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Chapter 1
Bochner-Lebesgue and Bochner-Sobolev
spaces

1.1 The Bochner integral

Let X and Y be Banach spaces, and let (Ω,A,µ) be a measure space. A
function f :Ω→ X is called step function, if there exists a sequence (An) ⊆
A of mutually disjoint measurable sets and a sequence (xn) ⊆ X such that
f =

∑
n 1An xn. A function f : Ω→ X is called mesurable, if there exists a

sequence ( fn) of step functions fn : Ω→ X such that fn → f pointwise µ-
almost everywhere.

Remark 1.1. Note that there may be a difference to the definition of mesura-
bility of scalar valued functions. Measurability of a function is here depend-
ing on the measure µ. However, if the measure space (Ω,A,µ) is complete
in the sense that µ(A) = 0 and B ⊆A implies B ∈A, then the above definition
of measurability and the classical definition of measurability coincide. Note
that one may always consider complete measure spaces.

Lemma 1.2. If f : Ω→ X is measurable, then ‖ f ‖ : Ω→ R is measurable. More
generally, if f : Ω→ X is measurable and if g : X→ Y is continuous, then g◦ f :
Ω→ Y is measurable.

Proof. This is an easy consequence of the definition of measurability and the
continuity of g. Note that in particular the norm ‖ · ‖ : X→R is continuous.

Lemma 1.3. If f : Ω→ X and g : Ω→ K are measurable, then f g : Ω→ X is
measurable. Similarly, if f :Ω→X and g :Ω→X′ are measurable, then 〈g, f 〉X′,X :
Ω→K is measurable.

Proof. For the proof it suffices to use the definition of measurability and to
show that the (duality) product of two step functions is again a step function.
This is, however, straightforward.

Theorem 1.4 (Pettis). A function f :Ω→X is measurable if and only if 〈x′, f 〉 is
measurable for every x′ ∈ X′ (we say that f is weakly measurable) and if there

1



2 1 Bochner-Lebesgue and Bochner-Sobolev spaces

exists a µ-null set N ∈ A such that f (Ω \N) is separable (we say that f is almost
separably valued).

For the following proof of Pettis’ theorem, see Hille & Phillips
[Hille and Phillips (1957)].

Proof. Sufficiency. Assume that f is measurable. Then f is weakly measurable
by Lemma 1.2. Moreover, by definition, there exists a sequence ( fn) of test
functions and a µ-null set N ∈A such that

fn(t)→ f (t) for all t ∈Ω\N.

Hence,

f (Ω\N) ⊆
⋃

n
fn(Ω).

Since for every step function fn the range is countable, the set on the right-
hand side of this inclusion is separable, and hence f is almost separably
valued.

Necessity. Assume that f is weakly measurable and almost separably val-
ued. We first show that ‖ f ‖ is measurable. By assumption, there exists a
µ-null set and a sequence (xn) in X such that D := {xn : n ∈N} is dense in
f (Ω \N). By the Hahn-Banach theorem, there exists a sequence (x′n) in X∗

such that ‖x′n‖ = 1 and 〈x′n,xn〉 = ‖xn‖. Since f is weakly measurable, |〈x′n, f 〉|
is measurable for every n. As a consequence, supn |〈x

′
n, f 〉| is measurable. But

supn |〈x
′
n, f 〉|= ‖ f ‖ onΩ\N by the choice of the sequence (x′n) and the density

of D in the f (Ω \N). Since our measure space (Ω,A,µ) is supposed to be
complete, we obtain that ‖ f ‖ is measurable. In a similar way, one shows that
‖ f −x‖ is measurable for every x ∈ X, and in particular for x = xn.

Now fix m ∈N and define

Am1 := {‖ f −x1‖ ≤ inf
1≤k≤m

‖ f −xk‖},

Am2 := {‖ f −x2‖ ≤ inf
1≤k≤m

‖ f −xk‖} \Am1,

Am3 := {‖ f −x3‖ ≤ inf
1≤k≤m

‖ f −xk‖} \ (Am1∪Am2),

...
...

Amm := {‖ f −xm‖ ≤ inf
1≤k≤m

‖ f −xk‖} \ (
m−1⋃
k=1

Amk).

Then (Amn)1≤n≤m is a family of measurable, mutually disjoint sets such that⋃m
n=1 Amn =Ω. Define1

1 We are grateful to Anton Claußnitzer for the definition of the sets Amn and the functions
fm.
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fm :=
m∑

n=1

1Amnxn.

Then ( fm) is a sequence of step functions, (‖ fm− f ‖)m is decreasing pointwise
everywhere, and since D is dense in f (Ω\N),

lim
m→∞

‖ fm(t)− f (t)‖ = 0 for every t ∈Ω\N.

that is, fm→ f µ-almost everywhere. As a consequence, f is measurable.

Corollary 1.5. If ( fn) is a sequence of measurable functionsΩ→X such that fn→ f
pointwise µ-almost everywhere, then f is measurable.

Proof. We assume that this corollary is known in the scalar case, that is, when
X =K.

By Pettis’s theorem (Theorem 1.4), for all n there exists a µ-null set Nn ∈A

such that fn(Ω \Nn) is separable. Moreover there exists a µ-null set N0 ∈Ω
such that fn(t)→ f (t) for all t ∈Ω\N0. Let N :=

⋃
n≥0 Nn; as a countable union

of µ-null sets, N is a µ-null set.
Then f (restricted to Ω \N) is the pointwise limit everywhere of the se-

quence ( fn). In particular f is weakly measurable. Moreover, f (Ω \N) is
separable since

f (Ω\N) ⊆
⋃

n
fn(Ω\N),

and since fn(Ω\N) is separable. The claim follows from Pettis’ theorem.

A measurable function f :Ω→ X is called integrable if
∫
Ω
‖ f ‖ dµ <∞.

Lemma 1.6. For every integrable step function f :Ω→X, f =
∑

n 1Anxn the series∑
n xnµ(An) converges absolutely and its limit is independent of the representation

of f .

Proof. Let f =
∑

n 1Anxn be an integrable step function. The sets (An) ⊆A are
mutually disjoint and (xn) ⊆ X. Then∑

n
‖xn‖µ(An) =

∫
Ω
‖ f ‖ dµ <∞.

Let f :Ω→ X be an integrable step function, f =
∑

n 1An xn. We define the
Bochner integral (for integrable step functions) by∫

Ω
f dµ :=

∑
n

xnµ(An).

Lemma 1.7. (a) For every integrable function f : Ω→ X there exists a sequence
( fn) of integrable step functionsΩ→X such that ‖ fn‖ ≤ ‖ f ‖ and fn→ f pointwise
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µ-almost everywhere.
(b) Let f :Ω→ X be integrable. Let ( fn) be a sequence of integrable step functions
such that ‖ fn‖ ≤ ‖ f ‖ and fn→ f pointwise µ-almost everywhere. Then

x := lim
n→∞

∫
Ω

fn dµ exists

and
‖x‖ ≤

∫
Ω
‖ f ‖ dµ.

Proof. (a) Let f : Ω → X be integrable. Then ‖ f ‖ : Ω → R is integrable.
Therefore there exists a sequence (gn) of integrable step functions such that
0 ≤ gn ≤ ‖ f ‖ and gn→ ‖ f ‖ pointwise µ-almost everywhere.

Since f is measurable, there exists a sequence ( f̃n) of step functionsΩ→X
such that f̃n→ f pointwise µ-almost everywhere.

Put

fn :=
f̃n gn

‖ f̃n‖+ 1
n

.

(b) For every integrable step function g :Ω→ X one has∥∥∥∫
Ω

g dµ
∥∥∥ ≤ ∫

Ω
‖g‖ dµ.

Hence, for every n, m∥∥∥∫
Ω

fn− fm dµ
∥∥∥ ≤ ∫

Ω
‖ fn− fm‖ dµ,

and by Lebesgue’s dominated convergence theorem the sequence (
∫
Ω

fn dµ)
is a Cauchy sequence. When we put x = limn→∞

∫
Ω

fn dµ then

‖x‖ ≤ liminf
n→∞

∫
Ω
‖ fn‖ dµ =

∫
Ω
‖ f ‖ dµ.

Let f :Ω→ X be integrable. We define the Bochner integral∫
Ω

f dµ := lim
n→∞

∫
Ω

fn dµ,

where ( fn) is a sequence of step functions Ω→ X such that ‖ fn‖ ≤ ‖ f ‖ and
fn→ f pointwiseµ-almost everywhere. The definition of the Bochner integral
for integrable functions is independent of the choice of the sequence ( fn)
of step functions, by Lemma 1.7. Moreover, if f is a step function, then
this definition of the Bochner integral and the previous definition coincide.
Finally, by Lemma 1.7 (b),
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‖

∫
Ω

f dµ‖ ≤
∫
Ω
‖ f ‖ dµ (triangle inequality). (1.1)

Remark 1.8. We will also use the following notation for the Bochner integral:∫
Ω

f oder
∫
Ω

f (t) dµ(t),

and if Ω = (a,b) is an interval in R:∫ b

a
f oder

∫ b

a
f (t) dµ(t).

If µ = λ is the Lebesgue measure then we also write∫ b

a
f (t)dt.

Lemma 1.9. Let f : Ω→ X be integrable and T ∈ L(X,Y). Then T f : Ω→ Y is
integrable and ∫

Ω
T f dµ = T

∫
Ω

f dµ.

Proof. Exercise.

Theorem 1.10 (Lebesgue, dominated convergence). Let ( fn) be a sequence of
integrable functions. Suppose there exists an integrable function g : Ω→ R and
an (integrable) measurable function f : Ω→ X such that ‖ fn‖ ≤ g and fn → f
pointwise µ-almost everywhere. Then∫

Ω
f dµ = lim

n→∞

∫
Ω

fn dµ.

Proof. By the triangle inequality and the classical Lebesgue dominated con-
vergence theorem,

‖

∫
Ω

f dµ−
∫
Ω

fn dµ‖ ≤
∫
Ω
‖ f − fn‖ dµ→ 0 as n→∞.

1.2 Bochner-Lebesgue spaces

Definition 1.11 (Lp spaces). For every 1 ≤ p <∞we define

L
p(Ω;X) := { f :Ω→ X measurable :

∫
Ω
‖ f ‖p dµ <∞}.



6 1 Bochner-Lebesgue and Bochner-Sobolev spaces

We also define

L
∞(Ω;X) := { f :Ω→ X measurable : ∃C ≥ 0 such that µ({‖ f ‖ ≥ C}) = 0}.

Lemma 1.12. For every 1 ≤ p <∞ we put

‖ f ‖p :=
(∫

Ω
‖ f ‖p dµ

)1/p
.

We also put
‖ f ‖∞ := inf{C ≥ 0 : µ({‖ f ‖ ≥ C}) = 0}.

Then ‖ · ‖p is a seminorm on Lp(Ω;X) (1 ≤ p ≤∞).

Remark 1.13. A function ‖ · ‖ : X→ R+ on a real or complex vector space is
called a seminorm if

(i) x = 0⇒ ‖x‖ = 0,

(ii) ‖λx‖ = |λ| ‖x‖ for every λ ∈K and all x ∈ X,

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

Definition 1.14 (Lp spaces). For every 1 ≤ p ≤∞ we put

Np := { f ∈ Lp(Ω;X) : ‖ f ‖p = 0}
= { f ∈ Lp(Ω;X) : f = 0µ-almost everywhere}.

We define the quotient space

Lp(Ω;X) :=Lp(Ω;X)/Np,

which is the space of all equivalence classes

[ f ] := f + Np, f ∈ Lp(Ω;X).

Lemma 1.15. For every [ f ] ∈ Lp(Ω;X) ( f ∈ Lp(Ω;X)) the value

‖[ f ]‖p := ‖ f ‖p

is well defined, i.e. independent of the representant f . The function ‖ · ‖p is a norm
on Lp(Ω;X). The space Lp(Ω;X) is a Banach space when equipped with this norm.

Remark 1.16. As in the scalar case we will in the following identify functions
f ∈ Lp(Ω;X) with their equivalence classes [ f ] ∈ Lp(Ω;X), and we say that Lp

is a function space although we should be aware that it is only a space of
equivalence classes of functions.

Remark 1.17. For Ω = (a,b) an interval in R and for µ = λ the Lebesgue
measure we simply write
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Lp(a,b;X) := Lp((a,b);X).

We can do so since the spaces Lp([a,b];X) and Lp((a,b);X) coincide since the
end points {a} and {b} have Lebesgue measure zero and there is no danger of
confusion.

Lemma 1.18. LetΩ⊂Rd be open and bounded. Then C(Ω̄;X)⊆ Lp(Ω;X) for every
1 ≤ p ≤∞.

Proof. Actually, for finite measure spaces, we have the more general inclu-
sions

L∞(Ω;X) ⊆ Lp(Ω;X) ⊆ Lq(Ω;X) ⊆ L1(Ω;X)

if 1 ≤ q ≤ p ≤∞.

Lemma 1.19. Let the measure space (Ω,A,µ) be such that Lp(Ω) is separable for
1≤ p<∞ (e.g.Ω⊂Rd be an open set with the Lebesgue measure). Let X be separable.
Then Lp(Ω;X) is separable for 1 ≤ p <∞.

Proof. By assumption the spaces Lp(Ω) and X are separable. Let (hn) ⊆
Lp(Ω;X) and (xn) ⊆ X be two dense sequences. Then the set

F := { f :Ω→ X : f = hn xm}

is countable. It suffices to shows thatF ⊆ Lp(Ω;X) is total, i.e. spanF is dense
in Lp(Ω;X). This is an exercise.

Theorem 1.20. Let Ω be as in lemma 1.19. Let 1 < p <∞ and assume that X is
reflexive. Then the space Lp(Ω;X) is reflexive and

Lp(Ω;X)′ � Lp′ (Ω;X′).

Proof. Without proof.

1.3 The convolution

Theorem 1.21 (Young’s inequality). Let T ∈ L1(RN;L(X,Y)) and f ∈ Lp(RN;X)
(1 ≤ p ≤∞). Then for almost every x ∈RN the integral

T ∗ f (x) :=
∫
RN

T(x− y) f (y) dy

converges absolutely, and for the function T ∗ f thus defined one has

T ∗ f ∈ Lp(RN;Y) and
‖T ∗ f ‖Lp ≤ ‖T‖L1 ‖ f ‖Lp .
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Proof. The case p = ∞ is almost trivial. Actually, the strong continuity of
the shift semigroup on L1 yields continuity (and thus measurability) of T ∗ f
while the boundedness of T ∗ f and Young’s inequality are immediate from
the triangle inequality.

