easily
seen to be selfadjoint and compact (for compactness, weamena 6.11). We show
that Rel and ImT can be diagonalized simultaneously.

By the spectral theory of compact operatar&ReT) is at most countable, every
a € o(ReT)\ {0} is an eigenvalue, and its eigenspate:= ker(a — T) is finite-
dimensional.

Let (an) be the (finite or countable) family afll nonzero eigenvalues of Re
(an # am if n# m), and letd, := dim kerla, — T) be their multiplicities. For every
e € Hg, one has

ReTe= ape.

We apply ImT on both sides of this equality, and use the fact thal Red ImT
commute, and we find that the vector Trais also an eigenvector of Refor the
eigenvaluex,. In other words, the eigenspadég, are left invariant under Ifi. By
applying the spectral theorem for compact, selfadjointrajoes to the restrictions
of ImT to Hg,, we find for everyn an orthonormal basisf) 1<k<d, of Ha,, and we
find a family (B;)1<k<d, Of real numbers such that

ImT f = B2 f for every 1< k < dp,.

Of course, we still have
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ReT f! = an ;! for every 1< k < dp,.

If Ho := kerReT is nontrivial, then we may repeat the arguments from above in
order to see that I leavesHy invariant. We may also apply the spectral theorem
for compact, selfadjoint operators to the restriction offite Hg, and we find an or-
thonormal basig fi) o<k<dimH, and a sequendgi)o<k<dim+, Of real numbers such
that

ImT fi = Bk Tk for every 0< k < dimHp.

Of course, we have
ReT fx = 0 for every 0< k < dimHp.
From the above relations and from the equality- ReT +ilmT we obtain
T = (an+iB) e =: ul 2 for every 1< k < d

and
T fx = iB« fk =: Uk fx for every 0< k < dimHy,

that is, thef)! and f are eigenvectors of for the complex eigenvalugsg! and pi,
respectively.

Next, let(ey) be the family which is obtained by taking successively thean
over all eigenvectorg and fi, and let(A,) be the family which is obtained by
taking the eigenvalues correspondingffbor fx. For simplicity, assume that the
kernelHo = kerReT is trivial. Theney = f1, ..., &4, = fc}l, eq 1= 12, ..., €ra, =
fs.etc., andhy = pi, ..., Ay = pg, Adysa = HE, -, Adyrd, = 15, €tC.

The family (e,) thus obtained is orthonormal by construction and by Lemr8a 6.
(applied to Rd). Moreover, by constructiof,e, = A&, for everyn. It remains only
to show that spafe, : ne€ N} =: H® is dense iH. For this, one proceeds similarly as
in the proof of the spectral theorem for compact, selfadjoperators. One shows
that ReT and ImT leaveH! = (H%)* invariant but admit no eigenvectors k.
This implies for example RE = 0 in H!, and thusH! = {0}. As a consequence,
HC is dense, an¢e,) an orthonormal basis.

6.2 Spectral theorem for bounded selfadjoint operators

The continuous functional calculus

Theorem 6.13 (Spectral theorem for bounded, selfadjoint ogrators - the con-
tinuous functional calculus). Let T € Z(H) be a selfadjoint operator, and let
K :=o(T) be its spectrum. Then there exists an algebteomomorphism

®:C(K) = Z(H)
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with the following properties:

() @(id) =T and in particular®(p) = p(T) for every polynomial p.
(i) @ isisometric, thatis||®(f)| »n) = || f[. for every fe€ C(K).
(i) @ is positive in the sense that iff 0, then®(f) > 0.

(iv) (Spectral mapping theorem) For every & C(K) one haso(®(f)) =
f(a(T)) = f(K).
(v) (Spectral mapping theorem for the point spectrum) For evieeyC(K) and

everyA € ap(T) and every corresponding eigenvectar K (thatis, Tx= AX)
one has®(f)x= f(A)x.

Lemma 6.14 (Spectral mapping theorem for polynomials)Let X be a Banach
space ovelK, and let &2 be the space of all polynomials ovEr. For every Te
#(X) and every polynomial g 2 (p(2) = Yh_,aZ) we define the operator

n
p(T):= S aTk
2
Then the mapping
P —=2Z(X), p—=p(T)
is an algebra homomorphism. Moreover,
o(p(T)) = p(o(T)) ={p(A) : A € o(T)}, and

op(P(T)) = p(op(T)) = {pP(A) : A € op(T)}, and
if Tx=AX, then gT)x= p(A)x.

Proof. We only prove the second statement of the lemma. For everK one has

K=0
- k_ Tk
—k;ak(A ™)
n k-1 [
=A-T AT
( )[kglj:ak ]
n k-1 ko1
= MAMT A =T).
2, 2T e

From this equality follows that ik — T is not injective (respectively, not surjective),
thenp(A) — p(T) is not injective (respectively, not surjective). Henpég(T)) C
o(p(T)).

On the other hand, assume tia& o(p(T)). We can write
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n

A—p(u)= Ck|1(uk—u)

for somepy, ..., Uun € C and everyu € C. Hence

where in the product all factors commute. So\if- p(T) is not invertible, then
there exists K k < nsuch thafu — T is not invertible. In other words, there exists
1 <k<nsuchthafy € o(T) andp(ux) = A. As a consequencg,< p(o(T)), and
o(p(T)) C p(a(T)). The spectral mapping theorem for the point spectrum tegeth
with the statement that eigenvectors are preserved, iegdriova similar way.

Proof (of Theorem 6.13)f a functional calculusp : C(K) — £ (H) with the prop-
erties (i)-(iv) exists, then it follows from property (i) drthe property that? is an
algebra homomorphism that

@(p) = p(T) (6.3)

for every polynomialp; herep(T) is defined as in Lemma 6.14. Since the algebra
P of all polynomials is dense i€(K), and since® is continuous, this shows that
there is at most one functional calculus with the prope(i)e@v).

On the other hand, in order to prove existence of such a fomaticalculus, we
define® first on the algebra of all polynomials via the equality (618pte that if
P(2) = Sh_oaZ’, so thatp(T) = TR_,aTX, then, sincd is selfadjoint,

@(p)* = p(T)"

S5

£

—
\_5
*

I
~
=] S5 =
OM I
2
=
=
x~
Z
*

I
2
o

I
8 =
o d

Here, p(2) = Sh_o&Z  is the conjugate of, which is again a polynomial since
the argument € K is real; we use here of course again the assumptionTthat
selfadjoint and that the spectrumDfis contained irR.

From the preceding paragraph and the fact 8@itis positive semidefinite for
every bounded operat&e .#(H), we obtain for every polynomigl that
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12(P) 1%y = IIP(T) 1% )
=[Ip(T)P(T)"ll.2)
= [[P(T)P(T) | 2 (H)

= (PR
~ sup Al
Aea((pp)(T))

=, [(PP)(A)]

Aeo(T

= sup Ip( I
Aea(T)

= ||p||%(K)

Hence,® is isometric from(C(K), || - [lck)) into (Z(H), ]| - | #())- Since the al-
gebra of all polynomials oK is dense irC(K), ® admits a unique extension to an
isometric algebra homomorphism fra@K) into .2 (H). We denote this extension
again by®. The property®(f)* = @(f) carries over from polynomials to every
f € C(K), so that® is ax-homomorphism. For every positiiec C(K) one has

®(f) = o(\/T) (6.4)
— o(/TVT) (6.5)
= o(y/Ho(\/T) (6.6)
= ¢<ﬁ>¢<ﬁ>* > 0 67)

Remark 6.15.Consider the algebra

A:={p(T) : p polynomia},

the closure being the closure#f(H). This is the smallest closed, unital subalgebra
of Z(H) which containsT. Note thatA is a commutative algebra. SinGex =T,
this algebra is closed under taking adjoints, thafiss a unital, commutative;*-
subalgebra ofZ(H). Let

K:=0(A)={x € A: x is acharactgr

be the Gelfand space of this algebra. ByK.is a compact, topological space. It is
an exercise to show that

K=K,
X=(XT)
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is a homeomorphism between the Gelfand space(ttat is, the algebra generated
by T) and the spectrum df. In other words, we may identify the Gelfand space of
A and the spectrum dF, and by using this homeomorphism, we may identify the
Gelfand transform~A — C(K) with the homomorphisn¥’ : A — C(K) obtained

as a composition of the Gelfand transform and the operatd¥e. remark that with
these identifications, the functional calculdsis just the inverse of the Gelfand

transformy.

The Riesz-Markov representation theorem

Let K be a compact space. We denotedgyK) the Borelg-algebra orK, that is,
the smallest-algebra orK which contains the open sets Borel measureonK is
a measure on the Borel-algebraZ(K), that is, ag-additive functionu : Z(K) —
[0, 400] (we consider here only nonnegative measures). A Borel measanK is
regular if for every Borel measurable satC K

(i) u(A) =inf{u(0): 0> A Oopen,and
(i) p(A) =sup{u(K'):K C A K’ compact.

We say thatu is finite if u(K) < . The following Riest-Markov representation
theorem characterizes positive, linear functional€0K). We say that a functional
¢ € C(K)' is positive if ¢ (f) > 0 for every functionf € C(K) taking its values in
Ry (the notion of positivity makes also sense on the complegespéK)). Finally,
we defineB(K) to be the space of all bounded, Borel measurable funckorsC.
Equipped with the sup-nornB(K) is a Banach space which contai@éK) as a
closed, linear subspace.

Theorem 6.16 (Riesz-Markov representation theorem). Let K be a compact
space K. Then, for every positive functiogak C(K)' there exists a finite, regu-
lar Borel measureu on K such that

o(f)= /K f du for every fe C(K).

Proof. Let¢ € C(K)' be a positive functional. If necessary, we resti¢o the (real)
subspace of real-valued continuous functions. By HahnaBlajwe may extend the
functional ¢ to a functional¢ on the spacd3(K) of bounded Borel measurable
functions, such thatd||gky = [®llcky -

Since¢ is positive, thenp (1) = ||¢||ck) - Hence, for every Borel functioh €
B(K) satisfying|| f||» < 1 one has

1P <[Dllsky = lPllcky = ¢(1).

