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Chapter 1
Sobolev spaces

1.1 The space of test functions

For subsets Q of RN, we denote by
C(Q) :={u:Q — C : uis continuous}

the space of continuous complex-valued functions. Sometimes, we only con-
sider real-valued functions, especially when order properties such as posi-
tivity or comparison are involved, but this will be clear from the context. If
0 is in addition measurable, then we denote by

LP(Q):={u:0Q — C : u is measurable, f [ulf < oo} (pe[l,00))and
Q
L®(Q):={u:Q — C : uis measurable, and {u > c} is a null set for some C > 0}

the usual Lebesgue spaces which are equipped with the norms

1
P
[[eellpy == (f Iul”) (p €[1,0)), and
Q
[lu||pe :=inf{C > 0: {u > C} is a null set}.

Strictly speaking, LP(Q2) is a space of equivalence classes of measurable func-
tions but it is often convenient to work with representatives instead of equiv-
alence classes. For measurable Q C RN, we set

L’ (Q):={u:Q — C : uis measurable and for every K compact flul” < o0},
K

loc

the space of locally p-integrable functions. For every p € [1, o] one has
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LP(Q)cL) (@) <L (Q)and

loc

C(Q)CLX(Q)CL! (Q).

loc loc

Hence, among all spaces defined above, L}OC(Q) is the largest space.
For a function u € L}OC(Q) we define the support by

suppu :=Q\ U U

UcQ rel. open

u=0a.e.on U
By definition, the support is relatively closed in Q (but it is in general not
closed in RN). The definition of the support depends on the underlying set
0, and although the spaces L7([0,1]) and L”((0,1)) coincide, the support of
their elements do not coincide in general; if nothing is said explicitly, the
underlying set (2 is usually supposed to be open in RY.

We say thata functionu € L}OC(Q) has compact supportif supp u is compact,

and we set

LP(Q) := {u € [F(Q) : suppu is compact},
Ce(Q) :={u € C(Q) : suppu is compact},
CH(Q) = C(@Q N CHQ),

C(Q) :=C(Q)NCZ(Q).

For the definition of the latter two spaces we suppose that Q2 is open. The
space C(Q) is sometimes also denoted by D(Q). Elements of C°(Q2) are
called test functions; C2°((2) is called the space of test functions.

Example 1.1. The function

1 N
e P f P =YY, %2 <1,
y— - 1
u(x) :=

0 else

is a test function on RN and suppu is the closed unit ball.

Exercise 1.2 Show that for a function u € C(Q)

suppu ={xeQ : u(x) # O}Q,

where the closure is understood in the relative Euclidean topology induced on Q.

Exercise 1.3 Show that every u € L}OC(Q) is almost everywhere equal to 0 on Q\
suppu.
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1.2 The convolution

Theorem 1.4 (Young). Fixp € [1,00], f € LY(RN) and g € LP(RN). Then, for almost
every x € RN, the function
y fle=y)gy)

is integrable on RN, and the function f+g: RN — C defined by

(9= [ =g dy
RN
belongs to LP(RN). Moreover,

ILf = &llr < Nl fllpa lglly

Proof. The case p = 1. Let us first assume that p = 1. Then Tonelli’s theorem
yields

fRNwalf(x_y)g(y)mydxzLNLNV("‘WW@(WW?V

_ fR ) fR IFldxlgpl dy

=[Iflpligly < oo

In particular, the left-hand side is finite which is only possible if for almost
every x € RY, the integral J;RN |f(x —y)g(y)| dy is finite, that is, the function
y = f(x—y)g(y) is integrable. Since the left-hand side equals |[f * gll;1, the
above inequality also yields ||f* gll;1 < |Ifll;111gll;1-

The case 1 < p < co. The assumption g € LP(RY) implies |gl € L}(RN), and
then the first step implies that for almost every x € RN, the function y + | f(x —
Iy is integrable. This, in turn, is equivalent to saying that for almost

1
every x € RN, the function y — |f(x — y)|? |g(y)| is p-integrable. On the other
L /
hand, |f|”" € LP'(RN), where p’ = ;%1 is the conjugate exponent. Hence, by

Holder’s inequality, for almost every x € R, the function y — |f(x — y)l|g(y)|
is integrable, and

Fgl< [ 1e=ligldy

s(f]RN If—y)l dy)P (fRN P dy)p

p-1

i ([ e i ay)
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Raising both sides of this inequality to the p-th power and integrating over
RN yields, by another application of Tonelli’s theorem,

If=glf, = f}R g d
<ii [ [ Ve nlisr dyds
RN JRN

T _ p
i [ [ e ldslgop ay
= A1, g -

From here follows the claim for p € (1, o).
The statement for p = oo is evident.

Corollary 1.5. Fix p € [1,00], f € L} (RN) and g € LE(RN) (or f € L} (RN) and
g € LY(RN)). Then, for almost every x € RN, the function

y= f=1)8y)
is integrable on RN, and the function f+g: RN — C defined by

(9= [ fe=gdy

belongs to L} (RN).

We call the function f * g from Theorem 1.4 and Corollary 1.5 the convo-
lution of f and g. Let us discuss some properties of the convolution and its
use in connection with the approximation of LP-functions by test functions.

For subsets A, BC RN we set

A+B:={x+y:x€A, yeB}.

Lemma 1.6 (Support of a convolution). For appropriate functions f and g one
has

supp f+g Csupp f +suppg.
Proof. For x ¢ supp f +supp g one has

(x—supp f)Nsuppg =0,

and therefore
(9= [ fr-y)g(y) dy =0.
(x—supp f)Nsupp g

In other words, f*g =0 everywhere on the complement of supp f +supp g.
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For every h € RN and every function f : RN — C we define the shift
mf RN > C,
T f(x):= f(x+h) (xeRN).
Lemma 1.7 (Strong continuity of the shifts). For every p € [1,00) and every
f € LP(RN) one has
}gr(l)”’fhf—fﬂm =0.

Proof. For characteristic functions f = 1o with Q = (aq,b1) X--- X (an, bn), the
claim follows from Lebesgue’s dominated convergence theorem. In fact, this
function is continuous at almost every point, except on the null set dQ. By the
triangle inequality, the claim thus holds for every f € U, where U is the linear
span of characteristic functions of the form 1g. By properties of the Lebesgue
measure and by properties of p-integrable functions, the space U is dense in
LP(RN). Let f € LP(RN) and ¢ > 0. Choose g € U such that ||f — gll;» < €. Then

limsup |7, f — fllrr
h—0

<limsup(llt,f — tgllrr +1Tng — gllr +11g = fllzr]
h—0

<2e.
Since ¢ > 0 was arbitrary, we obtain the claim.

Theorem 1.8 (Approximation of the identity). Let ¢ € L1(RN) be positive and
such that fRN @ =1. Set

Pulx) = n pnx) (xe€ RN, neN),

so that ¢, € LY(RN) is positive and f]RN @n = 1. Then, for every p € [1, 00) and every
feLRY),

Tim £+ = flly =0
Proof. Assume first that p = 1, that is, f € L'(RY). Then, by an application

of Tonnelli’s theorem, Lemma 1.7, and Lebesgue’s dominated convergence
theorem,

dx

i gu=ss = [ | [ S=dput dy= s

:fRN'LN[f(x—y)—f(X)](Pn(y)dy

Y
< fR } fR =) ol ave) ay
= [ e gy

— (0asn— oo.

dx




6 1 Sobolev spaces

Assume next that p € (1,). Let f € L' N\L*(IRN). Recall the interpolation
inequality

1 1
Al <A AN,

which is a straightforward consequence of Holder’s inequality. Applying
this inequality to f*¢, — f € L'NL*(RN) (by Young's inequality), we obtain,
by applying also the first step,

1 x

If*@u = fllr <I1f +@n = fII N *@n = fllfe
1 1
<Nf+@u—=fII}, @I flI=)?

—0asn— oo.

Now let f € LP(RN) be arbitrary, and let ¢ > 0. Since L! N L®(IRN) is dense
in LP(Q), there exists g € L' NL®(RN) such that IIf — gllr < . Hence, by an
application of Young’s inequality and the preceding inequality,

limsup||f * @, — fllr

n—oo

<limsupl||f *@u = g*@ullr +11g*Pn— gy +Ig— fllrr]

n—oo

<limsupl[llf - gllrr llpullr +11g = fllrr]

n—oo

<2e.
Since ¢ > 0 was arbitrary, the claim follows.

Theorem 1.9 (Smoothing effect of the convolution). For every f € Llloc(]RN )
and every g € CK(RN) (with k € N U {oo}) one has f+g € CK(RN) and for every
multi-index o € INS] of length |a| < k one has

I (f*8) = f*(9"9).

Proof. Assume first k = 0. For every xp € RN one has, by continuity of g and
by an application of Lebesgue’s dominated convergence theorem,

limsup|(f *g)(x) - (f *&)(xo)| < limsup fRN IfWIIgx=y)—gxo -yl dy =0,

X=X X=X

and hence f*g is continuous at xg. Since xy was arbitrary, we have proved
that f * ¢ is continuous.

Assume next that k = 1. Fix x € RV, j€{l,...,N}, and let ¢; € RN be the
j-th canonical unit vector. Then, by an application of Lebesgue’s dominated
convergence theorem again,
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(f*g)(x+tej)—(f*g)(x)= f f(y)g(xﬂej—y)—g(x—y) dy
t RN t

f ®) 8 (x—y)d
—_ —_— —_—
v Wy G-y dy
98 ) yast -0
= * —_ .
(5o as
Since x € RN was arbitrary, we have shown that the function f = ¢ is partially

differentiable with respect to x;, and the partial derivative aix,- (f *g) coincides

with f+ %. Since the latter function is continuous by the first part of the

proof (k = 0), we obtain that f+g is continuously partially differentiable,
which is equivalent to saying that f * ¢ is continuously differentiable, that is,
fxgeCHRN).

The case k > 1 follows by induction.

For every subset A C RN and every ¢ > 0 we define
A= {xeRN : dist(x,A) < ¢},

where
dist(x,A) :==inf{|lx -yl : y € A}.

Lemma 1.10 (Further examples of test functions). For every compact subset
K C RN and every ¢ > 0 there exists a test function ¥ € CZ(RN) such that

0 < ¥(x) <1 forevery x e RN,
Y(x) =1 for every x € K, and
Y(x) =0 for every x € RN \ K¢,

Proof. Let K< RN be compact and ¢ > 0. Let ¢ be a scalar multiple of the test
function from Example 1.1, so that ¢ > 0 and f]RN ¢ =1. Put

0= 0) (weRY)

Then ¢, € CX(IRN) is a positive test, too, supp . = B(0,¢) (the closed ball
with center 0 and radius ¢) and f]RN @e =1. Let

P = 1ge * @e.

By the smoothing effect of the convolution (Theorem 1.9), ¥ € C*(RN). By
Lemma 1.6 on the support of the convolution,

supp) C K +B(0,¢) = K*.
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In particular, the support of ¢ is compact, that is, 1 € CX(RN), but this
inclusion also shows that i =0 on RN\ K2, Since 1g: and @, are positive,
their convolution is positive, too, that is, ¢’ > 0. Moreover, for every x € RV,

o) = f L (= Y)pe(y) dy < f ) dy=1,
IRN ]RN

so that 0 < ¢ <1 on RN. Finally, for every x € K, the preceding inequality
turns into an equality, that is, 1) = 1 on K. Since ¢ > 0 was arbitrary, we have
proved the claim.

Theorem 1.11 (The test functions are dense in LP(Q)). For every open subset
Q C RN and every p € [1,00) the space of test functions C2(Q) is dense in LP(Q).

Proof (by truncation and reqularization). Let Q C RN be open, and let f € LP(Q).
Truncation. First, we choose an increasing sequence (K;) of compact sub-
sets of (2 such that [, K;; = Q. For example, the sequence given by

K, :={x € Q:dist(x,0Q) > % and ||x|| < n}

will do. Next, we choose a sequence (¢,) of positive reals such that
4e, < dist(K,,00).

Finally, for each n we choose a test function (cut-off function) ¢, € CZ(Q)
such that 0 < ¢, <1lon Q, ¥, =1 on K, and ¥, =0 on Q\K}" (see Lemma
1.10). By choice of the K, and the 1;,, the sequence (i}, is uniformly bounded
by 1 and converges pointwise to the constant function 1. In particular, by
Lebesgue’s dominated convergence theorem,

limsup ||y, — fII, = limsup . |F () (x) = F(x)IP dx = 0.

n—oo n—-oo

Regularization. Let ¢ € CX(RN) be a positive test function such that
supp¢ C B(0,1) and f]RNgo = 1. For example, one may take a scalar multi-
ple of the test function from Example 1.1. For every m € N we set

)= e p(=) @eRY).

Then @, € C°(RV) is positive, supp @, € B(0, 2) and [,y @ = 1. By Theorem
1.8, foreveryn € N,

r&i—I}(}o”ﬁp” = (fYn)*@mllr =0,

where we have extended the function fi,, by 0 outside (2 in order to take the
convolution in RN. Since the sequence (fi,,) is convergent by the first step,
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and since it is thus relatively compact, the above limit is uniform in n € IN.
In particular, when we put

fn = (f',bn)*@n,

then
Tim |If, = fllyy = 0.

Moreover, by Theorem 1.9 on the smoothing effect of the convolution, f, €
C*(RN). By Lemma 1.6 on the support of the convolution,

supp fn € supp (f ) +supp ¢n
C supp ¢, +B(0, ,)
C K"+ B(0,¢&,)

g Kzfn .

By the choice of ¢, the support of f, is thus contained in (2, so that f, € CZ°(Q).
Summing up, (f,) is a desired sequence of test functions in CZ°((2) which
converges in L(Q2) to f. Since f was arbitrary, this implies the claim.