Assume now that p = 1. By Tonnelli’s theorem, we have∫
RN

∫
RN
‖T(x− y)‖‖ f (y)‖ dy dx

=

∫
RN

∫
RN
‖T(x− y)‖‖ f (y)‖ dx dy

= ‖T‖L1 ‖ f ‖L1 ,

and from this equality follows the claim.
Assume now 1< p<∞. From the previous case we deduce that for almost

all x ∈RN

‖T(x− ·)‖‖ f (·)‖p ∈ L1(RN),

and thus
‖T(x− ·)‖

1
p ‖ f (·)‖ ∈ Lp(RN).

On the other hand, ‖T(x− ·)‖
1
p′ ∈ Lp′ (RN) for every x ∈ RN. By Hölder’s in-

equality, for almost every x ∈RN,

‖T(x− ·)‖‖ f (·)‖ ∈ L1(RN),

and ∫
RN

(∫
RN
‖T(x− y)‖‖ f (y)‖ dy

)p

dx

≤

∫
RN

(∫
RN
‖T(x− y)‖ dy

) p
p′

∫
RN
‖T(x− y)‖‖ f (y)‖p dy dx

= ‖T‖p−1
L1

∫
RN

∫
RN
‖T(x− y)‖‖ f (y)‖p dx dy

= ‖T‖p
L1 ‖ f ‖pLp

<∞.

For every T ∈ L1(RN;L(X,Y)) and every f ∈ L1(RN;X) we call the function
T ∗ f ∈ Lp(RN;Y) the convolution of T and f . It is a fundamental tool in
harmonic analysis and the theory of partial differential equations. One first
property is the following regularizing effect of the convolution. We recall that
we adopt multi-index notation. For example, for every multi-index α ∈NN

0
we define
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|α| :=
N∑

k=1

αk,

α! :=
N∏

k=1

αk!, and

xα :=
N∏

k=1

xαk
k (x ∈ CN).

Moreover, we denote by ∂k the partial derivative operator with respect to
the k-th variable, and define the α-th partial derivative

∂α := ∂α1
1 . . .∂αN

N .

Let Ω ⊆RN be an open set. For every function f ∈ C(Ω;X) we define the
support

supp f := {x ∈Ω : f (x) , 0},

where the closure has to be taken in Ω! We then define for k ∈N0∪{∞}

Ck
c(Ω;X) := { f ∈ Ck(Ω;X) : supp f is compact},

the space of compactly supported Ck-functions. In the special case X =Kwe
define

D(Ω) := C∞c (Ω).

Elements ofD(Ω) are called test functions.

Lemma 1.22 (Regularization). For every f ∈ L1(RN;X) and every ϕ ∈ C∞c (RN)
one has f ∗ϕ ∈ C∞(RN;X) and

∂α( f ∗ϕ) = f ∗∂αϕ.

Lemma 1.23 (Strong continuity of the shift-group). For every x ∈ RN and
every 1 ≤ p ≤∞ we define the shift operator S(x) ∈ L(Lp(RN;X)) by

(S(x) f )(y) := f (x + y) ( f ∈ Lp(RN;X), y ∈RN).

Then S(x) is an isometric isomorphism and, if p <∞,

lim
x→0
‖S(x) f − f ‖Lp = 0 for every f ∈ Lp(RN;X).

Proof. The first statement about S(x) being an isometric isomorphism is easy
(with S(x)−1 = S(−x)). Next, for every simple step function f = 1Q ⊗ x with
a cube Q ⊆ RN, the second statement follows easily from Lebesgue’s dom-
inated convergence theorem. By linearity, the second statement holds for
every f in the dense subspace
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D := span {1Q⊗x : Q ⊆RN a cube, x ∈ X}.

Now fix f ∈Lp(RN;X) and let ε> 0. Then there exists g ∈D such that ‖ f −g‖Lp <
ε. Moreover, there exists δ > 0 such that ‖S(x)g− g‖Lp < ε for every x ∈ RN

with ‖x‖ < δ. Hence, for every x ∈RN with ‖x‖ < δ

‖S(x) f − f ‖Lp ≤ ‖S(x) f −S(x)g‖Lp + ‖S(x)g− g‖Lp + ‖g− f ‖Lp

≤ 2‖g− f ‖Lp + ‖S(x)g− g‖Lp

< 3ε.

If ϕ ∈ L1(RN) is such that
∫
RN ϕ = 1, then we call the sequence (ϕn)n given

by
ϕn(x) := nNϕ(nx) (x ∈RN, n ∈N)

an approximate identity or an approximate unit. The reason for this notion
follows from the following lemma.

Lemma 1.24 (Property of an approximate identity). Let f ∈ Lp(RN;X) (1 ≤
p <∞) and let (ϕn)n be an approximate identity. Then

lim
n→∞

f ∗ϕn = f in Lp(RN;X).

Proof. By Tonnelli’s theorem, the Hölder inequality, by the strong continuity
of the shift-group and by Lebesgue’s dominated convergence theorem we
have

‖ f ∗ϕn− f ‖pLp =

∫
RN

∥∥∥∥∥∫
RN

f (x− y)ϕn(y) dy− f (x)
∥∥∥∥∥p

dx

≤

∫
RN

(∫
RN
‖ f (x− y)− f (x)‖ |ϕn(y)| dy

)p

dx

≤

∫
RN

∫
RN
‖ f (x− y)− f (x)‖p |ϕn(y)| dy‖ϕn‖

p−1
L1 dx

= ‖ϕn‖
p−1
L1

∫
RN

∫
RN
‖ f (x− y)− f (x)‖ dxϕn(y) dy

= ‖ϕn‖
p−1
L1

∫
RN

∫
RN
‖ f (x−

y
n

)− f (x)‖ dxϕ(y) dy

→ 0 (n→∞).

Corollary 1.25. For every 1 ≤ p <∞ the space C∞c (RN;X) is dense in Lp(RN;X).

Proof (by regularization and truncation). Let f ∈ Lp(RN;X). In the first step, the
regularization step, we choose an approximate identity (ϕn) starting with a
test functionϕ ∈C∞c (RN). By Young’s inequality, f ∗ϕn ∈Lp(RN;X), by Lemma
1.22, f ∗ϕn ∈ C∞(RN), and by Lemma 1.24,
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lim
n→∞
‖ f ∗ϕn− f ‖Lp = 0.

In the second step, the truncation step, we choose a sequence (ψm)m of
test functions satisfying 0 ≤ ψm ≤ 1 and ψm = 1 on the ball B(0,m) (such
functions can be obtained by convolving characteristic functionsχB(0,2m) with
appropriate positive test functions, relying on Lemma 1.22). It is clear from
Lebesgue’s dominated convergence theorem, that for every g ∈Lp(RN;X) one
has

lim
m→∞

‖gψm− g‖Lp = 0.

Combining the preceding two equalities, we find a sequence (mn)n inN such
that

lim
n→∞
‖( f ∗ϕn)ψmn − f ‖Lp = 0,

and since ( f ∗ϕn)ψmn ∈ C∞c (RN;X), the claim is proved.

Corollary 1.26. Let f ∈ Lp(RN;X) be such that∫
RN

fϕ = 0 for every ϕ ∈ D(RN).

Then f = 0.

Proof. The assumption implies that

f ∗ϕ(x) =

∫
RN

f (y)ϕ(x− y) dy = 0 for every x ∈RN, ϕ ∈ D(RN),

which just means that

f ∗ϕ = 0 for every ϕ ∈ D(RN).

The claim now follows upon choosing an approximate identity (ϕn) out of a
test function ϕ and by applying Lemma 1.24.

1.4 Bochner-Sobolev spaces

Let Ω ⊆ RN be an open set, 1 ≤ p ≤ ∞ and k ∈N. We define the Bochner-
Sobolev space

Wk,p(Ω;X) := {u ∈ Lp(Ω;X) : ∀α ∈NN
0 ∃vα ∈ Lp(Ω;X)∀ϕ ∈ D(Ω)∫

Ω
f∂αϕ = (−1)|α|

∫
Ω

vαϕ}
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The functions vα in this definition of the space Wk,p(Ω;X) are uniquely deter-
mined. We write vα =: ∂αu and we call the function ∂αu the weak α-th partial
derivative of u. The space Wk,p(Ω;X) becomes a Banach space for the norm

‖u‖Wk,p :=
∑
α∈NN

0
|α|≤k

‖∂αu‖Lp .

Similarly as in the case of the Lp-spaces we write Wk,p(a,b;X) instead of
Wk,p((a,b);X). In the special case when p = 2 and X = H is a Hilbert space, we
also write

Hk(Ω;H) := Wk,2(Ω;H).

This space is a Hilbert space for the inner product

〈u,v〉Hk :=
∑
α∈NN

0
|α|≤k

〈∂αu,∂αv〉L2 .

The resulting norm ‖ · ‖Hk is equivalent to the norm ‖ · ‖Wk,2 defined above.
The main results about Sobolev spaces of scalar-valued functions remain

true for Sobolev spaces of Banach space valued functions if interpreted prop-
erly. In particular, the Sobolev embedding theorem, a version of the product
rule, the integration by parts formula and Poincaré’s inequality remain true.
Even a version of the Rellich-Kondrachev theorem remains true.

Lemma 1.27. For every−∞< a< b<∞ and every 1≤ p≤∞ one has W1,p(a,b;X)⊆
Cb((a,b);X). For every u ∈W1,p(a,b;X) and every s, t ∈ (a,b) one has

u(t)−u(s) =

∫ t

s
u′(r) dr.

Lemma 1.28. Assume that the embedding V ↪→ H is continuous and let u ∈
W1,2(0,T;H)∩L∞(0,T;V). Then u is weakly continuous with values in V, that
is, for every v ∈ V′ the function t 7→ 〈v,u(t)〉V′,V is continuous on [0,T].

Proof. Since every function u ∈W1,2(0,T;H) is continuous (and hence weakly
continuous) with values in H, the claim follows from [Temam (1984), Lemma
1.4, page 263] .

Lemma 1.29. Assume that the embedding V ↪→ H is continuous and let (un) be a
sequence such that

un ⇀ u in W1,2(0,T;H) and

un
w∗
→ u in L∞(0,T;V).

Then there exists a subsequence of (un) (which we denote again by (un)) such that
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un(t)⇀ u(t) in V for every t ∈ [0,T].

Proof. Using the fact that the point evaluation in t ∈ [0,T] from W1,2(0,T;H)
into H is bounded and linear, and maps weakly convergent sequences into
weakly convergent sequences, the assumption implies that for every t ∈ [0,T]

un(t)⇀ u(t) in H.

Let now w ∈H′ and t ∈ [0,T]. Then one has

〈w,un(t)−u(t)〉V′,V = 〈w,un(t)−u(t)〉H′,H −→ 0.

Using the fact that H′ is dense in V′ and that the sequence (un(t)) is bounded
in V, the claim follows from Lemma ??.





Chapter 2
The Fourier transform

2.1 The Fourier transform in L1

Let X be a Banach space with norm | · | := | · |X. For every f ∈ L1(RN;X) we
define the Fourier transform F f and the adjoint Fourier transform F̄ f by

F f (x) :=
∫
RN

e−ixy f (y) dy and

F̄ f (x) :=
∫
RN

eixy f (y) dy (x ∈RN).

The integrals are absolutely convergent, and we have the trivial estimates

|F f (x)|, |F̄ f (x)| ≤ ‖ f ‖L1 for every x ∈RN.

In particular, the functions F f and F̄ f are bounded.

Theorem 2.1 (Riemann-Lebesgue). For every f ∈ L1(RN;X) one has F f , F̄ f ∈
C0(RN;X).

Proof. The fact that the Fourier transform F f is continuous follows easily
from Lebesgue’s dominated convergence theorem. Next, for every x ∈ RN,
x , 0,

F f (x) =
1
2

∫
RN

(e−ixy
− e−ixy e

iπ x·x
|x|2 ) f (y) dy

=
1
2

∫
RN

eixy( f (y)− f (y +
πx
|x|2

)) dy.

Since the shift group on L1(RN;X) is strongly continuous, we thus obtain

‖F f (x)‖ ≤
1
2

∫
RN
‖ f (y)− f (y +

πx
|x|2

)‖ dy→ 0 as |x| →∞.

15
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The arguments for the adjoint Fourier transform are similar.

Corollary 2.2. The Fourier transform F and the adjoint Fourier transform are
bounded, linear operators from L1(RN;X) into C0(RN;X).

We need the following basic lemma in order to prove the inversion formula
for the Fourier transform.

Lemma 2.3 (Féjer kernel). One has, for a > 0,∫
R

sin2 ax
x2 dx = aπ.

Proof. We define

f (λ) :=
∫
∞

0
e−λx sin2 ax

x2 dx (λ ∈ (0,∞)).

Then f ∈ C∞((0,∞)) and

lim
λ→0+

f (λ) =

∫
∞

0

sin2 ax
x2 dx =

1
2

∫
R

sin2 ax
x2 dx, and

lim
λ→∞

f (λ) = 0.

A simple computation shows

f ′(λ) = −

∫
∞

0
e−λx sin2 ax

x
dx, and

f ′′(λ) =

∫
∞

0
e−λx sin2 ax dx

=

∫
∞

0
e−λx

(
eiax
− e−iax

2i

)2

dx

= −
1
4

( 1
λ−2ia

−
2
λ

+
1

λ+ 2ia

)
=

1
4

( 2
λ
−

2λ
λ2 + 4a2

)
.

As a consequence,

f ′(λ) =
1
4

log
λ2

λ2 + 4a2 .

In order to integrate this function, we make the ansatz

f (λ) =
1
4

(
λ log

λ2

λ2 + 4a2 + g(λ)
)
,



2.1 The Fourier transform in L1 17

which leads to the equation

g′(λ) = −
8a2

λ2 + 4a2 ,

that is,

g(λ) = −4aarctan
λ
2a

+ C

Together with the condition limλ→∞ f (λ) = 0 we thus find

f (λ) =
1
4

(
λ log

λ2

λ2 + 4a2 + 4a(
π
2
−arctan

λ
2a

)
)
.

This yields
lim
λ→0

f (λ) = a
π
2
,

which implies the claim.

Before stating the following theorem we define for every r ∈RN with rk ≥ 0
the set

Qr :=
N�

k=1

[−rk,rk].

Theorem 2.4 (Inversion formula for the Fourier transform I). Let f ∈
L1(RN;X). For every R > 0 we put

gR(x) :=
1

(2πR)N

∫
[0,R]N

∫
Qr

eixy
F f (y) dy dr (x ∈RN).