In particular, if f € B(K) is a positiveBorel function such thaf f|l. < 1, then
1— f is also a positive Borel functiod1 — |~ < 1, and thugd (f)| < ¢(1) and
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[§(1—f)| < ¢(1). On the other hand,

0<¢(1)=d(1)=¢()+p(1-f),

which, together with the preceding estimates, is only gssf ¢(f) > 0 (and
#(1— f) > 0). We have thus proved that the extensibis a positive linear func-
tional onB(K).

For every Borel measurable $&tC K, we now define

H(A) = (Xa) 20,

wherexa € B(K) is the characteristic function of the skt We claim thaty is a
bounded, regular, Borel measure which represgras stated in the theorem.

First, u is finitely additive by additivity of¢, andu is monotone g (A) < u(B)
whenevei C B) by positivity of ¢.

The spectral theorem for bounded, selfadjoint operators

Let T be a bounded operator on a Banach spac®/e call a vectox € X cyclic
(for T) if the space spg"x: n > 0} is dense irX.

Lemma 6.17.Let T € Z(H) be a selfadjoint operator which admits a cyclic vector,
and let K= o(T) be its spectrum. Then there exists a regular, finite Borelsusa
u on K and a unitary operator UH — L?(K;du) such that the diagram

H —T—5 H

v Jur—ut

L2(K;du) —%— L2(K;dp)

commutes. Here, ML?(K;du) — L?(K;du) is the multiplication operator given
by
Mf(w) = wf(w) (fel?(K;du), weK).

In other words, T is unitarily equivalent to a multiplicatimperator.

Proof. Letx € H be any vector, and lep : C(K) — £ (H) be the functional calculus
associated witfl (Theorem 6.13). Then the linear mapping

¢x:C(K) = C,
fi (@()x,x),
is bounded and positive (Theorem 6.13 (i), (iii)). By theeRi-Markov representa-

tion theorem (Theorem 6.16), there exists a finite, requaeBmeasurei, on K
such that



120 6 Operators on Hilbert spaces

Ox(f) = (D(F)x,x) = /K f du for everyf € C(K).

As a consequence of this equality and by using the propedtigs for everyf €
C(K),

This equality shows first that iy, f, € C(K) coincideu-almost everywhere, then
@(f1)x= @(f2)x. Hence, the operator

U:L%(K;du) —H,
f—>Uf=®(f)x

is well defined first for equivalence classes of continuousfions, but then, by the
above equality and by continuous extension, everywhere?@; du). Moreover,
the operator thus defined is isometric.

Now we suppose that the vectoe H, which was arbitrary in the beginning, is
a cyclic operator. Then the operatdiis isometric and invertible, and thus a unitary
operator. In factl) being isometric, it is injective and has closed range. Moeeo
the range obJ contains the seffT"x: n > 0} which is dense it by the assumption
thatx is cyclic. Hencel is surjective.

The fact that) TU* is the multiplication operator given in the statement i$ def
an exercise.

Lemma 6.18.Let T € Z(H) be a selfadjoint operator on a separable Hilbert space
H. Then there exists a countable fam(h )i/ of closed subspaces such that

a) the H are mutually orthogonal,

b) H= Dic Hi,

¢) each Hisinvariantunder T, and

d) Tln, admits a cyclic vector.
Theorem 6.19 (Spectral theorem for bounded, selfadjoint ogrators). Let T €
Z(H) be a selfadjoint operator on a separable Hilbert space H.rTere exists a

finite measure spac@?, <7, i), a function me L*(Q;du), and a unitary operator
U :H — L?(Q;du) such that the diagram

H —T5 H

! o

L2(Q;dp) —M— L2(Q;dp)
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commutes. Here, ML?(Q;du) — L?(Q;du) is the multiplication operator given
by
Mf(w) =m(w)f(w) (fel?Q;du),we Q).

In other words, T is unitarily equivalent to a multiplicati@perator.

Proof. Choose a family(H;)ic; (with | C N) as in Lemma 6.18. By Lemma 6.17,
for everyi € | there exists a finite, regular Borel measyeon o(T|y,) € o(T)
and a unitary operatdf; : LZ(O'(T);dM) — Hi such that; T |4, U" = M;, whereM; :
L?(a(T);dui) — L?(a(T);du;) is the multiplication operator given byl f (w) =
wf(w). Itfollows from the proof of Lemma 6.17 (that is, from an appriate choice
of the cyclic vector) that we may assume without loss of gelitgrthat; (o(T)) <
27

SetQ :=0(T) x| =Uig 0(T) x {i}, and letu be the Borel measure d2 whose
restriction too(T) x {i} = o(T) coincides withyi. Thenp(Q) < Siq ti(o(T)) <
Yici 2" and henceu is finite. Note that

2(Q;du) = PL*(o(T);dpi)

i€l

in a canonical way, and that, via this identificatibh= ;| U; defines a unitary
operator fromL?(Q;du) onto H = @, Hi. It is now an exercise to show that
UTU* = M, whereML?(Q;du) — L?(Q;du) is the multiplication operator given
by

MTf(w,i) = wf(w,i).

The measurable functional calculus

In the following, given a Borel measuralifeC R, we define the space
B(K):={f:K— C: f is bounded and Borel measuraple

Equipped with the normi - ||, this space is &*-algebra for the natural (pointwise)
scalar multiplication, addition and multiplication. Ciga if K is compactB(K)
containgC(K) as a closed subspace.

Theorem 6.20 (Spectral theorem - the measurable functionatalculus). Let
T € Z(H) be a selfadjoint operator on a separable Hilbert space H. tret
measure spacéQ, .7, i), the unitary operator U H — L?(Q;du), the function
me L®(Q;du) and the multiplication operator Mt .2 (L%(Q;du)) be as in the
Spectral Theorem (Theorem 6.19). Then the operator

@ :B(K) = Z(H),
fi @(f):=U*f(M)U
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where {M) € .Z(L?(Q;du)) is the multiplication operator given by
f(M)g(w) = f(M(w))g(w) (g€ L?(Q;dp), we Q),
is a C'-algebra homomorphism which extends the continuous fomattcalculus®
from Theorem 6.13, and which has the properties:
M =1,
(i) @(f)>0whenever £> 0, and
(i) if (fn) is @ bounded sequence ir{H) which convergegi-almost everywhere
to a function fe B(K), then, for every x H,

lim D (fn)x= ®(f)x.

Proof. In the special cast = M, that is, whe already is a multiplication operator
(andU = U* =1), the properties ofp are easy to verify, even property (i), which
relies only on the Lebesgue’s dominated convergence thedree case of general
T follows then easily from this special case.

Spectral measures and spectral decomposition

6.3 Spectral theorem for unbounded selfadjoint operators

In the preceding two sections, we have actually proved niae just solvability of
an elliptic and a hyperbolic partial differential equatidie have proved that the
Dirichlet-Laplace operator is selfadjoint, that it has angact resolvent, and that
therefore it is diagonalisable. In this last section, weedss the spectral theorem
for unbounded selfadjoint operators with compact resdlven

Let H be a complex Hilbert space, and &t H O domA — H be a densely
defined (that is, the domain dofis dense irH) and linear operator. We define

domA* :={xeH:3yecHVze domA: (AZzX)n = (Z,Y)n },
A*X:=y.

The operatoi(A*,domA*) is called the(Hilbert space) adjoint of A. For every
x € domA, y € domA* one has

(AXY) = (X, A"Y).

Remark 6.21.The adjointA* is well-defined in the sense that the elemgsatH is
uniquely determined (use that dénis dense irH).
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Lemma 6.22.Let A: domA — H be a densely defined, linear operator. Then: A
domA* — H is closed.

Proof. Let (xn) € domA* be convergent to somec H and such thatA*x,) con-
verges toy € H. Then, for every € domA,

(zy) = lim (2 A"x)
= rlmo<AZ’ Xn)
= (AZX).
By definition of A* this impliesx € domA* andA*x =y. Hence A* is closed.

Let H be a complex Hilbert space, and &t H O domA — H be a densely
defined, linear operator. We say thais symmetric if for everyx, y € domA,

(AXY) = (X, AY).
We say thaf is selfadjoint if A= A*.

Remark 6.23.Saying thatA is selfadjoint, that is, theh = A*, means that do =
domA* and A= A*. By Lemma 6.22, every selfadjoint operator is necessarily
closed. Note, however, that a symmetric closed linear dpefaneed in general
not be selfadjoint! However, if dos= H, then symmetric implies selfadjoint by
the Theorem of Hellinger-Toeplitz (Theorem 6.4).

Remark 6.24.1f a bounded operatdk: H — H (domA = H!) is selfadjoint in the
sense of the definition for unbounded operators (see pageth2BA is selfadjoint
in the sense of the definition for bounded operators (see pa@)e and vice versa.

Lemma 6.25.Let A: domA — H be densely defined and symmetric. Then the fol-
lowing are equivalent:
(i) Als selfadjoint.
(i) Ais closed anderlA* +i) = {0}.
(i) ran(Axi)=H.

Proof. We first remark that if A, domA) is symmetric, then kéA+i) = {0}. In
fact, letx € H be such thatA —i)x = 0. SinceA is symmetric,

X2 = (%) = (AxX) = (x, AX) = —i[}x]

Hencex = 0. Similarly, one proves kéA+i) = {0}.

(i)=(ii). Now assume thaA is selfadjoint. By Lemma 6.224* is closed, and
thereforeA (= A*) is closed. Sincé\ is symmetric, and sincé&* = A, we find
ker(A* +i) = {0} by the above argument.

(i) =(iii). Similarly as in Lemma 5.14 one proves that
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ker(A* —i) = (ran(A+i))*,

where L now means the Hilbert space orthogonal. Hence, if&eri) = {0},
then rarfA+1i) is dense irH. We prove that rafA+1) is also closed. SincA is
symmetric, we havéAx x) € R for everyx € domA. Hence, for everx € domA,

I(A+)XI] = [IAX|? + [[]% + 2 Re(Ax, ix)
= AXIZ X2 = I3

Let (xn) € domA be such that lim,«(A+i)x, =y € H exists. By the preceding
inequality, this implies thatx,) is a Cauchy sequencelih Hencex:=Ilimn_,c Xn €
H exists. Sincé\+i is closed, we obtair € domA and(A+i)x=y. We have shown
that rarfA+1) is closed. Similarly, one shows that {&@n-i) is closed.

