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Chapter 0
Primer on topology

It is the purpose of this introductory chapter to recall some basic facts about metric
spaces, sequences in metric spaces, compact metric spaces, and continuous func-
tions between metric spaces. Most of the material should be known, and if it is
not known in the context of metric spaces, it has certainly been introduced on Rd .
The generalization to metric spaces should be straightforward, but it is nevertheless
worthwhile to spend some time on the examples.

We also introduce some further notions from topology which may be new; see
for example the definitions of density or of completion of a metric space.

0.1 Metric spaces

Let M be a set. We call a function d : M×M → R+ a metric or a distance on M if
for every x, y, z ∈ M

(i) d(x,y) = 0 if and only if x = y,

(ii) d(x,y) = d(y,x) (symmetry), and

(iii) d(x,y)≤ d(x,z)+d(z,y) (triangle inequality).

A pair (M,d) of a set M and a metric d on M is called a metric space.
It will be convenient to write only M instead of (M,d) if the metric d on M is

known from the context, and to speak of a metric space M.

Example 0.1. 1. Let M ⊆ Rd and

d(x,y) :=
d

∑
i=1

|xi − yi|

or

d(x,y) :=

(
d

∑
i=1

|xi − yi|2
) 1

2

.

1



2 0 Primer on topology

Then (M,d) is a metric space. The second metric is called the Euclidean metric.
Often, if the metric on Rd is not explicitly given, we mean the Euclidean metric.

2. Let M ⊆C([0,1]), the space of all continuous functions on the interval [0,1], and

d( f ,g) := sup
x∈[0,1]

| f (x)−g(x)|.

Then (M,d) is a metric space.
3. Let M be any set and

d(x,y) :=

{
0 if x = y,

1 otherwise.

Then (M,d) is a metric space. The metric d is called the discrete metric.
4. Let (M,d) be a metric space. Then

d1(x,y) :=
d(x,y)

1+d(x,y)

and
d2(x,y) := min{d(x,y),1}

define also metrics on M.
5. Let M =C(R), the space of all continuous functions on R, and let

dn( f ,g) := sup
x∈[−n,n]

| f (x)−g(x)| (n ∈ N)

and

d( f ,g) := ∑
n∈N

2−n dn( f ,g)
1+dn( f ,g)

.

Then (M,d) is a metric space. Note that the functions dn are not metrics for any
n ∈ N!

6. Let (M,d) be a metric space. Then any subset M̃ ⊆ M is a metric space for the
induced metric

d̃(x,y) = d(x,y), x, y ∈ M̃.

We may sometimes say that M̃ is a subspace of M, that is, a subset and a metric
space, but certainly this is not to be understood in the sense of linear subspaces
of vector spaces (M need not be a vector space).

7. Let (Mn,dn) be metric spaces (n ∈N). Then the cartesian product M :=
⊗

n∈N Mn
is a metric space for the metric

d(x,y) := ∑
n∈N

2−n min{dn(xn,yn),1}.

Clearly, in a similar way, every finite cartesian product of metric spaces is a
metric space.
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Let (M,d) be a metric space. For every x ∈ M and every r > 0 we define the
open ball B(x,r) := {y ∈ M : d(x,y) < r} with center x and radius r. A set O ⊆ M
is called open if for every x ∈ O there exists some r > 0 such that B(x,r) ⊆ O. A
set A ⊆ M is called closed if its complement Ac = M \A is open. A set U ⊆ M is
called a neighbourhood of x ∈ M if there exists r > 0 such that B(x,r)⊆U .

Remark 0.2. (a) The notions open, closed, neighbourhood depend on the set M!!
For example, M is always closed and open in M. The set Q is not closed in R (for
the Euclidean metric), but it is closed in Q for the induced metric! Therefore, one
should always say in which metric space some given set is open or closed.
(b) Clearly, a set O ⊆ M is open (in M) if and only if it is a neighbourhood of every
of its elements.

Lemma 0.3. Let (M,d) be a metric space. The following are true:

a) Arbitrary unions of open sets are open. That means: if (Oi)i∈I is an arbitrary
family of open sets (no restrictions on the index set I), then

∪
i∈I Oi is open.

b) Arbitrary intersections of closed sets are closed. That means: if (Ai)i∈I is an
arbitrary family of closed sets, then

∩
i∈I Ai is closed.

c) Finite intersections of open sets are open.

d) Finite unions of closed sets are closed.

Proof. (a) Let (Oi)i∈I be an arbitrary family of open sets and let O :=
∪

i∈I Oi. If
x ∈ O, then x ∈ Oi for some i ∈ I, and since Oi is open, B(x,r)⊆ Oi for some r > 0.
This implies that B(x,r)⊆ O, and therefore O is open.

(c) Next let (Oi)i∈I be a finite family of open sets and let O :=
∩

i∈I Oi. If x ∈ O,
then x∈Oi for every i∈ I. Since the Oi are open, there exist ri such that B(x,ri)⊆Oi.
Let r := mini∈I ri which is positive since I is finite. By construction, B(x,r)⊆ Oi for
every i ∈ I, and therefore B(x,r)⊆ O, that is, O is open.

The proofs for closed sets are similar or follow just from the definition of closed
sets and the above two assertions.

Exercise 0.4 Determine all open sets (respectively, all closed sets) of a metric space
(M,d), where d is the discrete metric.

Exercise 0.5 Show that a ball B(x,r) in a metric space M is always open. Show
also that

B̄(x,r) := {y ∈ M : d(x,y)≤ r}

is always closed.

Let (M,d) be a metric space and let S ⊆ M be a subset. Then the set
S̄ :=

∩
{A : A ⊆ M is closed and S ⊆ A} is called the closure of S. The set

S◦ :=
∪
{O : O ⊆ M is open and O ⊆ S} is called the interior of S. Finally, we call

∂S := {x ∈ M : ∀ε > 0B(x,ε)∩S ̸= /0 and B(x,ε)∩Sc ̸= /0} the boundary of S.

By Lemma 0.3, the closure of a set S is always closed (arbitrary intersections of
closed sets are closed). By definition, S̄ is the smallest closed set which contains S.
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Similarly, the interior of a set S is always open, and by definition it is the largest
open set which is contained in S. Note that the interior might be empty.

Exercise 0.6 Give an example of a metric space M and some x ∈ M, r > 0, to show
that B̄(x,r) need not coincide with the closure of B(x,r).

Exercise 0.7 Let (M,d) be a metric space and consider the metrics d1 and d2 from
Example 0.1 (4). Show that the set of all open subsets, closed subsets or neighbour-
hoods of M is the same for the three given metrics.

The set of all open subsets is also called the topology of M. The three metrics d,
d1 and d2 thus induce the same topology. Sometimes it is good to know that one can
pass from a given metric d to a finite metric (d1 and d2 take only values between 0
and 1) without changing the topology.

0.2 Sequences, convergence

Throughout the following, sequences will be denoted by (xn). Only when it is nec-
essary, we make precise the index n; usually, n ≥ 0 or n ≥ 1, but sometimes we will
also consider finite sequences or sequences indexed by Z.

Let (M,d) be a metric space. We call a sequence (xn)⊆ M a Cauchy sequence
if for every ε > 0 there exists n0 such that for every n, m ≥ n0 one has d(xn,xm)< ε .
We say that a sequence (xn) ⊆ M converges to some element x ∈ M if for every
ε > 0 there exists n0 such that for every n≥ n0 one has d(xn,x)< ε . If (xn) converges
to x, we also write limn→∞ xn = x or xn → x as n → ∞.

Exercise 0.8 Let C([0,1]) be the metric space from Example 0.1 (2). Show that
a sequence ( fn) ⊆ C([0,1]) converges to some f for the metric d if and only if
it converges uniformly. We say that the metric d induces the topology of uniform
convergence.

Show also that a sequence ( fn) ⊆ C(R) (Example 0.1 (5)) converges to some
f for the metric d if and only if it converges uniformly on compact subsets of R.
In this example, we say that the metric d induces the topology of local uniform
convergence.

Exercise 0.9 Determine all Cauchy sequences and all convergent sequences in a
discrete metric space.

Lemma 0.10. Let M be a metric space and (xn)⊆ M be a sequence. Then:

a) limn→∞ xn = x for some element x ∈ M if and only if for every neighbourhood
U of x there exists n0 such that for every n ≥ n0 one has xn ∈U.

b) (Uniqueness of the limit) If limn→∞ xn = x and limn→∞ xn = y, then x = y.

Lemma 0.11. A set A ⊆ M is closed if and only it is sequentially closed, that is, if
for every sequence (xn)⊆ A which converges to some x ∈ M one has x ∈ A.
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Proof. Assume first that A is closed and let (xn) ⊆ A be convergent to x ∈ M. If x
does not belong to A, then it belongs to Ac which is open. By definition, there exists
ε > 0 such that B(x,ε)⊆ Ac. Given this ε , there exists n0 such that xn ∈ B(x,ε) for
every n ≥ n0, a contradiction to the assumption that xn ∈ A. Hence, x ∈ A.

On the other hand, assume that limn→∞ xn = x ∈ A for every convergent (xn)⊆ A
and assume in addition that A is not closed or, equivalently, that Ac is not open.
Then there exists x ∈ Ac such that for every n ∈ N the set B(x, 1

n )∩A is nonempty.
From this one can construct a sequence (xn) ⊆ A which converges to x, which is a
contradiction because x ∈ Ac.

Lemma 0.12. Let (M,d) be a metric space, and let S ⊆ M be a subset. Then

S̄ = {x ∈ M : ∃(xn)⊆ S s.t. lim
n→∞

xn = x}

= {x ∈ M : d(x,S) := inf
y∈S

d(x,y) = 0}.

Proof. Let
A := {x ∈ M : ∃(xn)⊆ S s.t. lim

n→∞
xn = x}

and
B := {x ∈ M : d(x,S) := inf

y∈S
d(x,y) = 0}.

These two sets are clearly equal by the definition of the inf and the definition of
convergence. Moreover, the set B is closed by the following argument. Assume that
(xn) ⊆ B is convergent to x ∈ M. By definition of B, for every n there exists y ∈ S
such that d(xn,yn)≤ 1/n. Hence,

limsup
n→∞

d(x,yn)≤ limsup
n→∞

d(x,xn)+ limsup
n→∞

d(xn,yn) = 0,

so that x ∈ B.
Clearly, B contains S, and since B is closed, B contains S̄. It remains to show

that B ⊆ S̄. If this is not true, then there exists x ∈ B \ S̄. Since the complement of
S̄ is open in M, there exists r > 0 such that B(x,r)∩ S̄ = /0, a contradiction to the
definition of B.

A metric space (M,d) is called complete if every Cauchy sequence converges.

Exercise 0.13 Show that the spaces Rd , C([0,1]) and C(R) are complete. Show also
that any discrete metric space is complete.

Lemma 0.14. A subspace N ⊆ M of a complete metric space is complete if and only
if it is closed in M.

Proof. Assume that N ⊆ M is closed, and let (xn) be a Cauchy sequence in N. By
the assumption that M is complete, (xn) is convergent to some element x ∈ M. Since
N is closed, x ∈ N.

Assume on the other hand that N is complete, and let (xn)⊆ N be convergent to
some element x ∈ M. Clearly, every convergent sequence is also a Cauchy sequence,
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and since N is complete, (xn) converges to some element y ∈ N. By uniqueness of
the limit, x = y ∈ N. Hence, N is closed.

0.3 Compact spaces

We say that a metric space (M,d) is compact if for every open covering there exists
a finite subcovering, that is, whenever (Oi)i∈I is a family of open sets (no restrictions
on the index set I) such that M =

∪
i∈I Oi, then there exists a finite subset I0 ⊆ I such

that M =
∪

i∈I0 Oi.