Then gR ∈ L1(RN;X) and
lim

R→∞
‖gR− f ‖L1 = 0.

Proof. For every R> 0 and every x ∈RN we compute, using Fubini’s theorem,
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1
(2πR)N

∫
[0,R]N

∫
Qr

eixy
F f (y) dy dr

=
1

(2πR)N

∫
[0,R]N

∫
RN

∫
Qr

eiy(x−z) dy f (z) dz dr

=
1

(πR)N

∫
RN

∫
[0,R]N

N∏
k=1

sin(rk(xk− zk))
xk− zk

dr f (z) dz

=

∫
RN

N∏
k=1

1
sin2( R

2 (xk− zk))
R
2
π(xk− zk)2 f (z) dz

=

∫
R

kR(x− z) f (z) dz

= kR ∗ f (x)

where

kR(x) :=
N∏

k=1

sin2( R
2 xk)

R
2πx2

k

(x ∈RN)

is the Féjer kernel. Note that

kR ∈ L1(RN),
kR ≥ 0,

kR(x) = RN k2(Rx) for every x ∈RN and∫
RN

kR(x) dx = 1 (Lemma 2.3)

for every R > 0. Hence, (kR)R↗∞ is an approximate identity, and the claim
follows from Young’s inequality and Lemma 1.24.

Corollary 2.5 (Inversion formula for the Fourier transform II). Let f ∈
L1(RN;X) be such that F f ∈ L1(RN;X). Then F̄ f ∈ L1(RN;X) and

f =
1

(2π)N F̄ (F f ) and

f =
1

(2π)NF (F̄ f ).

Proof. Since

F̄ f (x) =

∫
RN

eixy f (y) dy = F f (−x) for every x ∈RN,

we immediately obtain F̄ f ∈ L1(RN;X).
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Now let gR be defined as in the preceding theorem. For every R > 0 and
every x ∈RN we then have

gR(x)−
1

(2π)N F̄ (F f )(x) =

=
1

(2π)N

[
1

RN

∫
[0,R]N

∫
Qr

eixy
F f (y) dy dr−

∫
RN

eixy
F f (y) udy

]
=

1
(2π)N

1
RN

∫
[0,R]N

∫
Qc

r

eixy
F f (y) dy dr,

and hence, for every L > 0

limsup
R→∞

∣∣∣∣∣gR(x)−
1

(2π)N F̄ (F f )(x)
∣∣∣∣∣ ≤

≤
1

(2π)N

[
limsup

R→∞

∣∣∣∣∣∣ 1
RN

∫
[L,R]N

∫
Qc

r

eixy
F f (y) dy dr

∣∣∣∣∣∣
+ limsup

R→∞

∣∣∣∣∣∣ 1
RN

∫
[0,R]N\[L,R]N

∫
Qc

r

eixy
F f (y) dy dr

∣∣∣∣∣∣ ]
≤

1
(2π)N

[
limsup

R→∞

(R−L)N

RN

∫
([−L,L]N)c

|F f (y)| dy + limsup
R→∞

NLRN−1

RN ‖F f ‖L1

]
≤

1
(2π)N

∫
([−L,L]N)c

|F f (y)| dy

Since L > 0 was arbitrary, and since

lim
L→∞

∫
([−L,L]N)c

|F f (y)| dy = 0,

we thus obtain

lim
R→∞

gR(x) =
1

(2π)N F̄ (F f )(x) for every x ∈RN.

Combining this with the first inversion formula, we obtain the first identity.
The second identity is proved similarly.

Corollary 2.6. The Fourier transforms F , F̄ : L1(RN;X)→ C0(RN;X) are injec-
tive.

Remark 2.7. The Fourier transform F on L1 is not surjective onto C0.

Lemma 2.8 (Fourier transform and convolution). For every T ∈
L1(RN;L(X,Y)) and every f ∈ L1(RN;X) one has
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F (T ∗ f ) = F TF f and

F̄ (T ∗ f ) = F̄ T F̄ f .

Proof. For every x ∈RN we compute, using Fubini’s theorem,

F (T ∗ f )(x) =

∫
RN

e−ixyT ∗ f (y) dy

=

∫
RN

∫
RN

e−ixyT(y− z) f (z) dy dz

=

∫
RN

∫
RN

e−ix(y+z)T(y) dy f (z) dz

=

∫
RN

e−ixyT(y) dy
∫
RN

e−ixz f (z) dz

= F T(x)F f (x).

The second identity is proved similarly.

Lemma 2.9 (Fourier transforms of partial derivatives). For every f ∈
C∞c (RN;X), every multi-index α ∈NN

0 and every x ∈RN one has

F (∂α f )(x) = (ix)αF f (x).

Proof. For every k ∈ {1, . . . ,N}we obtain, using integration by parts,

F (∂k f )(x) =

∫
RN

e−ixy∂k f (y) dy

= −

∫
RN

(∂ke−ixy) f (y) dy

= ixk

∫
RN

e−ixy f (y) dy

= ixkF f (x).

The general formula for higher derivatives follows by induction.

Corollary 2.10 (Fourier transforms of vector-valued test functions). For ev-
ery f ∈ C∞c (RN;X) we have F f ∈ L1(RN;X).

Proof. Let p : CN
→ C be any polynomial. The preceding lemma implies

F (p(∂) f )(x) = p(ix)F f (x) for every x ∈RN.

By the Lemma of Riemann-Lebesgue, the left-hand side of this equality is
uniformly bounded in x ∈ RN. Hence, for every polynomial p : CN

→ C we
have

sup
x∈RN
|p(ix)F f (x)| <∞.
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Choosing p such that p(ix) = 1 + |x|k for some k ∈N large enough, we obtain
the claim.

2.2 The Fourier transform on L2

Theorem 2.11 (Parseval’s identity).

a) For every T ∈ L1(RN;L(X,Y)) and every f ∈ L1(RN;X) one has∫
RN
F T(x) f (x) dx =

∫
RN

T(x)F f (x) dx.

b) For every f , g ∈ L1(RN) one has∫
RN
F f (x) ¯g(x) dx =

∫
RN

f (x)F̄ g(x) dx.

c) For every f , g ∈ L1(RN) such that F f , F g ∈ L1(RN) one has∫
RN

f (x) ¯g(x) dx =
1

(2π)N

∫
RN
F f (x)F g(x) dx.

Similar identities hold if we replace everywhere F by F̄ and vice versa.

Proof. (a) We calculate, using Fubini’s theorem,∫
RN
F T(x) f (x) dx =

∫
RN

∫
RN

e−ixyT(y) dy f (x) dx

=

∫
RN

T(y)
∫
RN

e−ixy f (x) dx dy

=

∫
RN

T(y)F f (y) dy.

(b) is proved in a similar way and (c) follows from (b) by using the Inversion
Formula II (Corollary 2.5).

Theorem 2.12 (Plancherel). The Fourier transforms F , F̄ : C∞c (RN)→ L2(RN)
extend uniquely to bounded, linear operators on L2(RN). The operators 1

√
2πNF ,

1
√

2πN F̄ : L2(RN)→ L2(RN) are unitary and

(
1
√

2πN
F )∗ =

1
√

2πN
F̄ .

Proof. From Parseval’s identity (Theorem 2.11 (c)) we obtain, that for every
f , g ∈ C∞c (RN)
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〈F f ,F g〉L2 = (2π)N
〈 f , g〉L2 ,

and in particular,
‖F f ‖2L2 = (2π)N

‖ f ‖2L2 .

As a consequence, since C∞c (RN) is dense in L2(RN), F extends in a unique
way to a bounded, linear operator on L2(RN). Moreover, we see from the
above equality that 1

√
2πNF is isometric. As a consequence, this operator is

injective and has closed range. However, from the inversion formula we see
that C∞c (RN) is contained in the range. Hence, 1

√
2πNF is surjective, and thus

unitary.
The arguments for F̄ are similar.

Theorem 2.13 (Plancherel in Hilbert space). Let H be a Hilbert space. Then
the Fourier transforms F , F̄ : C∞c (RN;H)→ L2(RN;H) extend to bounded, linear
operators on L2(RN;H). The operators 1

√
2πNF , 1

√
2πN F̄ : L2(RN;H)→ L2(RN;H)

are unitary and

(
1
√

2πN
F )∗ =

1
√

2πN
F̄ .

Proof. The proof is very similar to the previous proof, once one has proved
the following variant of Parseval’s identity (Theorem 2.11 (c)) for every f ,
g ∈ L1(RN;H) such that F f , F g ∈ L1(RN;H):∫

RN
〈 f (x), g(x)〉H dx =

1
(2π)N

∫
RN
〈F f (x),F g(x)〉H dx.

Remark 2.14. Kwapien has shown the following result: if the Fourier trans-
from extends from C∞c (RN;X) to a bounded, linear operator on L2(RN;X)
(X being a general Banach space), then X is already isomorphic to a Hilbert
space, that is, there exists an inner product on X which induces an equivalent
norm. We will not prove this result here.

2.3 The Fourier transform on S

We define the space

S(RN;X) := { f ∈ C∞(RN;X) : ∀α, β ∈NN
0 :

∫
RN
‖xβ ∂α f (x)‖2 dx <∞}.

Elements ofS(RN) (that is, X =C) are called the rapidly decreasing functions
or Schwartz (test) functions. Clearly, the space of (classical) test functions
C∞c (RN) =D(RN) is a subspace of S(RN), but the function f (x) = e−x2

is an
example of a Schwartz test function which does not have compact support.
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It is an exercise to show that

S(RN;X) = { f ∈ C∞(RN;X) : ∀α, β ∈NN
0 :

∫
RN
‖xβ ∂α f (x)‖ dx <∞}

= { f ∈ C∞(RN;X) : ∀α, β ∈NN
0 : sup

x∈RN
‖xβ ∂α f (x)‖ <∞}.

The space S(RN;X) is equiped with the topology induced by the countable
family of seminorms (‖ · ‖α,β)α,β∈NN

0
, where

‖ f ‖α,β :=
(∫
RN
‖xβ ∂α f (x)‖ dx

) 1
2

.

This countable family of seminorms induces in a natural way a metric d
given by

d( f , g) :=
∑

α,β∈NN
0

cα,β
‖ f − g‖α,β

1 + ‖ f − g‖α,β
,

where the coefficients cα,β > 0 are fixed such that
∑
α,β∈NN

0
cα,β <∞. We have

fn→ f in S(RN;X) ⇔ ∀α, β ∈NN
0 : ‖ fn− f ‖α,β→ 0

⇔ d( fn, f )→ 0,

and the space S(RN;X) is complete. In other words, the countable family of
seminorms turns S(RN;X) into a Fréchet space.

From the definition of the space S(RN;X) we immediately obtain the
following lemma which is, however, worth of being stated separately.

Lemma 2.15. For every f ∈S(RN;X) and every polynomial p :CN
→C the product

p f and the (sum of) partial derivative p(∂) f belong again to S(RN;X). In other
words, the mappings

f 7→ p f and
f 7→ p(∂) f

leave the space S(RN) invariant.

Lemma 2.16. For every f ∈ S(RN;X) and every polynomial p : CN
→ C one has

F f , F̄ f ∈ C∞(RN;X), and

F (p(∂) f ) = p(i·)F f ,
F (p(−i·) f ) = p(∂)F f ,

F̄ (p(∂) f ) = p(−i·)F̄ f , and

F̄ (p(i·) f ) = p(∂)F̄ f .
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Proof. Let f ∈ S(RN;X) and k ∈ {1, . . . ,N}. Then

F (−i ·k f )(x) = −

∫
RN

e−ixyiyk f (y) dy

=

∫
RN

∂
∂xk

(e−ixy) f (y) dy

= ∂k

∫
RN

e−ixy f (y) dy

= ∂kF f (x).

Moreover, by an integration by parts,

F (∂k f )(x) =

∫
RN

e−ixy ∂
∂yk

f (y) dy

= −

∫
RN

∂
∂yk

(e−ixy) f (y) dy

= −ixk

∫
RN

e−ixy f (y) dy

= −ixkF f (x).

The first two equalities follow from these two identities and by induction.
The proofs for the adjoint Fourier transform F̄ are similar.

Theorem 2.17. For every f ∈ S(RN;X) one has F f , F̄ f ∈ S(RN;X) and the
Fourier transforms F , F̄ : S(RN;X)→S(RN;X) are linear isomorphisms.

Proof.

2.4 The Fourier transform on S′

We call

S
′(RN;X) :=L(S(RN);X)

:= {T : S(RN)→ X : T is linear and continuous}

the space of (vector-valued) tempered distributions. It is equiped with the
following “topology”: a sequence (Tn) of tempered distributions converges
in S′(RN;X) to a tempered distribution T if

lim
n→∞
〈Tn,ϕ〉 = 〈T,ϕ〉 for every ϕ ∈ S(RN).

Many classical function spaces are included in the space of tempered
distributions. For example, the weighted spaces L1(RN, 1

1+|x|k
dx;X) (k ∈N0)
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are in a natural way contained in the space of tempered distributions via the
mapping

L1(RN,
1

1 + |x|k
dx;X)→S′(RN;X),

f 7→ T f ,

where

T fϕ =

∫
RN

f (x)ϕ(x) dx (ϕ ∈ S(RN)).

Note that the integral is absolutely convergent.

Lemma 2.18. Let f , g ∈ L1(RN, 1
1+|x|k

dx;X) be such that T f = Tg. Then f = g.

Proof. By linearity, it suffices to show that T f = 0 implies f = 0. So let f ∈
L1(RN, 1

1+|x|k
dx;X) be such that T f = 0. Then∫

RN
f (x)ϕ(x) dx = 0 for every ϕ ∈ S(RN),

which implies∫
RN

f (x− y)ϕ(y) dy = 0 for every ϕ ∈ S(RN), x ∈RN.

Hence
f ∗ϕ = 0 for every ϕ ∈ S(RN).

Choosing an approximate identity (ϕn) out of a test function ϕ ∈ S(RN), we
obtain f = 0.

Note that the classical space Lp(RN;X) (1 ≤ p ≤ ∞) is a subspace of
L1(RN, 1

1+|x|k
dx;X) for some k ∈ N0 large enough. Hence, Lp functions are

tempered distributions via the above embedding.
Conversely we say that a distribution T ∈ S′(RN;X) belongs to

Lp(RN, 1
1+|x|k

dx;X) (1 ≤ p ≤ ∞, k ∈ N0) if there exists f ∈ Lp(RN, 1
1+|x|k

dx;X)
such that T = T f . By the preceding lemma, the function f , if it exists, is
uniquely determined. We simply write T ∈ Lp(RN, 1

1+|x|k
dx;X) if the tempered

distribution T belongs to this space.
For every tempered distribution T ∈ S(RN;X) and every multi-index α ∈

NN
0 we define the partial derivative ∂αT ∈ S(RN;X) by

〈∂αT,ϕ〉 := (−1)|α|〈T,∂αϕ〉 (ϕ ∈ S(RN)).