In the truncation part of the preceding proof, it was actually not really im-
portant that the truncation function (cut-off function) 1, was a test function:
the characteristic function 1, would also be fine. However, as a corollary
of the above proof, which uses the slightly more complicated truncation
functions, we obtain the following result.

Theorem 1.12 (Uniqueness by testing). Let Q CIRN be open and f € L} (Q). If

loc

f fo =0 for every p € CZ(Q),
Q

then f =0.

Proof. Choose (y,) and (¢,), and define (f;) as in the proof of Theorem 1.11
above. If f € L(Q), then, by Theorem 1.11, f, — f in L!(Q). On the other
hand, the assumption implies f, =0 on 2, and hence f =0. If f is only
locally integrable, then one may apply this reasoning to f1,, where w € Q is
an open subset such that @ is compact and contained in Q.

1.3 Weak derivatives and Sobolev spaces

We use the following notations for the partial derivative with respect to the
j-th variable in RN:

— or &x]. or d;.

8xj
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Given a multi-index a € ]NZOV , we use also the abbreviation
Vo4 104
oY = axll ..... axg

for the partial derivatives of order |a].
Let Q C RN beanopenset, f € L}DC(Q) anda € ]N(I;]. Wesay thatd“ f € Lllac(.())
if there exists ¢ € L} (€2) such that

f 0% = (-1) f Q¢ for every ¢ € CZ(Q). (1.1)
Q Q

It follows from Theorem 1.12 that the function g is uniquely determined by
this identity. We write g =: * f and call 9“ f the weak a-th partial derivative of
f. We say that f is k times weakly differentiable if 0 f € L}OC(Q) for all multi-

indices a € INSI with |a| < k. By Gaufy’ Theorem, every k times continuously
differentiable function f: (Q — C is k times weakly differentiable, and the
classical partial derivatives and the weak partial derivatives coincide.

Example 1.13. Consider on (2 := (-1, 1) the absolute value function f(x) = x|
(x € (=1,1)). Then, for every ¢ € CZ((-1,1)),

1 ] 1
£1f¢'=£1(—x)¢'(x) dX+f0 x¢’ (x) dx

0 1
= o'y~ [ Dpto) dx g0 - fo P dx

1
:_f 8P
-1

-1 ifx<0,
g(x) =
1 if x> 0.

where

We have thus shown that the absolute value function f is weakly differen-
tiable and f” = g. The interval (-1, 1) in this example may be replaced by any
other open set in R.

For every k € N and every p € [1,00] we define the Sobolev space
WEP(Q) := {f € [P(Q) : f is k times weakly differentiable
and 0" f € LP(Q) for every a € INS], |o] < k.

One easily verifies that Wr?(Q) is a vector space. We equip this space with
the norm
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1
Z

fllyep = | Y, 10° fllr | if p € [1,00)

aEIN{)\]
lal<k

and
”f”wk,oo = Sup ”aaf”Loo 1fp =00,

aEJN{)\’

lal<k

so that WE?(Q) is a normed space. We also define the Sobolev spaces

K, ——WkP
W, (Q):=C2(Q)

that is, the closure of the space of test functions in W*?(Q) with respect to
the norm || -|| yx,. Finally, we set

H*(Q) := WF*(Q) and
HE(Q) = WEA(Q).

Both spaces are equipped with the inner product

o= Y f,"z,

aE]NON
larl<k

which turns them into inner product spaces. Note that the norm induced by
(-, )+ coincides with the norm ||« [z =: I - ll-

Theorem 1.14. The Sobolev spaces WEP(Q) and Wg’p(()) are Banach spaces. They
are separable if p € [1,00), and reflexive if p € (1,00). The spaces H*(Q) and H’é(Q)
are separable Hilbert spaces.

Proof. Let A:={ae ]NON : || < k} be the set of all multi-indices of length less

than or equal to k. Consider the cartesian product LP(Q2)" equipped with the
norm

p

I acallgn =| Y, If*l | ifpell,eo)
aeNN
0
lal<k
and
”(fa)aeA”(Loc)A ‘= sup ||fa||Loo 1fp =00,
N

aeN 0
lal<k

Then the mapping
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jrWEP(Q) > LP(Q),  f o (0 Plaea

is an isometry. Since LP((2) is a Banach space, it thus suffices to show that the
range of j is closed in LP(Q)%.

Completeness. Let (f,,) be a sequence in WEP(Q) such that ((9% fi)aca) con-
verges in LP(Q)* to some element (f*),ca. Put f := f00). By definition of
WkP(Q) and the weak partial derivatives, for every a € A, every n € N and

every ¢ € C°(Q),
f fndp = (‘Dlaf 9 futp.
Q Q

The convergences f, — f and 0* f, — f* in LP(Q) thus imply that

f fo%p = (1) f fp forevery a € A, ¢ € CZ(Q).
Q Q

Hence, by definition of the weak partial derivatives, f € W5?(Q)and 9 f = f¥.
In other words, (f*)aea = j(f), and we have shown that the range of jis closed.
In other words, WX (Q) is complete.

Separability. The space L(Q) being separable if p € [1,00), the cartesian
product LP(Q)" is separable, too. Since every subset of a separable metric
space is separable (Exercise!), j(W*P(Q)) = W*P(Q) is separable if p € [1, 00).

Reflexivity. The space LP((Q2) being reflexive if p € (1, 0), the cartesian prod-
uct LP(Q)" is reflexive, too. Since every closed subspace of a reflexive Banach
space is reflexive, j(W*?(Q)) = WFP(Q) is reflexive if p € (1,00).

Theorem 1.15. For every p € [1,00), the space C°(RN) is dense in WYP(RN). In
other words, Wé'p (RN) = WLP(RN).

Proof. Truncation and regularization. In fact, one may take the same sequence
(fn) as constructed in the proof of Theorem 1.11, ensuring, however, that the
cut-off functions ¢, have uniformly bounded gradient. This can easily be
achieved by looking into the proof of Lemma 1.10.

Remark 1.16. For general open sets Q C R, the spaces Wé’p (Q) and WP (Q)
need not coincide. For example, they do not coincide for any interval Q =
(a,b) # R (see Theorem ?? below).

Theorem 1.17 (Friedrichs). Let p € [1,00) and let Q C RN be open. Then for every
f € WYP(Q) there exists a sequence (f,) in CZ(Q) such that

fn— fin LP(Q) and
Vf, = Vfin LF(w) for every w CC Q.

Proof. Truncation and regularization. In fact, one may take the same sequence
of approximations as constructed in the proof of Theorem 1.11.



1.3 Weak derivatives and Sobolev spaces 13

Let Q € RN be open. For every f € L}OC(Q), w cC Q and h € RN with
|h| < dist(w,dQ) one defines 7, f by

T f(x):= f(x+h) (x€w).

Theorem 1.18. Let Q C RN be open, p € (1,00], and f € LP(Q). Then the following
assertions are equivalent:

D) feWh(Q).
(if) There exists a constant C > 0 such that, for every ¢ € CZ°(Q) and every

jell,...,N},
Ufaf(P
Q

(iii) There exists a constant C > 0 such that, for every @ CC Q and every h € RN
with |h| < dist(w, Q)

< Cllglly -

If = 7nfllr < Clhl.

Moreover, if the assertions (i)—(iii) are true, then one may take C = ||V fllp in (i)
and (iii).

Proof. (i)=(ii) follows from the definition of weak derivative and an appli-
cation of Holder’s inequality.

(if)=() Fix j € {1,...,N}. By the assumption in (ii), the linear functional
Li:p— fQ fdjp is continuous on C°(Q) equipped with the norm induced
from L¥' (Q). Since the test functions are dense in L' (Q) by Theorem 1.11, we
may extend L; to a bounded linear functional on L¥'(Q). Recall that the dual

space of L' (Q) can be identified with LP(Q) (here we use p # 1), that is, there
exists a function g; € LP(Q2) such that, for every ¢ € CZ(Q)

Li(p) = f foip= f i
Q Q

By definition of the weak derivative, this means that d;f € LF(Q2) (and 9, f =
—g;)- Since j was arbitrary, we have thus proved f € W'?(Q).

(i)=(iii) Assume first that f € C2(Q). Fix w cc Q and h € RN such that
|h] < dist(w,dQ). Then

1
flx+h)—f(x) = fo %f(x+th) dt

1
= f Vf(x+th)h dt,
0

and therefore
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1
f [Tf () — f(x)IP dx < f [P f IV f(x + th) dt dx

= [hp f f IV f(x+ th)P dox dt

< Ih f A1)yt
=P IV

where we have set o’ := 0 = {x e RN : dist(x,w) < |h|}. Note that ' cc Q.
If f € W'P(Q), then, by Friedrichs’ theorem (Theorem 1.17), there exists a
sequence (f;) in C°(Q2) such that f;, — f in LP(Q) and Vf, — Vf in LF(o’).
From the above inequality we thus obtain

IThf = fllery < IV fllp@ny < TRV fllr)-

(iii)=(ii) Let p e C,(Q)and j € {1,...,N}. Choose w cC Q such that supp ¢ C

w. Then
th/(p_(P
| s =tim [ P

. T—tejf_f
=lim | ——¢.
t—0 o) t

By assumption, for every f € R\ {0} small enough,
IT—te;f = fllr(w) < ClH,

and hence, by Holder’s inequality,

[

Remark 1.19. Theorem 1.18 is not true for p = 1. Only the implications

< Cliglly-

() = (i) & (iii)

remain true. The space

< Cligll=}

{feL}(Q): AC>0Vp e CX(Q)Vje(l,...,N} ‘f fojp
Q
is usually denoted by BV(Q). Elements of this space are called functions of
bounded variation.

Theorem 1.20 (Composition rule). Let Q C RN be open and p € [1,00]. Let
¢ € CY(R) satisfy g(0) =0 and ||¢’|lL~ =: M < oo, and let f € W'P(Q). Then the
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composition g o f belongs to W'#(Q) and
9j(ge f)=(g' o )-9jf.

Proof. The assertion is true for f € CZ(Q) and follows for general f € W7(Q)
from an approximation argument using Friedrichs’ theorem (Theorem 1.17).
Note that for every x € Q and every f € WP(Q),

18(f ()l = 18(f (x)) = g(0)] < M|f(x) - O] = M| f ()],

and therefore go f € LF(Q2). Moreover, [(g" o f)-d;f| < M|d;f], and hence (g’ o
f)oifelP(Q).If fe WLP(Q), then there exists a sequence (f,) in C(Q2) such
that f, — f € LP(Q) and Vf, — Vf in LP(w) for every w cC Q. Fix ¢ € C(Q)
and je{1,...,N}. Then, for every n € N,

fQ 8o fudjp =~ fo (& 0 fu)9jfnp-

Letting n — oo, we thus obtain

[ sosoi0=- [ @onase

and from here and the above estimates follows the claim.

For real functions f, g: QO — R we set

fVvg:=suplf,g (pointwise),
fAg:=inf{f,g} (pointwise),

fri=fvo,
f:=(=f)v0, and
Ifl:=f"+f.

Corollary 1.21. For every open subset Q C RN and every p € [1,00), the real space
WLP(Q) is a vector lattice, that is, for every f, g € W'P(Q) one has f*, =, |fl,
fVvg fAgeWY(Q). Moreover,

Iif" =Li>09jf,
9if” = Liy<0,9if,
9jlf1=sgn(f)9;f,
9i(fV &) =Nif>g 9jf +Lif<g9j8, and
9i(f A8) =Nif<g 9jf +1if>9j8.
Proof. For f* one would like to apply Theorem 1.20 with g given by
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s ifs>0,
g(s) =
0 ifs<0.

However, since this function is not continuously differentiable, one applies
Theorem 1.20 with g, given by

s—5 ifs>eg,
ge(s):=44s? if0<s<e,
0 if s <0,

which is continuously differentiable, and then one passes to the limit ¢ — 0+.
The other cases follow from this case by noting succesively that f~ = (- f)*,

f=f"+f fvg=g+(f-g)Tand fAg=f~(f-g)"

1.4 Sobolev spaces in one dimension

In this section, let I = (a,b) be an interval in R with —co <a < b < oo.

Lemma 1.22. Let f € L}OC(I) be weakly differentiable with weak derivative f = 0.
Then f is constant.

Proof. Choose ¢ € CZ(I) such that fI Y =1,and putc:= j; f1. Then, for every

@ € CZ(I) the function ¢ —( j; @)1 has integral equal to 0 and is therefore the
derivative of an other test function. By definition of the weak derivative and
the assumption, we therefore obtain

0= [ o= [ o)

- [Fo-[or[r0
:flf(P_Cfl(P
=fl(f—c)</3-

By Theorem 1.12, this implies f = ¢, and therefore f is constant.

Theorem 1.23. For every p € [1,00] the following assertions are true:

a) Every function in f € WYP(I) admits a continuous representative which ex-
tends continuously to the closed interval I. If this continuous representative is
denoted by f, too, then for every s, t€l, s <t,
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t
) £5) = f £ dr.

The continuous representative is bounded, and vanishes at +oco (if b = +00)
and —oo (if a = —00) if p < 0.

b) The embedding WP (I) — Co(I) is continuous. More precisely,
_1
IfllLe < (LAY P [Ifllyyap for every f € WD),

where L :=b—a € (0,00] is the length of the interval I.

. . (]
Proof. Fix s €I and define g:1 — C by fs f(7) dz. It follows from Lebesgue’s
dominated convergence theorem that g is continuous on I and also that
it admits a continuous extension to the closure of I. Moreover, for every

¢ € C2(D),
[so=[ b | ' dept i
— [ [ razpwar+ b | o) et
[ [ o0 s [ b | ' dtf@) dn

S . b N
:—f (1) f(7) dT—f () f(7) dt

=—flf¢-

By definition, g is thus weakly differentiable and ¢ = f. Hence, by Lemma
1.22, g f is a constant function. In particular, f = g+ ¢ admits a continuous
representative which extends continuously to the closure of I. If we denote
this continuous representative by f, too, then we see from g(s) = 0 thatc = f(s),
and therefore, by the definition of g,

t
- £5) = f £(0) d.