Lemma 0.15. A metric space (M,d) is compact if and only if it is sequentially com-
pact, that is, if and only if every sequence (xn)⊆ M has a convergent subsequence.

Proof. Assume that M is compact and let (xn) ⊆ M. Assume that (xn) does not
have a convergent subsequence. Then for every x ∈ M there exists εx > 0 such that
B(x,εx) contains only finitely many elements of {xn}. Note that (B(x,εx))x∈M is an
open covering of M so that by the compactness of M there exists a finite subset N ⊆
M such that M =

∪
x∈N B(x,εx). But this means that (xn) takes only finitely many

values, and hence there exists even a constant subsequence which is in particular
also convergent; a contradiction to the assumption on (xn).

On the other hand, assume that M is sequentially compact and let (Oi)i∈I be an
open covering of M. We first show that there exists ε > 0 such that for every x ∈ M
there exists ix ∈ I with B(x,ε) ⊆ Oix . If this were not true, then for every n ∈ N
there exists xn such that B(xn,

1
n ) ̸⊆ Oi for every i ∈ I. Passing to a subsequence, we

may assume that (xn) is convergent to some x ∈ M. There exists some i0 ∈ I such
that x ∈ Oi0 , and since Oi0 is open, we find some ε > 0 such that B(x,ε) ⊆ Oi0 .
Let n0 be such that 1

n0
< ε

2 . By the triangle inequality, for every n ≥ n0 we have
B(xn,

1
n )⊆ B(x,ε)⊆ Oi0 , a contradiction to the construction of the sequence (xn).

Next we show that M =
∪n

j=1 B(x j,ε) for a finite family of x j ∈ M. Choose any
x1 ∈ M. If B(x1,ε) = M, then we are already done. Otherwise we find x2 ∈ M \
B(x1,ε). If B(x1,ε)∪B(x2,ε) ̸= M, then we even find x3 ∈ M which does not belong
to B(x1,ε)∪B(x2,ε), and so on. If

∪n
j=1 B(x j,ε) is never all of M, then we find

actually a sequence (x j) such that d(x j,xk)≥ ε for all j ̸= k. This sequence can not
have a convergent subsequence, a contradiction to sequential compactness.

Since every of the B(x j,ε) is a subset of Oix j
for some ix j ∈ I, we have proved that

M =
∪n

j=1 Oix j
, i.e. the open covering (Oi) admits a finite subcovering. The proof is

complete.

Lemma 0.16. Any compact metric space is complete.

Proof. Let (xn) be a Cauchy sequence in M. By the preceeding lemma, there ex-
ists a subsequence which converges to some x ∈ M. If a subsequence of a Cauchy
sequence converges, then the sequence itself converges, too.
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0.4 Continuity

Let (M1,d1), (M2,d2) be two metric spaces, and let f : M1 → M2 be a function. We
say that f is continuous at some point x ∈ M1 if

∀ε > 0∃δ > 0∀y ∈ B(x,δ ) : d2( f (x), f (y))< ε.

We say that f is continuous if it is continuous at every point. We say that f is
uniformly continuous if

∀ε > 0∃δ > 0∀x, y ∈ M1 : d1(x,y)< δ ⇒ d2( f (x), f (y))< ε.

We say that f is Lipschitz continuous if

∃L ≥ 0∀x, y ∈ M1 : d2( f (x), f (y))≤ Ld1(x,y).

Lemma 0.17. A function f : M1 → M2 between two metric spaces is continuous at
some point x∈M1 if and only if it is sequentially continuous at x, that is, if and only
if for every sequence (xn)⊆ M1 which converges to x one has limn→∞ f (xn) = f (x).

Proof. Assume that f is continuous at x ∈ M1 and let (xn) be convergent to x. Let
ε > 0. There exists δ > 0 such that for every y ∈ B(x,δ ) one has f (y) ∈ B( f (x),ε).
By definition of convergence, there exists n0 such that for every n ≥ n0 one has
xn ∈ B(x,δ ). For this n0 and every n ≥ n0 one has f (xn) ∈ B( f (x),ε). Hence,
limn→∞ f (xn) = f (x).

Assume on the other hand that f is sequentially continuous at x. If f was not con-
tinuous in x then there exists ε > 0 such that for every n ∈N there exists xn ∈ B(x, 1

n )
with f (xn) ̸∈B( f (x),ε). By construction, limn→∞ xn = x. Since f is sequentially con-
tinuous, limn→∞ f (xn) = f (x). But this is a contradiction to f (xn) ̸∈ B( f (x),ε), and
therefore f is continuous.

Lemma 0.18. A function f : M1 → M2 between two metric spaces is continuous if
and only if preimages of open sets are open, that is, if and only if for every open set
O ⊆ M2 the preimage f−1(O) is open in M1.

Proof. Let f : M1 → M2 be continuous and let O ⊆ M2 be open. Let x ∈ f−1(O).
Since O is open, there exists ε > 0 such that B( f (x),ε)⊆ O. Since f is continuous,
there exists δ > 0 such that for every y ∈ B(x,δ ) one has f (y) ∈ B( f (x),ε). Hence,
B(x,δ )⊆ f−1(O) so that f−1(O) is open.

On the other hand, if the preimage of every open set is open, then for every
x ∈ M1 and every ε > 0 the preimage f−1(B( f (x),ε)) is open. Clearly, x belongs to
this preimage, and therefore there exists δ > 0 such that B(x,δ )⊆ f−1(B( f (x),ε)).
This proves continuity.

Lemma 0.19. Let f : K → M be a continuous function from a compact metric space
K into a metric space M. Then:

a) The image f (K) is compact.
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b) The function f is uniformly continuous.

Proof. (a) Let (Oi)i∈I be an open covering of f (K). Since f is continuous, f−1(Oi)
is open in K. Moreover, ( f−1(Oi))i∈I is an open covering of K. Since K is compact,
there exists a finite subcovering: K =

∪
i∈I0 f−1(Oi) for some finite I0 ⊆ I. Hence,

(Oi)i∈I0 is a finite subcovering of f (K).
(b) Let ε > 0. Since f is continuous, for every x ∈ K there exists δx > 0 such that

for all y ∈ B(x,δx) one has f (y) ∈ B( f (x),ε). By compactness, there exists a finite
family (xi)1≤i≤n ⊆K such that K =

∪n
i=1 B(xi,δxi/2). Let δ =min{δxi/2 : 1≤ i≤ n}

and let x, y ∈ K such that d(x,y)< δ . Since x ∈ B(xi,δxi/2) for some 1 ≤ i ≤ n, we
find that y ∈ B(xi,δxi). By construction, f (x), f (y) ∈ B( f (xi),ε) so that the triangle
inequality implies d( f (x), f (y))< 2ε .

Lemma 0.20. Any Lipschitz continuous function f : M1 → M2 between two metric
spaces is uniformly continuous.

Proof. Let L > 0 be a Lipschitz constant for f and let ε > 0. Define δ := ε/L. Then,
for every x, y ∈ M such that d1(x,y)≤ δ one has

d2( f (x), f (y))≤ Ld1(x,y)≤ ε,

and therefore f is uniformly continuous.

0.5 Completion of a metric space

We say that a subset D ⊆ M of a metric space (M,d) is dense in M if D̄ = M.
Equivalently, D is dense in M if for every x ∈ M there exists (xn) ⊆ D such that
limn→∞ xn = x.

Lemma 0.21 (Completion). Let (M,d) be a metric space. Then there exists a com-
plete metric space (M̂, d̂) and a continuous, injective j : M → M̂ such that

d(x,y) = d̂( j(x), j(y)), x, y ∈ M,

and such that the image j(M) is dense in M̂.

Let (M,d) be a metric space. A complete metric space (M̂, d̂) fulfilling the prop-
erties from Lemma 0.21 is called a completion of M.

Proof (Proof of Lemma 0.21). Let

M̄ := {(xn)⊆ M : (xn) is a Cauchy sequence}.

We say that two Cauchy sequences (xn), (yn) ⊆ M̄ are equivalent (and we write
(xn)∼ (yn)) if limn→∞ d(xn,yn) = 0. Clearly, ∼ is an equivalence relation on M̄.
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We denote by [(xn)] the equivalence class in M̄ of a Cauchy sequence (xn), and
we let

M̂ := M̄/∼= {[(xn)] : (xn) ∈ M̄}

be the set of all equivalence classes. If we define

d̂([(xn)], [(yn)]) := lim
n→∞

d(xn,yn),

then d̂ is well defined (the definition is independent of the choice of representatives)
and it is a metric on M̂. The fact that d̂ is a metric and also that (M̂, d̂) is a complete
metric space are left as exercises.

One also easily verifies that j : M → M̂ defined by j(x) = [(x)] (the equivalence
class of the constant sequence (x)) is continuous, injective and in fact isometric, i.e.

d(x,y) = d̂( j(x), j(y))

for every x, y ∈ M. The proof is here complete.

Lemma 0.22. Let (M̂i, d̂i) (i = 1, 2) be two completions of a metric space (M,d).
Then there exists a bijection b : M̂1 → M̂2 such that for every x, y ∈ M̂1

d̂1(x,y) = d̂2(b(x),b(y)).

Lemma 0.22 shows that up to isometric bijections there exists only one comple-
tion of a given metric space and it allows us to speak of the completion of a metric
space.

Lemma 0.23. Let f : M1 → M2 be a uniformly (!) continuous function between two
metric spaces. Let M̂1 and M̂2 be the completions of M1 and M2, respectively. Then
there exists a unique continuous extension f̂ : M̂1 → M̂2 of f .

Proof. Since f is uniformly continuous, it maps equivalent Cauchy sequences into
equivalent Cauchy sequences (equivalence of Cauchy sequences is defined as in the
proof of Lemma 0.21). Hence, the function f̂ ([(xn)]) := [( f (xn))] is well defined. It
is easy to check that f̂ is an extension of f and that f̂ is continuous (even uniformly
continuous).

The assumption of uniform continuity in Lemma 0.23 is necessary in general.
The functions f (x) = sin(1/x) and f (x) = 1/x on the open interval (0,1) do not
admit continuous extensions to the closed interval [0,1] (which is the completion of
(0,1)).





Chapter 1
Banach spaces and bounded linear operators

Throughout, let K ∈ {R,C}.

1.1 Normed spaces

Let X be a vector space over K. A function ∥ · ∥ : X → R+ is called a norm if for
every x, y ∈ X and every λ ∈K
(i) ∥x∥= 0 if and only if x = 0,

(ii) ∥λx∥= |λ |∥x∥, and

(iii) ∥x+ y∥ ≤ ∥x∥+∥y∥ (triangle inequality).

A pair (X ,∥ · ∥) of a vector space X and a norm ∥ · ∥ is called a normed space.
Often, we will speak of a normed space X if it is clear which norm is given on X .

Example 1.1. 1. (Finite dimensional spaces) Let X =Kd . Then

∥x∥p :=

(
d

∑
i=1

|xi|p
)1/p

, 1 ≤ p < ∞,

and
∥x∥∞ := sup

1≤i≤d
|xi|

are norms on X .
2. (Sequence spaces) Let 1 ≤ p < ∞, and let

lp := {(xn)⊆K : ∑
n
|xn|p < ∞}

with norm

11
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∥x∥p :=
(

∑
n
|xn|p

)1/p

.

Then (lp,∥ · ∥p) is a normed space.
3. (Sequence spaces) Let X be one of the spaces

l∞ := {(xn)⊆K : sup
n
|xn|< ∞},

c := {(xn)⊆K : lim
n→∞

xn exists}, or

c0 := {(xn)⊆K : lim
n→∞

xn = 0}, or

c00 := {(xn)⊆K : the set {n : xn ̸= 0} is finite},

and let
∥x∥∞ := sup

n
|xn|.