Moreover, we define the Fourier transforms F T, F̄ T ∈ S′(RN;X) by
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〈F T,ϕ〉 := 〈T,Fϕ〉 and

〈F̄ T,ϕ〉 := 〈T, F̄ϕ〉.

Finally, for every polynomial p : CN
→ Cwe define the product pT by

〈pT,ϕ〉 := 〈T,pϕ〉.

Lemma 2.19. For every f ∈ S(RN;X), every multi-index α ∈NN
0 and every poly-

nomial p : CN
→ C one has

∂αT f = T∂α f ,

F T f = TF f ,

F̄ T f = T
F̄ f , and

pT f = Tp f ,

that is, the distributional partial derivatives, Fourier transforms and products are
consistent with the corresponding classical operators on S(RN;X) (⊆ S′(RN;X)).

Proof. For every ϕ ∈ S(RN) and every α ∈NN
0 one has, by definition of the

distributional derivative and by integration by parts,

〈∂αT f ,ϕ〉 = (−1)|α| 〈T f ,∂
αϕ〉

= (−1)|α|
∫
RN

f (x)∂αϕ(x) dx

=

∫
RN
∂α f (x)ϕ(x) dx

= 〈T∂α f ,ϕ〉.

This proves the first equality. Using Parseval’s identity, we obtain

〈F T f ,ϕ〉 = 〈T f ,Fϕ〉

=

∫
RN

f (x)Fϕ(x) dx

=

∫
RN
F f (x)ϕ(x) dx

= 〈TF f ,ϕ〉,

and this proves the second equality. The third one is proved similarly. The
fourth equality uses only the associativity of the product:
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〈pT f ,ϕ〉 = 〈T f ,pϕ〉

=

∫
RN

f (x)p(x)ϕ(x) dx

= 〈Tp f ,ϕ〉.

Remark 2.20. In the above lemma, the function f can be replaced by any
other function for which the formula of integration by parts (first equality)
or Parseval’s identity (second and third equality) still holds. For example, in
the second and third equality, one may take f ∈ L1(RN;X) or, if X is a Hilbert
space, f ∈ L2(RN;X).

Theorem 2.21. The Fourier transforms F , F̄ :S′(RN;X)→S′(RN;X) are linear,
bijective and continuous.

Proof. This follows immediately from Theorem 2.17.

From Theorem 2.21, but also from the Riemann-Lebesgue Lemma (The-
orem 2.1), Plancherel’s Theorem (Theorem 2.12), the Hausdorff-Young The-
orem and Theorem 2.17 we obtain the following picture for the Fourier
transform. In the following diagram, a (horizontal) double arrow means that
the Fourier transform is an isomorphism between the spaces in the same
line. Vertical arrows mean inclusion / natural embeddings.

S
′(RN;X) ks F +3 S

′(RN;X)

L1(RN;X)

66

F // C0(RN;X)

55

Lp(RN;X)

OO

F

X Fourier type p
// Lp′ (RN;X)

OO

L2(RN;X)

ZZ

ks F

X Hilbert
+3 L2(RN;X)

ZZ

S(RN;X)

UU

OO

??

ks F +3 S(RN;X)

VV

OO

??

From Lemma 2.16 we immediately obtain the following analogon for
tempered distributions.

Lemma 2.22. For every T ∈ S′(RN;X) and every polynomial p : CN
→ C one has



28 2 The Fourier transform

F (p(∂)T) = p(i·)F T,
F (p(−i·)T) = p(∂)F T,

F̄ (p(∂)T) = p(−i·)F̄ T, and

F̄ (p(i·)T) = p(∂)F̄ T.

Theorem 2.23 (Fourier characterization of Sobolev spaces). Let H be a Hilbert
space and k ∈ N. Then the Fourier transforms F , F̄ map the Sobolev space
Hk(RN;H) isomorphically onto the weighted space L2(RN, (1 + |x|2)kdx;H).

Proof. Let first k = 1. Then we have

f ∈H1(RN;H)

⇔ f , ∂1 f , . . . , ∂N f ∈ L2(RN;H)

(by Plancherel)⇔F f , F (∂1 f ), . . . , F (∂N f ) ∈ L2(RN;H)

(by Lemma 2.22)⇔F f , ix1F f , . . . , ixNF f ∈ L2(RN;H)

⇔

∫
RN

(1 + x2
1 + · · ·+ x2

N)F f (x) dx <∞

⇔F f ∈ L2(RN, (1 + |x|2) dx;H).

The case k ≥ 2 is proved by induction and the assertion for F̄ is proved
similarly.

For the Sobolev spaces we thus have the following picture, in which again
vertical arrows stand for inclusions and all (horizontal) double arrows mean
that the Fourier transform is an isomorphism.

L2(RN;H) ks F +3 L2(RN;H)

H1(RN;H)

OO

ks F +3 L2(RN, (1 + |x|2) dx;H)

OO

H2(RN;H)

OO

ks F +3 L2(RN, (1 + |x|2)2 dx;H)

OO

Hk(RN;H) ks F +3 L2(RN, (1 + |x|2)k dx;H)

ks F +3

Remark 2.24. This definition justifies to define the fractional Sobolev space
Hs(RN;H) for s ∈R (thus including Sobolev spaces of negative order) by
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Hs(RN;H) := F −1L2(RN, (1 + |x|2)s dx;H).

Note that for negative s ∈ R the weighted space on the right-hand side of
this definition is only included in S′(RN;H), but not in L2(RN;H). As a
consequence, if s ∈ R is negative, then Hs(RN;H) is a subspace of the space
of tempered distributions which actually includes L2(RN;X).

2.5 Elliptic and parabolic equations in RN

2.6 The Marcinkiewicz multiplier theorem





Chapter 3
Singular integrals

3.1 The Marcinkiewicz interpolation theorem

Let (Ω,µ) be a measure space and (X, | · |X) be a Banach space. Given a
measurable function f : Ω→ X and a parameter λ > 0, we shortly write
{| f |X > λ} := {t ∈ Ω : | f (t)|X > λ}, and we define the distribution function
m f : (0,∞)→ [0,∞] by

m f (λ) := µ({| f |X > λ}) (λ > 0).

Lemma 3.1. Let Φ : [0,∞)→ [0,∞) be differentiable, increasing and such that
Φ(0) = 0. Let f :Ω→ X be a measurable function. Then∫

Ω
Φ(| f |X) dµ =

∫
∞

0
Φ′(λ)m f (λ) dλ.

Proof. This follows from a simple application of Tonnelli’s theorem:∫
Ω
Φ(| f |X) dµ =

∫
Ω

∫
| f (t)|X

0
Φ′(λ) dλ dµ(t)

=

∫
∞

0
Φ′(λ)

∫
{| f |X>λ}

dµ dλ

=

∫
∞

0
Φ′(λ)m f (λ) dλ.

Example 3.2. For Φ(λ) = λp (p ≥ 1) we obtain∫
Ω
| f |pX dµ = p

∫
∞

0
λpm f (λ)

dλ
λ
,

and in particular, f ∈ Lp(Ω;X) if and only if

31
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λ 7→ λm f (λ)
1
p ∈ Lp

∗ (0,∞),

where
Lp
∗ (0,∞) := Lp((0,∞);

dλ
λ

).

Note that f ∈ Lp(Ω;X) thus implies that

sup
λ>0

λpm f (λ) <∞.

Denote by M(Ω;X) be the space of all measurable functions Ω→ X. Let
(Ω1,µ1) and (Ω2,µ2) be two measure spaces, and let (X, | · |X) and (Y, | · |Y)
be two Banach spaces. We say that a (not necessarily linear) operator T :
Lp(Ω1,X)→ M(Ω2,Y) satisfies a weak-(p,q) estimate, or we say that T is
weak-(p,q) if there exists a constant C ≥ 0 such that, for every f ∈ Lp(Ω1;X)
and every λ > 0

mT f (λ) ≤
(

C‖ f ‖Lp

λ

)q

(if q <∞),

or
‖T f ‖L∞ ≤ C‖ f ‖Lp (if q =∞).

We say that an operator T on a subspace of M(Ω1;X) with values in M(Ω2,Y)
subadditive if for every f , g in the domain of T

|T( f + g)|Y ≤ |T f |Y + |Tg|Y almost everywhere,

and we say that it is homogeneous if for every α ∈ K and every f in the
domain of T

|T(α f )|Y = |α| |T f |Y almost everywhere.

Finally, T is said to be sublinear if it is both subadditive and homogeneous.

Theorem 3.3 (Marcinkiewicz interpolation). Let (Ω1,µ1), (Ω2,µ2) be two
measure spaces, X, Y be two Banach spaces, 1 ≤ p0 < p1 ≤ ∞, and let T : Lp0 +
Lp1 (Ω1;X)→M(Ω2,Y) be a subadditive operator which is both weak-(p0,p0) and
weak-(p1,p1). Then, for every p0 < p < p1 there exists C ≥ 0 such that

‖T f ‖Lp ≤ C‖ f ‖Lp for every f ∈ Lp(Ω1;X).

Proof. Let f ∈ Lp(Ω1;X) and c > 0. For each λ > 0 we write f = f0 + f1 with

f0 = f 1{| f |X>cλ},

f1 = f 1{| f |X≤cλ}.

Then f0 ∈ Lp0 (Ω1;X) and f1 ∈ Lp1 (Ω1;X), and, by the subadditivity of T,

|T f (t)|Y ≤ |T f0(t)|Y + |T f1(t)|Y for every t ∈Ω2.
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As a consequence, for every λ′ > 0,

mT f (λ′) ≤mT f0 (
λ′

2
) + mT f1 (

λ′

2
).

By assumption, there exist constants C0, C1 ≥ 0 independent of f , f0, f1, λ, λ′

such that

mT f0 (
λ′

2
) ≤

(
2C0 ‖ f0‖Lp0

λ′

)p0

, and

mT f1 (
λ′

2
) ≤

(
2C1 ‖ f1‖Lp1

λ′

)p1

(p1 <∞),

‖T f1‖L∞ ≤ C1 ‖ f ‖L∞ (p1 =∞).

The case p1 =∞. Choose c := (2C1)−1 and λ′ = λ. Then mT f1 (λ2 ) = 0. Hence

‖T f ‖pLp = p
∫
∞

0
λp−1 mT f (λ) dλ

≤ p
∫
∞

0
λp−1 mT f0 (

λ
2

) dλ

≤ p
∫
∞

0
λp−1−p0 (2C0)p0

∫
{| f |X>cλ}

| f (t)|p0
X dµ(t) dλ

= p (2C0)p0

∫
Ω1

| f (t)|X

∫
| f (t)|X/c

0
λp−1−p0 dλ dµ(t)

=
p

p−p0
(2C0)p0 (2C1)p−p0 ‖ f ‖pLp .

The case p1 <∞. Similarly as above we obtain, for every c > 0,

‖T f ‖pLp = p
∫
∞

0
λp−1 mT f (λ) dλ

≤ p
∫
∞

0
λp−1 mT f0 (

λ
2

) dλ

+ p
∫
∞

0
λp−1 mT f1 (

λ
2

) dλ

≤ p
∫
∞

0
λp−1−p0 (2C0)p0

∫
{| f |X>cλ}

| f (t)|p0
X dµ(t) dλ

+ p
∫
∞

0
λp−1−p1 (2C1)p1

∫
{| f |X≤cλ}

| f (t)|p1
X dµ(t) dλ

≤ p (
1

p−p0
+

1
p1−p

) (
(2C0)p0

cp−p0
+

(2C0)p0

cp−p0
)‖ f ‖pLp .
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This completes the proof.

Remark 3.4. By minimizing over c > 0, we obtain that the constant C ≥ 0 in
Theorem 3.3 can be chosen as

C = 2p
1
p (

1
p−p0

+
1

p1−p
)

1
p Cθ0 C1−θ

1 ,

where the C0, C1 ≥ 0 are the constants from the weak-(pi,pi) estimates, and
θ ∈ (0,1) is chosen such that

1
p

=
θ
p0

+
1−θ

p1
.

3.2 The Hardy-Littlewood maximal operator

Let (X, | · |X) be a Banach space and N ∈N. For every f ∈M(RN;X) we define
the maximal function M f :RN

→ [0,∞] by

M f (x) := sup
Q3x

?
Q
| f (y)|X dy (x ∈RN),

where Q is any cube with sides parallel to the axes, that is, ball with respect
to the | · |∞ norm, and where for every measurable set B ⊆RN we have set?

B
=

1
|B|

∫
B
,

|B| being the Lebesgue measure of B. By continuity, the definition does not
change if one considers only the supremum over all cubes with rational cen-
ters and rational radii, so that one sees that M f is measurable. The operator
M : M(RN;X)→M(RN) is called the Hardy-Littlewood maximal operator.
It is easily seen that M is sublinear.

Lemma 3.5 (Covering lemma inR). Let K ⊆R be a compact set, and let (Iα)α∈A
be a family of intervals such that K =

⋃
α∈A Iα. Then there exists a finite subfamily

(Iα j )1≤ j≤n such that

K ⊆
n⋃

j=1

Iα j and

n∑
j=1

1Iα j
(x) ≤ 2 for every x ∈R.
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Theorem 3.6. The Hardy-Littlewood maximal operator M is weak (1,1) and strong
(p,p) for every 1 < p ≤∞.

Proof (for the case N = 1). The estimate

‖M f ‖L∞ ≤ ‖ f ‖L∞

follows immediately from the definition. Hence, M is strong (∞,∞) = weak
(∞,∞). By the Marcinkiewicz interpolation theorem it suffices to show that
M is weak (1,1).

Now let f ∈ L1(RN;X). Let λ > 0 and let K ⊆ {M f > λ} be any compact
subset. For every x ∈ K there exists an interval Ix containing x such that?

Ix

| f |X > λ.

Clearly, K ⊆
⋃

x∈K Ix, so that, by Lemma 3.5, there exists a finite subset
{x1, . . . ,xn} ⊆ K such that

K ⊆
n⋃

j=1

Ix j and

n∑
j=1

1Ixj
(x) ≤ 2 for every x ∈R.

Hence,

|K| ≤
n∑

j=1

|Ix j |

≤

n∑
j=1

1
λ

∫
Ixj

| f |X

≤
1
λ

∫
R

n∑
j=1

1Ixj
| f |X

≤
2
λ
‖ f ‖L1 .