Let us show boundedness of functions in W1#(I). By definition, every func-
tion f € WY*(I) belongs also to L®(I) and [|f[lL~ < [[fllyy1.- So consider the
case when f € W#(I) and p < oo. Let | C I be an interval of length equal to
L A1. Then, by the above formula, for every s, t€ ], s <t,
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O <If6)1+ f i

S
<1fEI+1E=sIP I fllr -

Integrating this inequality over s € ], we obtain
1+L -
CADIOI [ 1O+ CAD™ Il
J

> Ly
<@ADT fllrgy+ LAY 7 1l

or

-1 1
fllLey < (LAL) P I fllpgy + L ADP I fllr -

From this inequality one deduces the claim in (b). It remains to show that f
vanishes at +oo (if b = +00) and —oo (if 2 = —00) if p < 0. Assume that b = +co.
Then, by the preceding inequality (applied with L = 1), for every s €1,

IAIE 1, = A1, + A1,
[e]

p IP
2 Z[”f”LP(s+n,s+n+l) + ||f||Lp(5+ﬂ,5+”+1)]
n=0

(o)
4
2 Z ||f||L°°(s+n,s+n+1)’
n=0

and since the left-hand side is finite, this yields
tll)n;lo |f(t)| = r}l_l;l(}o ||f||L°°(s+n,s+n+1) =0.

The case a = —c0 is discussed similarly.

Corollary 1.24. Let I € R be an open interval. A continuous function f:1 — R
is Lipschitz continuous if and only if f is weakly differentiable and f € L=(I), and
then the Lipschitz constant of f equals ||f]|re.

Proof. Assume first that f € L*(I). Then, by Theorem 1.23, for every s, t €1,
s<t,

t . .
() F6) < f ) dr <l lE—s,

and thus f is Lipschitz continuous with Lipschitz constant L = | f [|peo.

Conversely, assume now that f is Lipschitz continuous with Lipschitz
constant L. Let I’ CC I be an open, bounded subinterval. Since the closure
of I’ is compact and contained in I, f is bounded on I’. Let ] cC I’ be a
subinterval, and let i € R be such that || < dist(],dI’). Then
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It f = fllLeo(y = SU}J lf(t+h)— f(HOI < LIhn|.
te

By Theorem 1.18, this implies f € WL(I") and ”f”Loc(p) <L.Sincel’ cC Iwas
arbitrary, we find ||fllpeq) < L.

1.5 The extension property

We say that an open subset 2 C RN has the W*” extension property if there
exists a bounded linear operator E : W*?(Q) — W*P(RN) such that, for every

feWH(Q), Eflg = f.

We say that the boundary of an open set Q C RN is C!-regular (and we
write dQ € C') if it is a C!-manifold. The aim of this section is to prove the
following result.

Theorem 1.25. Let QO C RN be an open set with compact, C'-reqular boundary.
Then Q has the W'F extension property for every p € [1,00].

The proof of this theorem is based on two lemmas.
Lemma 1.26. The half-space

]Rf:: {x:(x1,...,xN)e]RN s xn > 0}

has the W' extension property for every p € [1,00].
Proof. For every f € W'(RY) we define f: RN — C by

(x):= .
fl',—xn) ifxny <0,

5 {f («,xny)  ifxn>0,

where ¥’ = (x1,...,xn-1) € RN7! for x = (xy,...,xn). Moreover, for every j €
{1,...,N} we define
@iNH,xn) if x>0,
8j\x) =

(-1’ ), —xn) if xn <O,

where 0y is the Kronecker delta. Next, we choose a cut-off function7: R — R
such that

nis)=1ifls| > 1,
) 1
n(s) =0if |s| < 5
n(s) = n(—s) for every s € R,
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and we put 71.(s) = 1(s/¢) for € > 0. Finally, we define fj.(x) := n:(xn) (x =
(', xn) € RN).

Let @ € C®(RN). Then the support of the test function ¢}, does not in-
tersect the hyperplane {xy = 0}. Therefore, by Lebesgue’s dominated con-
vergence theorem, the substitution (xy,...,xn-1,XN) > (X1,...,XN-1,—XN), the
product rule and the definition of weak derivative, for every je {1,...,N},

- foip=
- éli%‘:— flRN fnéa](P

= lim | [ fn @@ s [ F0n.000r, - dx]

e—0+
= lim f]RNf(x)ﬁg(x)aj(p(x) dx + (=1)%N LNf(x)ﬁg(x)8j¢(x',_xN) dx]

-0+

e—0+

= lim fo(ij(ﬁg(xN)(p(x)) dx+(—1)‘5fN fo(x)aj(ﬁg(x)(p(x’,—xN)) dx
L ]R+ ]R+
- [ F0mI@ee -1 [ fEmwen’, ) dx]
RY RN
= lim [— fR (@) dx — (~1)°N f}R (OO, =) d
- [ FO0mI@e -1 [ FEmIwen’, ) dx]
RY RY
=- f P dx—(-1)'n f P, —n) d
RY RY

e—0+

- lim [ fR fERO )X () -+ (-1) f}R RO, ~x) dx].

If j # N, then d;f]. = 0, and thus the function under the lim-sign on the
right-hand side is equal to 0. If j = N, then, for R > 0 large enough (so that
supp ¢ < B(0,R)),
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limsup f F@)@ONTI)X)P(x) dx +(=1)° f FOONT)X)p(x’, —xN) dx
e—0+ |[JRY RY
<timsup [ IFQINLn)lIpQd, 1) - o', o)l dx
e—0+ z\x’\sR)
. lIm’{|eo
<limsup (5 <nye, If ()] — [IV@lleo 2€ dx
e—0+ z\x’\gR}
=0.

Hence, the limit on the right-hand side of the display above equals 0 for
every j € {1,...,N}. We have thus proved

f fojp=- f gip
RN RN

for every j€{1,...,N} and every ¢ € C°(RY). In other words, f € W#(RV)
arld djf = gjforevery j€{l,...,N}. By definition, f is an extensi~on of f,and
oy = 20 fllwip - Thus E: WH(RY) —» WH(RY), f - fis a desired
extension operator.

Lemma 1.27 (Partition of unity). Let K C RN be a compact set, and let (U;)1<i<n
be a finite open covering of K. Then there exists a finite family (p;)o<i<1 in C*°(RN)
such that

0<@;<1forevery0<i<n,

n
Y pi=10nRY,
i=0
supp @; € U, for every 1 <i<mn, and

supppo C RN\ K.

We call the family (¢;)o<i<n a partition of unity subordinate to the covering
(Ui<i<n:

Proof. Choose 6 >0, and define, for every i € {1,...,n},
Vi:={xeU; : dist(x,dU;) > 6}.

Then V; is open and a subset of U;. A simple compactness argument shows
that for 6 > 0 small enough, (V)1<i<, is a finite covering of K, too. Then we
define
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Then Al.% C U; for every i € {l,...,n}, the A; are mutually disjoint, and
ULy Ai = RN, Let € CX(RYN) be a positive test function such that f]RN p=1
and supp € B(0,$), and put @; := 14, ¢ (0 <i < n). Then ¢; € C°(RN) by the
smoothin effect of the convolution (Theorem 1.9), supp ¢; C U; by construc-
tion, and

n n
Z(Pi = (ZlAi)*(P= Ly axp=1*p=1
=0 =0

Proof (of Theorem 1.25). Let ((U;,1;))1<i<n be a finite atlas of dQ, where U, are
open sets and i; : U; — RN are Cl—diffeomorphisms from U; onto V; :=;(U;)
such that ;(U; N Q) CRY, ¥;(U;NdQ) C{x e RN : xy =0} and ¢;(U; N Q°) C
{x e RN : x5 <0}. We can always find such a finite atlas by definition of a
C!-manifold and since dQ is compact. Moreover, without loss of generality,
we may assume that the sets V; are symmetric with respect to the hyperplane
{XN = 0}.

Let (¢i)o<i<n be a partition of unity subordinate to the covering (U;)1<i<n-
Given f € W'P(Q), we put f; := (fgi)la (0 <i < 1). Then f; € W'P(Q) and

supp fi Csuppp;NQ CU;N Q.

The function fp has compact support in (2 and may thus be extended by
0 to RN. We denote this extension by fy and note that fy € W'?(RN) and

follywrrv, = 1follwroo)-

For 1 <i <N, the functions f; o ¢;1 belong to W7(IRY) and have support
in V;NRY. They may thus be extended to functions in W'#(RN) by reflection
(see Lemma 1.26 and its proof). We denote these extensions by f,fo\t,bj_l and
note that these extensions have support in V; (here we use that the V; are
symmetric with respect to the hyperplane {xy = 0}). Now put f; := f;:p—;’l °
¥;. Then f; € WP(IRN) is an extension of f;. Now, it suffices to define F :
WA (Q) - W (RY) by

n
Ef:= Z fi
i=0

and to verify that E is a desired, bounded extension operator.
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1.6 The Sobolev embedding theorems

In the following, given two Banach spaces X and Y, we write X = Yif X CY
and if the identity map i: X — Y, x  x is continuous.

Theorem 1.28 (Sobolev-Gagliardo-Nirenberg). Fix p € [1,N) and define p* :=
NN—Q. Then every f € WYP(IRN) belongs to LV (RN) and

ANl < CIIVflly
In particular, WP (RN) — LF" (RN).
For the proof of this theorem, we need the following technical lemma.

Lemma 1.29. Let N > 2 and fi, ..., fy € LN"Y(RN71). For every 1 <i < N and
every x € RN we put X; := (x1,...,%i-1,Xi+1,-..,XN). Then the function

N
feo =[] A
i=1
belongs to LY(RN) and

N
1l iy < H Il fill -1 vty
i=1

Proof (incomplete). The assertion of this lemma is straightfoward to verify for
N =2. Now suppose that the assertion is true for some N, and let us prove
that it is true for N +1, too. In the case N +1, fix xn+1. We have, by Holder’s
inequality,

1

N-—
N

N
LN

f |f(x1,...,xN+1)|dx1... dXNS||fN+]||LN(RN) (f H|fi(xl-)|N—l dxy ... dxyn

RY RN i1
By assumption, f; € LN(IRN), that is,

fN |FGer, e, Xict, Xt Xn)IN dg ccodxisg dxig . dxne < 0.
R

In particular, for almost every xn41 € R,
f |f(x1,. o Xim1,Xix1, .,XN+1)|N dxy...dx;_1dxizq... dxny < oo for every 1<i<N.

RN-1

Hence, by induction hypothesis, for almost every xyn.1 € R,
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N N

N e

fN | | |fi(X)IN-T dxq ... dxny < | | ||fl.||£\ll\71‘
RY i L

or, equivalently, | fZI% e LN-I(RN).

Proof (of Theorem 1.28). Assume first that p = 1 and f € CZ(RN). Then

Sf Ialf(é,XZ,...,XN)Idé.

X
|f(x)| = ‘f &lf(éi-XZr"-r
Similarly,
lf ()l < f 0i f(x1,...,Xi-1, &, Xig1, ..., XN)| dE =: fi(%)),

where %; := (x1,...,Xi-1,Xi+1,.--,XN). Hence,
N

feN <[ [ £@).
i=1

Note that f T e IN-I(RN-1) and

1

1 N-T
£ v -1y = (L;N_lfi(fi) dfi)
1

N-1
:(f fI&if(xll'"/xi—llélxl"i'll‘"IxN)|dé dfl
IRN’I R

”a fl Ll(]RN

As a consequence, by Lemma 1.29,

N
_N_
j]l;N |f(x)|N-T dx <= H ll9; f”Ll(]RN)

or

z

”Wﬁflwﬂmw

Applying this formula to |f|""! f with ¢ > 1, we obtain
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A o < Hlltlflt 19, fnU(RN

z

1
<t [Tma" " 1, AN &) (1.2)
i=1

N
= tIIfIIt Ly [ 119 e,
_1 :l

N _ (t=Dp : N=1_=x
Choose t such that =7 = o1 thatis, t = =5=p*. Then

N
1Al <C T 191 o
i=1

for some constant C which depends only on ¢, and from here follows imme-
diately

£l < CUIVllpwny-

The claim for general f € W'?(RN) follows from this inequality and an ap-
proximation argument using Theorem 1.15.

Corollary 1.30. For every p € [1,N) and every q € [p,p*] one has
WP (RN) < LI(RM).
Proof. By definition of the Sobolev spaces, W'#(IRN) < [/(RN), and by The-
orem 1.28, WP(RN) < L' (RN). The interpolation inequality (a straightfor-
ward application of Holder’s inequality) yields
LP NP (RN) — LI(RY) for every q € [p,p*],

and putting the embeddings together yields the claim.
Corollary 1.31 (The limit case p = N). For every q € [N, 00) one has

WIN(RN) < LI(RN).
Proof. Let f € C®(RVN). We apply (1.2) with p = N and obtain

||f||t N < t“f”t (t-)N ”Vf”LN(]RN)'

L N-1

By Young’s inequality,
WAl v < CHIA ey + 1V fllpv gy - (1.3)
LN-1 L N-1

Choosing t = N in this inequality, we obtain
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Ifl 2 < Cllfllwn,
LN-T

and thus, by interpolation,
NZ
lfllzs < ClIfllyn for every g € [N, m]

Iterating this argument by choosing now t =N+1,t=N+2, ... in (1.3), we
obtain
lflls < ClIfllwin for every g € [N, 00).