(iii) =(i). Since A is symmetric, dordA C domA* and Ax = A*x for every
x € domA. It remains to show that doAr C domA. Let y € domA*. Since
ran(A+i) = H, there existx € domA such thaf{A* +i)y = (A+i)x. By the inclu-
sion(A,domA) C (A*,domA*), (A" +i)y = (A" +i)x. Since rafA—i) = H implies
ker(A* +i) = {0} (compare again with Lemma 5.14), this implies: y € domA.

Exercise 6.26 The Dirichlet-Laplace operator A defined({6.9)is selfadjoint.

Lemma 6.27.Let A: domA — H be densely defined and closed. Then, for every
A € p(A) one has € p(A*) and

R(A,A)* = R(A,AY).
Proof. For everyx € domA and every € domA* one has

(X ROA,A)* (A — A")y) = (R, A)X, (A —A")y)
(A = ARA,AX,Y)
= (X,Y)

and

(X (A = AR, A)Y) = (A — A)x, R, A)Y)
= (R(A,A)(A = A)Xy)
= <Xay>7

so thatA — A* is invertible and?()T,A*) =R(A,A)".

Theorem 6.28 (Spectral mapping theorem)Let A: domA — H be densely de-
fined, closed. Assume thatA) is not empty. Then, for evedye p(A),

(A —o(A))t=0o((A - A\ {0}.

Proof. The proof is an exercise.
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We say that a closed, linear operaérdomA) on a Banach spacé has com-
pact resolventif p(A) is nonempty, and if there exisise p(A) such thaR(A,A)
is compact.

Lemma 6.29.Let(A,domA) be a closed, linear operator on a Banach space X such
thatp(A) # 0. Then the following are equivalent:

(i) A has compact resolvent.
(i) ForeveryA € p(A), the resolvent R, A) is compact.
(i) The embedding:j(domA, || - [ldoma) = (X, ] - [x), X+ X iS compact.

Proof. The implication (ii}=(i) is trivial, while the converse (-(ii) is a conse-
quence of the resolvent identity

R(u,A) = R(A,A) + (A — R(U, AR, A).

(i)=(iii) Assume thatA € p(A) is such thatR(A,A) is compact. Let(x,) be a
bounded sequence {domA, || - ||doma), that is, there exist§ > 0 such that

[[Xnl|x + [|A%||x < C for everyn.

SinceR(A,A) is invertible fromX onto domA, there exists a sequenég,) in X
such thatR(A,A)yn = xn. Using the equalitAR(A,A) = AR(A,A) — |, the above
estimate for the, yields

[IR(A,A)nllx + IAR(A, A)yn — ynllx < C for everyn.

This estimate yields thdyn) is necessarily bounded k. SinceR(A,A) is compact,
there exists a subsequence(gf) (which we denote for simplicity again biyn))
such that(R(A,A)yn) = (xn) converges inX. In other words, for every bounded
sequencéxn) in (domA, | - |ldoma) We can extract a subsequence which converges
in X. Hence, the embedding (domA, || - |ldoma) — (X, ]| - ||x), X — X is compact.

(iii) =(i) Choose any\ € p(A). Then the operatoj : (domA, || - |ldoma) = (X, ]| -

IIx), x— Ax— Axis continuous (by definition of the graph norm) and invesibl
(by the choice oft). By the bounded inverse theoreR(A,A) is a bounded linear
operator from(X, || - [|x) onto (domA, || - ||dgoma). Composing this operator with

we obtain thaR(A,A) is a compact operator ox.

Theorem 6.30 (Spectral theorem for unbounded selfadjoint perators with
compact resolvent).Let A: domA — H be densely defined, selfadjoint, having
compact resolvent. Then there exists an orthonormal lagjs_ H and a sequence
(An) € R such thalimp_,e |An| = oo,

e, € domA and Ag = A&, for every n

Moreover,a(A) = ap(A) = {An: n}.

Proof. LetA € p(A) be such thaR(A,A) € 2 (H). By Theorem 5.305(R(A,A)) is
countable. Hence, by Theorem 6.88A) is countable. In particular, there exigts
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p(A)NR. By Lemma 6.29 (that is, by the resolvent identitiRjut,A) is compact,
too. Moreover, sinc@l € R, for everyx,y € H,

(R, A%, Y) = (R(H,A)X, (1 — A)R(U, A)Y)
= (% R(u,A)y)
so thatR(u,A) is selfadjoint. By the spectral theorem for selfadjoint @@t op-

erators, there exists an orthonormal bdsig of H and a sequendgi,) C R\ {0}
such that lim_,« i, = 0 and such that

)

Unén = R(u,A)e, for everyn.

This equation implies on the one hand teat domA and on the other hand, when
we multiply by — A,
Anén = Ag, for everyn,

with Ap = — “—ln Clearly, limh«|An| = 0, and by the spectral mapping theorem
(Theorem 6.28)g(A) = 0p(A) = {An : n}. The claim is proved.

6.4 Hilbert-Schmidt operators and trace class operators

6.5 * Elliptic partial differential equations
Let Q C RN be open and boundedl,c C, and consider the elliptic partial differen-
tial equation

Au—Au="finQ,
(6.8)

u=20 inodQ,

whereA stands for the Laplace operator ahd L?(Q).
Recall from Chapter 2 that a functience H}(Q) is aweak solution of (6.8) if
for every¢ € H}(Q) one has

/\/ u6+/ DuD¢:/ té.
Q Q Q
LetH := L?(Q) and define

domA:= {ue H3(Q) : 3f e L2(Q)V¢ € HE(Q): (6.9)

/QDUD_¢:—/Qf4T}

Au:

I
-



6.5 * Elliptic partial differential equations 127

so thatA : domA — L%(Q) is a linear operator ob?(Q). By definition,u € domA
and —Au = f if and only if u is a weak solution of (6.8) foh = 0. Moreover, a
functionu € H}(Q) is a weak solution of (6.8) if and only if

uedomAandAu—Au= f. (6.10)

In this sense, we may say thAtis the realization of the Laplace operator with
Dirichlet boundary conditions. The problem (6.10) i&iactional analytiaeformu-
lation of (6.8). Instead of solving a partial differentigleation we now have to solve
an algebraic equation. Clearly, the operatas linear.

Theorem 6.31.There exists an orthonormal bagis,) of L>(Q) and a sequence
(An) C R_ such thalimp_, An = —o0 and for every re N

e, € domA andAne, — Ag, = 0.
Moreover,a(A) = 0p(A) = {An:ne N},

Remark 6.32.Theorem 6.31 gives also a description of theectrumof the
Dirichlet-Laplace operatorA. Every spectral value is an eigenvalue. Every
eigenspace is finite dimensional and there exists an orthwaidasis consisting
only of eigenvectors. For evely¢ a(A) and everyf € L?(Q) there exists a unique
weak solutioru € H3 (Q) of (6.8).

Theorem 6.31 also implies that the Dirichlet-Laplace ofmeria unitarily equiv-
alent to a multiplication operator on &hspace, that is, the Dirichlet-Laplace oper-
ator isdiagonalizable

In order to prove Theorem 6.31, we need the following theosdrich will not be
proved here. We only remark that in the case wlea R is a bounded interval we
have given a proof in Example 5.21. For a proof for gen&aéee [Brézis (1992)].

Theorem 6.33 (Rellich-Kondrachov)LetQ c RN be open and bounded. Then the
embedding
H3(Q) = L2(Q), um~u,

is compact.

Proof (of Theorem 6.31).etu, ve domA. Then,

(Au,v) 2 = /Auv = /DuDv
—/ OvOu /Avu
Q
=AW 2 = (UAv).

This equality means thatis symmetric
By Theorem 8.23 of Chapter 2, for evefyc L?(Q) there exists a unique weak
solutionu € H}(Q) of (6.8) with A = 1. This means that— A : domA — H is
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bijective. Letd := (I —A)~%: H — domA C H be the inverse. For every v € H,
u=u; —Au, V= Vi — Avy, by the symmetry of,

(Ju,v) = (ug,v1 — Avp) = (U1 — Aug,va) = (U,v1) = (U, JV).

Hence,J is symmetric. By the Theorem of Hellinger-Toeplitz (Theoré.4),J :
H — H is bounded, and thus also selfadjoint. Sidde also a linear operator from
H into H}(Q), and sincel is closed when considered as such an operator, we obtain
in fact that) : H — Hol(Q) is bounded by the closed graph theorem. Since the
embeddingH}(Q) — L2(Q) is compact by the Rellich-Kondrachov theorem, we
obtain thatl € JZ (H).

By the spectral theorem for selfadjoint compact operatinesie exists an or-
thonormal basi¢en) of H = L?(Q) and a sequendgiy) C R such that ling e tin =
0 and

Unen = Je, for everyn € N.

Since rad = domA, we obtain also that, € domA for everyn € N. Multiplying
the above equation Hy— A, we obtain

Anén — Ag, = 0 for everyn € N,

with Ap := “’L—;l € R. Since, by Theorem 8.23 of ChapterR;- Ais invertible for
everyA > 0, we obtainA, € R_. Clearly, the sequencg\,) is unbounded since
Un — 0.

Now let A ¢ {An:ne N}, and letf € L?(Q). If A =1 (or evenA > 0), then
we have seen above that the operator A : domA — H is bijective. So we can
assume thak # 1. Thenﬁ € p(J) and we can define:= R(l,A)R(ﬁ,J)A—El.
Clearly, u € domA, and an easy calculation shows that— Au= f. Moreover,
every solution ol u— Au= f is of the form above, and thus— A is bijective.

The claim is proved.
Corollary 6.34. The operator A is closed and
domA = {ue L%(Q): (An(u,en)) € /3}.

Proof. If an operatorA : X O domA — X on a Banach spaceé has nonempty re-
solvent set, ther is necessarily closed. In fadgtA — A)~* is bounded for some
A € p(A) # 0; in particular(A — A)~tis closed, and thus — Aiis closed.

Note that the Dirichlet-Laplace operatddefined above has nonempty resolvent
set by Theorem 6.31, and thAss closed.

The remaining claim follows easily from the fact that, by dhem 6.31A is
unitarily equivalent to the (unbounded) multiplicationevator

domM := {(x,) €12 : (Anxn) € £},
M(%n) := (AnXn),

where the unitary operator is given by
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U:L%(Q) — 2,
U ((u,en)),

that is,A= U ~1MU.