Since this inequality holds for every compact subset K ⊆ {M f > λ}, the inner
regularity of the Lebesgue measure yields

mM f (λ) ≤
2
λ
‖ f ‖L1 .

For the general case N > 1, we need the following covering lemma, which
is a variant of Lemma 3.5.
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Lemma 3.7 (Vitali). Let K ⊆RN be a compact set, and let (Qα)α∈A be a family of
cubes in RN such that

K ⊆
⋃
α∈A

Qα.

Then there exist α1, . . . , αn ∈ A such that

K ⊆
n⋃

j=1

Qα j,5 and

n∑
j=1

1Qα j
≤ 1.

Proof.

Proof (of Theorem 3.6 for the general case N ≥ 1). The beginning of the proof is
the same as in the case N = 1. We only need to prove a weak (1,1) estimate.
Let f ∈ L1(RN;X). Let λ > 0 and let K ⊆ {M f > λ} be any compact subset. For
every x ∈ K there exists a cube Qx containing x such that?

Qx

| f |X > λ.

Clearly, K ⊆
⋃

x∈K Qx, so that, by Lemma 3.7, there exists a finite subset
{x1, . . . ,xn} ⊆ K such that

K ⊆
n⋃

j=1

Qx j,5 and

n∑
j=1

1Qxj
(x) ≤ 1 for every x ∈RN.

Hence,
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|K| ≤
n∑

j=1

|Qx j,5|

=

n∑
j=1

5N
|Qx j |

≤ 5N
n∑

j=1

1
λ

∫
Qxj

| f |X

≤
5N

λ

∫
RN

n∑
j=1

1Qxj
| f |X

≤
5N

λ
‖ f ‖L1 .

Since this inequality holds for every compact subset K ⊆ {M f > λ}, the inner
regularity of the Lebesgue measure yields

mM f (λ) ≤
5N

λ
‖ f ‖L1 .

Lemma 3.8. If f ∈ L1(RN;X) is not identically 0, then M f < L1(RN).

Proof. If f ∈ L1(RN;X) is not identically 0, then there exist r> 0 and ε > 0 such
that ∫

Qr(0)
| f (y)|X dy ≥ ε.

Now, for any x ∈RN with |x| ≥ r one has

Qr(0) ⊆Q2|x|(x),

and hence

M f (x) ≥
1

(2|x|)N

∫
Q2|x|(x)

| f (y)|X dy ≥
ε

2N |x|N
,

so that M f < L1(RN).

A weight w :RN
→R is a measurable function which is strictly positive

almost everywhere. Given a weight w, we denote also by w the weighted
Lebesgue measure w(x)dλ(x), so that, for a measurable set B ⊆RN

w(B) :=
∫
RN

1B(x)w(x) dλ(x).

If f :RN
→ X is in addition a measurable function, the we denote its distri-

bution function with respect to the weighted Lebesgue measure by w f , that
is,



38 3 Singular integrals

w f (λ) := w({| f |X > λ}).

We denote by Lp
w(RN;X) the weighted Lp space Lp(RN,w(x) dλ(x);X).

We say that a locally integrable weight w satisfies the Muckenhoupt Ap
condition or that w is an Ap weight (1≤ p <∞), and we write w ∈Ap, if there
exists a constant C ≥ 0 such that

Mw(x) ≤ Cw(x) for every x ∈RN, if p = 1,(?
Q

w
) (?

Q
w1−p′

)p−1

≤ C for every cube Q ⊆RN, if p > 1.

The smallest possible constant C≥ 0 for which the above inequality (for p = 1
or for p > 1) holds is called the Ap-constant of the weight; it is denoted by
[w]Ap .

Theorem 3.9. For every 1 ≤ p <∞ the weak (p,p) estimate

wM f (λ) ≤
C
λp

∫
RN
| f |pX w (3.1)

holds if and only if w ∈ Ap.

Proof. Necessity. Assume that there exists a constant C≥ 0 such that for every
f ∈ Lp(Ω;X) the inequality (3.1) holds. Let Q⊆RN be a cube such that

∫
Q | f |X >

0, and let λ > 0 be such that
>

Q | f |X > λ. Then

Q ⊆ {M( f 1Q) > λ}

and therefore
w(Q) ≤ wM( f 1Q)(λ).

From inequality (3.1) follows

w(Q) ≤
C
λp

∫
Q
| f |pX w,

and since this inequality holds for every λ> 0 such that
>

Q | f |X >λ, we obtain

w(Q)
|Q|p

≤ C

∫
Q | f |

p
X w

(
∫

Q | f |X)p
. (3.2)

The case p = 1. We choose any measurable subset B ⊆ Q and f = 1B in the
above inequality. Then this inequality becomes

w(Q)
|Q|
≤ C

w(B)
|B|

.
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This inequality implies for almost every x ∈Q

w(Q)
|Q|
≤ Cw(x),

and maximizing over all cubes Q containing x, we obtain

Mw(x) ≤ Cw(x),

that is, w ∈ A1.
The case 1 < p <∞. We choose f = w1−p′1Q in inequality (3.2) which then

becomes

w(Q)
(

1
|Q|

∫
Q

w1−p′
)p

≤ C
∫

Q
w1−p′ ,

or, since Q ⊆RN was arbitrary, w ∈ Ap.
Sufficiency. Let f ∈ Lp

w(RN;X). For every cube Q ⊆RN one has, by Hölder’s
inequality, (?

Q
| f |X

)p

=

(
1
|Q|

∫
Q
| f |X w

1
p w−

1
p

)p

≤

(
1
|Q|

∫
Q
| f |pXw

) (
1
|Q|

∫
Q

w1−p′
)p−1

≤ [w]Ap

(
1
|Q|

∫
Q
| f |pXw

)
|Q|

w(Q)
. (3.3)

Now let λ > 0 and let K ⊆ {M f > λ} be any compact subset. For every x ∈ K
there exists a cube Qx containing x such that?

Qx

| f |X > λ.

Clearly, K ⊆
⋃

x∈K Qx.
We consider noew the case N = 1. By the covering lemma (3.5, there exists a

finite subset {x1, . . . ,xn} ⊆ K such that

K ⊆
n⋃

j=1

Qx j and

n∑
j=1

1Qxj
(x) ≤ 2 for every x ∈R.

Hence, if we combine this with inequality (3.3),
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w(K) ≤
n∑

j=1

w(Qx j )

≤

n∑
j=1

[w]Ap

λp

∫
Qxj

| f |pXw

≤

[w]Ap

λp

∫
R

n∑
j=1

1Qxj
| f |pXw

≤

2[w]Ap

λp ‖ f ‖p
Lp

w
.

Since this inequality holds for every compact subset K ⊆ {M f > λ}, the inner
regularity of the weighted Lebesgue measure yields

wM f (λ) ≤
2[w]Ap

λp ‖ f ‖p
Lp

w
.

Remark 3.10. The proof of Theorem 3.9 shows in the necessity part that if
C ≥ 0 is a constant such that weak (p,p)-inequality (3.1) holds, then

[w]Ap ≤ C.

On the other hand, the sufficiency part shows that in the case N = 1

wM f (λ) ≤
2[w]Ap

λp ‖ f ‖p
Lp

w
,

that is, C can be chosen equal to 2[w]Ap in (3.1), if N = 1. In the general case
N ≥ 1 we obtain that C = 5N [w]Ap is a possible constant in (3.1).

We list a few properties of Muckenhoupt weights. The first few properties
are mainly simple consequences of the Hölder inequality.

Lemma 3.11. a) For 1 ≤ p ≤ q <∞ one has Ap ⊆ Aq, and for every w ∈ Ap

[w]Aq ≤ [w]Ap .

b) For 1 < p <∞ one has w ∈ Ap if and only if w1−p′
∈ Ap′ , and then

[w1−p′ ]Ap′
= [w]

1
p−1

Ap .

c) If w, v ∈ A1 and 1 < p <∞, then wv1−p
∈ Ap and

[wv1−p]Ap ≤ [w]A1 [v]1−p
A1
.
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d) If 1 ≤ p < q, w ∈ Aq and v ∈ A1, then u := (wq−1uq−p)
1

q−1 ∈ Ap and

[u]Ap ≤ ([w]p−1
Aq

[v]q−p
A1

)
1

p−1 .

Proof. (a) For p = 1 and q > 1 one has(?
Q

w1−q′
)q−1

≤ sup
x∈Q

w(x)−1 = (inf
x∈Q

w(x))−1
≤ [w]A1

(?
Q

w
)−1

.

For p > 1, the inclusion follows immediately from Hölder’s inequality.
(b) The Ap′ condition for w1−p′ is

sup
Q

(?
Q

w1−p′
) (?

Q
w(1−p′)(1−p)

)p′−1

<∞,

but since (p′−1)(p−1) = 1, the left-hand side is equal to [w]
1

p−1

Ap
.

(c) We compute, using a similar inequality as in the proof of (a),(?
Q

wv1−p
) (?

Q
w1−p′v(1−p)(1−p′)

)p−1

≤

(?
Q

w [v]p−1
A1

(
?

Q
v)1−p

) (?
Q

v [w]p′−1
A1

(
?

Q
w)1−p′

)p−1

= [w]A1 [v]p−1
A1
.

Theorem 3.12 (Reverse Hölder inequality). Let w ∈ Ap for some 1 < p <∞.
Then there exist constants ε > 0, C ≥ 0 depending only on [w]Ap such that

(?
Q

w1+ε

) 1
1+ε

≤ C
?

Q
w for every cube Q ⊆RN.

Corollary 3.13. a) For every w ∈ Ap (1 < p <∞) there exists ε > 0 depending
only on [w]Ap such that w ∈ Ap−ε. In other words,

Ap =
⋃

1≤q<p

Aq.

b) For every w ∈ Ap (1 < p <∞) there exist ε > 0 such that w1+ε
∈ Ap.

c) If w ∈ Ap for some 1 ≤ p <∞, then there exists δ > 0, C ≥ 0 such that
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w(S)
w(Q)

≤ C
(
|S|
|Q|

)δ
for every cube Q ⊆RN and every S ⊆Q.

Proof. (a) Let w ∈ Ap for some 1 < p <∞. By Lemma 3.11 (b), w1−p′
∈ Ap′ . By

the reverse Hölder inequality (Theorem 3.12), there exists ε > 0 and C ≥ 0
such that (?

Q
w(1−p′)(1+ε)

) 1
1+ε

≤ C
?

Q
w1−p′ for every cube Q ⊆RN.

Fix q ∈ (1,p) such that 1− q′ = (1− p′)(1− ε). Then the preceding inequality
gives (?

Q
w1−q′

)q−1

≤ Cp−1
(?

Q
w1−p′

)p−1

,

which finally yields w ∈ Aq.
(b) Since w ∈ Ap and w1−p′

∈ Ap′ , we can choose, by the reverse Hölder
inequality and by Lemma 3.11 (a), a common ε > 0 such(?

Q
w1+ε

) 1
1+ε

≤ C
?

Q
w and

(?
Q

w(1+ε)(1−p′)
) 1

1+ε

≤ C
?

Q
w1−p′ for every cube Q ⊆RN.

From both inequalities together follows w1+ε
∈ Ap.

(c) Fix a cube Q ⊆RN and S ⊆Q. Let ε > 0 be such that w satisfies the reverse
Hölder inequality with exponent 1 +ε. Then, by Hölder’s inequality and by
the reverse Hölder inequality,

w(S) =

∫
Q

1S w

≤

(∫
Q

w1+ε

) 1
ε

|S|
ε

1+ε

≤ Cw(Q)
(
|S|
|Q|

) ε
1+ε

.

We say that a weight satisfies the Muckenhoupt A∞ condition or that w
is an A∞weight, and we write w ∈A∞, if w satisfies the property in Corollary
3.13 (c). By Corollary 3.13 (c), one has⋃

1≤p<∞

Ap ⊆ A∞,
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and one can show that one actually has equality (compare with Corollary
3.13 (a)).

Theorem 3.14 (Muckenhoupt). For every 1 < p <∞ and every Muckenhoupt
weight w ∈ Ap there exists a constant C ≥ 0 (depending only on [w]Ap ) such that

‖M f ‖Lp
w
≤ C‖ f ‖Lp

w
for every f ∈ Lp

w(Ω;X).

In other words, the Hardy-Littlewood maximal operator M is strong (p,p) on the
weighted Lebesgue space Lp

w.

Proof. Let w be a Muckenhoupt Ap-weight for some 1< p<∞. By the corollary
to the reverse Hölder inequality (Corollary 3.13 (a)), there exists q < p such
that w ∈ Aq. By Theorem 3.9, the Hardy-Littlewood maximal operator M is
weak (q,q) on Lq

w. On the other hand, M satisfies the strong = weak (∞,∞)
estimate on L∞w = L∞w . By Marcinkiewicz’ interpolation theorem (Theorem
3.3), M satisfies therefore a strong (p,p)-estimate on Lp

w.

We conclude this section by noting that in some cases it is also useful to
consider the centered maximal operator

Mc f (x) := sup
r>0

?
Qr(x)
| f |X (x ∈RN),

in which the supremum is only taken over all cubes centered at x, and the
dyadic maximal operator

Md f (x) := sup
k∈Z

?
Q2k (x)

| f |X (x ∈RN)

in which the supremum is only taken over all dyadic cubes centered at x,
that is, cubes with radius = 2k for some k ∈Z. Clearly, for every f ∈M(RN;X),
Md f ≤Mc f ≤M f pointwise everywhere. These trivial inequalities show that
the centered and the dyadic maximal operators also satisfy strong (p,p)
estimates on Lp

w whenever 1 < p < ∞ and w ∈ Ap. However, one actually
has a sort of equivalence between the maximal operators in the sense that,
for every f ∈M(RN;X),

M f ≤ 2N Mc f ≤ 4N Md f pointwise everywhere.

We may exploit this fact later on. We also define the sharp maximal operator

M] f (x) := sup
Q3x

?
Q
| f − fQ|X (x ∈RN),

where the supremum is taken over all cubes containing x, and where fQ :=>
Q f is the mean of f over Q. We say that a function f has bounded mean
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oscillation if M] f ∈ L∞(RN), and we consider the space of all functions of
bounded mean oscillation

BMO(RN;X) := { f ∈M(RN;X) : M] f ∈ L∞(RN)},

which is equipped with the seminorm

‖ f ‖BMO := ‖M] f ‖L∞ .

Note that constant functions have mean oscillation equal to 0, and one would
have to take the quotient of BMO with respect to the constant functions in
order to obtain a Banach space.