This inequality holds, by an approximation argument, finally for all f €
WLIN(RN),

Theorem 1.32 (Morrey). For every p € (N, o),
WP (RN) < L®(RM).

More precisely, for « :=1— % there exists a constant C = C(p,N) > 0 such that for
every f € WHP(RN), x, ye RN,

[f() = fWI < Clx=yI* IV £l

Proof. Let Q be cube with sides parallel to the coordinate axes and of length
r> 0, such that 0 € Q. For every x € Q one has

1
d
fo S fn) dt

1
< j(; [V f(tx)- x| dt

If ()= fO) =

1
<r f [V f(tx)| dt.
0

Put f:= Ilﬁ fQ f. By integrating the above inequality over x € Q, and by using
Holder’s inequality, we obtain

1
F r
If—f(O)Is@fo0 IV f(tx)| dt dx
1 1
=rN_—1f0 fQWf(tx)mxdt

1 (! dt
- V() de 2
rN‘lfo ftQI JOlt
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1
1 ! 1t
s [ () ™

_N 1 _N
<r p”Vf”U’(Q)ft rodt
0

1-N

p
— VAl
p

Clearly, this inequality holds also with x € RN instead of 0 (and with a cube
Q containing x). Hence, for every cube Q with sides parallel to the coordinate
axes and of length r > 0, and for every x, y € Q,

1,&

If@x) = f(y)l < <2 ~ IVl -

P

Since we may choose Q minimal (so that, for example, ¥ = 2|x —y|), and by an
approximation argument (Theorem 1.15), we obtain the Holder continuity of
f € WP (RVN). Moreover, applying again the above inequality with 0 replaced
by x € RN and with a cube of side length r = 1, we obtain

fEI<IfI+1f = f(

1
< fllr o) + TN
r

IV Al

< C”f”wl,;ﬂ(]RN)/

and from here and an approximation argument, we obtain the boundedness
of f € WP (RV).

Summarizing the results of this section, we are in the position to state the
first version of the Sobolev embedding theorem. For an open set 2 C RV,
m € INp and 0 € [0,1] we set

Q) = [f e C(@) : sup LOTWN_
x,yEQ |x yle
X£y

and
C"™(Q) = {f € C™(Q) : 9°f € C¥P(Q) for all a € NY, || = m).

Theorem 1.33 (Sobolev embedding theorem). Let k € N and p € [1,00). Then
the following assertions are true:

a) Ifkp <N, then
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WP (RN) < LI(RN) for every q € [p ﬁ]
"N—kp™

b) Ifkp =N, then
WS (RN) < LY(RN) for every q € [p, ).
c) Ifkp>N, then
WS (RN) < L*(RN) n €4 (RY),

where
N . N
-1 ifk-YeN,

k=8-1 ifk-T¢N,
and@zk—%]—m.

Proof. For k =1, the assertions (a)-(c) follow respectively from Corollary
1.30, Corollary 1.31 and Theorem 1.32. For k > 2, the assertions follow by an
iteration (or induction) argument.

Corollary 1.34 (Sobolev embedding theorem). Let k € N, p € [1,00) and let
Q C RN bean open set which has the W'4-extension property for every q € [1, 00) (for
example, Q2 has compact, C! reqular boundary dQ). Then the following assertions
are true:

a) Ifkp <N, then

Np
k,p s 4 L
WHP(Q) — L1(Q) for every q € [p, N kp]'
b) Ifkp =N, then

WEP(Q) — LI(Q) for every q € [p, ).

c) Ifkp>N, then
WRP(Q) < L®(Q) N C™*(Q),

where
N . N
(k=N k-Yew,

= N . N
k—?—l lfk—;QN,
and@zk—%j—m.

These assertions (a)-(c) remain true for arbitrary open Q C RN if the spaces WF(Q)
are replaced by W’S’p(()).

Proof. For k =1, the assertions follow from the assumption that Q has the
Wli-extension property for every g € [1,00) and from the Sobolev embedding
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theorem for the W*? (RN )-spaces (Theorem 1.33). For k > 2, the assertions
follow by an iteration (or induction) argument.
If Q C RN is an arbitrary open set, one may argue similarly by noting

that functions in Wg’p (Q2) may be extended by 0 outside (2 to functions in
WEP(RN). In fact, for test functions in C(Q) this is obvious, and for general
functions in W](;’p (Q) this follows by an approximation argument using the
definition of W’S’p (RN).
Lemma 1.35. For every open, bounded subset Q C RN, every p € [1,00] and every
@ € LY(RN) the operator
T, : LP(RN) - LP(Q),
fe(fla,

is compact.

Proof. For ¢ € C.(RN) the assertions follows from the theorem of Arzela-
Ascoli. For general ¢ € L1(RY) the assertion follows by approximation of ¢,
Young’s inequality (Theorem 1.4) and the fact that the compact operators
form a closed subspace of the space of bounded linear operators. In fact, if
@ € L}(RN), then we find a sequence (¢,) in C2(RN) such that lim;—c [l¢p —
@nllz1 =0 (Theorem 1.11). As a consequence

ITy =Ty, ll= sup |Tof—Tp,flir)

”f”[}’(g)gl

< sup  |If*@—fr@ullpmy
Hf”LP(O)Sl

< sup ||f||Lp(]RN)||(P—§0n||L1(]RN)
Hf”Ui(Q)Sl

—0asn — oo.

Since the T, are compact and converge in operator norm to Ty, Ty, is com-
pact, too.

Lemma 1.36. For every f € C°(Q) one has
==+ [ viw L
on-1 Jrv Y yIN v
Proof.

Theorem 1.37 (Rellich-Kondrachev). Let k€ N, p € [1,00) and let Q C RN be
a bounded, open set. Then the following assertions are true:

a) Ifkp <N, then
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k,p c q Np
W, (Q) <= LI(Q) for every q € [p, N—to kp)‘

b) Ifkp =N, then
Wg’p(Q) < L1(Q) for every q € [p, ).
c) Ifkp> N, then
WP (Q) <5 L2(@)n ™' (Q),

where
N . N
-1 ifk-YeN,

N ; N
k—?—l Ifk—ggN
and 0’ € (O,k—%—m).

These assertions (a)-(c) remain true for bounded, open sets Q C RN which have the
Wli-extension property for every q € [1,00), and then the spaces Wl(;,p (Q) may be
replaced by W*P(Q).

Proof. First assume that k = 1. Choose R > 0 such that (2 € B(0,R) and define
@ € L'(RY) by

1
Pp(x) = . = 1p02r)(x) (xeRM).

Let f € C(Q) € C¥(RYN). By Lemma 1.36 (applied to the function f(x—-)),
for every x € Q,

1 y
Vix-y)=d
Nt fRN flx y)ly| y
1 y
= V X — —d
ON-1 fB(o,zR) fE-y yl Y
=Vf+p(x).

Hence, the continuous operator

f)=

W, (Q) = LP(Q;RY) - 1P(Q),
f= Vf Vol

coincides with the identity on the space C°(€2). This space being dense in
W;’p (Q) (by definition), the above operator thus is the canonical embedding

of Wé’p(()) into LP(Q2). However, the second operator is compact by Lemma
1.35, and thus the embedding itself is compact.
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Next, assume p < N, and let g € [p,p*), where p* = NN—_";I. Then % = §+

1;—? for some O € (0,1]. Let (f,) be a bounded sequence in W'#(Q2). Then,
by the preceding step, there exists a subsequence (denoted again by (f,))
which converges in LP(Q2) to some element in f. Moreover, by the Sobolev
embedding theorem (Corollary 1.34 (a)), the sequence (f,) is bounded in
LP*(Q). Hence, by the interpolation inequality, and since 0 > 0,

Ufu = Flles < Ifu = A, fu = A0 =0,

that is, (f;) converges also in L7(Q). Since the bounded sequence (f,) was
arbitrary, we have proved that the embedding W;’p (Q) — L(Q) is compact.
The case p = N is treated similarly, and in the case p > N one uses the case (c)
of the Sobolev embedding theorem (Corollary 1.34) and Arzela-Ascoli.

The case k > 2 follows by induction.

If O C RN is bounded, open and has the W!(Q)-extension property, and
if we replace the spaces Wg’p(Q) by WKP(Q), then one may argue as follows.
Again, we consider first the case k = 1. We choose a test function i € CX(RN)
such that ¢ = 1 on Q. Moreover, we choose R > 0 such that supp ¢ € B(0,R).
Let E: W7(Q) —» WY(RN) be any extension operator, and consider then
the extension operator £ : W#(Q) — Wé’p(B(O,R)) given by Ef := (- Ef)lo.
Using now the first step (with W(l)’p(Q) replaced by Wé’p (B(0,R))), we obtain
the claim for k = 1. The case k > 2 follows again by induction.

Remark 1.38. Note that the range of possible exponents g in Theorem 1.37
(a) differs from the range of possible exponents in Corollary 1.34 (a): the limit
case g = p" is excluded. In fact, the embedding

W, (Q) = 17 (Q)

is continuous, but in general not compact.

1.7 The space W(l)’p (Q) and the Poincaré inequality

Theorem 1.39 (Poincaré inequality). Let QO C RN be contained in a strip of the
form
S:=RN"1x(a,b),

and let p € [1,00]. Then

1

1,
b—ay llull?, < IVull], for every u € Wy"(Q).
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Proof. Assume first that u € CZ(Q). We extend u by 0 to RN and denote this
extension by u, too. Then, for every x = (¥,xy) € Q (x € RN"!, xy € R),

u(x) = u(x, xN) —u(x,a)

XN
_ f (%, &) de.

As a consequence, if p < oo, then

b
flu(x)lpdx=f flu(x,xN)lpdedx
0 RN-1 Jg
b XN p
< f f ( f |&Nu(x,5>|da) dy d
RN-1 g a
b b
< f f (b—ay! f |Onu(E, &P dE dxy dx
RN-1 .Jg a

b
- [ o [ D or azas
=0b-a)l | |0 rd
( H)L|N“(x)| X

S(b—a)”fqulpdx.
Q

This inequality and an approximation argument yield the claim.



Chapter 2
Elliptic equations

2.1 The Lax-Milgram lemma

Let V be a Hilbert space. A sesquilinear forma: VxV — Cis coercive if there
exists 17 > 0 such that

Rea(u,u) > 17||u||%, foreveryueV.

If H is a second Hilbert space such that V < H with dense, continuous
embedding, then the form a is called H-elliptic (or shortly elliptic if the
Hilbert space H is clear from the context) if there exist > 0 and w € R such
that

Rea(u,u) +a)||u||12{ > nllull%/ foreveryu eV,

Clearly, a coercive sesquilinear form is H-elliptic for every Hilbert space H
into which V is continuously and densely embedded.

Lemma 2.1 (Lax-Milgram). Let a: VXV — C be a continuous, coercive, sesquilin-
ear form on a Hilbert space V. Then, for every continuous, antilinear f : V — C
there exists a unique element u € V such that

a(u,v) = {f,oyyy forallve V.

If V is a real Hilbert space, then “sesquilinear” and “antilinear” should be replaced
by “bilinear” and “linear”, respectively. Moreover, if V is real and if a is in addition
symmetric, then the unique element u € V above is characterised by the equality

2 a1~ (f vy = min 2 a(0,0)~ (f, 0wy e

Proof. For every u € V we denote by Au the continuous, antilinear form
V — C, v a(u,v). We thus obtain a continuous, linear operator A: V — V'
(where V"’ is in this proof the space of all continuous, antilinear forms on V).
We have to show that A is bijective.

33
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The operator A is injective and has closed range. By coercivity of a, for every
vevV,

n loll?, < Rea(v,v)
<la(v, )|
= (Ao, vy vl
< |Ad]ly [[ollv,

which implies
nllolly < |lAv|ly- for every v e V.

As a consequence of this inequality, A is injective and has closed range.

The operator A is surjective. Since A has closed range, it suffices to show
that A has dense range in V’. If the range of A is not dense in V’, then, by the
Hahn-Banach theorem and by reflexivity of V, there exists u € V' \ {0} such
that

(Av,uyy v =a(v,u) =0 for every v € V.

Choosing v = u in this equality, we obtain a contradiction to coercivity of a.
Hence, the range of A is dense in V’ which, together with the preceding step,
yields that A is surjective.

Now let us assume that V is a real Hilbert space and that a is symmetric.
Let u € V be such that a(u,v) = (f,v)y» v for every v € V. Then, for everyve V,

%a(u +o,u+0)—{(f,u+v)yy = %a(u,u) +a(u,v)+ %a(v,v) —(f,wyv,y—={f,0vv

1 1

(1) + 7a,0) = (fu)vry
1

> Ea(u, Ll) - <f,u>V’,V/

which yields (2.1).
Conversely, assume that (2.1) holds. Then, for every ve V,

20810~ (f vy < a4 o,u+0) = (fu+ Oy,
which implies
1
0<a(u,v)+ Ea(v, v)—(f,v)yy foreveryv e V.

Replacing v by tv with t > 0, diving the resulting inequality by ¢, and letting
t — 0+, we deduce

0 <a(u,v)—{f,v)vv foreveryve V.

By noting that this inequality holds both for v and —v, we conclude that
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0=a(u,v)—{f,v)y v for everyve V.