Then (X ,∥ · ∥∞) is a normed space.
4. (Function spaces: continuous functions) Let C([a,b]) be the space of all continu-

ous, K-valued functions on a compact interval [a,b]⊂ R. Then

∥ f∥p :=
(∫ b

a
| f (x)|p dx

)1/p

, 1 ≤ p < ∞,

and
∥ f∥∞ := sup

x∈[a,b]
| f (x)|

are norms on C([a,b]).
5. (Function spaces: continuous functions) Let K be a compact metric space and let

C(K) be the space of all continuous, K-valued functions on K. Then

∥ f∥∞ := sup
x∈K

| f (x)|

is a norm on C(K).
6. (Function spaces: integrable functions) Let (Ω ,A ,µ) be a measure space and let

Xp = Lp(Ω) (1 ≤ p ≤ ∞). Let

∥ f∥p :=
(∫

Ω
| f |p dµ

)1/p

, 1 ≤ p < ∞,

or
∥ f∥∞ := ess sup| f (x)| := inf{c ∈ R+ : µ({| f |> c}) = 0}.

Then (Xp,∥ · ∥p) is a normed space.
7. (Function spaces: differentiable functions) Let

C1([a,b]) := { f ∈C([a,b]) : f is continuously differentiable}.
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Then ∥ · ∥∞ and
∥ f∥C1 := ∥ f∥∞ +∥ f ′∥∞

are norms on C1([a,b]).

We will see more examples in the sequel.

Lemma 1.2. Every normed space (X ,∥ · ∥) is a metric space for the metric

d(x,y) := ∥x− y∥, x, y ∈ X .

By the above lemma, also every subset of a normed space becomes a metric space
in a natural way. Moreover, it is natural to speak of closed or open subsets (or linear
subspaces!) of normed spaces, or of closures and interiors of subsets.

Exercise 1.3 Show that in a normed space X, for every x ∈ X and every r > 0 the
closed ball B̄(x,r) coincides with closure B(x,r) of the open ball.

Also the notion of continuity of functions between normed spaces (or between a
metric space and a normed space) makes sense. The following is a first example of
a continuous function.

Lemma 1.4. Given a normed space, the norm is a continuous function.

This lemma is a consequence of the following lemma.

Lemma 1.5 (Triangle inequality from below). Let X be a normed space. Then,
for every x, y ∈ X,

∥x− y∥ ≥
∣∣∥x∥−∥y∥

∣∣.
Proof. The triangle inequality implies

∥x∥= ∥x− y+ y∥
≤ ∥x− y∥+∥y∥,

so that
∥x∥−∥y∥ ≤ ∥x− y∥.

Changing the role of x and y implies

∥y∥−∥x∥ ≤ ∥y− x∥= ∥x− y∥,

and the claim follows.

A notion which can not really be defined in metric spaces but in normed spaces
is the following. A subset B of a normed space X is called bounded if

sup{∥x∥ : x ∈ B}< ∞.

It is easy to check that if X is a normed space, and M is a metric space, then the set
C(M;X) of all continuous functions from M into X is a vector space for the obvious
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addition and scalar multiplication. If M is in addition compact, then f (M) ⊆ X is
also compact for every such function, and hence f (M) is necessarily bounded (every
compact subset of a normed space is bounded!). So we can give a new example of a
normed space.

Example 1.6. 8. (Function spaces: vector-valued continuous functions) Let (X ,∥ ·
∥) be a normed space and let K be a compact metric space. Let E =C(K;X) be
the space of all X-valued continuous functions on K. Then

∥ f∥∞ := sup
x∈K

∥ f (x)∥

is a norm on C(K;X).

Also the notions of Cauchy sequences and convergent sequences make sense in
normed spaces. In particular, one can speak of a complete normed space, that is,
a normed space in which every Cauchy sequence converges. A complete normed
space is called a Banach space.

Example 1.7. The finite dimensional spaces, the sequence spaces lp (1 ≤ p ≤ ∞), c,
and c0, and the function spaces (C([a,b]),∥ ·∥∞), (Lp(Ω),∥ ·∥p) are Banach spaces.

The spaces (c00,∥ · ∥∞), (C([a,b]),∥ · ∥p) (1 ≤ p < ∞) are not Banach spaces.
If X is a Banach space, then also (C(K;X),∥ · ∥∞) is a Banach space.

We say that two norms ∥ · ∥1 and ∥ · ∥2 on a real or complex vector space X are
equivalent if there exist two constants c, C > 0 such that for every x ∈ X

c∥x∥1 ≤ ∥x∥2 ≤C∥x∥1.

Lemma 1.8. Let ∥ · ∥1, ∥ · ∥2 be two norms on a vector space X (over K). The fol-
lowing are equivalent:

(i) The norms ∥ · ∥1, ∥ · ∥2 are equivalent.

(ii) A set O ⊆ X is open for the norm ∥ · ∥1 if and only if it is open for the norm
∥ · ∥2 (and similarly for closed sets).

(iii) A sequence (xn) ⊆ X converges to 0 for the norm ∥ · ∥1 if and only if it con-
verges to 0 for the norm ∥ · ∥2.

In other words, if two norms ∥ ·∥1, ∥ ·∥2 on a vector space X are equivalent, then
the open sets, the closed sets and the null sequences are the same. We also say that
the two norms define the same topology. In particular, if X is a Banach space for
one norm then it is also a Banach space for the other (equivalent) norm.

Exercise 1.9 The norms ∥ · ∥∞ and ∥ · ∥p are not equivalent on C([0,1]).

Theorem 1.10. Any two norms on a finite dimensional real or complex vector space
are equivalent.
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Proof. We may without loss of generality consider Kd . Let ∥ · ∥ be a norm on Kd

and let (ei)1≤i≤d be the canonical basis of Kd . For every x ∈Kd

∥x∥= ∥
d

∑
i=1

xiei∥

≤
d

∑
i=1

|xi|∥ei∥

≤C∥x∥1,

where C := sup1≤i≤d ∥ei∥ < ∞ and ∥ · ∥1 is the norm from Example 1.1.1. By the
triangle inequality from below, for every x, y ∈Kd ,

|∥x∥−∥y∥| ≤ ∥x− y∥ ≤C∥x− y∥1.

Hence, the norm ∥ · ∥ : (Kd ,∥ · ∥1) → R+ is continuous (on Kd equipped with the
norm ∥ · ∥1). If S := {x ∈Kd : ∥x∥1 = 1} denotes the unit sphere for the norm ∥ · ∥1,
then S is compact. As a consequence

c := inf{∥x∥ : x ∈ S}> 0,

since the infimum is attained by the continuity of ∥ · ∥. This implies

c∥x∥1 ≤ ∥x∥ for every x ∈Kd .

We have proved that every norm on Kd is equivalent to the norm ∥ · ∥1. Hence, any
two norms on Kd are equivalent.

Corollary 1.11. Any finite dimensional normed space is complete. Any finite dimen-
sional subspace of a normed space is closed.

Proof. The space (Kd ,∥ ·∥1) is complete (exercise!). If ∥ ·∥ is a second norm on Kd

and if (xn) is a Cauchy sequence for that norm, then it is also a Cauchy sequence
in (Kd ,∥ · ∥1) (use that the norms ∥ · ∥1 and ∥ · ∥ are equivalent), and therefore con-
vergent in (Kd ,∥ · ∥1). By equivalence of norms again, the sequence (xn) is also
convergent in (Kd ,∥ · ∥), and therefore (Kd ,∥ · ∥) is complete.

Let Y be a finite dimensional subspace of a normed space X , and let (xn)⊆Y be a
convergent sequence with x = limn→∞ xn ∈ X . Since (xn) is also a Cauchy sequence,
and since Y is complete, we find (by uniqueness of the limit) that x∈Y , and therefore
Y is closed (Lemma 0.11).

Let (xn) be a sequence in a normed space X . We say that the series ∑n xn is
convergent if the sequence (∑ j≤n x j) of partial sums is convergent. We say that the
series ∑n xn is absolutely convergent if ∑n ∥xn∥< ∞.

Lemma 1.12. Let (xn) be a sequence in a normed space X. If the series ∑n xn is
convergent, then necessarily limn→∞ xn = 0.
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Note that in a normed space not every absolutely convergent series is convergent.
In fact, the following is true.

Lemma 1.13. A normed space X is a Banach space if and only if every absolutely
convergent series converges.

Proof. Assume that X is a Banach space, and let ∑n xn be absolutely convergent. It
follows easily from the triangle inequality that the corresponding sequence of partial
sums is a Cauchy sequence, and since X is complete, the series ∑n xn is convergent.

On the other hand, assume that every absolutely convergent series is convergent.
Let (xn)n≥1 ⊆ X be a Cauchy sequence. From this Cauchy sequence, one can ex-
tract a subsequence (xnk)k≥1 such that ∥xnk+1 − xnk∥ ≤ 2−k, k ≥ 1. Let y0 = xn1 and
yk = xnk+1 − xnk , k ≥ 1. Then the series ∑k≥0 yk is absolutely convergent. By as-
sumption, it is also convergent. But by construction, (∑k

l=0 yl) = (xnk), so that (xnk)
is convergent. Hence, we have extracted a subsequence of the Cauchy sequence
(xn) which converges. As a consequence, (xn) is convergent, and since (xn) was an
arbitrary Cauchy sequence, X is complete.

Lemma 1.14 (Riesz). Let X be a normed space and let Y ⊆ X be a closed linear
subspace. If Y ̸= X, then for every δ > 0 there exists x ∈ X \Y such that ∥x∥= 1 and

dist(x,Y ) = inf{∥x− y∥ : y ∈ Y} ≥ 1−δ .

Proof. Let z ∈ X \Y . Since Y is closed,

d := dist(z,Y )> 0.

Let δ > 0. By definition of the infimum, there exists y ∈ Y such that

∥z− y∥ ≤ d
1−δ

.

Let x := z−y
∥z−y∥ . Then x ∈ X \Y , ∥x∥= 1, and for every u ∈ Y

∥x−u∥= ∥z− y∥−1 ∥z− (y+∥z− y∥u)∥
≥ ∥z− y∥−1 d ≥ 1−δ ,

since (y+∥z− y∥u) ∈ Y .

Theorem 1.15. A normed space is finite dimensional if and only if every closed
bounded set is compact.

Proof. If the normed space is finite dimensional, then every closed bounded set
is compact by the Theorem of Heine-Borel. Note that by Theorem 1.10 it is not
important which norm on the finite dimensional space is considered. By Lemma
1.8, the closed and bounded sets do not change.

On the other hand, if the normed space is infinite dimensional, then, by the
Lemma of Riesz, one can construct inductively a sequence (xn) ⊆ X such that
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∥xn∥ = 1 and dist(xn+1,Xn) ≥ 1
2 for every n ∈ N, where Xn = span{xi : 1 ≤ i ≤ n}

(note that Xn is closed by Corollary 1.11). By construction, (xn) belongs to the closed
unit ball, but it can not have a convergent subsequence (even not a Cauchy subse-
quence). Hence, the closed unit ball is not compact. We state this result separately.

Theorem 1.16. In an infinite dimensional Banach space the closed unit ball is not
compact.

Lemma 1.17 (Completion of a normed space). For every normed space X there
exists a Banach space X̂ and a linear injective j : X → X̂ such that ∥ j(x)∥ = ∥x∥
(x ∈ X) and j(X) is dense in X̂ . Up to isometry, the Banach space X̂ is unique (up
to isomorphism). It is called the completion of X.

Proof. It suffices to repeat the proof of Lemma 0.21 and to note that the completion
X̂ of X (considered as a metric space) carries in a natural way a linear structure:
addition of - equivalence classes of - Cauchy sequences is their componentwise
addition, and also multiplication of - an equivalence class - of a Cauchy sequence
and a scalar is done componentwise. Moreover, for every [(xn)], one defines the
norm

∥[(xn)]∥ := lim
n→∞

∥xn∥.