3.3 The Rubio de Francia extrapolation theorem

by Sebastian Król

The aim of the section is the proof of a variant of the following bounded-
ness principle by Rubio de Francia [?]:

The boundedness properties of a linear operator depend only on the
weighted L2 inequalities that it satisfies.

This is a final version of the extrapolation theorem Muckenhoupt’s Ap
weights.

The first variant of the principle is was given by Rubio de Francia in 1982
[Rubio de Francia (1982)]. Below, we shall present the proof of the extrapo-
lation theorem of Rubio de Francia in its first formulation.

The underlying philosophy of Rubio de Francia’s extrapolation theory
has been summarized by A. Cordoba [Córdoba (1988)]:

There are no Lp spaces only weighted L2.

This was the basic idea in the original (non constructive) proof of the ex-
trapolation theorem for Muckenhoupt’s Ap weights. Although originally
given for operators, it was realized that the operators do not play any
role and all the statements can be given in therms of families of nonneg-
ative measurable functions. It is a setting observed by Cruz-Uribe and Perez
[Cruz-Uribe and Pérez (2000)].

Below we follow a presentation given by Duoandikoetxea
[Duoandikoetxea (2011)] - a version of the extrapolation theorem with
sharp bounds - it is of main interest in studying the sharp dependence of
the norms of operators in therms of the Ap-constant of the weights.

Subsequently, given p ∈ [1,∞), a weight w, and a family F of pairs of
nonnegative, measurable functions, we put
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Fp,w = {( f , g) ∈ F :
∫
Rn

gpwdx <∞}.

Theorem 3.15. Let p0 ∈ (1,∞) andF be a family of pairs of nonnegative, measurable
functions. Assume that there exists an increasing function N : (0,∞)→ (0,∞) such
that for every Muckenhoupt weight w ∈ Ap0 we have:(∫

Rn
gp0wdx

)1/p0

≤N([w]p0 )
(∫
Rn

f p0wdx
)1/p0 (

( f , g) ∈ Fp0,w
)
. (3.4)

Then for every p ∈ (1,∞) and every Muckenhoupt weight w ∈ Ap we have(∫
Rn

gpwdx
)1/p

≤ CNp([w]p)
(∫
Rn

f pwdx
)1/p (

( f , g) ∈ Fp,w
)
,

where C does not depend on w, and Np([w]Ap ) is given by

Np([w]Ap ) :=


N

(
[w]Ap (2‖M‖Lp(w))p−p0

)
, if p ≤ p0,

N

[w]
p0−1
p−1

Ap

(
2‖M‖Lp′ (w1−p′ )

) p−p0
p−1

 , if p > p0.

The proof of the Theorem 3.15 is based on the following results: the fac-
torization of Muckenhoupt’s Ap weights and the construction of A1 weights
via Rubio de Francia’s iteration algorithm.

Lemma 3.16 (Factorization).

a) Let 1≤ p< p0 <∞. If w ∈Ap and u ∈A1, then v := wup−p0 ∈Ap0 and [v]Ap0
≤

[w]Ap [u]p0−p
A1

.

b) Let 1 < p0 < p <∞. If w ∈ Ap and u ∈ A1, then v := (wp0−1up−p0 )
1

p−1 ∈ Ap0

and [v]Ap0
≤ [w]

p0−1
p−1

Ap
[u]

p−p0
p−1

A1
.

Proof. The statements of Lemma 3.16 follow directly from the definition of
Muckenhoupt’s Ap classes and Hölder’s inequality. Here, we provide only
the proof of the statement (b).

Fix a cube Q ⊆ Rn. Note that p−1
p0−1 > 1, and ( p−1

p0−1 )′ =
p−1
p0−p . By Hölder’s

inequality, we easily get

1
|Q|

∫
Q

vdx =
1
|Q|

∫
Q

w
p0−1
p−1 u

p−p0
p−1 dx ≤

(
1
|Q|

∫
Q

wdx
) p0−1

p−1
(

1
|Q|

∫
Q

udx
) p−p0

p−1

. (3.5)
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On the other hand, since u(x)−1
≤ [u]A1 ( 1

|Q|

∫
Q udx)−1 for almost every x ∈ Q,

and (p0−1)(p′0−1) = 1, we have

(
1
|Q|

∫
Q

v1−p0
′

dx
)p0−1

≤

(
1
|Q|

∫
Q

w1−p′dx
)p0−1

[u]
p−p0
p−1

A1

(
1
|Q|

∫
Q

udx
)− p−p0

p−1

. (3.6)

Therefore, combining (3.5) and (3.6) we obtain the desired conclusion.

Recall that, by Muckenhoupt’s theorem (Theorem 3.14, the Hardy-
Littlewood maximal operator M is bounded on Lp

w for every p ∈ (1,∞) and
every Muckenhoupt weight w ∈ Ap. For every p ∈ (1,∞) and every Muck-
enhoupt weight w ∈ Ap we define therefore define the Rubio de Francia
operator R = Rp,w as follows

R f :=
∞∑

k=0

Mk f
(2‖M‖Lp

w
)k

( f ∈ Lp
w),

where Mk denotes the k-th iterate of M, and ‖M‖Lp
w

is the operator norm of

M on Lp
w, that is, ‖M‖Lp

w
= sup

‖ f ‖
L

p
w
≤1 ‖M f ‖Lp

w
.

Lemma 3.17 (Rubio de Francia’s iteration algorithm). Let R be the Rubio de
Francia extrapolation operator, 1 < p <∞, w ∈ Ap, and h ∈ Lp

w. Then:

a) One has

|h| ≤ Rh pointwise almost everywhere, and
‖Rh‖Lp

w
≤ 2‖h‖Lp

w
.

b) If h ≥ 0, then

M(Rh) ≤ 2‖M‖Lp
w

Rh pointwise almost everywhere,

that is, Rh ∈ A1 and
[Rh]A1 ≤ 2‖M‖Lp

w
.

Proof. The proof is immediate.

Proof (of Theorem 3.15). The case p< p0. Fix w ∈Ap and ( f , g) ∈Fp,w with f ∈ Lp
w

and g , 0. Let

h := f +
‖ f ‖Lp

w

‖g‖Lp
w

g.

Note that ‖h‖Lp
w
≤ 2‖ f ‖Lp

w
. By Lemma 3.17,

Rh ∈ A1 with [Rh]A1 ≤ 2‖M‖Lp
w
.
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Consequently, Lemma 3.16 yields

v := w(Rh)p−p0 ∈ Ap0 with [v]Ap0
≤ [w]Ap [Rh]p0−p

A1
.

Furthermore, since g ≤
‖g‖

L
p
w

‖ f ‖
L

p
w

h ≤
‖g‖

L
p
w

‖ f ‖
L

p
w

Rh (see Lemma 3.17), note that g ∈ Lp0
v ,

that is, ( f , g) ∈ Fp0,v.
Thus, combining Hölder’s inequality (with respect to the weighted mea-

sure wdx - note also p0
p > 1 and ( p0

p )′ =
p0

p−p0
,), our assumption (3.4), and

Lemma 3.17, we easily get:∫
Rn

gpw dx =

∫
Rn

gpw(Rh)
p

p0
(p−p0)(Rh)

p
p0

(p0−p) dx

≤

(∫
Rn

gp0w(Rh)p−p0dx
) p

p0
(∫
Rn

(Rh)pw dx
)1− p

p0

≤N
(
[w]Ap [Rh]p0−p

A1

)p
(∫
Rn

f p0w(Rh)p−p0 dx
) p

p0
(∫
Rn

(Rh)pw dx
)1− p

p0

≤N
(
[w]Ap (2‖M‖Lp

w
)p0−p

)p
∫
Rn

(Rh)pw dx

≤N
(
[w]Ap (2‖M‖Lp

w
)p0−p

)p
2p

∫
Rn

hpw dx

≤ 22pN
(
[w]Ap (2‖M‖Lp

w
)p0−p

)p
∫
Rn

f pw dx.

The case p> p0. Fix w ∈Ap and ( f , g) ∈ Fp,w with f ∈ Lp
w and g, 0. By a duality

argument we can write(∫
Rn

gpwdx
) p0

p

:= sup
{∫
Rn

gp0ϕwdx : ϕ ∈ L(p/p0)′ (w),‖ϕ‖ = 1,ϕ ≥ 0
}
.

Fix such a function ϕ. Let h stand for the function given by

hp′w1−p′ =

ϕ+

 f
‖ f ‖Lp

w

p−p0

+

 g
‖g‖Lp

w

p−p0


p
p−p0

w.

Note that h ∈ Lp′

w1−p′ , and w1−p′
∈Ap′ . Therefore, by Rubio de Francia’s iteration

algorithm (Lemma 3.17), we obtain that the operator R = Rp′,w1−p′ is bounded

on Lp′

w1−p′ , with norm less than or equal to 2, h≤Rh, and Rh ∈A1 with [Rh]A1 ≤

2‖M‖
Lp′

w1−p′
)
. Lemma 3.16 shows that v :=

(
wp0−1(Rh)p−p0

) 1
p−1
∈ Ap0 . Moreover,
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since

gp0 ≤ ‖g‖
p0

p−p0

Lp
w

h
p0

p−1 w−
p0

p−1 ≤ ‖g‖
p0

p−p0

Lp
w

(Rh)
p0

p−1 w−
p0

p−1 ,

note that ( f , g) ∈ Fp0,v.

Finally, since ϕw ≤ h
p−p0
p−1 w

p0−1
p−1 ≤ (Rh)

p−p0
p−1 w

p0−1
p−1 = v, we obtain∫

Rn
gp0ϕw dx ≤

∫
Rn

gp0vdx ≤N([v]Ap0
)p0

∫
Rn

f p0v dx

= N([v]Ap0
)p0

∫
Rn

f p0 (Rh)
p−p0
p−1 w

p0−1
p−1 w−1w dx

≤N([v]Ap0
)p0

(∫
Rn

f pw dx
) p0

p
(∫
Rn

(Rh)p′w1−p′ dx
)1−

p0
p

≤ 2
p−p0
p−1 N([v]Ap0

)p0

(∫
Rn

f pw dx
) p0

p
(∫
Rn

hp′w1−p′ dx
)1−

p0
p

≤ 2
p−p0
p−1 3N([v]Ap0

)p0

(∫
Rn

f pw dx
) p0

p

,

where we applied Hölder’s inequality. Therefore, the proof is complete.

The example considered below well illustrates the underlying ideas of
Rubio de Francia’s extrapolation theory, which are not so transparent in the
setting of pairs of functions presented above. This theory was summarized
by A. Cordoba as follows:

There are no Lp spaces only L2;

compare with (3.7) below.

Example 3.18. Let X be a Banach space. Let T be a sublinear operator, which
is bounded on L2

w(X) for every Muckenhoupt weight w ∈ A2. Assume that,
for every C > 0,

sup{‖T‖L2
w(X) : w ∈ A2, [w]A2 ≤ C} <∞.

How can we apply Rubio de Francia’s extrapolation principle to show that T
extends to a bounded operator on Lp

w(X) for every p ∈ (1,∞) and every
Muckenhoupt weight w ∈ Ap?

Set
F := {(| f |X, |T f |X) : f ∈

⋃
w∈A2

L2
w(X)},

and
N(t) := sup{‖T‖L2

w(X) : w ∈ A2, [w]A2 ≤ t} (t > 0).
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Then,
F2,w ⊇ {(| f |X, |T f |X) : f ∈ L2

w(X)}.

By Rubio de Francia’s extrapolation theorem (Theorem 3.15), for every
p ∈ (1,∞) and every Muckenhoupt weight w ∈Ap there exists a constant Cp,w
such that∫
RN
|T f |pXw dx ≤ Cp,w

∫
RN
| f |pXw dx for every f ∈

⋃
v∈A2

L2
v(X) with T f ∈ Lp

w(X).

Therefore, if
Dp,w := { f ∈

⋃
v∈A2

L2
v(X) : T f ∈ Lp

w(X)}

is dense in Lp
w(X), then T admits a unique extension to a bounded operator

on Lp
w(X), and ‖T‖Lp

w(X) ≤ Cp,w.

In fact, we show thatDp,w ⊇ Lp
w(X). Note first that⋃

p∈(1,∞)
v∈Ap

Lp
v(X) =

⋃
v∈A2

L2
v(X). (3.7)

Indeed, let 0 , f ∈ L2
w(X). In the case p < 2, following the lines of the corre-

sponding part of the proof of Theorem 3.15, it is easy to check that f ∈ L2
v(X)

with v := wup−2
∈ A2, where u := Rh for h := | f |X. For p > 2, f ∈ L2

v(X) with

v := (wup−2)
1

p−1 ∈ A2, where u := Rh for h given by hp′w1−p′ = | f |pX w.
In particular, T f is well-defined for all f ∈ Lp

w(X). Therefore, it is sufficient
to show that |T f |X ∈ Lp

w for all f ∈ Lp
w(X).

For this purpose, consider the (formal) adjoint operator M′ to the Hardy-
Littlewood maximal operator M (as an operator on Lp

w), that is,

M′h :=
M(hw)

w
( f ∈ Lp′

w ).

Note that M′ is bounded on Lp′
w . Indeed, we first note that w1−p′

∈ Ap′ with

[w1−p′ ]Ap′
≤ [w]p′−1

Ap
- it follows immediately from the definition of the Ap′

class. Therefore, since f w ∈ Lp′

w1−p′ if and only if f ∈ Lp′
w , and ‖ f ‖

Lp′

w1−p′
= ‖ f ‖

Lp′
w

,

we have(∫
RN

(M′ f )p′w dx
) 1

p′

=

(∫
RN

(M( f w))p′w1−p′ dx
) 1

p′

≤ ‖M‖
Lp′

w1−p′
‖ f ‖

Lp′
w
.

Consequently,
‖M′‖

Lp′
w
≤ ‖M‖

Lp′

w1−p′
.



50 3 Singular integrals

Consider also the (formal) adjoint operator R′ to R (see Lemma 3.17) given
by:

R′h :=
∞∑

k=0

M′(h)
(2‖M′‖

Lp′
w

)k
( f ∈ Lp′

w ).

The counterpart of Lemma 3.17 holds for the operator R′, namely:

a) For h ∈ Lp′
w one has

|h| ≤ R′h pointwise almost everywhere, and
‖R′h‖

Lp′
w
≤ 2‖h‖

Lp′
w
.

b) If, in addition, h ≥ 0, then

M(wR′h) ≤ 2‖M‖Lp
w

wR′h pointwise almost everywhere,

that is, wR′h ∈ A1 and

[wR′h]A1 ≤ 2‖M‖
Lp′

w
.