6.6 * The heat equation

Let Q c RN be open and bounded, and considerithat equation

W—Au=0 IinR.xQ,
u=0 inR; x0Q, (6.11)
u(0,x) = up(x) in Q,

whereA denotes the Laplace operator, ands L2(Q).

We call a functioru € C(R,;L?(Q)) amild solution of (6.11) ifu(0) = up and
if for every ¢ € domA the functiont — (u, ¢), 2 is continuously differentiable and
if

d
a<u7 ¢>L2 = <U7A¢>L2'

Here, A is the realization of the Dirichlet-Laplace operator lbH{Q) defined in
(6.9).

Theorem 6.35.For every € L?(Q) there exists a unique mild solution u (&.11)

Proof. Let A be the realization of the Dirichlet-Laplace operator asraefiin the

previous section. By Theorem 6.31, there exists an orttmabbasis(e,) and an

unbounded sequenc¢a,) C R_ such that for every € N one has\ne, = Ae,.
Assume thau is a mild solution of the heat equation (6.11). Then, for gver

neN, q
gt U(®),en) 2 = (u(t), Aen) 2 = An(u(t), €n), 2.
This implies

(u(t),en) 2 = € (Ug,en) 2, t>0.

Hence, sincée,) is an orthonormal basis,

u(t) = Z\[e’\“%uo,enhzen, t>0. (6.12)

This proves uniqueness of mild solutions.

On the other hand, lat € L?(Q) and defineu(t) as in (6.12). SincéeM!t| < 1
for everyt > 0 and since — et is continuousu(t) € L?(Q) for everyt > 0, and
the functiont — u(t), R, — L?(Q) is continuous. Moreover(0) = ug.
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Let ¢ € domA. By Corollary 6.34,(An(,€n)) € £2. As a consequence,—
(u, ¢), 2 is continuously differentiable and, by the symmetry2of

G0z = 3 (e ()1

= S € (Uo.en)2 (A, B),2

neN

=3 et (U, en) 2 (en, Ad), 2

neN

:<U,A¢>L27 tZO
This proves existence of mild solutions.

Remark 6.36.The concrete form (6.12) of the solutiarof the heat equation (6.11)
allows us to prove that in fact

ueC((0,0);L%(Q)),
or even
u € C”((0,);domAX) for everyk > 1,

where donAK is the domain o€ equipped with the graph norm. The heat equation
thus has a regularizing effect in space and time; eveglifelongs only’ toL?(Q),
thenu(t) belongs already to doAk for everyk > 1. Moreover, the solution i€
with values in dor#K for everyk > 1.

6.7 * The wave equation

Let Q RN be open and bounded, and consider the wave equation

w—Au=0 inRy xQ,
u=0 iNnR; x0Q,
u(0,x) = up(x) in Q,

U (0,%) = uz(x) in 2,

(6.13)

whereA denotes the Laplace operatag,c H}(Q), andu; € L?(Q).

We call a functioru € C(R.; H3(2)) NCY(R+;L?(Q)) amild solutionof (6.13)
if u(0) = Uo, W (0) = uy, if for every ¢ € H}(Q) the functiont — (u, ¢), 2 is twice
continuously differentiable and if

2 . L
). 9).z + [ ouwds —o.
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Theorem 6.37.For every @ € H}(Q) and every w € L2(Q) there exists a unique
mild solution of(6.13)

For the proof of Theorem 6.37, we need the following resulicivhve shall not
prove here; compare with Corollary 6.34.

Lemma 6.38.Let A be the Dirichlet-Laplace operator as defined®9), and let
(en) and(Ap) be as in Theorem 6.31. Then

HI(Q) = {ueL2(Q): (vV-Anlu,&)) € £2}.

Proof (Proof of Theorem 6.37).et A be the realization of the Dirichlet-Laplace
operator as defined in Section 6.5. By Theorem 6.31, thesgseain orthonormal
basis(e,) and an unbounded sequeridg) C R_ such that for everm € N one has
An€n = Ag6,.
Assume that is a mild solution of the wave equation (6.13). Then, for gver

neN,

d2

gz (U(t), en) 2 = (u(t), Aen) 2 = An(u(t), €n) 2.

Settingan, := v —Ap, this implies
1
(u(t),en), 2 = cogant) (Up,en) 2 + o sin(apt) (U1, €en) 2, t>0.
n
Hence, sincée,) is an orthonormal basis,

u(t) = > cos(ant)(uo,en)2en+ ) aisin(ant)<u1,en>Lz e, t>0. (6.14)

neN neN “n

This proves unigueness of mild solutions.

On the other hand, lelp € H}(Q) andu; € L2(Q), and defina(t) as in (6.14).
Since|coqant)| < 1 and|sin(ant)| < 1 for everyt > 0 and since cos and sin are
continuous, by Lemma 6.38(t) € H3(Q) for everyt > 0, and the functiob— u(t),
R, — H}(Q) is continuous. Moreovet(0) = up. By the same reasortsy u(t),
R, — L?(Q) is continuously differentiable ang(0) = u;.

Let$ € H}(Q). By Lemma 6.38(an(¢,en)) € ¢2. As a consequence (u, ¢)
is twice continuously differentiable and, by the symmetiryAp
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2
O 0.9) = 3 Ancosant) (uo,en)z {en, )z~

neN

— ENansin(ant) (U1,€n) 2 (en, @) 2

S Z cogant) (Up,en) 2 (Aen, @) 2—

neN

_ Z 1 Sin(ant) (U1, €n) 2 (Aen, @) 2

neN On

= Z\[cos(ant)<uo,en>|_z /QDenD‘P*
— ngwain sin(ant) (Ug, en) 2 /Q Uenll¢

=—/ Oudg, t>0.
Ja
This proves existence of mild solutions.

Remark 6.39.The concrete form (6.14) of the solutianof the wave equation
(6.13) shows that it can be uniquely extended to a solutidefined oriR. However,
for the wave equation (6.13) there is no regularizing eféector the heat equation
(6.11).

6.8 * The Schrddinger equation

Let Q c RN be open and bounded, and considerSoarodinger equation

w—iAu=0 IinR; xQ,
u=0 iNR,. x0Q, (6.15)
u(0,x) = up(x) in Q,
whereA denotes the Laplace operatos /—1 is the complex unity, andg €
L%(Q).

We call a functioru € C(R;L?(Q)) amild solution of (6.15) if u(0) = up and
if for every ¢ € domA the functiont — (u, ¢), 2 is continuously differentiable and

if
%(u,mLz =i(u,Ad) 2, t>0.

Here, A is the realization of the Dirichlet-Laplace operator lbH{Q) defined in
(6.9).

Theorem 6.40.For every € L?(Q) there exists a unique mild solution u (&.15)
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Proof. Let A be the realization of the Dirichlet-Laplace operator asrdefiin (6.9).
By Theorem 6.31, there exists an orthonormal b&si$ and an unbounded se-
quenceAn) C R_ such that for everp € N one has\ne, = Ae.

Assume thati is a mild solution of the Schrodinger equation (6.15). THen
everyne N,

9 0(t), ez = 1 (U(t). Az = iAn (U(t) €)y 2.

dt
This implies _
(u(t),en) 2 = €Mt (ug, en)2, t>0.

Hence, sincé€e,) is an orthonormal basis,

ut) =y &"(uo,en) 20, t>0. (6.16)

neN

This proves unigueness of mild solutions.

On the other hand, laf € L?(Q) and defineu(t) as in (6.16). Sincég™nt| < 1
for everyt > 0 and since — €’ is continuousu(t) € L?(Q) for everyt > 0, and
the functiont — u(t), R, — L?(Q) is continuous. Moreoven(0) = up.

Let ¢ € domA. By Corollary 6.34,(An(,€n)) € £2. As a consequence,—
(u, ¢), 2 is continuously differentiable and, by the symmetry2of

d oy
a <U, ¢>L2 = %I/\nel)\n%uo’ er1>L2 <env ¢>L2

ne

—1'S @ (U, ez (e, B

neN
=i & (U, en)y2 (e, Ad) 2
neN

:i<U,A¢>L2, tZO
This proves existence of mild solutions.

Remark 6.41.The concrete form (6.16) of the solutiorof the Schrddinger equa-
tion (6.15) shows that it can be uniquely extended to a smutidefined onR.
However, similarly as for the wave equation (6.13), theradsegularizing effect
for the Schrodinger equation (6.15).






Chapter 7
Calculus on Banach spaces

7.1 Differentiable functions between Banach spaces

Let X, Y be two Banach spaces, and [#tC X be open. A functionf : U — Y is
differentiable atx € U if there exists a bounded linear operafoe .#(X,Y) such
that
im f(x+h)—f(x)—Th
Ihj|—0 l

=0. (7.1)

We say thatf is differentiable if it is differentiable at every poink e U. If f is
differentiable at a point € U, thenT € £(X,Y) is uniquely determined. We write
Df(x) := f/(x) := T and callDf (x) = f/(x) thederivative of f atx.

Lemma 7.1.1f a function f: U — Y is differentiable at xc U, then it is continuous
at x. In particular, every differentiable function is comtious.

Proof. Let(xn) CU be convergenttg. By definition (equation (7.1)) and continuity
of /(x),

[11(x0) = FOQI1 < (%) — F(X) — /() (X = Xn) | + [ £ (X) (X = n)
— 0,

asn — oo,

Let X, Y be two Banach spaces, andletC X be open. A functiorf : U — Y is
calledcontinuously differentiable if it is differentiable and iff’ : U — Z(X,Y) is
continuous. We denote by

CHU;Y):={f:U - Y f differentiable and’ € C(U;.Z(X,Y))}

the space of all continuously differentiable functions.rigtaver, fork > 2, we de-
note by

CK(U;Y):={f :U — Y : f differentiable and’ € C<"1(U; .2 (X,Y))}

135
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the space of ak times continuously differentiable functions.

LetX; (1 <i < n)andY be Banach spaces. LgtC ®'_; X; be open. We say that
afunctionf :U — Y is ata= (&)1<i<n € U partially differentiable with respect
to thei-th coordinate if the function

fi:Uing%Y, Xin(ala"'vxiv"'aan)

is differentiable ing;. We writeg—);(a) = fl(a) € Z(X.Y).