Proof (Second proof of Lemma 2.1 under the additional assumption that V is sep-
arable). Existence. Let (V) be an increasing sequence of finite dimensional
subspaces of V such that | J, V,, is dense in V. For the existence of such a
sequence, we use separability of V; for example, if (wy) is a dense sequence
in V, then one may choose V,, := span{wy : 1 <k <n}.
For each n we consider the finite dimensional, linear problem of finding
u, € V, such that
a(uy,v) = f(v) for every ve V. (2.2)

In order to translate this into a linear problem in C" (m = dimV,), one
may choose a basis (b;)1<i<m of Vy,, define the coefficients g; := f(b;) € C and
ajj = a(b;,bj) € C (1 <1, j <m), and write u, = };&;b; with &; € C. Then the
problem (2.2) is equivalent to the problem

a;ié&; =B forevery 1 < j<m.

m
=1

If u, € V,, is a solution of (2?), then the coercivity of a yields

I llvellnlly = Re f(un)
= Rea(u,,u,)

= llually,
or, equivalently,

1
llunlly < Ellfllvu (2.3)

This inequality shows first injectivity of the underlying linear operator, which
together with the fact that V), is finite dimensional implies bijectivity of
the underlying linear operator. Hence, the problem (2.2) admits a unique
solution u, € V,,. However, inequality 2.3 also implies that the resulting
sequence (u,) is bounded in V. Since V is reflexive, there exists a subsequence
of (u,) (which we denote again by (u,)) which converges weakly to some
element u € V. In particular, for the continuous, linear functionals a(-,v) : V —
C (v € V) one has a(uy,,v) — a(u,v) (n — o0). However, for all v € Vi and all
n > k one has a(uy,,v) = f(v). Hence

a(u,v) = f(v) for all v € V,, and alln.
Since | J,, V}, is dense in V and since a and f are continuous, we obtain

a(u,v) = f(v) forallve V.
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Uniqueness. Uniqueness of a solution u € V of the above equation follows
again from coercivity of 4, similarly as in the finite dimensional case.

2.2 The Laplace operator

In this section we consider the problem

Au—Au=fin Q,

(2.4)
u=0o0ndQ,

where Q C RN is an openset, A € R, f:Q — Cisa given function, u: Q - C

is the unknown function, and

is the Laplace operator. While the first line in (2.4) is a partial differential
equation in which the unknown function u and its partial derivatives (here,
the second, not mixed partial derivatives) appear, the second line in (2.4) is
a boundary condition. It is called (homogeneous) Dirichlet boundary condi-
tion.

Note that if u € C2(Q)NC(Q) is a classical solution of (2.4), that is, u
satisfies (2.4) in the usual sense (using classical partial derivatives), then we
may multiply the first line in (2.4) by the complex conjugate of a test function
@ € CZ°(Q) and integrate over Q. An integration by parts then yields

Given f € L?(Q), we now call a function u € H(l)(Q) a weak solution of (2.4) if

Afu(p—fVu%:ff(pforevery(peHé(Q). (2.5)
0 Q 0
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Theorem 2.2 (The Laplace operator with Dirichlet boundary conditions).
Let Ay := A1(Q) be the Poincaré constant of the set 2, that is, the optimal (largest)
constant A > 0 such that

A f lu? < f |Vu|2for every u € Hé(Q).
Q Q

Then, for every A > —Aq and every f € L2(Q) the problem (2.4) admits a unique
weak solution u € H(l)(Q). For this weak solution we have the estimate

1
lallz < 35 1l

Proof. Consider on the Hilbert space H}(Q) the sesquilinear forma : Hé (Q)x
H}(Q) — C given by

a(u,v) ::/\fuz‘)—fVu% (u,veHé(Q)).
Q Q

Then 4 is continuous since for every u, v € Hy(Q), by the Cauchy-Schwarz
inequality,

laGu, )Nl 20l 2 + IVl 2ol 2
(L+ Al el -
We show that a is also coercive. Choose first € > 0 such that A + A1 > ¢, and

choose next u € (0,1] such that € — pA; > 0. Then, for every u € H(l)(Q), by the
definition of A4,

a(u,u)z/\flu|2+f|Vu|2
Q 0
—@eri-o) [ W= [ P
Q Q
+(1—‘u)f|Vu|2+yf|Vu|2
Q Q
Z()\+)\1—s)f|u|2+(e—y/\1)f|u|2+pf|Vu|2
Q Q Q

2
> 1llull,,
0

where 1 = min{A + A1 — ¢, u} > 0. Hence, a is coercive.

Consider next the mapping £: H)(Q2) —» C, v+ f |, f0, whichis well defined
and continuous by the Cauchy-Schwarz inequality, and antilinear. Existence
and uniqueness of a weak solution of (2.4) thus follows from the Lax-Milgram
lemma (Lemma 2.1) applied to 4 and £. For the estimate, note that we have,
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by the Cauchy-Schwarz inequality,

IIfIILzIIMIILzzfo“

:AJAmF+ijm2
Q Q

> @) |
Q
= (A+AD) [l

Theorem 2.3 (The limit case A = —A;). Assume that Q C RV is open and
bounded. Then the problem

—AMu-Au=01in Q,

2.
u=0o0ndQ, 26)

admits a weak solution u € H(l)(Q) which is not = 0.

Proof. By definition of A4,

IVul?
;lemffQ =im‘fNW.
ueHééu) fQ P wenbo Ja
U#

2 =1

By definition of the infimum, there exists a sequence (1) in Hé(Q) such that

f |Vun|2 — A1 asn — oo, and
Q
llunll;2 =1 for every n.

This sequence is thus bounded in Hé(Q). By the theorem of Rellich-
Kondrachev (Theorem 1.37), there exists a subsequence of (1) (which we
denote again by (u,)) and u € L?(Q) such that

U, — uin LX(Q).

Moreover, since Hé(Q) is reflexive, there exists a further subsequence
(again denoted by (u,)) which converges weakly in Hg)(Q) to some element
ve H(l)(()). Since weak convergence in H(l)(Q) implies weak convergence in
L*(Q), since strong convergence implies weak convergence, and since weak
limits are unique, we obtain u =v € Hé(Q). By the geometric version of the
Hahn-Banach theorem, and since the function v fQ [V is convex and
continuous,
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f [Vul?> < liminf f [Vii,|?.
,Q n—o00 ,Q

Moreover, by the strong convergence in L?(Q),
lll2 = Tim flll2 = 1.

In particular, u # 0. The preceding two (in-)equalities, the definition of A,
and the choice of the sequence (1) imply

/\1:A1f|u|2
0
S‘fIVMI2
o)

<liminf | Vi,
n—-o0 e}

= A1

In particular, the inequality signs in this chain of inequalities can be replaced
by equality signs. This means that

f [Vul> = A4 f lul? = 0.
Q Q

In other words, u is a global minimizer of the (positive) function v f o Vol —

A fQ [v]?. Proceeding now like in the second step of the proof of the lemma
of Lax-Milgram (Lemma 2.1), we deduce from this

f VuVo—Aq f ut =0 for every v € H(l)(Q).
Q Q

In other words, u is a weak solution of (2.6).

Theorem 2.4 (The case N =1). Let Q = (a,b) be an interval in R (—co <a<b <
co). Then every weak solution u € Hy(a,b) of (2.4) (A € R, f € L*(a,b)) belongs to
H?(a,b) ﬁH(l)(a,b) and Au—u"" = f. Moreover, u belongs to Co(a,b) which means
in particular that u admits a continuous extension to a and b (if they are finite) and
u(a) = u(b) =0.

Proof. Since u is a weak solution,

b b b
f fo= /\f uz7+f u'?’" for every H(l)(ﬂ,b)-
a a a

In particular, since C°((a, b)) € H(l)(a,b),
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b b
[Fwer == [ =g torevery pe (@t
a a

By definition of the weak derivative, and since u — f € L?(a,b), this equality
implies
u' € H'(a,b) and (') = Au~—f.
In other words,
u e H*(a,b) and Au—u" = f.

The fact that u admits a continuous extension to the closure of the interval
(a,b) follows from properties of the Sobolev spaces on intervals (see Theorem
)- The fact that u vanishes in a and b (if they are finite) follows from Theorem

Now let us consider the problem

Au—Au=fin Q,

dyu=00na0, @7)

where Q C RN is an open set with C!-regular boundary dQ, v is the outer
normal vector, d,u = Vu-vis the outer normal derivative, A €R, f: Q - Cisa
given function, u : 2 — C is the unknown function. The boundary condition
in (2.7) is called (homogeneous) Neumann boundary condition.

We call a function u € H'(Q) a weak solution of problem (2.7) if

/\fu(p—fVu%sz(pforevery(peHl(Q). (2.8)
0 Q 0

Theorem 2.5 (The Laplace operator with Neumann boundary conditions).
For every A > 0 and every f € L?(Q) the problem (2.7) admits a unique weak solution
u € HY(Q). For this weak solution we have the estimate

1
llull2 < XlIfIILz.

Proof. Consider on the Hilbert space H 1(Q) the sesquilinear forma : H LQ)x
HY(Q) — C given by

a(u,v):= A f U+ f VuVo (1,0 € HY(Q)).
Q Q

Then a is continuous since for every u, v € H'(Q), by the Cauchy-Schwarz
inequality,

la(u,0)l < Allullp2lloll 2 + [Vl 2[vll 2
< @+ M lullppllollg -
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We show that 4 is also coercive. In fact, for every u € H(l)(Q),

a(u,u) = A f [ul? + f |Vul?
Q Q

> 7llul?
Hy'

where 1 = min{A, 1} > 0. Hence, a is coercive.

Consider next the mapping ¢: H'(Q) —» C,v f |, f0, whichis well defined
and continuous by the Cauchy-Schwarz inequality, and antilinear. Existence
and uniqueness of a weak solution of (2.7) thus follows from the Lax-Milgram
lemma (Lemma 2.1) applied to a and ¢. For the estimate, note that we have,
by the Cauchy-Schwarz inequality,

IIfIILzllulleZfou

=/\f|u|2+f|Vu|2
Q 0
2/\f|u|2

Q

2
= Mull%,.

Theorem 2.6 (Neumann boundary conditions in the case N = 1). Let Q =
(a,b) be an interval in R (—oo <a < b < o0). Then every weak solution u € H'(a,b) of
(2.7) (A €RR, f € L%(a,b)) belongs to H*(a,b) and Au—u"" = f. Moreover, u’ admits
a continuous extension to a and b (if they are finite) and u’(a) = u’(b) = 0.

Proof. Since u is a weak solution,

b b b
f fo= /\f uz7+f u'?’ for every H'(a,b).
a a a

In particular, since C2((a,b)) € H(a,b),

b b
f o' = —f (Au— f)@ for every ¢ € C((a,b)).

By definition of the weak derivative, and since u — f € L%(a, ), this equality
implies
w' € H'(a,b) and (') = Au~—f.

In other words,
u € H*(a,b)and Au—u" = f.

The fact that 4’ admits a continuous extension to the closure of the interval
(a,b) follows from properties of the Sobolev spaces on intervals (see Theorem
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). Assume, for simplicity, that both a and b are finite. For every ¢ € H!(a,b),
we have, by an integration by parts,

b b b
faﬂpﬂfuuwfﬂu’@’
b b b
=1 f u(p+[u'(f)]u— f u’@
b
_ f (A —u")p + 1 B)P(b) -1’ @p(b)

b
B f fo+u 0)pb) - ' (@@(D).
In other words,

' (b)@(b) — 1’ (a)@(b) = 0 for every ¢ € H'(a,b).

Choosing now successively ¢(x) := ;=% and ¢(x) = i%;‘, we obtain

u'(b) =u'(a) =0.

2.3 General elliptic operators in divergence form and
inhomogeneous Dirichlet boundary conditions

Consider the elliptic operator L which is formally given by

N N
Lu=")" iaij(x)du)+ Y [9i(bi(x)u) +ci(x)dul +d(x)u,
i,j=1 i=1

where
aij, by, ¢, d€L™(Q)  (1<i,j<N),

and Q C RN is an open set. We assume that the coefficients a;; are uniformly
elliptic in the sense that there exists n > 0 such that

N

Z a;j(0)&;&; 2 nIEf forall E e CY, x € Q. (29)
ij=1

There are no further conditions on the lower order conditions b;, ¢; and d,
and in fact, the boundedness condition on these coefficients may be relaxed
a little bit. All coefficients may be complex valued. We then consider the
problem
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Au—Lu = f+divgin Q,

2.10
u=honodQ, (2.10)
where
f,81,.-.,8N € LZ(Q) and
he HY(Q).
We say that a function u € H'(Q) is a weak solution of the problem
Au—Lu = f+divgin Q, (2.11)
if, for all p € CZ(Q),
N —
)\f up + Z f a;j(x)djudip+
Q imva
N —
£ f [—bi(x)udiq + ci(X)Iup + f A(x)u (2.12)
= Jo Q

N
= p+ 0.
fof@ ;Lg ¢

Note that by an approximation argument, if the above equality holds for
all test functions ¢ € C°((), then it holds for all ¢ € Hé(Q), and vice versa.
Next, we say that the inhomogeneous Dirichlet boundary condition

1u=honaQ (2.13)

is satisfied, if
u—h e Hy(Q). (2.14)

Accordingly, u € H'(Q) is a weak solution of (2.10) if it satisfies both (2.12)
and (2.14).

Theorem 2.7. Assume that Q, aij, bi, ci, d, f, gi and h are as above. Then there

exists a real number A such that for all A € C with ReA > A the problem (2.10)
admits a unique weak solution u € H(Q).