Let 0 , f ∈ Lp
w(X) and h ∈ Lp′

w with h ≥ 0. Set v := R(| f |X)−1 R′hw. Note that,
by Lemma 3.16 (a), v ∈A2 with [v]A2 ≤ [R(‖ f ‖X)]A1 [R′h]A1 . Then, by Hölder’s
inequality, we obtain

‖T‖L2
v(X)‖R(‖ f ‖X)‖Lp

w
‖R′h‖

Lp′
w

≥ ‖T‖L2(v;X)

∫
RN

R(‖ f ‖X)R′(h)w dx

≥ ‖T‖L2
v(X)

(∫
RN
| f |2XR(| f |X)−1 R′(h)w dx

) 1
2
(∫
RN

R(| f |X)R′(h)w dx
) 1

2

≥

(∫
RN
|T f |2X R(| f |X)−1 R′(h)w dx

) 1
2
(∫
RN

R(| f |X)R′(h)w dx
) 1

2

≥

∫
RN
|T f |X R′(h)w dx

≥

∫
RN
|T f |X hw dx.

This implies that |T f |X ∈ (Lp′
w )∗ = Lp

w. Therefore, our claim holds.
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3.4 Calderon-Zygmund operators

Let X and Y be two Banach spaces. We say that a measurable kernel K :
RN
×RN

→L(X,Y) satisfies the standard conditions if there exist constants
C ≥ 0 and δ > 0 such that

|K(x, y)|L(X,Y) ≤
C

|x− y|N
if |x− y| > 0, (S1)

|K(x, y)−K(x, y′)|L(X,Y) ≤ C
|y− y′|δ

|x− y|N+δ
if 0 < |y− y′| ≤

1
2
|x− y|, (S2)

|K(x, y)−K(x′, y)|L(X,Y) ≤ C
|x−x′|δ

|x− y|N+δ
if 0 < |x−x′| ≤

1
2
|x− y|. (S3)

Moreover, we call a bounded, linear operator T : Lp(RN;X)→ Lp(RN;Y) a
(generalized) Calderon-Zygmund operator (1 ≤ p ≤∞ fixed) if there exists
a kernel satisfying the standard conditions such that

T f (x) =

∫
RN

K(x, y) f (y) dy

for every f ∈ Cc(RN;X) and almost every x < supp f .
(3.8)

Theorem 3.19 (Weak (1,1) estimate for Calderon-Zygmund operators). Ev-
ery Calderon-Zygmund operator T : Lp(RN;X)→ Lp(RN;Y) (1 < p <∞ fixed) is
weak (1,1) in the sense that there exists a constant C ≥ 0 such that for every λ > 0
and every f ∈ Lp

∩L1(RN;X) one has

mT f (λ) = m({x ∈RN : |T f (x)|Y > λ}) ≤
C
λ

∫
RN
| f (x)|X dx.

Proof. Fixλ> 0 and f ∈ Lp
∩L1(RN;X). Applying the corollary of [Stein (1970),

Theorem 4, Chapter I.3.4] to the function | f (·)|X, we obtain a decomposition
Rn = F∪Ω, F∩Ω = ∅, such that

| f (x)|X ≤ λ for almost every x ∈ F,

Ω =
⋃

j

Q j for cubes Q j such that m(Q j∩Qk) = 0 for j , k,

and such that Q j,2∩F = ∅,

m(Ω) ≤
C
λ

∫
Rn
| f (x)|X dx, and

1
|Q j|

∫
Q j

| f (x)|X dx ≤ Cλ.
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Here Q j,2 denotes, similarly as before, the double cube which has the same
center as Q j but whose sides are twice as long as those of Q. We set

g(x) :=

 f (x) for x ∈ F,
1
|Q j |

∫
Q j

f (x) dx for x ∈Q j,

and we set b(x) = f (x)− g(x). Then

b(x) = 0 for x ∈ F, and∫
Q j

b(x) dx = 0 for each cube Q j.

Moreover, g ∈ L1
∩L∞(RN;X), ‖g‖L1(X) ≤ ‖ f ‖L1(X) and ‖g‖L∞(X) ≤ Cλ.

Since T f = Tg + Tb, it follows that

m({x ∈Rn : |T f (x)|Y > λ}) ≤

≤m({x ∈Rn : |Tg(x)|Y >
λ
2
}) + m({x ∈Rn : |Tb(x)|Y >

λ
2
}),

and it suffices to estimate both terms on the right hand side separately.
First, we estimate Tg. First of all, g ∈ Lp(X) and

‖g‖pLp(X) =

∫
Rn
|g(x)|pX dx ≤ Cp−1λp−1

‖g‖L1(X) ≤ Cp−1λp−1
‖ f ‖L1(X)

By using in addition the assumption of boundedness of T,

‖Tg‖pLp(Y) ≤ Cp
‖g‖pLp(X) ≤ Cλp−1

‖ f ‖L1(X),

and this implies

m({x ∈Rn : |Tg(x)|Y >
λ
2
}) ≤

C
λ
‖ f ‖L1(X).

Second, we estimate Tb. Let b j = bχQ j . Then b =
∑

j b j and it suffices to
estimate Tb j.

Fix x ∈ F and fix j. Since
∫

Q j
b = 0, we have

Tb j(x) =

∫
Q j

(
K(x, y)−K(x,x j)

)
b(y) dy,

where x j is the center of the cube Q j. In particular,
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F
|Tb j(x)|Y dx ≤

∫
F

∫
Q j

|K(x, y)−K(x,x j)|L(X,Y) |b(y)|X dy dx

=

∫
Q j

∫
F
|K(x, y)−K(x,x j)|L(X,Y) dx |b(y)|X dy

≤

∫
Q j

∫
Qc

j,2

|K(x, y)−K(x,x j)|L(X,Y) dx |b(y)|X dy

≤ CK

∫
Q j

|b(y)|X dy,

where we have used the fact that F is a subset of the complement of the
double cube Q j,2. Of course, we also used that K satisfies the second standard
condition (S2). From the preceding estimate we obtain∫

F
|Tb(x)|Y dx ≤

∑
j

∫
F
|Tb j(x)|Y dx

≤ CK

∫
Ω
|b(y)|X dy

≤ 2CK ‖ f ‖L1(X).

This estimate implies

m({x ∈ F : |Tb(x)|Y >
λ
2
}) ≤

C
λ
‖ f ‖L1(X).

On the other hand,

m({x ∈Ω : |Tb(x)|Y >
λ
2
}) ≤m(Ω) ≤

C
λ
‖ f ‖L1(X).

The preceding two estimates together give the estimate for Tb.

Lemma 3.20 (Good-λ inequality). Fix a weight w ∈ A∞. Then there exist C ≥ 0
and δ > 0 such that for every λ > 0, and every γ > 0 small enough the inequality

w({x ∈Rn : T̄∗ f (x) > 2λ and M f (x) ≤ γλ}) ≤ Cγδw({x ∈Rn : T̄∗ f (x) > λ}) (3.9)

holds.

Proof. First, we can assume that w({x ∈ Rn : T̄∗ f (x) > λ}) , 0, for otherwise
the above inequality is clearly satisfied. Since the measure w(x) dx is outer
regular, there exists an open set Uλ such that

{x ∈Rn : T̄∗ f (x) > λ} ⊆Uλ and
w(Uλ) ≤ 2w({x ∈Rn : T̄∗ f (x) > λ}).

(3.10)
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By Whitney’s lemma (Lemma 3.30), there exists a sequence (Qk) of mutually
disjoint cubes with sides parallel to the coordinate axes such that Uλ =

⋃
k Q̄k

and such that Qk,4 (the cube which has the same center as the cube Qk
and satisfies diamQk,4 = 4diamQk) has nonempty intersection with Uc

λ. The
cubes Qk are of the form B(x̄k,rk) for some center x̄k and some radius rk > 0,
and hence Qk,4 = B(x̄k,4rk).

We prove that there exists a constant C≥ 0 which is independent of f such
that for every γ > 0 small enough and every k,

m({x ∈Qk : T̄∗ f (x) > 2λ and M f (x) ≤ γλ}) ≤ Cγm(Qk). (3.11)

We may in fact assume that γ is small, since the above inequality is trivial
for γ ≥ C−1.

Fix k. We may assume that there exists ξk ∈ Qk such that M f (ξk) ≤ γλ,
because otherwise the inequality (3.11) is obviously satisfied. Moreover, since
Qk,4∩Uc

λ is nonempty, there exists xk ∈Qk,4 such that

T̄∗ f (xk) ≤ λ.

Now let Q̃k := B(xk,16rk) be the cube centered at xk and satisfying diamQ̃k =
16diamQk. Define f1 = fχQ̃k

and f2 = fχQ̃c
k
, so that f = f1 + f2. By subadditivity

of the maximal operator T̄∗, we have

m({x ∈Qk : T̄∗ f (x) > 2λ and M f (x) ≤ γλ}) ≤

≤m({x ∈Qk : T̄∗ f1(x) >
λ
2

and M f (x) ≤ γλ})+ (3.12)

+ m({x ∈Qk : T̄∗ f2(x) >
3λ
2

and M f (x) ≤ γλ}),

and it suffices to estimate the two terms on the right-hand side of this in-
equality.

Since ξk ∈Qk ⊆ Q̃k, it follows that

1
m(Qk)

∫
Rn
| f1(y)|X dy =

1
m(Qk)

∫
Q̃k

| f (y)|X dy ≤ 16nM f (ξk) ≤ 16nγλ,

so that the weak (1,1) estimates from Theorem 3.19 and Corollary ?? yield

m({x ∈Rn : T̄∗ f1 >
λ
2
}) ≤

2C
λ

∫
Rn
| f1(y)|X dy ≤ Cγm(Qk) (3.13)

for some constant C ≥ 0 which is independent of f , γ, k and λ. Next, we shall
estimate, for small γ > 0, the second term on the right-hand side of (3.12). Fix
x ∈Qk = B(x̄k,rk) and ε > 0. Then
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|Tε f2(x)|Y =
∣∣∣∫

B(x,ε)c
K(x, y) f2(y) dy

∣∣∣
Y

≤

∣∣∣∫
B(xk,ε)c

K(xk, y) f2(y) dy
∣∣∣
Y

+

∫
B(xk,ε)c

|K(xk, y)−K(x, y)|L(X,Y) | f2(y)|X dy

+

∫
B(x,ε)MB(xk,ε)

|K(x, y)|L(X,Y) | f2(y)|X dy

=: I1 + I2 + I3,

where B(x,ε)MB(xk,ε) denotes the symmetric difference of B(x,ε) and B(xk,ε).
We have

I1 =
∣∣∣∫

(B(xk,ε)∪B(xk,8rk))c
K(xk, y) f (y) dy

∣∣∣
Y ≤ T̄∗ f (xk) ≤ λ

by the choice of xk, since B(xk,ε)∪B(xk,8rk) = B(xk,sup{ε,8rk}) is a cube cen-
tered at xk, and by the definition of T̄∗. Furthermore, by using ξk ∈ Qk ⊆ Q̃k
again, and by proceeding similarly as in the estimates (??), one obtains

I2 ≤ CM f (ξk) ≤ Cγλ.

Note that I3 = 0 whenever ε ≤ 16rk. On the other hand, for ε ≥ 16rk one has
B(x,ε) M B(xk,ε) ⊆ B(x,2ε)\B(x,ε/2), and therefore,

I3 ≤

∫
B(x,2ε)\B(x,ε/2)

CK

|x− y|n
| f (y)|X dy

≤
CK2n

εn

∫
B(x,2ε)

| f (y)|X dy

≤ CM f (ξk) ≤ Cγλ.

We note that the preceding estimates can also be made for ε = 0 if one
interpretes T0 = T. Taking all the above estimates together, and taking the
supremum over ε ≥ 0, we find that there exists a constant C ≥ 0 which is
independent of f , λ, k, γ such that for every x ∈Qk,

|T̄∗ f2(x)|Y ≤ Cγλ+λ.

Taking γ > 0 so small that Cγ < 1
2 , it follows that

m({x ∈Qk : T̄∗ f2(x) >
3λ
2

and M f (x) ≤ γλ}) = 0.

As a consequence, we have proved (3.11). Now, since the weight w belongs
to A∞, there exist constants δ > 0 such that
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w(E)
w(Q)

≤ C
( m(E)
m(Q)

)δ
for every cube Q and every measurable E ⊆Q.

Hence, the estimate (3.11) implies that, for every k,

w({x ∈Qk : T̄∗ f (x) > 2λ and M f (x) ≤ γλ}) ≤ Cγδw(Qk).

Summing up in k and recalling the inequality (3.10) yields the estimate (3.9).

Theorem 3.21 (Coifman-Fefferman). Let T : Lp(RN;X) → Lp(RN;Y) be a
Calderon-Zygmund operator. Then, for every Muckenhoupt weight w ∈ Ap the
operator T extends to a bounded, linear operator from Lp

w(RN;X) into Lp
w(RN;Y).

Proof. By the good-λ inequality (3.9) from Lemma 3.20, for every f ∈ L1
∩

Lp(RN;X),∫
Rn

T̄∗ f (x)pw(x) dx =

= C
∫
∞

0
λp−1 w({T̄∗ f > 2λ}) dλ

≤ C
∫
∞

0
λp−1w({M f > γλ}) dλ+ Cγδ

∫
∞

0
λp−1w({T̄∗ f > λ}) dλ

= C
∫
Rn

M f (x)pw(x) dx + Cγδ
∫
Rn

T̄∗ f (x)pw(x) dx.

Taking γ > 0 so small that Cγδ ≤ 1
2 , we obtain the claim.

From the preceding theorem and the Rubio de Francia extrapolation theo-
rem (Theorem 3.15, we immediately obtain the following main result of this
section.

Theorem 3.22. Let T : Lp(RN;X)→ Lp(RN;Y) be a Calderon-Zygmund operator.
Then, for every 1 < q <∞ and every Muckenhoupt weight w ∈ Aq the operator T
extends to a bounded, linear operator from Lq

w(RN;X) into Lq
w(RN;Y).

Lemma 3.23. If T is a Calderon-Zygmund operator, then, for each s > 1,

M](T f )(x) ≤ Cs M(| f |sX)(x)
1
s ( f ∈ Lp(RN;X), x ∈RN),

where M] is the sharp maximal operator.

Proof. Fix s > 1. Let f ∈ Lp(RN;X). Given a cube Q ⊆RN and given x ∈Q, we
decompose f = f1 + f2, where f1 = f 12Q and f2 = f 1(2Q)c , and we let a := T f2(x).
Then
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Q
|T f (y)− a|Y

≤

?
Q
|T f1|Y +

?
Q
|T f2−T f2(x)|Y.