7.2 Local inverse function theorem and implicit function theorem

Let X andY be two Banach spaces andl&C X be an open subset. The following
are two classical theorems in differential calculus.

Theorem 7.2 (Local inverse function theorem).Let f: U — Y be continuously
differentiable and € U such that f(x) : X — Y is an isomorphism, that is, bounded,
bijective and the inverse is also bounded. Then there egighbourhoods \C U

of Xand WC Y of f(X) such that f:V — W is a C diffeomorphism, that is f is
continuously differentiable, bijective and the inversé fW — V is continuously
differentiable, too.

Theorem 7.3 (Implicit function theorem). Assume that X% X; x X, for two Ba-
nach spaces X X, and let f: X DU — Y be continuously differentiable. Let
X = (X1,%2) € U be such tha’tg—xf2 (X) : X, = Y is an isomorphism. Then there exist
neighbourhoods YC X; of x; and U, C X, of Xp, U; x U, C U, and a continuously
differentiable function gU; — U, such that

{xeUgxUz: f(x)=f(X)} = {(x1,9(x1)) : X1 € U1}.
For the proof of the local inverse theorem, we need the foligdemma.

Lemma 7.4.Let f:U —Y be continuously differentiable such thatd — f(U) is

a homeomorphism, that is, continuous, bijective and withitiooous inverse. Then
f is a C! diffeomorphism if and only if for everyU the derivative f(x) : X —Y
is an isomorphism.

Proof. Assume first thaf is aC! diffeomorphism. When we differentiate the iden-
tities x = f~1(f(x)) andy = f(f~1(y)), which are true for every € U and every
y € f(U), then we find
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As a consequencé)(x) is an isomorphism for everye U.
For the converse, assume tH&ix) is an isomorphism for everye U. For every
X1, X2 € U one has, by differentiability,

f(x) = f(Xl) + f/(Xl)(Xg — Xl) +0(X2 —X1),

whereo depends o, and lim, % =0. We havex; = f~1(y;) andx; =

f~1(y») if we puty; := f(x). Hence, the above identity becomes

y2=y1+ F/(F 7y (FH(y2) — £ (ya) +o(f H(y2) — £ 71 ().

To this identity, we apply the inverse operatdf(f~*(y1)))~! and we obtain

FHy2) = £ ya) + (F(FHy) " y2—ya) — (F/(FH(va)) ~to(fH(y2) — £ H(ya)).

Since f~! is continuous, the last term on the right-hand side of thedgsality is
sublinear. Hencef 1 is differentiable and

(F1(yn) = (F(FHyn)))

From this identity (using thaf ! and f’ are continuous) we obtain thdt ! is
continuously differentiable. The claim is proved.

Proof (Proof of the local inverse function theorer@pnsider the function

g:U—=X,
x— /(X)L (x).
It suffices to show thag) : V — W is aC? diffeomorphism for appropriate neigh-

bourhood¥/ of x andW of g(x).
Consider also the function

¢:U—=X,
X+ X— g(X).
This functiong is continuously differentiable anpf (x) = | — f/(x)~*f’(x) for every

x e U. In particularg’(X) = 0. By continuity of¢’, there exists > 0 andL < 1 such
that||¢’(x)|| < L for everyx € B(x,r) C U. Hence,

[o(x1) —d(X2)|| <L|xa —X2|| for everyxy, x2 € B(X,r).
By the definition ofg, this implies

19(xa) —90)[| = [Ix1 — X2 — (¢ (x1) — ¢ (2)) | (7.2)
> |xa—xall = L{|x1 — x|
=(1-D)lxa—xll-
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We claim that for every € B(g(x), (1—L)r) there exists a unique< B(x,r) such
thatg(x) =y.

The uniqueness follows from (7.2).

In order to prove existence, l&g = x, and then define recursiveky, 1 = y+
¢ (Xn) =Y+ Xn— f/(X)71f (xn) for everyn > 0. Then

n—-1
%0 =X = | Z)xkﬂ—xkl\
K=

n—-1
< [Ixa —Xol| + kz [ (4) — ¢ (1)
=1

n-1
< 3 bl
k=

1-L"
— Iy 9|

<@A-L"r < r

)

which impliesx, € B(x,r) for everyn > 0. Similarly, for everyn > m> 0,

n—-1
0=l < 5 L¥Yly— g5l
k=m

so that the sequencr,) is a Cauchy sequence B{Xr). SinceB(X;r) is complete,
there exists lim_» Xy =: X € B(X,r). By continuity,
X=y+ o) =y+x—g(x),

or
g(x) =Y.

This proves the above claim, that gsis locally invertible. It remains to show that
g~Lis continuous (theg is a homeomorphism, and therefor€adiffeomorphism
by Lemma 7.4). Contiunity of the inverse function, howeigesg direct consequence
of (7.2) (which even implies Lipschitz continuity).

Remark 7.5. The iteration formula
Xnt1 = Y+Xn— F'()7H (xn)

used in the proof of the local inverse theorem in order to fistlation ofg(x) =
f/(X)~1f(x) = y should be compared to the discrete Newton iteration

Xn+1 =Y+ Xn— f/(Xn)ilf (Xn);
see Theorem 7.8 below.

Proof (Proof of the implicit function theoremonsider the function



7.2 Local inverse function theorem and implicit functioedhem 139
F:U— X xY,
(X1,%2) > (X1, F(x1,%2)).
ThenF is continuously differentiable and

F'(5) (b hg) = (h, SR+ 5 ().

In particular, by the assumptioR!(X) is locally invertible with inverse

of

/%) 51,32 = 0 (G5 (R) 02— 5 ().

By the local inverse theorem (Theorem 7.2), there existsghbeurhoodJ; of x;,
a neighbourhootl, of x; and a neighbourhood of (xg, f(X)) = F(x) such that
F :Uy x Uy — V is aC! diffeomorphism. The inverse is of the form

Fy1Y2) = (Y1, ha(y1,¥2)),
whereh; is a function such that(y1,hy(y1,y2)) = y2. Let
Ul = {Xl elUy: (Xl7 f()?)) GV}.

ThenU is open by continuity of the functiory — (xq, f (X)), andx; € U. We
restrictF toU; x U,, and we define

g:U1 = Xs, (7.3)
x1 - g(x1) = F 1 (xq, £(X))2,

WhereFfl(-)ZNdenotes the second componenkof(-). Theng is continuously dif-
ferentiableg(U;) C U, andg satisfies the required property of the implicit function.

Lemma 7.6 (Higher regularity of the local inverse).Let f € CX(U;Y) for some
k > 1 and assum that fU — f(U) is a C diffeomorphism. Then f is aQliffeo-
morphism, that is, 1 is k times continuously differentiable.

Proof. For everyy € f(U) we have
(F ') =)™
The proof therefore follows by induction dan

Lemma 7.7 (Higher regularity of the implicit function). If, in the implicit func-
tion theorem (Theorem 7.3), the function f is k times cowtirsly differentiable,
then the implicit function g is also k times continuouslyedéntiable.

Proof. This follows from the previous lemma (Lemma 7.6) and the dkfimof the
implicit function in the proof of the implicit function theem.
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7.3 * Newton’s method

Theorem 7.8 (Newton’s method).Let X and Y be two Banach spacesdX an
open set. Let £ CY(U;Y) and assume that there exists U such that (i) {x) =0

and (i) '(x) € Z(X,Y) is an isomorphism. Then there exists a neighbourhood
V C U of x such that for everyxe V the operator f(xp) is an isomorphism, the
sequencéx,) defined iteratively by

X1 =Xn— f'(%) "1 (%), n>0, (7.4)
remains in V andimp_so Xq = X.

Proof. By Corollary 1.35 and continuity, there exists a neighboadV C U of
x'such thatf’(x) is isomorphic for allx € V. Next, it will be useful to define the
auxiliary functiong : V — X by

d(x) :=x—f'(x)"Lf(x), xeV.
Sincef (x) = 0, we find that for everx € V
$(X) — 9 (x) =x—f'(x)H(f(x) - (X)) X
= x—X— /() H(F(X) (x=X) + r (x— X)),

so that by the continuity of/(-)~1

1891

ox x|

Hence, there exists> 0 such thaV := B(x,r) C V C U and such that for every
xeV 1

100 =X = l[#(x) = (I < 5 lIx—X].

This implies that for everyg € V one hasp(xg) € V and if we define iteratively
Xni1= ¢ (%) = §"1(x0), then

1
I =X < (5)" %0~ X — 0 asn — oo.



Chapter 8
Sobolev spaces

8.1 Test functions, convolution and regularization

Let Q C RY be anopenset. For every continuous functigne C(Q) we define the
support

suppp = {x€ Q: $(X) £ 0},
where the closure is to be understoo@fh Thus, the support s by definition always
closed inRY, but it is not necessarily a subset®@f Next we let

2(Q):=CZ(Q):={¢ €C”(Q) : suppp C Q is compac}

be the space dést functions on Q, and
LE(Q):={f:Q =K measurablef [f| < oVK C Q compac}
K

1

L .(RY) and every

the space ofocally integrable functionson Q. For everyf € L
¢ € 2(RY) we define theconvolution f x ¢ by

F2000:= [, Tx=y)p)ay
= Joa FOO(x—y) dy.

Lemma 8.1.For every fe LL (RY) and every € 2(RY) one has f ¢ € C*(RY)
and for everyl <i <d,
0 a¢
I (fagp)=fFx 22
0% ( * ¢) * X
Proof. Letg € RY be thei-th unit vector. Then

im (9 (x-+ha) ~ $(x) = 2.9

141
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uniformly in x € RY (note thatp has compact support). Hence, for eviery RY

L(F+p0ctha) — T2 9(x)

:%/Rdf(y)(¢(x+he*Y)*¢(X*Y))dy
%/Rdf(y)g—fi(xf)/) dy.

The following theorem is proved in courses on measure thalbleyomit the
proof.

Theorem 8.2 (Young’s inequality). Let f € LP(RY) and¢ € 2(RY). Then fx¢ €
LP(RY) and
[fxpllp<I[fllplela

Theorem 8.3.For everyl < p < » and every opem2 C RY the spaceZ(Q) is
dense in P(Q).

Proof. The technique of this proofégularizationandtruncatior) is important in
the theory of partial differential equations, distributioand Sobolev spaces. The
first step (regularization) is based on Lemma 8.1. The triimeatep is in this case
relatively easy.