Uniqueness of X̂ follows from Lemma 0.22.

1.2 Product spaces and quotient spaces

Lemma 1.18 (Product spaces). Let (Xi)i∈I be a finite (!) family of normed spaces,
and let X :=

⊗
i∈I Xi be the cartesian product. Then

∥x∥p :=

(
∑
i∈I

∥xi∥p
Xi

)1/p

(1 ≤ p < ∞),

and
∥x∥∞ := sup

i∈I
∥xi∥Xi

define equivalent norms on X . In particular, the cartesian product is a normed
space.

Proof. The easy proof is left to the reader.

Lemma 1.19. Let (Xi)i∈I be a finite family of normed spaces, and let X :=
⊗

i∈I Xi
be the cartesian product equipped with one of the equivalent norms ∥ · ∥p from
Lemma 1.18. Then a sequence (xn)= ((xn

i )i)⊆X converges (is a Cauchy sequence)
if and only if (xn

i )⊆ Xi is convergent (is a Cauchy sequence) for every i ∈ I.
As a consequence, X is a Banach space if and only if all the Xi are Banach

spaces.
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Proposition 1.20 (Quotient space). Let X be a vector space (!) over K, and let
Y ⊆ X be a linear subspace. Define, for every x ∈ X, the affine subspace

x+Y := {x+ y : y ∈ Y},

and define the quotient space or factor space

X/Y := {x+Y : x ∈ X}.

Then X/Y is a vector space for the addition

(x+Y )+(z+Y ) := (x+ z+Y ),

and the scalar multiplication

λ (x+Y ) := (λx+Y ).

The neutral element is Y .

For the definition of quotient spaces, it is not important that we consider real or
complex vector spaces.

Examples of quotient spaces are already known. In fact, Lp is such an example.
Usually, one defines

L p(Ω ,A ,µ)

to be the space of all measurable functions f : Ω → K such that
∫

Ω | f |p dµ < ∞.
Moreover,

N := { f ∈ L p(Ω ,A ,µ) :
∫

Ω
| f |p = 0}.

Note that N is a linear subspace of L p(Ω ,A ,µ), and that N is the space of all
functions f ∈ L p which vanish almost everywhere. Then

Lp(Ω ,A ,µ) := L p(Ω ,A ,µ)/N.

Proposition 1.21. Let X be a normed space and let Y ⊆ X be a linear subspace.
Then

∥x+Y∥ := inf{∥x− y∥ : y ∈ Y}

defines a norm on X/Y if and only if Y is closed in X. If X is a Banach space and
Y ⊆ X closed, then X/Y is also a Banach space.

Proof. We have to check that ∥ · ∥ satisfies all properties of a norm. Recall that
0X/Y = Y , and that for all x ∈ X
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∥x+Y∥= 0
⇔ inf{∥x− y∥ : y ∈ Y}= 0
⇔∃(yn)⊆ Y : lim

n→∞
yn = x

⇔ (⇒ if Y closed) : x ∈ Y

⇔ x+Y = Y.

Second, for every x ∈ X and every λ ∈K\{0},

∥λ (x+Y )∥= ∥λx+Y∥
= inf{∥λx− y∥ : y ∈ Y}
= inf{∥λ (x− y)∥ : y ∈ Y}
= |λ | inf{∥x− y∥ : y ∈ Y}
= |λ |∥x+Y∥.

Third, for every x, z ∈ X ,

∥(x+Y )+(z+Y )∥= ∥(x+ z)+Y∥
= inf{∥x+ z− y∥ : y ∈ Y}
= inf{∥x+ z− y1 − y2∥ : y1, y2 ∈ Y}
≤ inf{∥x− y1∥+∥z− y2∥ : y1, y2 ∈ Y}
≤ inf{∥x− y∥ : y ∈ Y}+ inf{∥z− y∥ : y ∈ Y}
= ∥x+Y∥+∥z+Y∥.

Hence, X/Y is a normed space if Y is closed.
Assume next that X is a Banach space. Let (xn) ⊆ X be such that the series

∑n≥1 xn +Y converges absolutely, that is, ∑n≥1 ∥xn +Y∥ < ∞. By definition of the
norm in X/Y , we find (yn) ⊆ Y such that ∥xn − yn∥ ≤ ∥xn +Y∥+ 2−n. Replacing
(xn) by (x̂n) = (xn − yn), we find that xn +Y = x̂n +Y and that the series ∑n≥0 x̂n
is absolutely convergent. Since X is complete, by Lemma 1.13, the limit ∑n≥1 x̂n =
x ∈ X exists. As a consequence,

∥(x+Y )−
n

∑
k=1

(x̂k +Y )∥ = ∥(x−
n

∑
k=1

x̂k)+Y∥

≤ ∥x−
n

∑
k=1

x̂k∥ → 0,

that is, the series ∑n≥1 xn +Y converges. By Lemma 1.13, X/Y is complete.
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1.3 Bounded linear operators

In the following a linear mapping between two normed spaces X and Y will also
be called a linear operator or just operator. If Y = K, then we call linear opera-
tors also linear functionals. If T : X → Y is a linear operator between two normed
spaces, then we denote by

kerT := {x ∈ X : T x = 0}

its kernel or null space, and by

ranT := {T x : x ∈ X}

its range or image. Observe that we simply write T x instead of T (x), meaning that
T is applied to x ∈ X . The identity operator X → X , x 7→ x is denoted by I.

Lemma 1.22. Let T : X → Y be a linear operator between two normed spaces X
and Y . Then the following are equivalent

(i) T is continuous.

(ii) T is continuous at 0.

(iii) T B is bounded in Y , where B = B(0,1) denotes the unit ball in X.

(iv) There exists a constant C ≥ 0 such that for every x ∈ X

∥T x∥ ≤C∥x∥.

Proof. The implication (i)⇒(ii) is trivial.
(ii)⇒(iii). If T is continuous at 0, then there exists some δ > 0 such that for every

x ∈ B(0,δ ) one has T x ∈ B(0,1) (so the ε from the ε-δ definition of continuity is
chosen to be 1 here). By linearity, for every x ∈ B = B(0,1)

∥T x∥= 1
δ
∥T (δx)∥ ≤ 1

δ
,

and this means that T B is bounded.
(iii)⇒(iv). The set T B being bounded in Y means that there exists some constant

C ≥ 0 such that for every x∈B one has ∥T x∥≤C. By linearity, for every x∈X \{0},

∥T x∥= ∥T
x
∥x∥

∥∥x∥ ≤C∥x∥.

(iv)⇒(i). Let x ∈ X , and assume that limn→∞ xn = x. Then

∥T xn −T x∥= ∥T (xn − x)∥ ≤C∥xn − x∥→ 0 as n → ∞,

so that limn→∞ T xn = T x.
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We call a continuous linear operator T : X → Y between two normed spaces X
and Y also a bounded operator (since it maps the unit ball of X to a bounded subset
of Y ). The set of all bounded linear operators is denoted by L (X ,Y ). Special cases:
If X =Y , then we write L (X ,X) =: L (X). If Y =K, then we write L (X ,K) =: X ′.

Lemma 1.23. The set L (X ,Y ) is a vector space and

∥T∥ := inf{C ≥ 0 : ∥T x∥ ≤C∥x∥ for all x ∈ X} (1.1)
= sup{∥T x∥ : ∥x∥ ≤ 1}
= sup{∥T x∥ : ∥x∥= 1}

is a norm on L (X ,Y ).

Proof. We first show that the three quantities on the right-hand side of (1.1) are
equal. In fact, the equality

sup{∥T x∥ : ∥x∥ ≤ 1}= sup{∥T x∥ : ∥x∥= 1}

is easy to check so that it remains only to show that

A := inf{C ≥ 0 : ∥T x∥ ≤C∥x∥ for all x ∈ X}= sup{∥T x∥ : ∥x∥= 1}=: B.

If C > A, then for every x ∈ X \ {0}, ∥T x∥ ≤ C∥x∥ or ∥T x
∥x∥∥ ≤ C. Hence, C ≥ B

which implies that A ≥ B. If C > B, then for every x ∈ X \ {0}, ∥T x
∥x∥∥ ≤ C, and

therefore ∥T x∥ ≤C∥x∥. Hence, C ≥ A which implies that A ≤ B.
Now we check that ∥ · ∥ is a norm on L (X ,Y ). First, for every T ∈ L (X ,Y ),

∥T∥= 0 ⇔ sup{∥T x∥ : ∥x∥ ≤ 1}= 0
⇔∀x ∈ X , ∥x∥ ≤ 1 : ∥T x∥= 0
⇔ (∥ · ∥ is a norm on Y )∀x ∈ X , ∥x∥ ≤ 1 : T x = 0
⇔ (⇒ linearity of T )∀x ∈ X : T x = 0
⇔ T = 0.

Second, for every T ∈ L (X ,Y ) and every λ ∈K

∥λT∥= sup{∥(λT )x∥ : ∥x∥ ≤ 1}
= sup{|λ |∥T x∥ : ∥x∥ ≤ 1}
= |λ |∥T∥.

Finally, for every T , S ∈ L (X ,Y ),

∥T +S∥= sup{∥(T +S)x∥ : ∥x∥ ≤ 1}
≤ sup{∥T x∥+∥Sx∥ : ∥x∥ ≤ 1}
≤ ∥T∥+∥S∥.
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The proof is complete.

Remark 1.24. (a) Note that the infimum on the right-hand side of (1.1) in Lemma
1.23 is always attained. Thus, for every operator T ∈ L (X ,Y ) and every x ∈ X ,

∥T x∥ ≤ ∥T∥∥x∥.

This inequality shall be frequently used in the sequel! Note that on the other hand
the suprema on the right-hand side of (1.1) are not always attained. (b) From Lemma
1.23 we can learn how to show that some operator T : X →Y is bounded and how to
calculate the norm ∥T∥. Usually (in most cases), one should prove in the first step
some inequality of the form

∥T x∥ ≤C∥x∥, x ∈ X ,

because this inequality shows on the one hand that T is bounded, and on the other
hand it shows the estimate ∥T∥ ≤ C. In the second step one should prove that the
estimate C was optimal by finding some x ∈ X of norm ∥x∥= 1 such that ∥T x∥=C,
or by finding some sequence (xn)⊆ X of norms ∥xn∥ ≤ 1 such that limn→∞ ∥T xn∥=
C, because this shows that ∥T∥=C. Of course, the second step only works if one has
not lost anything in the estimate of the first step. There are in fact many examples
of bounded operators for which it is difficult to estimate their norm.

Example 1.25. 1. (Shift-operator). On lp(N) consider the left-shift operator

Lx = L(xn) = (xn+1).

Then

∥L(xn)∥p =

(
∑
n
|xn+1|p

)1/p

≤
(

∑
n
|xn|p

)1/p

,

so that L is bounded and ∥L∥ ≤ 1. On the other hand, for x = (0,1,0,0, . . .) one
computes that ∥x∥p = 1 and ∥Lx∥p = ∥(1,0,0, . . .)∥p = 1, and one concludes that
∥L∥= 1.

2. (Shift-operator). Similarly, one shows that the right-shift operator R on lp(N)
defined by

Rx = R(xn) = (0,x0,x1, . . .)

is bounded and ∥R∥= 1. Note that actually ∥Rx∥p = ∥x∥p for every x ∈ lp.
3. (Multiplication operator). Let m ∈ l∞ and consider on lp the multiplication op-

erator
Mx = M(xn) = (mnxn).

4. (Functionals on C). Consider the linear functional φ : C([0,1])→K defined by

φ( f ) :=
∫ 1

2

0
f (x) dx.

Then
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|φ( f )| ≤
∫ 1

2

0
| f (x)| dx ≤ 1

2
∥ f∥∞,

so that φ is bounded and ∥φ∥ ≤ 1
2 . On the other hand, for the constant function

f = 1 one has ∥ f∥∞ = 1 and |φ( f )|= 1
2 , so that ∥φ∥= 1

2 .