Since T is bounded on Lp, the first term on the right-hand side of this in-
equality can be estimated by?

Q
|T f1|Y ≤

(?
Q
|T f1|sY

) 1
s

≤ C
(?

2Q
| f |sX

) 1
s

≤ 2
N
s CM(| f |sX)(x)

1
s .

For the second term on the right-hand side of the above inequality one has,
if L denotes the length of one side of the cube Q,?

Q
|T f2−T f2(x)|Y

≤

?
Q

∣∣∣∣∣∣
∫
RN\2Q

(K(y,z)−K(x,z)) f (z) dz

∣∣∣∣∣∣
Y

dy

≤ C
?

Q

∫
RN\2Q

|y−x|δ

|x− z|N+δ
| f (z)|X dz dy

≤ CLδ
?

Q

∞∑
k=−1

∫
2kL<|x−z|<2k+1L

| f (z)|X
|x− z|N+δ

dz dy

≤ CLδ
∞∑

k=−1

1
(2kL)N+δ

∫
|x−z|<2k+1L

| f (z)|X dz

≤ C
∞∑

k=1

2N

2kδ

?
|x−z|<2k+1L

| f (z)|X dz

≤
2N C
1−2δ

M f (x)

≤ C̃M(| f |sX)(x)
1
s

Lemma 3.24. Fix 1 ≤ p < ∞ and w ∈ Ap. If f ∈M(RN;X) is such that Md f ∈
Lp

w(RN), then ∫
RN
|Md f |p w ≤ C

∫
RN
|M] f |p w.

Proof.
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3.5 The Hilbert transform

Let X be a Banach space. For every f ∈ S(R;X) we define the Hilbert trans-
form H f :R→ X by

H f (x) := P.V.
∫
R

1
y

f (x− y) dy

= lim
ε→0

∫
|y|≥ε

1
y

f (x− y) dy (x ∈R).

The limit actually exists for every Schwartz test functions f and every x ∈R,
since∫
|y|≥ε

1
y

f (x− y) dy =
[
ln |y| f (x− y)

]∞
ε +

[
ln |y| f (x− y)

]−ε
−∞

+

∫
|y|≥ε

ln |y| f ′(x− y) dy

= lnε ( f (x +ε)− f (x−ε)) +

∫
|y|≥ε

ln |y| f ′(x− y) dy

→

∫
R

ln |y| f ′(x− y) dy as ε→ 0.

In particular, if we take x = 0 and X = C, we see that the principal value

P.V.
∫
R

1
y

f (y) dy

is well defined as tempered distribution.

Theorem 3.25. If X is a Hilbert space, then the Hilbert transform extends to a
bounded, linear operator on L2(R;X).

We give two different proofs for this fact.

Proof (First proof of Theorem 3.25). Our first proof uses the Fourier transform.
We prove that for every f ∈ S(R;H) one has

H f = F −1MsgnF f ,

where Msgn is the multiplication operator associated with the sign function,
that is, Msgng := sgn · g for appropriate functions g. If the above equality is
true, then

Lemma 3.26 (Cotlar). Let (Tn)n∈Z be a sequence of bounded, linear operators on
a Hilbert space H. Assume that

|TnT∗m|L(H), |T∗nTm|L(H) ≤ an−m,

where
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n∈Z

a
1
2
n =: A <∞.

Then:

a) For every finite I ⊆Z
|

∑
n∈I

Tn|L(H) ≤ A.

b) For every finite family (Iα)1≤α≤m of finite, mutually disjoint Iα ⊆Z one has

|

m∑
α=1

T∗IαTIα |L(H) ≤ A2,

where
TIα :=

∑
n∈Iα

Tn.

c) The series
∞∑

n=−∞

Tn

is strongly convergent.

Proof. (a) Recall that for every operator T ∈ L(H) and every k ∈N one has

|T|2
L(H) = |TT∗|L(H) and |T|2k

L(H) = |(T∗T)k
|L(H).

In fact, using the Cauchy-Schwarz inequality in its full form (including the
equality), we obtain

|T∗T|L(H) = sup
|x|H≤1

|T∗Tx|H

= sup
|x|H , |y|H≤1

〈T∗Tx, y〉H

= sup
|x|H , |y|H≤1

〈Tx,Ty〉H

= sup
|x|H≤1

|Tx|2H

= |T|2
L(H),

which is the above equality for k = 1. Iterating this equality, and using that
(T∗T)∗ = T∗T, we obtain first

|T|4
L(H) = |T∗T|2

L(H) = |(T∗T)2
|L(H)

and then the above equality for all powers k = 2m (m ∈N). The full claim fol-
lows by writing k ∈N in its binary extension. Having proved the above equal-
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ity, one sees that assertion (a) follows from (b), namely when one chooses
m = 1.
(b) Take now a finite family (Iα)1≤α≤m of finite, mutually disjoint Iα ⊆Z. Let

∆ :=
m⋃
α=1

Iα× Iα ⊆Z×Z,

the union being disjoint. Then

S :=
m∑
α=1

T∗IαTIα =
∑

(i, j)∈∆

T∗i T j

is selfadjoint, nonnegative and, for every k ∈N one has

|Sk
|L(H) = |S|k

L(H).

However,
Sk =

∑
(i1, j1),...,(ik, jk)∈∆

T∗i1T j1 . . .T
∗

ik
T jk

We have the two estimates

|T∗i1T j1 . . .T
∗

ik
T jk |L(H) ≤ a(i1− j1) · · · · · a(ik− jk)

and
|T∗i1T j1 . . .T

∗

ik
T jk |L(H) ≤ a(0)

1
2 · a( j1− i2) · · · · · a( jk−1− ik) · a(0)

1
2 .

Hence

|S|k
L(H) ≤ a(0)

∑
(i1, j1),...,(ik, jk)∈∆

a(i1− j1)
1
2 · a( j1− i2)

1
2 · · · · · a( jk−1− ik)

1
2 · a(ik− jk)

1
2

≤ a(0) |I|

∑
j∈Z

a( j)
1
2


2k−1

,

where I =
⋃m
α=1. Taking the k-th root and letting k tend to infinity, we obtain

the claim.
(c) Assume that there exists x ∈ H such that the series

∑
∞

n=−∞Tnx does not
converge. Then there exists ε > 0 and a sequence (Iα)α∈N of mutually disjoint,
finite subsets Iα ⊆Z such that, using the notation from (b),

|TIαu|H ≥ ε.

Then we can choose m ∈N large enough so that
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m∑
α=1

|TIαx|2H > A2
‖x‖2,

which is a contradiction to

m∑
α=1

|TIαx|2H =

m∑
α=1

〈T∗IαTIαx,x〉H

≤ A2
|x|2H,

which follows from (b).

Proof (Second proof of Theorem 3.25). For every n ∈Zwe define

∆n := {x ∈R : 2n
≤ |x| ≤ 2n+1

},

kn ∈ L1(R) by kn(x) :=
1
x

1∆n (x), and

Tn ∈ L(L2(R;H)) by Tn f := kn ∗ f .

From the equality T∗n = −Tn, and from Young’s inequality 1.21 we obtain

|TnT∗m|L(H) = |T∗nTm|L(H) = |TnTm|L(H) ≤ ‖kn ∗ km‖L1 .

Assume that n ≤m, and let x ∈R be positive. Then we can estimate

|kn ∗ km(x)| =

∣∣∣∣∣∣
∫

2n≤|y|≤2n+1

1
y

1
x− y

1∆m (x− y) dy

∣∣∣∣∣∣

≤



0 if x < [2m
−2n+1,2m+1 + 2n+1],

4 ·2−m if x ∈ [2m
−2n+1,2m + 2n+1],

2 ·2n
·2−2m if x ∈ [2m + 2n+1,2m+1

−2n+1],

4 ·2−m if x ∈ [2m+1
−2n+1,2m+1 + 2n+1].

While the second and fourth estimate follow directly from crude estimates
in the integral, the third estimate uses the equality

∫
R

kn = 0, which allows
one to write

kn ∗ km(x)
∫

2n≤|y|≤2n+1

1
y

1
x− y

dy

=

∫
2n≤|y|≤2n+1

1
y

(
1

x− y
−

1
x

) dy

=

∫
2n≤|y|≤2n+1

1
x− y

1
x

dy.
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As a consequence,

‖kn ∗ km‖L1 ≤ 2 ·
(
8 ·2n−m + 2 ·2n−m)

≤ 36 ·2−|n−m|.

The sequence (Tn)n∈Z thus satisfies the hypotheses of Cotlar’s lemma, so
that, for every f ∈ L2(R;H) the limit

lim
N→∞

N−1∑
n=−N

Tn f = lim
N→∞

 N−1∑
n=−N

kn

 ∗ f

exists in L2(R;H). Since for every f ∈ S(R;H) and every x ∈R

lim
N→∞

 N−1∑
n=−N

kn

 ∗ f (x) =

∫
2−n≤|y|≤2n

1
y

f (x− y) dy

= H f (x),

we have proved the boundedness of the Hilbert transform in L2(R;H).

Corollary 3.27. If X is a Hilbert space, then for every 1 < p <∞ and every Muck-
enhoupt weight w ∈ Ap the Hilbert transform extends to a bounded, linear operator
on Lp

w(R;X).

We say that a Banach space X has the Hilbert transform property if, for
some 1 < p <∞, the Hilbert transform extends to a bounded, linear operator
on Lp(R;X). By Theorem 3.25, Hilbert spaces have the Hilbert transform
property. From Theorem 3.22, we have the following general result.

Corollary 3.28. A Banach space X has the Hilbert transform property if and only
if for every 1 < p <∞ and every Muckenhoupt weight w ∈Ap the Hilbert transform
extends to a bounded, linear operator on Lp

w(R;X).

Corollary 3.29. a) Hilbert spaces have the Hilbert transform property.

b) If X has the Hilbert transform property and if 1 < p <∞, then Lp(Ω;X) has
the Hilbert transform property ((Ω,A,µ) being any measure space).

c) The spaces Lp(Ω) have the Hilbert transform property if 1 < p <∞.

Proof. (a) We already remarked that Hilbert spaces have the Hilbert trans-
form property by Theorem 3.25.
(b) This follows from the boundedness of the Hilbert transform on the
scalar-valued Lp(R) (Corollary 3.27) and Tonnelli’s theorem. In fact, for every
f ∈ Lp(R;Lp(Ω)) (this space can be identified with Lp(R×Ω) and Lp(Ω;Lp(R))),
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‖H f ‖pLp(R;Lp(Ω)) =

∫
R
‖H f (x)‖pLp(Ω) udx

=

∫
R

∫
Ω
|H f (x,ω)|p dω dx

=

∫
Ω

∫
R
|H f (x,ω)|p dx dω

≤ C
∫
Ω

∫
R
| f (x,ω)|p dx dω

= C
∫
R

∫
Ω
| f (x,ω)|p dω dx

= C‖ f ‖pLp(R;Lp(Ω)),

where C is the operator norm of the Hilbert transform on Lp(R).

3.6 Covering and decomposition

This section contains several covering and decomposition results which
where useful in this chapter.

Lemma 3.30 (Whitney decomposition of open sets). Let U (RN be an open,
proper subset. Then there exists a sequence (Qk) of mutually disjoint open (dyadic)
cubes such that

U =
⋃

k

Q̄k and

diamQk ≤ dist(Qk,Uc) ≤ 4diamQk.

Proof. Let
Q := (0,1)N

be a reference cube and consider for each k ∈Z the collection

Dk := {2k(x + Q) : x ∈ZN
}

of dyadic cubes of side length equal to 2k, and

D :=
⋃
k∈Z

Dk

the collection of all dyadic cubes.
Let now, for every k ∈Z,

Uk := {x ∈U : 2k < dist (x,Uc) ≤ 2k+1
},
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so that
U =

⋃̇
k∈Z

Uk.

We now put
Qk := {Q ∈ Dk : Q̄∩Uk , ∅}

and
Q :=

⋃
k∈Z

Qk.

One easily observes, by definition of the Qk, that for every Q ∈ Q

diamQk ≤ dist(Qk,Uc) ≤ 4
√

N diamQk.

Moreover,
U =

⋃
Q∈Q

Q̄,

but it may happen that the cubes in the collectionQ are not mutually disjoint.
In order to obtain a mutually disjoint union, we choose for every Q ∈ Q the
unique cube Qmax ∈ Q which contains Q and which has maximal diameter
(such a cube exists and is uniquely determined due to the fact that U is a
proper subset of RN, that is, the complement is nonempty). So if we take
the collection Q′ := {Qmax : Q ∈ Q}, then this collection satisfies all required
properties.
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Hardy-Littlewood maximal operator, 34
Hilbert transform, 58

boundedness in L2, 58

boundedness in Lp
w, 62

Hilbert transform property, 62

inequality
weak type (p,p), 38
Young, 7

integrable function, 3
integral, 3, 4
inversion formula, 17, 18

Lebesgue’s theorem, 5
lemma

Cotlar, 58
covering lemma, 34
Vitali, 36

dimension N = 1, 34
Whitney, 63

maximal operator
centered, 43
dyadic, 43
Hardy-Littlewood, 34
sharp, 43, 56

measurable function, 1
Muckenhoupt weight

A∞, 42
Ap, 38

multi-index, 8

operator
Calderon-Zygmund, 51
maximal operator, 34
Rubio de Francia, 46
subadditive, 32
sublinear, 32

Parseval’s identity, 21
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partial derivative, 9
for distributions, 25
weak partial derivative, 12

Pettis’ theorem, 1
Plancherel’s theorem, 21, 22
principal value, 58

regularization, 9
reverse Hölder inequality, 41
Riemann-Lebesgue theorem, 15
Rubio de Francia

extrapolation theorem, 45
iteration, 46
operator, 46

Schwartz test function, 22
sharp maximal operator, 43, 56
shift-group, 9
Sobolev space, 11

fractional, 28
space

Lebesgue, 6
Sobolev

fractional, 28
Sobolev space, 11

standard conditions, 51

step function, 1
support, 9

tempered distribution, 24
test function, 9
theorem

Coifman-Fefferman, 56
Lebesgue, 5
Marcinkiewicz interpolation, 32
Muckenhoupt, 43
Parseval, 21
Pettis, 1
Plancherel, 21

in Hilbert spaces, 22
reverse Hölder inequality, 41
Riemann-Lebesgue, 15
Rubio de Francia extrapolation, 45
Young, 7

weakly measurable, 1
weight, 37

Muckenhoupt
A∞, 42
Ap, 38

Whitney decomposition, 63