RegularizationLet ¢ € 2(RY) be a positive function such thg$ ||; = fra ¢ =
1. One may take for example the function

{cel/(lxz) if [x <1,
X) :=

0 otherwise

(8.1)

with an appropriate constaot> 0. Then letgn(x) := n9¢ (nx), so that| ¢n||1 =
Jrd §n = 1 for everyn € N.

Let f € LP(RY). By Lemma 8.1 and Young’s inequality (Theorem 8.2), for gver
neN, fni= fx¢n € C*(RY)NLP(RY) and|| fn||p < || f||p- HeNce, for every € N
the operatol, : LP(RY) — LP(RY), f — f x ¢, is linear and bounded anjd,|| < 1.
Moreover, if f =1, for some bounded interval= (a1,b1) x --- x (ag,bq) C Q,
then

. p
=118 =[] [, fx= )@y dy— 1| ox
p
= Lol L= 5= 100)0 ) o]
JRA | JRA n
p
< [o (L1 D= 1eiemay) acro

as n — o by Lebesgue’s dominated convergence theorem. In other syord
liMpoo | Tnf — f||p = O for everyf = 1, with | as above. Since spaf : |1 C Rrd
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bounded intervdlis dense inLP(RY), we find that limy_e || Tnf — f||, = O for ev-
ery f from a dense subs#t of LP(RY). Since theT, are bounded, we conclude
from Lemma 2.48 thaf,f — f in LP(RY) for every f € LP(RY). This proves that
LPNC®(RY) is dense irLP(RY).

Truncation.Now we consider a general open $2tC RY and prove the claim.
Let¢ € 2(RY) be a positive test function such that sypg B(0,1) and fpa ¢ = 1
(one may take for example the function from (8.1)). Therplgix) := n%¢ (nx).

For everyn € N we let

1
Ky = {x€ Q : dist(x,0Q) > H}QB(O, n),

so thatk,, C Q is compact for every € N.
Now let f € LP(Q) C LP(RY) ande > 0. Let

1. (0 f(x) if x € Ky,
n(X) =
fal 0 ifxeQ\Kn.

By Lebesgue’s dominated convergence theorem (gijdé, = Q),
I = f1c| g:/ I£1P(1— 1c,)P — 0 asn — oo.
Q

In particular, there exists € N such that| f — f1k,|p < €.

For everym > 4n we definegm := (f1k,) * ¢m € LPNC® (Rd); note that we here
considerLP(Q) as a subspace &f°(R%) by extending functions in.P(Q) by 0
outsideQ. However, sincem, = 0 outsideKy,, we find that actuallygm € 2(Q).
By the first step (regularisation), there exists 4n so large thafjgm— f1k,||p < €.
For suchmwe have|| f — gm||p < 2¢, and the claim is proved.

Lemma 8.4.Let f € LL (Q) be such that

loc

/Qf¢:0 for everyg € 2(Q).

Then f=0.

Proof. We first assume that € L1(Q) is real and tha? has finite measure. By
Theorem 8.3, for everg > 0 there existg € 2(Q) such that|f —g||y < €. By
assumption, this implies

Laol=1[ (1-ggl <elgl. Vo ().
Let Ky :={xe Q:9(x) > e} andKy := {x € Q : g(x) < —€}. Sinceg is a test
function, the set&, K, are compact. Since they are disjoint and do not touch the

boundary ofQ,

inf{|x—yl|,|1x—12,ly—27:xeKy,yeKy,zec 9Q} =:5>0.
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LetK? := {x € Q :dist(x,Ki) < 6/4} (i = 1, 2). TherK? andK¢ are two compact
disjoint subsets of2. Let

1 ifxeK?,
h(x):=¢ —1if xe K9,
0 else,

choose a positive test functiop ¢ 2(RY) such thatzs ¢ = 1 and supg C
B(0,6/8), and lety :=hx¢. Theny € 2(Q), -1 < ¢ <1, ¢ =1onkK; and
Y = —1 onkKy. LetK := K; UK5. Then

[lol=[ow<e+ [ lowi<e+[ o

JK JK Jo\k Jo\k
Lioi=[lal+ [ lol<er2[ lol<en+2il,
Q K Q\K Q\K

which implies

Hence,

[it1= [1t=g+ [ lol <26+ Q).
JQ JQ Q

Sincee > 0 was arbitrary, we find that = 0.

The general case can be obtained from the particular dasé.t and|Q| < )
by considering first real and imaginary partfofeparately, and then by considering
f1g for all closed (compact) balB C Q.

8.2 Sobolev spaces in one dimension

Recall the fundamental rule of partial integrationf jig € C!([a, b]) on some com-
pact intervala,bl, then

/fg—f /fg

In particular, for everyf € C1([a,b]) and everyp € Z(a,b)

b b
KAfW:—Af@, (8.2)
since¢(a) = ¢ (b) =0.

Let—o <a<b<owand 1< p < . We define

WP(a,b) = {uc LP(a,b) : 3g € LP(a,b)Ve € Z(a,b): / / g0},
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The spac&VP(a,b) is called (first)Sobolev space If p = 2, then we also write
H(a,b) ;== WY2(a,b).

By Lemma 8.4, the functiog € LP(a,b) is uniquely determined if it exists. In
the following, we will writeu’ := g, in accordance with (8.2). We equigP(a, b)
with the norm

ullwe = llullp+ [U[lp,

and if p= 2, then we define the inner product
b b
(U, V)1 ::/ uv+ / uv,
a Ja

which actually yields the nornjul|y: = (||ull3+ ||u’||§)% (which is equivalent to
- llwe2)-

Lemma 8.5.The Sobolev spaces’®(a, b) are Banach spaces, which are separa-
ble if p+# . The space M(a, b) is a separable Hilbert space.

Proof. The fact that th&V1P are Banach spaces, or tht is a Hilbert space, is an
exercise. Recall thatP(a,b) is separable (Remark 2.37). Hence, the product space
LP(a,b) x LP(a,b) is separable, and also every subspace of this product space i
separable. Now consider the linear mapping

T:WhP(a,b) — LP(a,b) x LP(a,b), u~— (u,u),

which is bounded and even isometric. Hend&;P is isometrically isomomorphic
to a subspace dfP x LP which is separable. Hent&' P is separable.

Lemma 8.6.Let uc W'P(a,b) be such that = 0. Then u is constant.

Proof. Choosey € Z(a,b) such thatf,ftp = 1. Then, for everyp € Z(a,b), the
function¢ — (f;’ ®)y is the derivative of a test function sin¢§(¢ — (f;’ ¢)Yp)=0.

Hence, by definition, A )
o= [‘ue—([ ow.

or, withc= f;’ uy = const,

/b(u—c)qb —0 Vé e 2(ab).

Ja

By Lemma 8.4 = c almost everywhere.

Lemma 8.7.Let—w <a<b<wandletp € [a,b]. Let ge LP(a,b) and define

u(t) == /ttg(s) ds, telab.

0

Then uc W1P(a,b) and U = g.
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Proof. Let ¢ € Z(a,b). Then, by Fubini’'s theorem,
b b ot
Jue= | [ o(s)asg't) o
to ot b t
= [aeaspmdt [ [ o) dspt) o
to S b (b
== [ o0 aae o+ [ [T¢'0) dg(s)ds
1o b °
= [ 99009 ds— [ p(sia(s)as

=—./a;bg¢-

Theorem 8.8.Let uc W-P(a,b) (bounded or unbounded interval). Then there ex-
ists (i € C((a,b)) which is continuous up to the boundary(afb), which coincides
with u almost everywhere and such that for everys(a,b)

Proof. Fix to € (a,b) and definev(t) := [ U/(s) ds(t € (a,b)). Clearly, the function
vis continuous. By Lemma 8.%,€ W1-P(c,d) for every bounded intervdk, d) C
(a,b), andv = u'. By Lemma 8.6u— v = C for some constar@ which clearly does
not depend on the choice of the interyald). This proves thati coincides almost
everywhere with the continuous function="v+C. By Lemma 8.7,

Remark 8.9.By Theorem 8.8, we will identify every functiome W*-P(a,b) with
its continuous representant, and we say that every funtidf-P(a, b) is continu-
ous.

Lemma 8.10 (Extension lemma)Let uc W1P(a,b). Then there exis&c W P(R)
such thati = u on(a,b).

Proof. Assume first thaa andb are finite and define
ut) iftelab,
u(a iftela—1,a),
—u(b) if t € (b,b+1],

0 else
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Theng € LP(R). Let ((t) := [*, g(s) ds, so thatu™= u on (a,b). By Lemma 8.7,
i € WLP(c,d) for every bounded intervdk,d) € R. However,u= 0 outside(a—
1,b+ 1) which implies thaue W1P(R).

The case oh= —c orb = w is treated similarly.
Lemma 8.11.For everyl < p < o, the spaceZ(R) is dense in WP(R).

Proof. Letu € WLP(R).
RegularizationChoose a positive test functigne 2(R) such thatf ¢ =1 and
put §n(x) = n@ (nx). Thenu, := ux* ¢ € C*NLP(R), uy, = U x ¢ € LP(R) and

lim ||u—un||p =0 and
n—oo

lim [0~ upflp =0,

S0 that limy_ ||U— Un[\wsp = O. This proves thatvP(R) NC*(R) is dense in
WLP(R),

Truncation:Choose a sequen¢gh) € Z(R) such that O< yn < 1, gy =1 on
[—n,n] and ||| < Cforalln€ N. Lete > 0. Chooser € C* NWLP(R) such that
[lu—v|lwp < € (regularization step). For everye N, one hasi, € 2(R) and it
is easy to check that for atllarge enoughl||v — vi||w1.p < €. The claim is proved.

Corollary 8.12. For every uc W'P(a, b) (bounded or unbounded interval < p <
) and everye > 0, there exists & Z(R) such that|u — V| g p)[lwie < €.

Proof. Givenu € W'P(a,b), we first choose an extension="W1-P(R) (extension
lemma 8.10) and then a test functioa Z(IR) such that|G—v||ypr) < € (Lemma
8.11). Then|U—V|\wip@ap) = [[U—Vilwep@ap < €

Corollary 8.13 (Sobolev embedding theorem).Every function u= W-P(a,b) is
continuous and bounded and there exists a constanf0&uch that

Ul <Cllullyep for every ue WhP(a,b).
Proof. If p = o, there is nothing to prove. We first prove the claim for theecas
(a,b) =R.