Lemma 1.26. Let X, Y , Z be three Banach spaces, and let T ∈ L (X ,Y ) and S ∈
L (Y,Z). Then ST ∈ L (X ,Z) and

∥ST∥ ≤ ∥S∥∥T∥.

Proof. The boundedness of ST is clear since compositions of continuous functions
are again continuous. To obtain the bound on ST , we calculate

∥ST∥= sup
∥x∥≤1

∥ST x∥

≤ sup
∥x∥≤1

∥S∥∥T x∥

= ∥S∥∥T∥.

Lemma 1.27. If Y is a Banach space then L (X ,Y ) is a Banach space.

Proof. Assume that Y is a Banach space and let (Tn) be a Cauchy sequence in
L (X ,Y ). By the estimate

∥Tnx−Tmx∥= ∥(Tn −Tm)x∥ ≤ ∥Tn −Tm∥∥x∥,

the sequence (Tnx) is a Cauchy sequence in Y for every x ∈ X . Since Y is complete,
the limit limn→∞ Tnx exists for every x ∈ X . Define T x := limn→∞ Tnx. Clearly, T :
X → Y is linear. Moreover, since any Cauchy sequence is bounded, we find that

∥T x∥ ≤ sup
n
∥Tnx∥ ≤C∥x∥

for some constant C ≥ 0, that is, T is bounded. Moreover, for every n ∈ N we have
the estimate

∥T −Tn∥= sup
∥x∥≤1

∥T x−Tnx∥

≤ sup
∥x∥≤1

sup
m≥n

∥Tmx−Tnx∥

≤ sup
m≥n

∥Tm −Tn∥.

Since that right-hand side of this inequality becomes arbitrarily small for large n,
we see that limn→∞ Tn = T exists, and so we have proved that L (X ,Y ) is a Banach
space.

Remark 1.28. The converse of the statement in Lemma 1.27 is also true, that is,
if L (X ,Y ) is a Banach space then necessarily Y is a Banach space. For the proof,
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however, one has to know that there are nontrivial operators in L (X ,Y ) as soon as
Y is nontrivial (that is, Y ̸= {0}). For this, we need the Theorem of Hahn-Banach
and its consequences discussed in Chapter 3.

Corollary 1.29. The space X ′ = L (X ,K) of all bounded linear functionals on X is
always a Banach space. The space X ′ is called the dual space of X.

Let X , Y be two normed spaces. We call T ∈ L (X ,Y ) an isomorphism if T is
bijective and T−1 ∈ L (Y,X). We call T ∈ L (X ,Y ) an isometry if ∥T x∥= ∥x∥ for
every x ∈ X . We say that space X and Y are isomorphic (and we write X ∼= Y ) if
there exists an isomorphism T ∈ L (X ,Y ). We say that X and Y are isometrically
isomorphic if there exists an isometric isomorphism T ∈ L (X ,Y ).

Remark 1.30. 1. Two norms ∥ · ∥1, ∥ · ∥2 on a K vector space X are equivalent if
and only if the identity operator I : (X ,∥ · ∥1)→ (X ,∥ · ∥2) is an isomorphism.

2. Saying that two normed spaces X and Y are isomorphic means that they are
not only ’equal’ as vector spaces (in the sense that we find a bijective linear
operator) but also as normed spaces (that is, the bijection is continuous as well
as its inverse).

3. If T ∈ L (X ,Y ) and S ∈ L (Y,Z) are isomorphisms, then ST ∈ L (X ,Z) is an
isomorphism and (ST )−1 = T−1S−1.

4. Every isometry T ∈ L (X ,Y ) is clearly injective. If it is also surjective, then
T is an isometric isomorphism, that is, the inverse T−1 is also bounded (even
isometric).

5. Clearly, if T ∈ L (X ,Y ) is isometric, then it is an isometric isomorphism from X
onto ranT , and we may say that X is isometrically embedded into Y (via T ).

Example 1.31. The right-shift operator from Example 1.25 (2) is isometric, but not
surjective. In particular, lp is isometrically isomorphic to a proper subspace of lp.

Exercise 1.32 Show that the spaces (c,∥ · ∥∞) of all convergent sequences and
(c0,∥ · ∥∞) of all null sequences are isomorphic.

Exercise 1.33 Show that (c0,∥ · ∥∞) is (isometrically) isomorphic to a linear sub-
space of (C([0,1]),∥ · ∥∞), that is, find an isometry T : c0 →C([0,1]).

Lemma 1.34 (Neumann series). Let X be a Banach space and let T ∈ L (X) be
such that ∥T∥< 1. Then I−T is boundedly invertible, that is, it is an isomorphism.
Moreover, (I −T )−1 = ∑n≥0 T n.

Proof. Since X is a Banach space, L (X) is also a Banach space by Lemma 1.27.
By assumption on ∥T∥, the series ∑n≥0 T n is absolutely convergent, and hence, by
Lemma 1.13, it is convergent to some element S ∈ L (X). Moreover,

(I −T )S = lim
n→∞

(I −T )
n

∑
k=0

T k = lim
n→∞

(I −T k+1) = I,

and similarly, S(I −T ) = I.
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Corollary 1.35. Let X and Y be two Banach spaces. Then the set I (X ,Y ) of all
isomorphisms in L (X ,Y ) is open, and the mapping T 7→ T−1 is continuous from
I (X ,Y ) onto I (Y,X).

Proof. Let I ⊆ L (X ,Y ) be the set of all isomorphisms, and assume that I is not
empty (if it is empty, then it is also open). Let T ∈I . Then for every S∈B(T, 1

∥T−1∥ )

we have
S = T +S−T = T (I +T−1(S−T )),

and since ∥T−1(S−T )∥≤ ∥T−1∥∥S−T∥< 1, the operator I+T−1(S−T )∈L (X)
is an isomorphism by Lemma 1.34. As a composition of two isomorphisms, S ∈ I ,
and hence I is open. The continuity is also a direct consequence of the above
representation of S (and thus of its inverse), using the Neumann series.

1.4 The Arzelà-Ascoli theorem

It is a consequence of Riesz’ Lemma (Lemma 1.14) that the unit ball in an infinite
dimensional Banach space is not compact; see also Theorem 1.16. But compact sets
play an important role in many theorems from analysis, in particular when one wants
to prove the existence of some fixed point, the existence of a solution to an algebraic
equation, the existence of a solution of a differential equation, the existence of a
solution of a partial differential equation etc. It is therefore important to identify
the compact sets in Banach spaces, in particular in the classical Banach spaces. The
Arzalà-Ascoli theorem characterizes the compact subsets of C(K;X), where (K,d)
is a compact metric space and X is a Banach space.

We say that a subset B ⊆ C(K;X) is equicontinuous at some point x ∈ K if
for every ε > 0 there exists δ > 0 such that for every y ∈ K and every f ∈ B the
implication

d(x,y)< δ ⇒ ∥ f (x)− f (y)∥< ε

holds.

Theorem 1.36 (Arzelà-Ascoli). Let (K,d) be a compact metric space, X be a Ba-
nach space and consider the Banach space C(K;X) of all continuous functions
K → X equipped with the supremum norm ∥ f∥∞ = supx∈K ∥ f (x)∥. For a subset
B ⊆C(K;X), the following assertions are equivalent:

(i) The set B is relatively compact.

(ii) The set B is equicontinuous at every x ∈ K and there exists a dense set D ⊆ K
such that for every x ∈ D the set Bx = { f (x) : f ∈ B} is relatively compact.

We point out that, by the Heine-Borel theorem, the condition of pointwise relative
compactness of B can be replaced by mere pointwise or global boundedness as soon
as the space X is finite dimensional.
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Corollary 1.37 (Arzelà-Ascoli). Let (K,d) be a compact metric space, and con-
sider the Banach space C(K;Rd) of all continuous functions K →Rd equipped with
the supremum norm ∥ f∥∞ = supx∈K ∥ f (x)∥. For a subset B ⊆C(K;Rd), the follow-
ing assertions are equivalent:

(i) The set B is compact.

(ii) The set B is closed, equicontinuous at every x ∈ K and pointwise bounded in
the sense that for every x ∈ K the set Bx = { f (x) : f ∈ B} is bounded.

Proof (of Theorem 1.36). The proof of the Arzelà-Ascoli theorem is a nice
application of Cantor’s diagonal sequence argument which we see here for the
first time, but which we will see again below when we prove that every bounded
sequence in a reflexive Banach space admits a weakly convergent subsequence.
Given a sequence, Cantor’s argument allows us to construct a subsequence which
satisfies a countable number of properties. It is instructive to learn the idea of
Cantor’s argument since it can be help in various situations.

We first assume that B ⊆ C(K;X) is relatively compact. Any relatively compact
subset of a Banach space is bounded, and therefore B is bounded, too. For every
x ∈ K, the point evaluation C(K;X)→ X , f 7→ f (x) is linear and continuous. Since
continuous images of relatively compact sets are relatively compact, the image of B
under the point evaluation, that is the set Bx = { f (x) : f ∈ B}, is relatively compact.

We show that B is equicontinuous at every x. Assume that this was not the case.
Then there exist x ∈ K and ε > 0 such that for every n ≥ 1 there exist yn ∈ K and
fn ∈B such that d(x,yn)<

1
n and ∥ fn(x)− fn(yn)∥≥ ε . Since B is relatively compact,

there exists a subsequence of ( fn) (which we denote for simplicity again by ( fn))
such that limn→∞ fn = f in C(K;X). Then, by the triangle inequality from below,

liminf
n→∞

∥ f (x)− f (yn)∥= liminf
n→∞

∥ f (x)− fn(x)+ fn(x)− fn(yn)+ fn(yn)− f (yn)∥

≥ liminf
n→∞

(
∥ fn(x)− fn(yn)∥−2∥ f − fn∥∞

)
≥ ε.

This inequality, however, contradicts to the continuity of f (note that limn→∞ yn = x),
and therefore, B is equicontinuous at every x ∈ K.

Assume now that B satisfies the properties from assertion (ii). In order to show
that B is relatively compact, it suffices to show that every sequence ( fn)⊆B admits a
convergent subsequence, that is, B is relatively sequentially compact. So let ( fn)⊆B
be an arbitrary sequence.

Recall that every compact metric space is separable. Moreover, every subset of a
separable space is separable. Hence, there exists a sequence (xm)m≥1 ⊆ K which is
dense in K.

Consider the sequence ( fn(x1)) ⊆ Bx1 ⊆ X . Since Bx1 is relatively compact by
assumption, there exists a subsequence ( fφ1(n)) of ( fn) such that limn→∞ fφ1(n)(x1)
exists.
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Consider next the sequence ( fφ1(n)(x2)) ⊆ Bx2 ⊆ X . Since Bx2 is relatively
compact by assumption, there exists a subsequence ( fφ2(n)) of ( fφ1(n)) such
that limn→∞ fφ2(n)(x2) exists. Note that we have also the existence of the limit
limn→∞ fφ2(n)(x1).

Iterating this argument, we obtain for every m ≥ 2 a subsequence ( fφm(n)) of
( fφm−1(n)) such that limn→∞ fφm(n)(xi) exists for every 1 ≤ i ≤ m. These subse-
quences converge therefore pointwise at a finite number of elements of K.

We now consider the diagonal subsequence ( fφ(n))= ( fφn(n)). This diagonal sub-
sequence has the property of being a subsequence of ( fφm(n)) for every m ≥ 1, up
to a finite number of initial elements perhaps. It enjoys therefore the property that
limn→∞ fφ(n)(xm) exists for every m ≥ 1, that is, it converges pointwise on a dense
subset of K. We will show that ( fφ(n)) converges everywhere and uniformly on K.
Since C(K;X) is complete, it suffices to show that ( fφ(n)) is a Cauchy sequence in
C(K;X).