Proof. Assume first that & = 0. Then we define the sesquilinear form a :
H}(Q)x Hy(Q) — C by



44 2 Elliptic equations

N
a(u,v)zAfuz7+ fa--(x)&-u%+
w0+ ), | ay@ojud

ij=1
N —
+ Z [=bi(x)udiv +ci(x)duv+ | d(x)ud.
- Q Q
i=1

Then 4 is continuous since for every u, v € Hy(Q), by the Cauchy-Schwarz
inequality,

N
lau, o) < [Allfull 20l 2 + Z llaijllLe 10 jull 21100l 2+
ij=1
N
+ ) [lbillee llullp2110:01 2 + llcilles 9wl 21101l 2]+ [ldl|re [l 2ol 2
i=1
< Cllullgllollgn,
where C > 0is for example the sum of || and the L*-norms of the coefficients

aij, bi, ci, d.
We show that a is also coercive whenever

N
A 1
Rea> A= s + 20 ) (b +leif).
i=1

In fact, for every such A € C and every u € Hé(Q), by the uniform ellipticity
condition, by the Cauchy-Schwarz inequality and by Young’s inequality,

N
Rea(u,u)zRe)\f|u|2+ReZ:faijajbtaﬂhL

N
+ReZf[—bi(x)u&7+ci(x)8iuﬁ+fRed(x)lulz
i=1 v 0

> (Re = [dlle) ull2, + Va2, ~

N 2
—[Z(||bi||iw+||cz~||2m>] a2Vl
i=1

> (ReA=A)lull?, + guvulliz

2

> iflul?,,
0

where 7] = min{Re A — A, g} > 0. Hence, a is coercive.
Consider next the mapping ¢ : H}(Q) — C given by
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5(U)=sz7—gfﬂgi%,

which is well defined and continuous by the Cauchy-Schwarz inequality,
and antilinear. Existence and uniqueness of a weak solution of (2.10) thus
follows from the Lax-Milgram lemma (Lemma 2.1) applied to a and ¢.

Let now h € H'(Q) be arbitrary, and define

N
f+/\h+ch(9h+dh € [2(Q) and
i=1

Si=gi+ Zaijajh +hihel*(Q) (1<i<N).
j=1

Then one easily verifies that u € H 1(Q) is a weak solution of (2.10) if and only
fw=u-he H(l)(Q) is a weak solution of

Aw—Lw = f+div§ in Q,
w=0o0ndQ,

and from this equivalence and the first step one obtains existence and unique-
ness of a weak solution of (2.10).
2.4 The comparison and maximum principles

Theorem 2.8 (Comparison principle I). Let Q C RN be open, f € L*(Q) and
A>-A1(Q). Let u e H(l)(Q) be the unique weak solution of (2.4). If f >0, then
u >0, and similarly if f <0, then u <0.

Proof. Let f, A and u be as in the assumption and assume that f < 0. Taking
p=ute H(l)(Q) as a test function in the definition of a weak solution, we

obtain
Ozj‘fuJr
Q

:/\fuu++fVuVu+

Q Q

=1 f w*)?+ f Vit 2
Q 0]

> (/\+/\1)L(u+)2.
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Since A + A1 > 0, this inequality implies u* = 0 which means that u < 0. The
case f >0 is proved similarly, or follows from this case by multiplying the
equation (2.4) by —1.

We consider now again the problem (2.10) with a general elliptic oper-
ator in divergence form and inhomogeneous boundary conditions, but we
assume that the coefficients a;;, b;, c; and d, as well as the functions f, g; and
h are real valued. Repeating the existence and uniqueness proof (proof of
Theorem 2.7) in the real Hilbert space H'((2), we see that the unique weak
solution u € H'(Q) is real valued, too.

We say that u € H'(Q) is a subsolution (resp. supersolution) of (2.11) and
we write

Au—Lu< f+divgin Q (resp.2) (2.15)

if, for every positive test function ¢ € CZ(Q),

N
)\Lu(p+2fgaij(x)8]'u8i(p+

ij=1

N
_b. . . ) 2.16
+;L[ bz(x)u&l(p+c,(x)8,u(p+fgd(x)u(p ( )

N
Sffgo+2fgi<9,-g0 (resp. =).
Q = Jao

Moreover, given a constant k € IR, we write
u<kondQ

if
(u—k)* € Hy(Q),

and we define

supu:={keR:u<kondQ}

20
={keR: (u-k)* € H(Q)}, and
br})fu = —sup(—u)

0
=supfke R : (u+k)~ € Hy(Q)}.

Theorem 2.9 (Comparison principle IT). Let Q C RN be open, f € L*(Q) and
A > —A1(Q). Let u € H'(Q) be such that

Au—Au<0in Q,
u<0ondQ.
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Then u > 0.

Proof. Let A and u be as in the assumption. Taking ¢ = u™ € H(l)(Q) as a test
function in the definition of a weak solution, we obtain

02Afuu++fVuVu+

Q Q

=2 f () + f Vut?
Q Q

> (/\+/\1)L(u+)2.

Since A +A; >0, this inequality implies u* = 0 which means that u <0.

Theorem 2.10. Let Q C RN be open, A > 0 and f € L>NL™(Q). Let u € Hy(Q) be
the unique weak solution of (2.4). Then u € L*(Q) and

Al

ul|po <
Il < ==

Proof. Letk:= w Since u € Hé(Q) is a weak solution of (2.4),

/\fu(p-i-fVquo=ff(pforevery(p€H(1)(Q).
Q Q 0

Taking @ = (u—k)* e H(l)(Q) as a test function (here we use A > 0!), we obtain
the equality

/\L(u—k)(u—k)++LVuV(u—k)+=L(f—/\k)(u—k)+,

and hence

A fg =k + fQ VKPR = fQ (F—lfl=)(u—K)* <0,

This inequality implies (u —k)* = 0 which is only possible if u <k = ”ﬂ#

o [ 100
Similarly, one proves u > —>5—

claim.

. Taking both inequalities together yields the

For measurable functions f : 2 — R we denote by sup, f the essential
supremum, that is,

sup f :=inf{k € R : f <k almost everywhere},
Q

and accordingly for inf, f.
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Theorem 2.11. Let Q C RN be open and bounded, A > —Aq and f € L>(Q). Let
u € HY(Q) be such that
Au—Au< fin Q.

Then
u <supu+k(A)(sup f—Asupu)’,
20 Q 20

where k(A) := ||w||pe and w € Hé(Q) is the unique weak solution of

Aw—-Aw=11in Q,

w=00n0dQ. 2.17)

Similarly, if
Au—Au> fin Q,
then
> infu—k(A)(A infu —inf f)*.
2 ipfu KA pfu-ig)

Proof. Set m := sup,,u and M := sup, f — Asup,,u. Then the assumption
and the definition of m and M imply
Au—-m)+Au—-m)< f—=Am <Min Q,
u—m=<0ondQ.

If M <0, then Theorem 2.9 implies u —m <0, so that u < sup,,u. If M >0,
then

Au—m—Mw)+A(u—m—-Mw) <0in Q,
u—m-Mw <0ondQ,

where w is the unique solution of (2.17). Now Theorem 2.9 implies u —m —
Muw <0, so that u < sup,, u + |lw||cc M. Hence, in both cases we obtain the
required estimate. The case with Au—Au > f follows from the first case by
multiplying this inequality with —1 and by replacing u by —u.

A function u € H'(Q) is harmonic if —Au =0 in Q.

Corollary 2.12 (Weak maximum principle). Let Q C RN be open and bounded.
Then, for every harmonic function u € H'(Q),

infu <u <supu.

Proof. Apply Theorem 2.11 with A =0 and f =0.
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2.5 Regularity of weak solutions of elliptic equations

Theorem 2.13 (Elliptic equations in RN). Let the coefficients a; j € WL (RN) be
uniformly elliptic, f € L>(RN), and let u € H'(RN) be a weak solution of

N
- Z‘ &j(aij(x)&iu) = f in ]RN.

ij=1
Then u € H*(RN) and
ll9:djullp2 < |Ifll;2 for every 1 <i,j <N.

Proof. We prove the statement in the case when a;; = 6;;, which corresponds
to the Laplace operator. The argument for coefficients in W' (RN) is very
similar. For every h € RV, i # 0 and every function u : RN — C we define
Dyu: RN — C by

u(x+h)—u(x)

N
m (x e RY).

Dyu(x) =

Recall from Theorem 1.18 that a function u € L*(RVN) belongs to H(RN) if
and only if there exists a constant C > 0 such that ||Dyull;2 < C for every
heRN, h#0, and then one may choose C = ||Vul|,2. We shall apply this
characterisation to the partial derivatives/ the gradient of u. Since u € H'(RN)
is a weak solution of —Au = f in RV, for every ¢ € H(RN)

fVuV(p:f fo.
RN RN

Inserting ¢ = D_j,(Dyu) into this equality yields
[ o= [ vuvD- 0
RN RN

= f IVDyul?
]RN

- f IDy(Va)P.
]RN

As a consequence, by the Cauchy-Schwarz inequality and the characterisa-
tion from Theorem 1.18,

IDW(VIZ, < I1fll2 1D (Dpao)llzz < NNl DR (Van)ll2,

or
IDR(Vi)llz2 <1Ifllz2-
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From here and Theorem 1.18 follows the claim.

Corollary 2.14 (Elliptic equations on domains - inner regularity). Let (2 C
RY be open. Let the coefficients a;; € W'*(Q) be uniformly elliptic, f € L*(Q), and
let u € H'(Q) be a weak solution of

N
- Z 9,(aij(x)0m) = f in Q.

i,j=1

Then u € Hfoc(Q), and for every compact K C Q there exists a constant Cx > 0 such
that
199 jull 2y < Ck I fllp2(qy) for every 1 <i,j < N.

Proof.

Corollary 2.15 (Elliptic equations in the half-space; Dirichlet boundary
conditions). Let the coefficients a;j € W (RY) be uniformly elliptic, f € L*(RY),
and let u € H}(RY) be a weak solution of

N
- Z 9;(aij(x)0i) = f in RN,

ij=1
Then u € H*(RN) and
l9idull;2 < Ifll2 for every 1 <i,j < N.

Theorem 2.16 (Elliptic equations in domains - regularity up to the bound-
ary; Dirichlet boundary conditions). Let Q C RN be open with bounded, C?-
regular boundary 9Q. Let the coefficients a;; € W-(Q) be uniformly elliptic,
fel*(Q),and let u € Hé(Q) be a weak solution of

N
=Y, 9@ij()i) = f in Q.
i,j=1

Then u € H*(Q), and there exists a constant C > 0 depending only on the boundary
dQ and the coefficients a;j such that

lull2( ) < Cllfll2(q)-



Chapter 3
Evolution equations

3.1 Wellposedness results for abstract diffusion equations,
wave equations and Schrodinger equations

Let V and H be complex Hilbert spaces such that V € H with dense and
continuous embedding. Leta: VXV — Cbeanelliptic, bounded, sesquilinear
form. Associated with this form is an operator A : H 2 dom A — H given by

domA:={ueV :3f e HVve V:a(u,v) ={f,0)ul,
Au:=f.
If the form a is in addition symmetric, the following theorem asserts that
A is “essentially” a multiplication operator on an abstract L?-space. It is a

very general form of the theorem which states that every hermitian matrix
is diagonalisable over an orthonormal basis of eigenvectors.

Theorem 3.1 (Spectral theorem for symmetric, elliptic forms). Let V, H, a
and A be as above. Assume in addition that a is symmetric. Then there exists a mea-
sure space (B, B, 1), a (real) measurable function m : B — R which is bounded from
below, and a unitary operator U : H — L*(B,d ) such that, given the multiplication
operator M : LZ(B,dy) 2domM — L2(B,dy) with
domM := {f € L*(B,du) : mf € L*(B,du)}
= L2(B,(1+m*)du),
Mf :=mf,

one has U(dom A) = domM, U(V) = L*(B,(1+ m2)%dy) and the diagram

51
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domA —2 H
Ju T
domM —2— I2(B,dp)
commuites.

We shall not prove this result here. For a proof, see for instance
[Reed and Simon (1980)].

Theorem 3.2 (Wellposedness of abstract diffusion equations). Let V, H, a
and A be as above. Assume in addition that a is symmetric. Then for every ug € H
there exists a unique function u € C(IR4; H)yNC*((0,00); H) such that u(t) € domA
for every t > 0 and

u(t)+Au(t) =01in (0,00), u(0) = ug. (3.1
Proof.

Theorem 3.3 (Wellposedness of abstract wave equations). Let V, H, a and A
be as above. Assume in addition that a is symmetric. Then for every uy € domA,
uy € V there exists a unique function u € C*(Ry;H) NCY(Ry; V) such that u(t) €
dom A for every t > 0 and

ii(t)+ Au(t) =0in (0,00), u(0) = ug, 11(0) = uq. (3.2)
Moreover, one has energy conservation in the sense that for every t > 0
(B, +au(), w(t)) = Nl +auo, o).

Theorem 3.4 (Wellposedness of abstract Schrodinger equations). Let V, H,
a and A be as above. Assume in addition that a is symmetric. Then for every
up € domA there exists a unique function u € C'(Ry; H) such that u(t) € dom A
for every t > 0 and

u(t)+iAu(t) =01in (0,00), u(0) = ug. (3.3)
Moreover, one has energy conservation in the sense that for every t > 0

lu(tIIF; = ol

3.2 The comparison principle for diffusion equations

Let Q C RN be open, f: R — R be Lipschitz continuous and uy € L?(Q)
real-valued. Let a solution u of
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dit—Au—f(u)=0in (0, T)x Q,
u(0,-) =up in Q,
be a function u € C([0, T];L2(Q))NCL(]0, T[; L*(Q)) N C(10, T[; H'(Q)), such that
for all ¢ € C°(Q2) and all £ €]0,T]

fatu(t,x)qb(x)dx+fVu(t,x)qu(x)dx+ff(u(t,x))qb(x)dxzo
Q Q Q

and u(0) = up. Via approxiation one gets

LL&tu(t,x)qb(t,x)ddefo LVu(t,x)V¢)(t,x)dxdt+f(; Lf(u(t,x)m(t,x)dxdtzo

for all ¢ € C([0, T],Hé(Q)) with ¢(0) =0 and all 7 €]0,T].
Notation: Qr :=(0,T) X Q.
The parabolic boundary of Qr is the set

I'r= ({0} x Q)U ([0, T] x 0Q).
We denote
edgedsu — Au+ f(u) < dyv—Av+ f(v)

in Qr if u,v € C([0, T];L3(Q)) N C1(J0, T[; L%(Q)) N C(J0, T[; H(Q)) and

[ e[ o[ fyons [ e[ s [ fon

for all ¢ € C([0, T];Hé(Q)), ¢ >0,¢(0)=0and all T €]0, T].
We denote u < v in I't if

(u—0)* € C([0, T;L*(©2)) N C(0, T[; Hy(Q))
(u—0)*(0)=0.