So let 1< p < o and letv € 2(R). ThenG(v) := |v|P~lv € CL(R) andG(v)’ =
p|v|P~1V. By Holder's inequality,

X
IGV)(X)| = p|/7m|V|pfl\/| < pIVIEHIVIlp,
s0 that by Young's inequalityap < 1aP + b

Voo = |GW)IIP < ClIV]lwrp-

SinceZ(R) is dense iW1P(R) by Lemma 8.11, the claim fdia, b) = R follows
by an approximation argument.
The casda,b) # R is an exercise.
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Theorem 8.14 (Product rule, partial integration). Let u, ve WhP(a,b) (1< p <
). Then:

(i) (Productrule). The product uv belongs to"\&(a, b) and
(uv) =u'v+uv.

(iiy (Partial integration). If—co < a < b < o0, then

b b
/ u’v:u(b)v(b)—u(a)v(a)—/ uv.

Proof. Since every function iW'P(a,b) is bounded, we find thatv, u'v+uv €
LP(a,b). Choose sequencgen), (vn) € Z(R) such that ling—,e Un|ap) = U and
liMn—00 V| (q.p) = V IN W1LP(a,b) (Corollary 8.12). By Corollary 8.13, this implies
also limh—c0 || Un| (ab) — Ullee = iMn—se0 [|Vn|(a ) — V| = O. The classical product rule
implies

(UnVn)" = UpVn + UnVj, for everyn € N,

and the classical rule of partial integration implies

/ab U/ Vi = Un(b)Vn(b) — Un(a)vn(a) — /: unV, for everyn e N.
The claim follows upon letting tend toco.
For every 1< p < o and everk > 2 we define inductively th&obolev spaces
WXP(a,b) := {ue WP(a,b) : ' e WK P(a,b)},

which are Banach spaces for the norms

ko
[Ullwip := ZOIIU“’IIp-
J:

We denoteHX(a, b) := Wk2(a, b) which is a Hilbert space for the scalar product
k

UV =S udvi 5.
"

Finally, we define
WP(ab) = (ab) W,

that is,Wg’p(a, b) is the closure of the test functions W%P(a,b), and we put
H¥(a, b) := W?(a, b).

Theorem 8.15.Let —o < a < b < . A function ue Wol’p(a, b) if and only if ue
W2LP(a,b) and ua) = u(b) = 0.
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Theorem 8.16 (Poincaé inequality). Let—o <a<b < o andl < p < ». Then
there exists a constanit > 0 such that

b b
)\/ |u|p§/ U|P for every ue WyP(a,b).
a a

Proof. Letu € W'P(a,b). Then

[wop s 7 ") o
<[ (/:|u’<y>|dy)pdx

< [o-ar [ ayox

~b-aP [ WmPay

p
dx

Between the first and the second line, we have used the assartiptu(a) = 0,
while in the following inequality we applied Holder’s ineglity.
Theorem 8.17.Let —0 < a < b < . For every fe L?(a,b) there exists a unique
function ue H(a,b) NH?(a,b) such that
u—u’=f and
(8.3)

u(a) =u(b)=0.

Proof. We first note that ifu € H}(a,b) "H?(a,b) is a solution, then, by partial
integration (Theorem 8.14), for evevy= H}(a,b)

b b
/ (uv+u’\/):(u,v)Hé:/ fu. (8.4)

By the Cauchy-Schwarz inequality, the linear functiopat H3(a,b)’ defined
by ¢(v) = f;’ fvis bounded:

19 < [T Fll2lVlI2 < I Fll2[IVIlg-
By the theorem of Riesz-Fréchet, there exists a unigueH}(a,b) such that
(8.4)holds true for al € H&(a, b). This proves uniqueness of a solution of (8.3),

and if we prove that in addition<c H?(a, b), then we prove existence, too. However,
(8.4)holds in particular for alk € 2(a,b), i.e.

./:“"/ = —/ab(u— fiv Wwe 2(ab)
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andu— f € L?(a,b) by assumption. Hence, by definitio, ¢ H(a,b), i.e.u €
H?(a,b) andu” = u— f. Using also Theorem 8.15, the claim is proved.

8.3 Sobolev spaces in several dimensions

In order to motivate Sobolev spaces in several space dimessive have to recall
the partial integration rule in this case.

Theorem 8.18 (GauR)Let Q C RY be open and bounded such ti#4® is of class
CL. Then there exists a unique Borel measaren dQ such that for every u,
Cl(Q)andevenyl <i<d

/ 7/ uvn daf/ @v
ox  Joo 0 0%

where r{x) = (ni(x))1<i<q denotes the outer normal vector at a poirg ¥ Q.
In particular, ifu € C}(Q) and¢ € 2(Q), then
(3¢v Ju
Yox T o ox
Let Q C RY be any open set and< p < c. We define
WEP(Q) :={ue LP(Q):V1<i<dIg € LP(Q)

v € 9(Q / :—_/f‘zgm.

The spacaVvP(Q) is called (first)Sobolev space If p = 2, then we also write
HY(Q) :=W1?(Q).

Let u c WLP(Q). By Lemma 8.4, the functiong are uniquely determined. We
write < ax. ‘=g and caII U the partial derivativeof u with respect tak. As in the
one-dimensional case, the following holds true.

Lemma 8.19.The Sobolev spaces™®(Q) are Banach spaces for the norms

_ d du
[[ullwep ':HquJri;”d_)q”p (1<p=<w),

and H(Q) is a Hilbert space for the inner product

d du dv
(UV)1 = <usz+ZdXI dx.>
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Proof. Exercise.

Not all properties of Sobolev spaces on intervals carry tweé3obolev spaces
on open set® C RY. For example, it imottrue that every function € WLP(Q) is
continuous (without any further restrictions prandQ)!

For every opem2 C RY, 1 < p < » and everyk > 2 we define inductively the
Sobolev spaces

Wk,p(_Q) ={u GWl,P(_Q) vi<i<d: g_u Gkal’p(Q)},

which are Banach spaces for the norms

e = o+ 5 122
wier = Ul 3 1 e -

We denoteHX(Q) := W2(Q) which is a Hilbert space for the inner product

K du dv
<U7V>Hk = <U7V>L2 +i;<0_xi, a_Xi>Hk*1'

Finally, we define
WP(Q) = 7(@) v,

that is,Wg’p(Q) is the closure of the test functions WKP(Q), and we put
HE(Q) == We%(Q).

Theorem 8.20 (Poincagé inequality). Let Q C RY be aboundeddomain, and let
1 < p < . Then there exists a constant€0 such that

/Q luP <CP /Q |CulP for every ue Wol’p(Q)-

We note that the Poincaré inequality implies that

Jul = (/pr)%

defines an equivalent norm (W@)l’p(Q) if Q C RYis bounded. Clearly,

Juil < lullyzo for everyu e WP,

by the definition of the norm ilv%P. On the other hand,
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[ullyyze < C(llulle +[|OulfLe)
< C||Ouller = ClJul],
by the Poincaré inequality.
We also state the following two theorems without proof.

Theorem 8.21 (Sobolev embedding theorem)Let Q@ C RY be an open set with
C! boundary. Letl < p < « and define

p&:{f%ﬁlgp<d
o ifd<p,
and if p=d, then g € [1,»). Then, for every p< g < p* we have
WHP(Q) C LY(Q)
with continuous embedding, that is, there exists C(p,q) > 0 such that
|uljLa < Clluflwep for every ue WHP(Q).

Theorem 8.22 (Rellich-Kondrachov). Let @ C RY be an open and bounded set
with C! boundary. Letl < p < « and define pas in the Sobolev embedding theo-
rem. Then, for every g g < « the embedding

WLP(Q) C LYQ)

is compact, that is, every bounded sequence #P{®) has a subsequence which
converges in #(Q).

8.4 * Elliptic partial differential equations

Let @ C RY be an open, bounded sédte L2(Q), and consider the elliptic partial
differential equation

u—Au=finQ,
(8.5)

u=0 indQ,

where
d 02

Au(x) := Zﬁu(x)

stands for thé.aplace operator.
If u € H}(Q)NH?(Q) is a solution of (8.5), then, by definition of the Sobolev
spaces, for everyc Z(a,b)
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{(u,v) / uv+ s ou dv
Ho — Zam ox)
. d 02
= uv—
./Q ( Z X 2"
= / (u—Au)v
Q
= / fv.
JQ

By density of the test functions iH}(Q), this equality holds actually for alt €
H&(Q). This may justify the following definition of a weak solutioA function
ue H}(Q) is called aweak solutionof (8.5) if for everyv € H}(Q)

<u,v>H&:/qu+/QDuDv:/va, (8.6)

where[u is the usual, euclidean gradientwf

Theorem 8.23.Let Q C RY be an open, bounded set. Then, for every 1f?(Q)
there exists a unique weak solutiorEuH3 (Q) of the problent(8.5).

Proof. By the Cauchy-Schwarz inequality, the linear functiopal H3 (Q)’ defined
by ¢ (v) = [, fvis bounded:

1) < IIFll20Ivllz < [ fll2[Ivi]g-

By the theorem of Riesz-Fréchet, there exists a unigaeH3(Q) such that (8.6)
holds true for alv € H}(a,b). The claim is proved.






Chapter 9
Bochner-Lebesgue and Bochner-Sobolev spaces

9.1 The Bochner integral

As beforeX denotes a Banach space. In this secti@n.«, 1) is a measure space. A
functionf : Q — X is calledstep function, if there exists a sequen¢a,) C < of
mutually disjoint measurable sets and a sequérgeC X such thatf = 5, 1a,%n.

A function f : Q — X is calledmesurable if there exists a sequenc¢é,) of step
functionsf, : Q — X such thatf, — f pointwiseu-almost everywhere.

Remark 9.1. Note that there may be a difference to the definition of meslitya

of a scalar valued functions. Measurability of a functiomése depending on the
measurgu. However, if the measure spa@, <7, ) is completen the sense that
u(A)=0andB C AimpliesB € <7, then the above definition of measurability and
the classical definition of measurability coincide. Notatthne may always consider
complete measure spaces.