Let ε > 0. Since B is equicontinuous at every x ∈ K, for every x ∈ K there exists
δx > 0 such that for every y ∈ K and every f ∈ B the implication

d(x,y)< δ ⇒ ∥ f (x)− f (y)∥< ε (1.2)

is true. We clearly have K =
∪

x∈K B(x,δx), and since K is compact, we find finitely
many points x′1, . . . , x′k such that K =

∪k
i=1 B(x′i,δi) (with δi = δx′i

). Since the se-
quence (xm) is dense in K, for every 1 ≤ i ≤ k there exists mi ≥ 1 such that
xmi ∈ B(x′i,δi). Since the sequence ( fφ(n)) converges pointwise on (xm), there ex-
ists n0 ≥ 0 such that

for every n, n′ ≥ n0 and every 1 ≤ i ≤ k ∥ fφ(n)(xmi)− fφ(n′)(xmi)∥< ε.

Let now x ∈ K be arbitrary. Then x ∈ B(x′i,δi) for some 1 ≤ i ≤ k. Hence, for every
n, n′ ≥ n0, by the preceding estimate and by the implication (1.2),

∥ fφ(n)(x)− fφ(n′)(x)∥ ≤ ∥ fφ(n)(x)− fφ(n)(x
′
i)∥+

+∥ fφ(n)(x
′
i)− fφ(n)(xmi)∥+

+∥ fφ(n)(xmi)− fφ(n′)(xmi)∥+
+∥ fφ(n′)(xmi)− fφ(n′)(x

′
i)∥+

+∥ fφ(n′)(x
′
i)− fφ(n′)(x)∥

≤ 5ε.

Since n0 ≥ 0 did not depend on x ∈ K, and since ε > 0 was arbitrary, this proves
that ( fφ(n)) is a Cauchy sequence in C(K;X). We have therefore proved that every
sequence in B admits a convergent subsequence.





Chapter 2
Hilbert spaces

Let H be a vector space over K.

2.1 Inner product spaces

A function ⟨·, ·⟩ : H ×H →K is called an inner product if for every x, y, z ∈ H and
every λ ∈K
(i) ⟨x,x⟩ ≥ 0 for every x ∈ H and ⟨x,x⟩= 0 if and only if x = 0,

(ii) ⟨x,y⟩= ⟨y,x⟩,
(iii) ⟨λx+ y,z⟩= λ ⟨x,z⟩+ ⟨y,z⟩.
A pair (H,⟨·, ·⟩) of a vector space over K and a scalar product is called an inner
product space.

Example 2.1. 1. On the space H =Kd ,

⟨x,y⟩ :=
d

∑
i=1

xiȳi

defines an inner product.
2. On the space H = l2 := {(xn)⊆K : ∑ |xn|2 < ∞},

⟨x,y⟩ := ∑
n

xnȳn

defines an inner product.
3. On the space H =C([0,1]), the Riemann integral

⟨ f ,g⟩ :=
∫ 1

0
f (x)g(x) dx

29
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defines an inner product.
4. On the space H = L2(Ω), the integral

⟨ f ,g⟩ :=
∫

Ω
f ḡ dµ

defines an inner product.

Lemma 2.2. Let ⟨·, ·⟩ be an inner product on a vector space H. Then, for every x, y,
z ∈ H and λ ∈K
(iv) ⟨x,λy+ z⟩= λ̄ ⟨x,y⟩+ ⟨x,z⟩.

Proof.

⟨x,λy+ z⟩= ⟨λy+ z,x⟩= λ̄ ⟨y,x⟩+ ⟨z,x⟩= λ̄ ⟨x,y⟩+ ⟨x,z⟩.

In the following, if H is an inner product space, then we put

∥x∥ :=
√
⟨x,x⟩, x ∈ H.

Lemma 2.3 (Cauchy-Schwarz inequality). Let H be an inner product space.
Then, for every x, y ∈ H,

|⟨x,y⟩| ≤ ∥x∥∥y∥,

and equality holds if and only if x and y are colinear.

Proof. Let λ ∈K. Then

0 ≤ ⟨x+λy,x+λy⟩
= ⟨x,x⟩+ ⟨λy,x⟩+ ⟨x,λy⟩+ |λ |2⟨y,y⟩
= ⟨x,x⟩+λ ⟨x,y⟩+ λ̄ ⟨x,y⟩+ |λ |2⟨y,y⟩,

that is,
0 ≤ ∥x+λy∥2 = ∥x∥2 +2Re λ̄ ⟨x,y⟩+ |λ |2 ∥y∥2. (2.1)

Assuming that y ̸= 0 (for y = 0 the Cauchy-Schwarz inequality is trivial), we may
put λ :=−⟨x,y⟩/∥y∥2. Then

0 ≤ ⟨x− ⟨x,y⟩
∥y∥2 y,x− ⟨x,y⟩

∥y∥2 y⟩

= ∥x∥2 − |⟨x,y⟩|2

∥y∥2 ,

which is the Cauchy-Schwarz inequality. The calculation also shows that equality
holds if and only if x = λy, that is, if x and y are colinear.

Lemma 2.4. Every inner product space H is a normed linear space for the norm

∥x∥=
√

⟨x,x⟩, x ∈ H.
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Proof. Properties (i) and (ii) in the definition of a norm follow from the properties
(i) and (iii) (together with Lemma 2.2) in the definition of an inner product. The only
difficulty is to show that ∥ ·∥ satisfies the triangle inequality. This, however, follows
from putting λ = 1 in (2.1) and estimating with the Cauchy-Schwarz inequality:

∥x+ y∥2 ≤ (∥x∥+∥y∥)2.

A complete inner product space is called a Hilbert space.

Example 2.5. The spaces Kd (with Euclidean inner product), l2 and L2(Ω) are
Hilbert spaces. More examples are given by the Sobolev spaces defined below.

Lemma 2.6 (Completion of an inner product space). Let H be an inner product
space. Then there exists a Hilbert space K and a bounded linear operator j : H → K
such that for every x, y ∈ H

⟨x,y⟩H = ⟨ j(x), j(y)⟩K ,

and such that j(H) is dense in K. The Hilbert space K is unique up to isometry. It
is called the completion of H.

Lemma 2.7 (Parallelogram identity). Let H be an inner product space. Then for
every x, y ∈ H

∥x+ y∥2 +∥x− y∥2 = 2(∥x∥2 +∥y∥2).

Proof. The parallelogram identity follows immediately from (2.1) by putting λ =
±1 and adding up.

Exercise 2.8 (von Neumann) Show that a norm satisfying the parallelogram iden-
tity comes from a scalar product. That means, the parallelogram identity charac-
terises inner product spaces.

A subset K of a real or complex vector space X is convex if for every x, y ∈ K
and every t ∈ [0,1] one has tx+(1− t)y ∈ K.

Theorem 2.9 (Projection onto closed, convex sets). Given a nonempty closed,
convex subset K of a Hilbert space H, and given a point x ∈ H, there exists a unique
y ∈ K such that

∥x− y∥= inf{∥x− z∥ : z ∈ K}.

Proof. Let d := inf{∥x− z∥ : z ∈ K}, and choose (yn) ∈ K such that

lim
n→∞

∥x− yn∥= d. (2.2)

Applying the parallelogram identity to (x− yn)/2 and (x− ym)/2, we obtain

∥x− yn + ym

2
∥2 +

1
4
∥yn − ym∥2 =

1
2
(∥x− yn∥2 +∥x− ym∥2).
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Since K is convex, yn+ym
2 ∈ K and hence ∥x− yn+ym

2 ∥2 ≥ d2. Using this and (2.2),
the last identity implies that (yn) is a Cauchy sequence. Since H is complete, y :=
limn→∞ yn exists. Since K is closed, y∈K. Moreover, ∥x−y∥= limn→∞ ∥x−yn∥= d,
so that y is a minimizer for the distance to x. To see that there is only one such
minimizer, suppose that y′ ∈ K is a second one, and apply the parallelogram identity
to x− y and x− y′.

Let H be an inner product space. We say that two vectors x, y∈H are orthogonal
(and we write x ⊥ y), if ⟨x,y⟩= 0. Given a subset S ⊆ H, we define the orthogonal
space S⊥ := {y ∈ H : x ⊥ y for all x ∈ S}. If S = K is a linear subspace of H, then
we call K⊥ also the orthogonal complement of K.

Theorem 2.10. Let H be a Hilbert space, S ⊆ H be a subset and K a closed linear
subspace. Then:

a) S⊥ is a closed linear subspace of H,

b) K and K⊥ are complementary subspaces, i.e. every x ∈ H can be decomposed
uniquely as a sum of an x0 ∈ K and an x1 ∈ K⊥,

c) (K⊥)⊥ = K and (S⊥)⊥ = spanS.

d) spanS is dense in H if and only if S⊥ = {0}.

Proof. (a) It follows from the bilinearity of the inner product that S⊥ is a linear
subspace of H. Let (yn) ⊆ S⊥ be convergent to some y ∈ H. Then, for every x ∈ S,
by the Cauchy-Schwarz inequality,

⟨x,y⟩= lim
n→∞

⟨x,yn⟩= 0,

that is, y ∈ S⊥ and therefore S⊥ is closed.
(b) For every x ∈ H we let x0 ∈ K be the unique element (Theorem 2.9) such that

∥x− x0∥= inf{∥x− y∥ : y ∈ K}.

Put x1 = x− x0. For every y ∈ K and every λ ∈K, by the minimum property of x0,

∥x1∥2 ≤ ∥x1 −λy∥2

= ∥x1∥2 −2Re λ̄ ⟨x1,y⟩+ |λ |2 ∥y∥2.

This implies that ⟨x1,y⟩= 0, that is, x1 ∈ K⊥. Every decomposition x = x0+x1 with
x0 ∈ K and x1 ∈ K⊥ is unique since x ∈ K ∩K⊥ implies ⟨x,x⟩= 0, that is, x = 0.

(c) and (d) follow immediately from (a) and (b).

Lemma 2.11 (Pythagoras). Let H be an inner product space. Whenever x, y ∈ H
are orthogonal, then

∥x+ y∥2 = ∥x∥2 +∥y∥2.

Proof. The claim follows from (2.1) and putting λ = 1.
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We call an operator P : X → X on a linear space X a projection if P2 = P.

Lemma 2.12. Let X be a normed space and let P ∈L (X) be a bounded projection.
Then the following are true:

a) Q = I −P is a projection.

b) Either P = 0 or ∥P∥ ≥ 1.

c) The kernel kerP and the range ranP are closed in X.

d) Every x ∈ X can be decomposed uniquely as a sum of an x0 ∈ kerP and an
x1 ∈ ranP, and X ∼= kerP⊕ ranP.

Proof. (a) Q2 = (I −P)2 = I −2P+P2 = I −P = Q.
(b) follows from ∥P∥= ∥P2∥ ≤ ∥P∥2.
(c) Since {0} is closed in X and since P is continuous, kerP=P−1({0}) is closed.

Similarly, ranP = ker(I −P) is closed.
(d) For every x ∈ X we can write x = Px+(I−P)x = x1 +x2 with x1 ∈ ranP and

x2 ∈ kerP. The decomposition is unique since if x ∈ kerP∩ ranP, then x = Px = 0.
This proves that the vector spaces X and kerP⊕ ranP are isomorphic. That they are
also isomorphic as normed spaces follows from the continuity of P.

Lemma 2.13. Let H be a Hilbert space and K ⊆ H be a closed linear subspace. For
every x ∈ H we let x1 = Px be the unique element in K which minimizes the distance
to x (Theorem 2.9). Then P : H → H is a bounded projection satisfying ranP = K.
Moreover, kerP = K⊥. We call P the orthogonal projection onto K.