Theorem 3.5 (Comparison principle). Let

d—Au+ f(u) <dw—Av+ f(v) in Qr
u<ovonlrt.

Then u <vin Qr.

Corollary 3.6. Let f(0) = 0 and u a solution of
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di—Au+ f(u)=0in Qr
u=00n(0,T)x00Q
u(0,) =ug in Q.

Ifup > 0in Q, then u >0 in Q.
Proof. Choose v =0 in Q7 as comparison.

Proof (Comparison principle). As required for all 0 < 7’ <7 < T holds

f;fg(at”_aw)(”_w+LTL(V”‘V”)V(“‘U>+S— | [ - sonu-or
SL]:L'”_UK”—UV
Lf;fo«u—vmz

IN

with Lipschitz constant L. Set

alt) = fQ (4 —o)* (1, 0)Pdx,

then a € C([0, T]) and with the inequality we get

T

a(T)—a(T’)$2Lf a(t)dt

T’

due to

f; fQ d(u—-v)(u-v)* = % f; % fg (u-0)*)?= %(a(’t)—a("(’)),
f;fgv(u oV -0 = f: L V(u—0)*"? =0

For t* — 0 and with a(0) = 0 we get
T
a(t) < 2Lf a(tydt Yt e[0,T].
0

Then (with Gronwall’s Lemma)
a=0 = (w-9)"=0inQr,

ie. u<vin Qr.



Chapter 4
Distributions

4.1 The topology in D(Q)

Let Q C RN be open. In this chapter we write D(Q) := CX(Q) to denote the
space of test functions in Q.

In order to equip the space of test functions with a topology, choose a
sequence of bounded, open sets (Qy)ken such that QO € Qpyq and Ugeny Ok =
Q, for example

1
o ::{xe 0 : dist(x, 0> ., I sk}, keN.

Let E; = {¢ € D(Q) : supp¢ < Ok}. Every space Ej is equipped with the
countable family (p,) aeNy of seminorms given by

Pa(@ = |aa¢|om

and from here one can construct a metric dy as following:

)= Y ca(pal@—1)A1), (BB,

aeN}
where the ¢, > 0 are such that ) aeNY Cq < 00.

Remark 4.1. For every k € IN the space (E,dy) is a Fréchet space, that is, a
complete, metric vector space (proof: exercise).

Let the topology 7 on D(Q2) be the finest topology on D((2), such that
every mapping

8k : (Ex,d) = (D(Q), 1)
iad
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56 4 Distributions

is continuous (final/inductive topology). Together with this topology D(Q)
becomes a topological vector space, which means that 9((2) is not only a
vector space and a topological space, but also that the addition and the
multiplication,

+: DQ) X D(Q) - D(Q) and
- KX D(Q) —» DQ),

are continuous.

Exercise 4.2 A sequence (¢n)neN in D(Q) converges to ¢ € D(Q) with respect to T
ifand only if there exists ak € N such that ¢,, ¢ € Ex, that is, supp ¢, supp ¢, € Oy,
and di(pn, P) — 0 for k — oo.

Exercise 4.3 The topology T does not depend on the choice of the sequence (Qj)reN-

4.2 Distributions

We denote by
DQ) ={T: D(Q) —» K : T is linear and continuous)}

the dual space of (D(Q), ). The elements of D(Q)" are called distributions
on Q, D(Q) is called space of distributions on (2. We equip D(Q)" with the
weak-* topology 7', which is the coarsest topology such that all mappings

O@Qy, 1) - K
T+ T(¢),

with ¢ € D(Q) are continuous. In the following, given ¢ € D(Q) and T €
D(Q)’, we shall also use the notation

(T, ) =T().

A sequence (Ty)nen in D(Q)’ converges to T € D(Q)” with respect to the
topology 7’ if and only if T, (¢p) — T(¢) for all ¢ € D(Q).

Examples 4.4 (Distributions).
a) Letfe LllDC(Q) (2 LP(Q),C(Q)). Then

Tr: DQ) > K,

Qb = <Tf/¢> = qubl
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b)

is continuous and linear, that is, a distribution. By uniqueness by testing
(Theorem 1.12),

Tp=0 = f=0.
Thus all locally integrable functions are distributions and the mapping

L (Q)— DQY

loc
fe Ty

is linear and injective, and so L}OC(Q) C D(Q)'. This embedding is even

continuous, if one equips L}OC(Q) with the usual Fréchet topology as
follows: let (Qk)ren be a sequence of open, bounded subsets of (2, such
that

O € Oy, U Qr=0Q.
keN

Define for every k € N the seminorm py by

pih= | et
and then the metric

d(f,8)=Y 2 (pi(f-9) A1),

keN

Then d is a complete metric on L}OC(Q).
Let

Mb

loc

(Q) ={u:8B8(Q) > R: pisasigned Radon measure}
be the space of all signed Radon measures y, i.e. u = g — po, with py,
2 positive Radon measures, i.e. positive regular Borel measures with
the property that
ui(K) < oo Vie{l,2} VKCQ compact.
b
Forall p e M; (02)
Tu: DQ)—>R
6> (Tu)i= [ odu
Q

is linear and continuous, that is, a distribution.
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For example, point evaluation

] by - DQ)—-R
o (Ts, ,b) = P(xo) = | Pdody,
( Oxy ) (X()) f()

is a distribution for every xo € Q. It is called the Dirac distribution in
the point xg.

Q) ForallaE]NJOV,QQIRN,xOGQ
T: DQ)—-R
¢ = (T, ¢) = D*¢P(xo0)
is linear and continuous, that is, a distribution.

We call m € Ny the order of a distribution T € D(Q)’, if for all compact
subsets K C () there exists a constant cx > 0, such that for all ¢ € D(Q) with
supp ¢ C K the estimate

|<T,(P>| <ck- ”(P”C”’ with
pllen = Y ID*¢lle

ae]Ng’ Jal<m
holds.

Remark 4.5. a) Distributions of the form T or T, with f € L}OC(Q) or €

Mlboc(Q) are of order 0. Indeed, for all f € L}OC(Q), all compact K € Q2 and
all ¢ € D(Q) with supp(¢) € K one has

xpon=1 [ or< [ |f-g|s( [ Ifl)llqbllcw

b) We now equip C!"(Q2) with a topology in a similar way as we did with
C2°(Q). Let (Qk)ren be a sequence of open, bounded subsets of (2 such
that Q; C Q.1 and Uy Qk. Then we set

Ex = {¢p € CI(Q) : supp¢p € Oy}

and equip this space with the norm

lpllen = Y DGl

aG]Ng],\aISm

Then let 7,, be the finest topology on C/*((2), such that every mapping
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(Ek/” : ”C’”) - (CEH(Q)/TW)
ol

is continuous. A distribution T € D(Q)’ is of order m € Ny, if and only
if T extends to a linear, continuous mapping C(Q2) — K.

Theorem 4.6 (Riesz-Markov).
{T € D(QY : Tis of order 0} = M (Q) = Ce(Q)

(without proof)

Theorem 4.7. Let T € D(Q)’ be positive, that is, (T,¢) > 0 for all ¢ € D(Q) with
¢ >0. Then T is of order O, that is, T is a positive Radon measure.

Let T € D(Q)’. Define
Or = U{U C QO : Uisopenand Y¢ € D(Q) with supp ¢ C U one has (T, ¢) = 0}.
We call supp T := Q\ Or the support of T.
Example 4.8. If
(T, ¢) = D*P(x0)

then
suppT = {xo}.

Forall Te D(Q),a € INS] we define DT € D(Q)’ by

(DT, ¢) = (-1)UT,D*}) (¢ € D(Q)).
The distribution D*T is called a-th partial derivative of T.

Theorem 4.9 (Consistency of the distributional partial derivatives). For all
feW(Q)=(geLl (Q):d;geLl (QV1<i<N}andall1<i<N one has
ain = Taif.

Thus, the partial derivative d; in the distributional sense coincides with the weak
partial derivative d; of functions in the Sobolev space Wllo'cl(Q). In particular, it
coincides with the classical partial derivate on C(Q).

Proof. By definition of d; on D(Q2)’, using the definitions of T and the weak
derivatives we get
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(0iTs, ) = —Tf,0i)

=—fo3z¢
- [ a0

=(Ta;5,¢) Y €D(Q).

4.3 The product and the convolution

We define the product T-¢ € D(Q)’ of a distribution T € ()’ and a test
function ¢ € D(Q) by

T-,¢)=(Ty-¢) (P€DQ).
Lemma 4.10 (Consistency of the product). If f € L}OC(Q) and 1 € D(Q) then
Try=Tpy

Proof. For every f € L} (Q)and ¢, ¢ € D(Q) one has

loc
Trp) = CTppo9d= [ fpeo =T
Lemma 4.11. For every T € D(Q)" and every ¢ € D(Q) one has

suppT ¢ CsuppTNsuppy (S suppy)

For a distribution T € D(Q)’ and a test function ¢ € D(RN) we define the
convolution T'*¢ by setting

Tx¢(x) = (T,P(x =)

for all x € Q, such that ¢p(x —-) € D(Q), so x —supp ¢ C Q.
One observes that the set {x € Q: ¢(x—-) € D(Q)} = Uy, is an open subset
with respect to Q.

Lemma 4.12. If T € D(Q) and ¢ € D(Q) then
T*¢p e C™(Uyp).

If supp T +supp ¢ C Q and supp T are compact, and if we extend T +¢ by 0, then
T+¢ € D(Q). Moreover,

D(T+¢) = T+D%) = DT ¢.
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Theorem 4.13. The space D(Q) is sequentially dense in D(Q)" with respect to the
weak-* topology ', that is, for all T € D(Q) there exists a sequence (Py)neN € D(Q),
such that

Ty, =T inDQ).
Proof. Truncation and regularization.

Let (¢n)nen be an approximation of the identity, thatis, ¢; € D(RN), @120,
f]RN ¢1=1and

Pux) = nthl(n-x) (neN,xeRN).

Then ¢, > 0 and f]RN ¢n > 1 for every n. Moreover, for all i € D(RN)

(T, 0) = fR O = PO = (Toy ), (1> <o),

that is, the approximation of the identity (¢,) converges to the Dirac distri-
bution T, in D(RN)'.

Remark 4.14. For all ¢ € D(RN) one has

Ty *p(x) = (T, P(x =) = P(x),

or

Tsy ¢ = .

4.4 Tempered distributions
We define the space
SRN):={f e C*(RY): Va, e N} : f P 9% f(x)]* dx < o0}.
RN

Elements of S(IRN) are called the rapidly decreasing functions or Schwartz
(test) functions. Clearly, the space of (classical) test functions C°(RN) =
D(RN) is a subspace of S(RN), but it is a proper subspace since the function
flx) = e is an example of a Schwartz test function which does not have
compact support.

It is an exercise to show that
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SIRY) = (f €C™RY) Vo, Ny s [ 190" o) <o

={f e C*(RN):Va, peIN} : sup [xf 9" f(x)| < oo}.

xeRN

The space S(RN) is equipped with the topology induced by the countable

family of seminorms (|| [lo,p) apeNY” where

I fllap :=(f]RN P 9% f(x) 2 dx)z.

This countable family of seminorms induces in a natural way a metric d
given by

lf = gllap
WD = ), CabTpr— ol
S T =gl

where the coefficients c, g > 0 are fixed such that }_ , geNN Cap < 0. We have
’ 0

fio finSRY) o Va,BeN):|Ify—fllag— 0
& d(fy,f)—0,

and the space S(IRN) is complete. In other words, the countable family of
seminorms turns S(RY) into a Fréchet space.

From the definition of the space S(RY) we immediately obtain the follow-
ing lemma which is, however, worth of being stated separately.

Lemma 4.15. For every f € S(RN) and every polynomial p : CN — C the product
pf and the (sum of) partial derivatives p(d) f belong again to S(RN). In other words,
the mappings

fpf and
frp@)f

leave the space S(RN) invariant.

Elements of the dual space
S(RNY :={T: S(RN) — C : T is linear and continuous}

are called tempered distributions. Since D(RV) C S(RY) with dense and
continuous embedding, we obtain the inclusion

D(RN) ¢ S(RN) ¢ S(RNY € D(RNY'.

In particular, every tempered distribution is a distribution. For every multi-
index a € ]NS’ and every tempered distribution T € S(RN)” we define the
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partial derivative 9T € S(RV)’ and the product x*T € S(RN)’ by

(T, @) := (-1)(T,0%p) and
XT, @) :=(T,x" ).

These linear operations are consistent with the classical partial derivatives
and the product, respectively, on the space S(RV).

4.5 The Fourier transform

4.5.1 The Fourier transform on L!(RN)

For every f € Ll(]RI\_’ ) we define the Fourier transform ¥ f and the adjoint
Fourier transform ¥ f by

1= [ eMfwdy and
RN
Fiw= [ iy werY).
R
The integrals are absolutely convergent, and we have the trivial estimates

|F FCOI, IF F() < 1Ifll;1 for every x € RN,

In particular, the functions ¥ f and ¥ f are bounded.