Lemma 9.2.1f f : Q — X is measurable, thefpf| : Q — R is measurable. More
generally, if f: Q — X is measurable and if gX — Y is continuous, thengf :
Q —'Y is measurable.

Proof. This is an easy consequence of the definition of measusaaiiid the conti-
nuity of g. Note that in particular the norh- || : X — R is continous.

Lemma9.3.1f f : Q — X and g: Q — K are measurable, then fgQ — X is
measurable.

Similarly, if f: Q — X and g: Q — X’ are measurable, thef, f)x/ x : Q = K
is measurable.

Theorem 9.4 (Pettis).A function f: Q — X is measurable if and only i/, f) is
measurable for every x X’ (we say that f isveakly measurab)eand if there exists
a p-null set Ne &7 such that £Q \ N) is separable.

For a proof of Pettiss theorem, see IHE & PHILLIPS
[Hille and Phillips (1957)].

155
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Corollary 9.5. If (f,) is a sequence of measurable functiéhs» X such that § —
f pointwiseu-almost everywhere, then f is measurable.

Proof. We assume that this corollary is known in the scalar caseyhenX =K.

By Pettis’s theorem, for afi there exists @& null setN, € ./ such thatf,(Q \ N,)
is separable. Moreover there existg aull setNg € Q such thatfy(t) — f(t) for
allt € Q\ Np. LetN :=J,~oNn; as a countable union @f null sets,N is ap null
set.

Then f (restricted toQ \ N) is the pointwise limit everywhere of the sequence
(fn). In particularf is weakly measurable. Moreovéi,Q \ N) is separable since

f(@\N)c Uf(Q\N),

and sincef,(Q \ N) is separable. The claim follows from Pettis’ theorem.
A measurable functiofi : Q — X is calledintegrable if [, || f| du < oo.

Lemma 9.6.For every integrable step function: 12 — X, f = 5, 1a,% the series
3 nX%nHU(An) converges absolutely and it is independent of the reprasientof f.

Proof. Let f = ¥,,1a,X be an integrable step function. The séts) C o are
mutually disjoint andx,) C X. Then

Z|\Xn||H(An):/Q||fHdu<oo.

Definition 9.7 (Bochner integral for integrable step functons).Let f : Q — X
be an integrable step functioh= 3, 1a,Xn. We define

./Q f du::ZXnu(An)-

Lemma 9.8.(a) For every integrable function fQ — X there exists a sequence
(fn) of integrable step function@ — X such that| f,|| < || f|| and f, — f pointwise
U-almost everywhere.

(b) Let f: Q — X be integrable. Letf,) be a sequence of integrable step functions
such that| fy|| < || f|| and f, — f pointwiseu-almost everywhere. Then

x:=lim [ f,du exists
n—o /o

and

I < [ 1] du
Q

Proof. (a) Letf : Q — X be integrable. Thefif|| : Q — R is integrable. Therefore
there exists a sequen(,) of integrable step functions such that@, < || f|| and
on — || f|| pointwisep-almost everywhere.
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Sincef is measurable, there exists a sequdfrigiof step functiong2 — X such
that f, — f pointwiseu-almost everywhere.

Put .
_ faon

Ifall + &

(b) For every integrable step functign Q — X one has

| [ odull= [ gl du
JQ JQ

n-

Hence, for every, m

| [t ] < [ 1fa— fl
Q Q

and by Lebesgue’s dominated convergence theorem the sexjuenf, du) is a
Cauchy sequence. When we put limn_ [o fn du then

1) < timinf [ fall = [ 117] c.
© JQ Q

Definition 9.9 (Bochner integral for integrable functions). Let f : Q — X be in-

tegrable. We define
/Qfdu::rllmfgfndu,

where(fy) is a sequence of step functio@s— X such that| fy|| < || f|| andf, — f
pointwiseu-almost everywhere.

Remark 9.10.The definition of the Bochner integral for integrable funas is in-
dependent of the choice of the sequefig of step functions, by Lemma 9.8.

Remark 9.11.We will also use the follwing notation for the Bochner intabr

/Q f oder./(; Ft) du(t),

and if Q = (a,b) is an interval inR:

./:f oder./ﬁ;b f(t) du(t).

If u = A isthe Lebesgue measure then we also write

/abf(t)dt.

Lemma9.12.Let f: Q — X be integrable and E Z(X,Y). ThenTf: Q - Y is

integrable and _
/deu:T/ f dy.
Q Jo
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Proof. Exercise.

Theorem 9.13 (Lebesgue, dominated convergencégt ( f,) be a sequence of in-
tegrable functions. Suppose there exists an integrabletifmg: Q — R and an
(integrable) measurable function: Q2 — X such thaf| f,|| < g and f, — f point-
wise -almost everywhere. Then

/Qfdu:rmfgfndu.

Proof. Exercise.

9.2 Bochner-Lebesgue spaces

Definition 9.14 (£P spaces).For every 1< p < o we define
LPQ;X)={f: QX measurable/ || f|Pdu < oo}
Q

We also define
Z7(Q;X) :={f: Q —» X measurable3C > 0 such thau({|| f|| > C}) = 0}.

Lemma 9.15.For everyl < p < « we put

flp:= / £1P dpa) M.
Ifllp:= (/_IITIIPdu)
We also put

[[flleo :=inf{C >0 p({| f|| = C}) =0}
Then|| - ||pis a seminorm oZ’P(Q;X) (1 < p < ).

Remark 9.16.A function|| - || : X — R on a real or complex vector space is called
aseminormif

(i) x=0=||x||=0,
(i) [|Ax|]|=|A]||x| for everyA € K and allx € X,
(i) [x-+yll < |Ix] + [lyll for all x, y € X.
Definition 9.17 (LP spaces).For every 1< p < o we put
Np:={f € ZP(Q;X): | f|p=0}
={f € £P(Q;X): f =0p-almost everywhere

We define the quotient space

LP(Q;X) := ZP(Q;X)/Np,
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which is the space of all equivalence classes

[(fl:i=f+Np, feLP(Q;X).
Lemma 9.18.For every[f] € LP(Q;X) (f € ZP(Q;X)) the value

Iflle = [1¥1lp

is well defined, that is, independent of the representanthé. flinction|| - ||, is a
norm on LP(Q;X). The space B(Q;X) is a Banach space when equipped with this
norm.

Remark 9.19.As in the scalar case we will in the following identifynctions fe
ZP(Q;X) with their equivalence classdg] € LP(Q;X), and we say thatP is a
function spacealthough we should be aware that it is only a space of equicale
classes of functions.

Remark 9.20.For Q = (a,b) an interval inR and foru = A the Lebesgue measure
we simply write
LP(a,b; X) := LP((a,b); X).

We can do so since the spadé%[a, b]; X) andLP((a,b); X) coincide since the end
points{a} and{b} have Lebesgue measure zero and there is no danger of canfusio

Lemma 9.21.Let Q c RY be open and bounded. Therf(;X) c LP(Q;X) for
everyl < p < oo.

Proof. Actually, for finite measure spaces, we have the more gemslakions
L®(Q;X) € LP(Q;X) C LYQ;X) c LY(Q;X)

if1<q<p<o.

Lemma 9.22.Let the measure spade&, .o/, u) be such that B(Q) is separable
for 1< p < o (e.g.Q c RY be an open set with the Lebesgue measure). Let X be
separable. ThenR(Q; X) is separable fod < p < co.

Proof. By assumption the space$(Q) andX are separable. Léh,) C LP(Q;X)
and(x,) C X be two dense sequences. Then the set

F={f:Q—=X:f=hpyXn}

is countable. It suffices to shows th#@t C LP(Q;X) is total, i.e. spar¥ is dense in
LP(Q;X). Thisis an exercise.

Theorem 9.23.Let Q be as in lemma 9.22. Ldt< p < « and assume that X is
reflexive. Then the spac@(Q; X) is reflexive and

LP(Q;X) = LP(Q;X)).

Proof. Without proof.
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9.3 Bochner-Sobolev spaces in one dimension

Similarly as in the case of scalar-valued functions, we @efire Sobolev spaces
WKP in the case of Banach space valued functions. As beforea Banach space.
Let—w <a<b<oand 1< p <. We define the (firstpobolev spacer Bochner-
Sobolev space

WLP(a,b;X) := {u e LP(a,b;X) :3ve LP(a,b;X) V¢ € Z(a,b)

/abucp'z—./a;bvm.

Again, the functiorv, if it exists, is uniquely determined. We writé := v and we
call U’ the (weak) derivative of u.

The main results about Sobolev spaces of scalar-valuetidmsaemain true for
Sobolev spaces of Banach space valued functions if integbpoperly. In particu-
lar, the Sobolev embedding theorem, a version of the pradigtthe integration by
parts formula and Poincaré’s inequality remain true. Exaersion of the Rellich-
Kondrachev theorem remains true.

Lemma 9.24.For every —o» < a < b < o and everyl < p < o one has
WLP(a,b; X) c CP((a,b); X). For every uc W-P(a,b; X) and every s, £ (a,b) one
has

u(t) —u(s) = /t u'(r) dr.

Lemma 9.25.Assume that the embedding 4 H is continuous and let &
W2(0,T;H)NL®(0,T;V). Then u is weakly continuous with values in V, that is,
for every ve V' the function t— (v,u(t))y v is continuous o0, T].

Proof. Since every function € W2(0, T;H) is continuous (and hence weakly con-
tinuous) with values itd, the claim follows from [Temam (1984), Lemma 1.4, page
263] .

Lemma 9.26.Assume that the embedding¥ H is continuous and lefu,) be a
sequence such that

up—u in W2(0,T;H) and
Un— U in L®(0,T;V).
Then there exists a subsequencéunj (which we denote again ky,)) such that
Un(t) — u(t) in V foreveryte [0, T].

Proof. Using the fact that the point evaluationtike [0, T] fromW2(0,T;H) into
H is bounded and linear, and maps weakly convergent sequariceseakly con-
vergent sequences, the assumption implies that for évefQ, T]
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un(t) = u(t) in H.
Let noww € H’ andt € [0,T]. Then one has
(W, Un(t) —u(t))vr v = (W, un(t) —u(t))pryp — 0.

Using the fact thaH’ is dense iV’ and that the sequenéan(t)) is bounded iV,
the claim follows from Lemma ??.
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