2.2 Orthogonal decomposition

We call a metric space separable if there exists a countable dense subset.

Example 2.14. The space Rd (or Cd) is separable: one may take Qd as an example
of a dense countable subset. It is not too difficult to see that subsets of separable
metric spaces are separable (note, however, that in general the dense subset has to
be constructed carefully), and that finite products of separable metric spaces are
separable.

Lemma 2.15. A normed space X is separable if and only if there exists a sequence
(xn) ⊆ X such that span{xn : n ∈ N} is dense in X (such a sequence is in general
called a total sequence).

Proof. If X is separable, then there exists a sequence (xn)⊆ X such that {xn : n ∈N}
is dense. In particular, the larger set span{xn : n ∈ N} is dense.

If, on the other hand, there exists a total sequence (xn)⊆ X , and if we put D =Q
in the case K= R and D =Q+ iQ in the case K= C, then the set

{
m

∑
i=1

λixni : m ∈ N, λi ∈ D, ni ∈ N}
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is dense in X (in fact, the closure contains all finite linear combinations of the xn, that
is, it contains span{xn : n ∈ N}). It is an exercise to show that this set is countable.
The claim follows.

Corollary 2.16. The space (C([0,1]),∥ · ∥∞) is separable.

Proof. By Weierstrass’ theorem, the subspace of all polynomials is dense in
C([0,1]) (Weierstrass’ theorem says that every continuous function f : [0,1] → R
can be uniformly approximated by polynomials). The polynomials, however, are the
linear span of the monomials fn(t) = tn. The claim therefore follows from Lemma
2.15.

Corollary 2.17. The space lp is separable if 1 ≤ p < ∞. The space c0 is separable.

Proof. Let en = (δnk)k ∈ lp be the n-th unit vector in lp (here δnk denotes the Kro-
necker symbol: δnk = 1 if n= k and δnk = 0 otherwise). Then span{en : n∈N}= c00
(the space of all finite sequences) is dense in lp if 1 ≤ p < ∞. The claim for lp fol-
lows from Lemma 2.15. The argument for c0 is similar.

Lemma 2.18. The space l∞ is not separable.

Proof. The set {0,1}N ⊆ l∞ of all sequences taking only values 0 or 1 is uncount-
able. Moreover, whenever x, y ∈ {0,1}N, x ̸= y, then

∥x− y∥∞ = 1.

Hence, the balls B(x, 1
2 ) with centers x ∈ {0,1}N and radius 1

2 are mutually disjoint.
If l∞ was separable, that is, if there exists a dense countable set D ⊆ l∞, then in each
B(x, 1

2 ) there exists at least one element y ∈ D, a contradiction.

Definition 2.19. Let H be an inner product space. A family (el)l∈I ⊆ H is called

a) an orthogonal system if (el ,ek) = 0 whenever l ̸= k,

b) an orthonormal system if it is an orthogonal system and ∥el∥ = 1 for every
l ∈ I, and

c) an orthonormal basis if it is an orthonormal system and span{el : l ∈ I} is
dense in H.

Lemma 2.20 (Gram-Schmidt process). Let (xn) be a sequence in an inner prod-
uct space H. Then there exists an orthonormal system (en) such that span{xn} =
span{en}.

Proof. Passing to a subsequence, if necessary, we may assume that the (xn) are
linearly independent.

Let e1 := x1/∥x1∥. Then e1 and x1 span the same linear subspace. Next, assume
that we have constructed an orthonormal system (ek)1≤k≤n such that

span{xk : 1 ≤ k ≤ n}= span{ek : 1 ≤ k ≤ n}.
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Let e′n+1 := xn+1 − ∑n
k=1⟨xn+1,ek⟩ek. Since the xn are linearly independent, we

find e′n+1 ̸= 0. Let en+1 := e′n+1/∥e′n+1∥. By construction, for every 1 ≤ k ≤ n,
⟨en+1,ek⟩= 0, and

span{xk : 1 ≤ k ≤ n+1}= span{ek : 1 ≤ k ≤ n+1}.

Proceeding inductively, the claim follows.

Corollary 2.21. Every separable inner product space admits an orthonormal basis.

Example 2.22. Consider the inner product space C([−1,1]) equiped with the scalar
product ⟨ f ,g⟩=

∫ 1
−1 f (t)g(t) dt and resulting norm ∥ ·∥2. Let fn(t) := tn (n ≥ 0), so

that span{ fn} is the space of all polynomials on the interval [−1,1]. Applying the
Gram-Schmidt process to the sequence ( fn) yields a orthonormal sequence (pn) of
polynomials. The pn are called Legendre polynomials.

Recall that the space of all polynomials is dense in C([−1,1]) by Weierstrass’
theorem (even for the uniform norm; a fortiori also for the norm ∥ · ∥2). Hence, the
Legendre polynomials form an orthonormal basis in C([−1,1]).

Lemma 2.23 (Bessel’s inequality). Let H be an inner product space, (en)n∈N ⊆ H
an orthonormal system. Then, for every x ∈ H,

∑
n∈N

|⟨x,en⟩|2 ≤ ∥x∥2.

Proof. Let N ∈ N. Put xN = x−∑N
n=1⟨x,en⟩en so that xN ⊥ en for every 1 ≤ n ≤ N.

By Pythagoras (Lemma 2.11),

∥x∥2 = ∥xN∥2 +∥
N

∑
n=1

⟨x,en⟩en∥2

= ∥xN∥2 +
N

∑
n=1

|⟨x,en⟩|2

≥
N

∑
n=1

|⟨x,en⟩|2.

Since N was arbitrary, the claim follows.

Lemma 2.24. Let H be a (separable) Hilbert space, (en)n∈N ⊆ H an orthonormal
system. Then:

a) For every x ∈ H, the series ∑n∈N⟨x,en⟩en converges.

b) P : H → H, x 7→ ∑n∈N⟨x,en⟩en is the orthogonal projection onto span{en : n ∈
N}.

Proof. (a) Let x ∈ H. Since (en) is an orthonormal system, by Pythagoras (Lemma
2.11), for every l > k ≥ 1,
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∥
l

∑
n=1

⟨x,en⟩en −
k

∑
n=1

⟨x,en⟩en∥2 = ∥
l

∑
n=k+1

⟨x,en⟩en∥2

=
l

∑
n=k+1

|⟨x,en⟩|2.

Hence, by Bessel’s inequality, the sequence (∑l
n=1⟨x,en⟩en) of partial sums forms a

Cauchy sequence. Since H is complete, the series ∑n∈N⟨x,en⟩en converges.
(b) is an exercise.

Theorem 2.25. Let H be a (separable) Hilbert space, (en)n∈N an orthonormal sys-
tem. Then the following are equivalent:

(i) (en)n∈N is an orthonormal basis.

(ii) If x ⊥ en for every n ∈ N, then x = 0.

(iii) x = ∑n∈N⟨x,en⟩en for every x ∈ H.

(iv) ⟨x,y⟩= ∑n∈N⟨x,en⟩⟨en,y⟩ for every x, y ∈ H.

(v) (Parseval’s identity) For every x ∈ H,

∥x∥2 = ∑
n∈N

|⟨x,en⟩|2.

Proof. (i)⇒(ii) follows from Theorem 2.10.
(ii)⇒(iii) follows from Lemma 2.24 (i). In fact, let x0 = ∑n∈N⟨x,en⟩en (which

exists by Lemma 2.24 (i)). Then ⟨x−x0,en⟩= 0 for every n ∈N, and by assumption
(ii), this implies x = x0.

(iii)⇒(iv) follows when multiplying x scalarly with y, applying also the Cauchy-
Schwarz inequality for the sequences (⟨x,el⟩), (⟨el ,y⟩) ∈ l2.

(iv)⇒(v) follows from putting x = y.
(v)⇒(i). Let x ∈ span{en : n ∈ N}⊥. Then Parseval’s identity implies ∥x∥2 = 0,

that is, x = 0. By Theorem 2.10, span{en : n ∈ N} is dense in H, that is, (en) is an
orthonormal basis.

A bounded linear operator U ∈ L (H,K) between two Hilbert spaces is called a
unitary operator if it is invertible and for every x, y ∈ H,

⟨x,y⟩H = ⟨Ux,Uy⟩K .

Two Hilbert spaces H and K are unitarily equivalent if there exists a unitary oper-
ator U ∈ L (H,K).

Corollary 2.26. Every infinite dimensional separable Hilbert space H is unitarily
equivalent to l2.

Proof. Choose an orthonormal basis (en)n∈N of H (which exists by Corollary 2.21),
and define U : H → l2 by U(x) = (⟨x,en⟩)n∈N. Then ⟨x,y⟩H = ⟨U(x),U(y)⟩l2 by
Theorem 2.25; in particular, U is bounded, isometric and injective. The fact that U
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is surjective, that is, that ∑n cnen converges for every c = (cn) ∈ l2, follows as in the
proof of Lemma 2.24 (i).

Clearly, if a sequence (en) in a Hilbert space H is an orthonormal basis, then
necessarily H is separable by Lemma 2.15. Hence, the equivalent statements of
Theorem 2.25 are only satisfied in separable Hilbert spaces. In most of the applica-
tions (if not all!), we will only deal with separable Hilbert spaces so that Theorem
2.25 is sufficient for our purposes.

However, what is true in general Hilbert spaces? The following sequence of re-
sults generalizes the preceeding results to arbitrary Hilbert spaces.

Let X be a normed space, (xi)i∈I be a family. We say that the series ∑i∈I xi con-
verges unconditionally if the set I0 := {i ∈ I : xi ̸= 0} is countable, and for every
bijective φ : N→ I0 the series ∑∞

n=1 xφ(n) converges.

Corollary 2.27 (Bessel’s inequality, general case). Let H be an inner product
space, (el)l∈I ⊆ H an orthonormal system. Then, for every x ∈ H, the set {l ∈ I :
⟨x,el⟩ ̸= 0} is countable and

∑
l∈I

|⟨x,el⟩|2 ≤ ∥x∥2. (2.3)

Proof. By Bessel’s inequality, the sets {l ∈ I : |⟨x,el⟩| ≥ 1/n} must be finite for
every n ∈N. The countability of {l ∈ I : ⟨x,el⟩ ̸= 0} follows. The inequality (2.3) is
then a direct consequence of Bessel’s inequality.

Lemma 2.28. Let H be a Hilbert space, (el)l∈I ⊆ H an orthonormal system. Then:

a) For every x ∈ H, the series ∑l∈I⟨x,el⟩el converges unconditionally.

b) P : H →H, x 7→∑l∈I⟨x,el⟩el is the orthogonal projection onto span{el : l ∈ I}.

Corollary 2.29. Every Hilbert space admits an orthonormal basis.

Proof. If H is separable, the claim follows directly from the Gram-Schmidt process
and has already been stated in Corollary 2.21. In general, one may argue as follows:

The set of all orthonormal systems in H forms a partially ordered set by inclu-
sion. Given a totally ordered collection of orthonormal systems, the union of all
vectors contained in all systems in this collection forms a supremum. By Zorn’s
lemma, there exists an orthonormal system (el)l∈I which is maximal. It follows
from Bessel’s inequality (2.3) that this system is actually an orthonormal basis.

Theorem 2.25 remains true for arbitrary Hilbert spaces when replacing the count-
able orthonormal system (en)n∈N by an arbitrary orthonormal system (el)l∈I .

2.3 * Fourier series

In the following we will identify the space L1(0,2π) with
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L1
2π(R) := { f : R→ C measurable, 2π-periodic :

∫ 2π

0
| f | dλ < ∞}.

Similarly, we identify L2(0,2π) with L2
2π(R), and we define

C2π(R) := { f ∈C(R) : f is 2π-periodic}.