Theorem 4.16 (Riemann-Lebesgue). For every f € L'(RN) one has F f, F f €
C.(RN).
0

Proof. The fact that the Fourier transform ¥ f is continuous follows easily
from Lebesgue’s dominated convergence theorem. Next, for every x € RV,
x#0,

=3 fR (e = e e £(y) dy

X

1 .
=5 | - S av

Since the shift group on L'(RY) is strongly continuous by Lemma 1.7, we
thus obtain

1
IF f(x) < E]I[;N lf(y)— fy+ %ﬂ dy — 0 as [x| — co.

The arguments for the adjoint Fourier transform are similar.
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Corollary 4.17. The Fourier transform ¥ and the adjoint Fourier transform are
bounded, linear operators from L'(RN) into C(RN).

We need the following basiclemma in order to prove the inversion formula
for the Fourier transform.

Lemma 4.18 (Féjer kernel). One has, for a >0,

sin?ax
> dx =an.
R X

Proof. We define

2

F(A) = j; ooe-MSir;z”x dx (A€ (0,00)).

Then f € C*((0,00)) and

) )
lim f(1)= f T2 dx= 1 f S A 4y, and
A—0+ 0 X 2 Jr

X2
lim £(1) =0.

A simple computation shows
00 -2
Fl)=-— f e—Axy dx, and
0

(A = f “Msin?ax dx

e
0
2

_ foo e—Ax (eiax _ ‘e—iux) dx
0 2i
2

__1( 1 _2, 1 )
4\A—-2ia A A+2ia
142 2A

=15~ am)

As a consequence,
(A = 1 lo /\_2
"1 %%

In order to integrate this function, we make the ansatz

1 A2
fA) = Z(A 1Ogm +g(A)],

which leads to the equation
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842

l/\ -
g A2 +4q2"

that is,

A
g(A) = —4aarctan % +C

Together with the condition lim,_,« f(A) = 0 we thus find
1 A2 T A

=-|Alog — +4a(= — ).

f(A) 1 Alog i + a(2 arctan % ))

This yields

TC
li —a=
lim f(A)=a7,

which implies the claim.

Before stating the following theorem we define for every r € RN with 74 >0

the set
N
Qr:= ><[_7’k/ il
k=1

Theorem 4.19 (Inversion formula for the Fourier transform I). Let f €
LY(RN). For every R > 0 we put

._; ix N
gr(x) := RN L/R]nye 'Ffy)dydr (xeRY).

Then gg € LY(RN) and
Lim ligr = fllr =0.

Proof. Forevery R>0and every x € RN we compute, using Fubini’s theorem,

1 ‘
@rR)N «f[;)R]Nf eV F f(y)dy dr
:—(27'(1R)N.f[0R]N f]RNf ¢ve=2) dyf(z) dzdr
Sm(”k(xk zx))
(HR)N f]R ) LJ R]NH —2D drfo) iz

“Joll

- fR ke(x—2)f(2) dz
=kr* f(x)

n2 _
sin ((k kf()d

(X — 2)?

:]z

=
l
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where

is the Féjer kernel. Note that

kg € LY(RN),
kr =0,
kr(x) = RN ky(Rx) for every x € RN and

f kr(x)dx =1 (Lemma 4.18)
RN

for every R > 0. Hence, (kr)r ~« is an approximate identity, and the claim
follows from Young's inequality and Theorem 1.8.

Corollary 4.20 (Inversion formula for the Fourier transform II). Let f €
LY(RN) be such that F f € L'(RN). Then F f € L\(RN) and

1 _
f = W?’(?’f) and
1 _

Proof. Since
Ff(x)= f e™ f(y) dy = F f(~x) for every x e RV,
RN

we immediately obtain ¥ f € L'(RV).
Now let gr be defined as in the preceding theorem. For every R > 0 and
every x € RN we then have

1
@m)N

1_ L ix ix
~ @nN [R_N f[o,mw f TS dydr- f]RNe Ff(y) udy]

1 1 .
- - ixy
@m)N RN L,R]N fge ¥ f(y)dy dr,

and hence, for every L >0

8r(Y) F(FHx) =



4.5 The Fourier transform 67

T
lgnjgp gr(x)— on )NT (F )| <
limsup —f feixyT (y)dydr
(2 )N [ R—oo P|rV LRI Jo fy)dy
1 ‘
+limsu —f fe’xyT (y) dy dr
R—)oop RN Jpo RIN\[LRIN e Sy dy ]
1 7. (R-L)N NLRN—1
< ——|limsu |7 f(y) d +11msu [IF flI
(ZH)N[ oUP RN (LY f)ldy UP RN f Ll]
7,
< IF f(y)ld
(27‘()N ([—L,L]N)f fy y
Since L > 0 was arbitrary, and since
lim ITf(y)I dy=0,
we thus obtain
. N
I%Erologg(x) on )NT(Tf)(x ) for every x e R™.

Combining this with the first inversion formula, we obtain the first identity.
The second identity is proved similarly.

Corollary 4.21. The Fourier transforms ¥, ¥ : L'(RN) — CO(]RN ) are injective.
Remark 4.22. The Fourier transform ¥ on L! is not surjective onto C,-

Lemma 4.23 (Fourier transform and convolution). For every f, ¢ € L'(RN)
one has

F(f+g)=F fFgand
F(f+=FfFg

Proof. For every x € RN we compute, using Fubini’s theorem,
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F(f9) = f L s dy

R

= f f e f(y —2)g(2) dy dz
]RN ]RN

= f f U f(y) dy g(z) dz
RN JRN

— —ixy —ixz
[emrrmay [ e
=7 f)F g).

The second identity is proved similarly.

4.5.2 The Fourier transform on S(RM)

Lemma 4.24. For every f € S(RN) and every polynomial p : CN — C one has F f,
F f € C°(RN), and

Fp)f) =pi)F f,
F(p(=i)f) =p)F f,

F(p(d)f) = p(=i-)F f, and

F(p(ir) f) = p)F f.

Proof. Let f € S(RN) and k € {1,...,N}. Then
F i /) = f e iy f(y) dy
]RN

- f () () dy

RN Bxk

=0 [ e dy
=T f(x).

Moreover, by an integration by parts,
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F O f)(x) = f e-”‘y&iykf(y) dy

RN

0 .
== | g dy

=—in, [ i) dy
= —ixF f(x).

The first two equalities follow from these two identities and by induction.
The proofs for the adjoint Fourier transform ¥ are similar.

Theorem 4.25. For every f € S(RN) one has F f, ¥ f € S(RN) and the Fourier
transforms F, F : S(RN) — S(RN; X) are linear, continuous isomorphisms.

Proof. The statement essentially follows from the preceding Lemma 4.24.

4.5.3 The Fourier transform on L2

Theorem 4.26 (Parseval’s identity).
a) ForeveryTe LY(RN; £(X,Y)) and every f € LY(RN; X) one has

f FT(x)f(x)dx= f T(x)F f(x) dx.
RN RN
b) Forevery f, g € LY(IRN) one has
[ Frostac= [ wFgean
RN RN
c) Forevery f, g € L'(RN) such that F f, ¥ g € L'(RN) one has
_ 1 —_—
[ st de= g | T ax

Similar identities hold if we replace everywhere F by F and vice versa.

Proof. (a) We calculate, using Fubini’s theorem,

— —ixy
j}l;NTT(x)f(x) dx LNJH;Ne T(y) dy f(x) dx

— —ixy
[0 [ e axay
- [ 7w .
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(b) is proved in a similar way and (c) follows from (b) by using the Inversion
Formula II (Corollary 4.20).

Theorem 4.27 (Plancherel). The Fourier transforms ¥, F : C°(RN) — L>(IRN)
extend uniquely to bounded, linear operators on L>(RN). The operators —=F,

— N/Z?N
rleNT : L2(RN) — L2(RN) are unitary and

1 1 -
Fy-—L ¢
VY =

Proof. From Parseval’s identity (Theorem 4.26 (c)) we obtain, that for every
f, g€ CX(RN)

<7:fr Tg)LZ = (ZH)N<f/g>L2/
and in particular,

IF I, = @I,

As a consequence, since C2°(RV) is dense in L>(RN), F extends in a unique
way to a bounded, linear operator on L%(RN). Moreover, we see from the

. 1 .. . . .
above equality that \/2711\17: is isometric. As a consequence, this operator is

injective and has closed range. However, from the inversion formula we see
that C2°(RN) is contained in the range. Hence, ﬁ?" is surjective, and thus

unitary. )
The arguments for ¥ are similar.

4.5.4 The Fourier transform on S(RN)’

4.6 The theorem of Malgrange-Ehrenpreis

In this section we state and prove the theorem of Malgrange-Ehrenpreis.
The proof given here follows the lines of the proof of H. Kénig and may be
found, for example, in [Walter (1994)].

Let p: CN — C be a complex polynomial of degree m € N,

@)= ) az (zeCY)

aE]NON
lal<m

with fixed coefficients a, € C. Denote by p the main part of this polynomial,
that is,
pz) = Z 1,72%  (zeCN)

(xe]NS]

lal=m
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with p # 0.
We call a tempered distribution T € S(RN)’ a fundamental solution for
the partial differential operator with constant coefficients

p(d) = Z a,0%

aE]NON

la|<m
(which in principle acts on D(Q)’ for every open Q C RN) if
p(A)T = do,

where §g is the Dirac distribution in 0. Given a fundamental solution for the
differential operator p(d), one may solve the partial differential equation

p@@)u = fin RN

for given right-hand side f € D(RN) by putting u := T f € C*(RN). In fact,
for this function u one has

pu =p@)(T+f) = (p)T)*f =do=f = f.

Theorem 4.28 (Malgrange-Ehrenpreis). For every polynomial p : CN — C the
differential operator p(d) admits a fundamental solution.

Let us note some observations which are useful for the proof of this
theorem.

Observation 4.29. For every a = (a1, ..., aN) € CN and every n € IN one has

N n
n!
Yl =
a!
j=1 lal=n
and therefore

Ifz=(zq,...,2,) € CN and a; = z:z; = |z;|?, then one has
] Id) ]

n! o
)3 —lahlal”

la|<n

n!
1+ 2\n — asa
4Py =) (i—Jahlal” ©
lal<n
Observation 4.30. Let I" be the unit circle in C, I'N € CN the N-fold cartesian
product. We write
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27T

1 .
fr f(2)d(z) =g f(e%) de.

Note that for every c€ T,

frf(cz)dT(Z)Zﬁf(z)dT(z).

Accordingly, we define for f: N — C the iterated integral fﬂ\, f(z) din(z).
For every pair of multi-indices a, p € ]Ng] one has

0 ifa#p,
f 292F AN (2) = Oup =
N 1 ifa=g.

Let us define the trace of the main part of the polynomial p by

s(p) = ) laa? > 0.

la|l=m
One has
)= [ perdne),
FN
because

PP = p2)p(2)

= Z Z aa@z"‘z"ﬁ.

lal=m|l=m
Observation 4.31. Let ¢ : C — C be holomorphic and let 4 : C — C be a poly-

nomial, q(z) = Y}, cxz" with ¢, # 0. Then Cauchy’s theorem implies

(O)5 = fr $@71@)2" de(z).

Indeed, note that for z € I’ one has z = z~! and therefore

m

@Zm — Zazm—k.

k=0

Observation 4.32. Let f: CN > Cbe holomorphic. Then, for every z € cN,

f@)s(p) = ~fF‘Nf(z+s)p(z+s);’7(s) dn(s).
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In fact, if one fixes z, s € CVN, and if one sets

g(t):== f(z+ts) (teC), and
m=1

9 = p+1s) = pE)" + ) | Aj(z,)1],
j=0

where the A; are independent of ¢, then ¢(0) = f(2), ¢ = p(s), and the preced-
ing observation yields

F@IPG)P = fE)pE)p6s)
= ff(z +ts)p(z +ts) " p(s) d(t)
r

= ff(z +ts)p(z+ts) p(ts) dz(t).
r

Integrating both sides over s € I'N yields

f(z)s(p) = frj;N fz+ts)p(z+ts)p(ts) din(s) d(t)
= er fz+s)p(z+s)p(s) din(s).

Proof (of Theorem 4.28). Let us define the function (-) : C — C by

Let u € D(RN) be a test function. Then its Fourier transform Fu : RN — C
extends to a holomorphic function CN — C which we also denote by Fu.
The inversion formula for the Fourier transform yields

1

u(0) = N LN Fu(x)dx,

and therefore
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@ s = [ stp)Fut) dx
RN
= f f Fu(x+s)p(x+s)p(s) drn(s) dx
RN JrN
= f f p(x+s)Fu(x+s){(p(x+s))p(s) drn(s) dx
RN JrN
= f f F (p(—id)u)(x +s){p(x +s)) p(s) drn(s) dx.
RN JrN
Setting v = p(—id)u, we have

(1+1R)"Fo@) = ) calz®)22*Fo(z)

lal<n

= ) )@ R,

la|l<n

where ¢, := Hence,

(n— |0¢|)'Dt’

(1+]x+s2)"

@r)s(pu(0) = f f (1ol EFIPOEN ) 200 4 dn(s) i
lev|<n

We take 7 large enough, so that § <. Then the function I, given by

((x+5)*p(x+5s))

(1)l
Lo(x,8) := (=1)"cq (14 [x+sP)

p(s)

is integrable over RN X I'N. By interchanging a sum and some integrals, we
obtain

@m)Ns(p)u(0) = jﬂ; . f Zla (x,8) F(9*0)(x +5) dTn(s) dx

N lal<n

‘f]R N fr ZI (x,s) f o iGeHs)y gz%(y) dy dtn(s) dx

lal<n
:j]; [Zf j;NI (x,5) e "0 dp(s) dx

lal<

**v(y) dy.

Setting

Ky(y) == Zf fla(x 5)e @Y dry(s)dx  (y e RY),

lal<n

we have K, € L}OC(IRN )- Now it suffices to put
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— ; 20
"= e L

la|l<m

and one obtains
(p(id)T,u)y =T, p(=id)u) = (T,v) = u(0),

or, in different notation,
p(id)T = &y.
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