For every f ∈ L1(0,2π) = L1
2π(R) and every n ∈ Z we call

f̂ (n) :=
1

2π

∫ 2π

0
f (t)e−int dt

the n-th Fourier coefficient of f . The sequence f̂ = ( f̂ (n)) is called the Fourier
transform of f . The formal series 1√

2π ∑n∈Z f̂ (n)ein· is called the Fourier series of
f .

Lemma 2.30. For every f ∈ L1(0,2π) = L1
2π(R) we have f̂ ∈ l∞(Z) and the Fourier

transformˆ: L1(0,2π)→ l∞ is a bounded, linear operator. More precisely,

∥ f̂∥∞ ≤ 1
2π

∥ f∥1, f ∈ L1(0,2π).

Proof. For every f ∈ L1(0,2π) and every n ∈ Z,

| f̂ (n)|= 1
2π

|
∫ 2π

0
f (t)e−int dt| ≤ 1

2π

∫ 2π

0
| f (t)|dt.

This proves that f̂ ∈ l∞ and the required bound on ∥ f̂∥∞. Linearity ofˆis clear.

Lemma 2.31 (Riemann-Lebesgue). For every f ∈ L1(0,2π)= L1
2π(R) we have f̂ ∈

c0(Z), i.e.
lim
|n|→∞

| f̂ (n)|= 0.

Proof. Let f ∈ L1(0,2π) = L1
2π(R) and n ∈ Z, n ̸= 0. Then

f̂ (n) =
1

2π

∫ 2π

0
f (t)e−int dt

=
1

4π

∫ 2π

0
f (t)e−int(1− eiπ n

n ) dt

=
1

4π

∫ 2π

0
f (t)(e−int − e−in(t− π

n )) dt

=
1

4π

∫ 2π

0
( f (t)− f (t +

π
n
))e−int dt,

so that

| f̂ (n)| ≤ 1
4π

∫ 2π

0
| f (t)− f (t +

π
n
)| dt.
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Hence, if f = 1O ∈ L1(0,2π) for some open set O ⊆ [0,2π], then f̂ ∈ c0(Z) by
Lebesgue dominated convergence theorem. On the other hand, since span{1O : O ⊆
[0,2π] open} is dense in L1(0,2π), since the Fourier transform is bounded with
values in l∞(Z) (Lemma 2.30), and since c0(Z) is a closed subspace of l∞(Z), we
find that f̂ ∈ c0(Z) for every f ∈ L1(0,2π).

Remark 2.32. At the end of the proof of the Lemma of Riemann-Lebesgue, we
used the following general principle: if T ∈ L (X ,Y ) is a bounded linear operator
between two normed linear spaces X , Y , and if M ⊆ X is dense, then ranT ⊆ T (M).
We used in addition that c0(Z) is closed in l∞(Z).

Theorem 2.33. Let f ∈C2π(R) be differentiable in some point s ∈ R. Then

f (s) = ∑
n∈Z

f̂ (n)eins.

Proof. Note that for fs(t) := f (s+ t),

f̂s(n) =
1

2π

∫ 2π

0
f (s+ t)e−int dt =

1
2π

∫ 2π

0
f (t)e−in(t−s) dt = eins f̂ (n).

Hence, replacing f by fs, if necessary, we may without loss of generality assume
that s = 0. Moreover, replacing f by f − f (0), if necessary, we may without loss of
generality assume that f (0) = 0. We hence have to show that if f is differentiable in
0 and if f (0) = 0, then ∑n∈Z f̂ (n) = 0.

Let g(t) := f (t)
1−eit . Since f is differentiable in 0, f (0) = 0, and since f is 2π-

periodic, the function g belongs to C2π(R). By the Lemma of Riemann-Lebesgue,
ĝ ∈ c0(Z). Note that

f̂ (n) =
1

2π

∫ 2π

0
g(t)(1− eit)e−int dt = ĝ(n)− ĝ(n−1).

Hence,

n

∑
k=−n

f̂ (k) =
n

∑
k=−n

ĝ(k)− ĝ(k−1)

= ĝ(n)− ĝ(−n−1)→ 0 (n → ∞).

This is the claim.

Corollary 2.34. For every f ∈C1
2π(R) :=C2π(R)∩C1(R) and every t ∈ R

f (t) = ∑
n∈Z

f̂ (n)eint .

Remark 2.35. We will see that the convergence in the preceeding corollary is even
uniform in t ∈ R.
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Throughout the following, we equip the space L2(0,2π) = L2
2π(R) with the scalar

product given by

⟨ f ,g⟩ :=
1

2π

∫ 2π

0
f (t)g(t) dt,

which differs from the usual scalar product by the factor 1
2π .

Lemma 2.36. The space C1
2π(R) is dense in L2

2π(R).

Proof. We first prove that C([0,2π]) is dense in L2(0,2π) = L2
2π(R). For this, con-

sider first a characteristic function f = 1(a,b) ∈ L2(0,2π). Let (gn) ⊆ C([0,2π]) be
defined by

gn(t) :=



1, t ∈ [a,b],

1+n(t −a), t ∈ [a−1/n,a),

1−n(t −b), t ∈ (b,b+1/n],

0, else.

It is then easy to see that limn→∞ ∥ f −gn∥L2 = 0, so that f = 1(a,b) ∈C([0,2π])
∥·∥L2 .

In the second step, consider a characteristic function f = 1A of an arbitrary
Borel set A ∈ B([0,2π]), and let ε > 0. By outer regularity of the Lebesgue mea-
sure, there exists an open set O ⊃ A such that λ (O \A) < ε2. Recall that O is the
countable union of mutually disjoint intervals. Since O has finite measure, there ex-
ist finitely many (mutually disjoint) intervals (an,bn) ⊆ O (1 ≤ n ≤ N) such that
λ (O\

∪N
n=1(an,bn))≤ ε2. By the preceeding step, for every 1 ≤ n ≤ N there exists

gn ∈C([0,2π]) such that ∥1(an,bn)−gn∥2 ≤ ε
N . Let g := ∑N

n=1 gn ∈C([0,2π]). Then

∥ f −g∥2 ≤ ∥1A −1O∥2 +∥1O −1∪N
n=1(an,bn)

∥2 +∥1∪N
n=1(an,bn)

−g∥2

≤ ε + ε +∥
N

∑
n=1

(1(an,bn)−gn)∥2

≤ 3ε.

This proves 1A ∈C([0,2π])
∥·∥L2 for every Borel set A ∈B([0,2π]). Since span{1A :

A ∈ B([0,2π])}= L2(0,2π), we find that C([0,2π]) is dense in L2(0,2π).
It remains to show that C1

2π(R) is dense in C([0,2π]) for the norm ∥ · ∥2. So
let f ∈ C([0,2π]) and let ε > 0. By Weierstrass’ theorem, there exists a function
g0 ∈C∞([0,2π]) (even a polynomial!) such that ∥ f −g0∥∞ ≤ ε . Let g1 ∈C1([0,2π])
be such that g1(2π) = g′1(2π) = 0, g1(0) = g0(2π)− g0(0) and g′1(0) = g′0(2π)−
g′0(0) and ∥g1∥2 ≤ ε . Such a function g1 exists: it suffices for example to consider
functions for which the derivative is of the form

g′1(t) =


g0(2π)−g0(0)+ ct, t ∈ [0,h1],

g0(2π)−g0(0)+ ch1 +d(t −h1), t ∈ (h1,h2),

0, t ∈ [h2,2π],
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with appropriate constants 0 ≤ h1 ≤ h2 and c, d ∈ C. Having chosen g1, we let
g = g0 +g1 and we calculate that

∥ f −g∥2 ≤ ∥ f −g0∥2 +∥g1∥2 ≤ 2ε.

Since g extends to a function in C1
2π(R), we have thus proved that C1

2π(R) is dense
in L2

2π(R).

Remark 2.37. An adaptation of the above proof actually shows that for every 1 ≤
p < ∞ and every compact interval [a,b]⊆R, the space C([a,b]) is dense in Lp(a,b).
A further application of Weierstrass’ theorem actually shows that the space of all
polynomials is dense in Lp(a,b). In particular, we may obtain the following result.

Corollary 2.38. The space Lp(a,b) is separable if 1 ≤ p < ∞. The space L∞(a,b) is
not separable.

Corollary 2.39. Let en(t) := eint , n∈Z, t ∈R. Then (en)n∈Z is an orthonormal basis
in L2

2π(R).

Proof. The fact that (en)n∈Z is an orthonormal system in L2
2π(R) is an easy calcu-

lation. We only have to prove that span{en : n ∈ Z} is dense in L2
2π(R). Note that

f̂ (n) = ⟨ f ,en⟩ for every f ∈ L2
2π(R) and every n ∈ Z. By Lemma 2.24, we know

that for every f ∈ L2
2π(R)

g := ∑
n∈Z

f̂ (n)en exists in L2
2π(R).

In particular, a subsequence of (∑k
n=−k f̂ (n)en) converges almost everywhere to g.

But by Corollary 2.34 we know that (∑k
n=−k f̂ (n)en) converges pointwise every-

where to f if f ∈C1
2π(R). As a consequence, for every f ∈C1

2π(R),

lim
k→∞

k

∑
n=−k

f̂ (n)en = f in L2
2π(R),

so that span{en : n ∈ Z} is dense in (C1
2π(R),∥ · ∥L2

2π
). Since C1

2π(R) is dense in

L2
2π(R) by Lemma 2.36, we find that (en)n∈Z is an orthonormal basis in L2

2π(R).

Theorem 2.40 (Plancherel). For every f ∈ L2
2π(R) we have f̂ ∈ l2(Z) and the

Fourier transform ˆ : L2
2π(R) → l2(Z) is an isometric isomorphism. Moreover, for

every f ∈ L2
2π(R),

∑
n∈Z

f̂ (n)en = f in L2
2π(R),

that is, the Fourier series of f converges to f in the L2 sense.

Proof. By Corollary 2.39, the sequence (en)n∈Z is an orthonormal basis in L2
2π(R).

Moreover, recall that for every f ∈ L2
2π(R) and every n ∈ Z, f̂ (n) = ⟨ f ,en⟩. Hence,

by Theorem 2.25, f̂ ∈ l2(Z), f =∑n∈Z f̂ (n)en, and ∥ f∥L2
2π
= ∥ f̂∥l2 (the last property

being Parseval’s identity).
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Corollary 2.41. Let f ∈C2π(R) be such that f̂ ∈ l1(Z). Then

∑
n∈Z

f̂ (n)en = f in C2π(R),

that is, the Fourier series of f converges uniformly to f .

Proof. Note that for every n ∈ Z, ∥en∥∞ = 1. The assumption f̂ ∈ l1(Z) therefore
implies that the series ∑n∈Z f̂ (n)en converges absolutely in C2π(R), i.e. for the uni-
form norm ∥ · ∥∞. Since (C2π(R),∥ · ∥∞) is complete, the series ∑n∈Z f̂ (n)en con-
verges uniformly to some element g ∈C2π(R). By Plancherel, g = f .

Remark 2.42. The assumption f̂ ∈ l1(Z) in Corollary 2.41 is essential. For general
f ∈C2π(R), the Fourier series ∑n∈Z f̂ (n)en need not not converge uniformly. Ques-
tions regarding the convergence of Fourier series (which type of convergence? for
which function?) can go deeply into the theory of harmonic analysis and answers are
sometimes quite involved. The L2 theory gives in this context satisfactory answers
with relatively easy proofs (see Plancherel’s theorem). For continuous functions we
state the following result without giving a proof.

Theorem 2.43 (Féjer). For every f ∈C2π(R) one has

lim
K→∞

1
K

K

∑
k=1

k

∑
n=−k

f̂ (n)en = f in C2π(R),

that is, the Fourier series of f converges in the Cesàro mean uniformly to f .

2.4 Linear functionals on Hilbert spaces

In this section, we discuss bounded functionals on Hilbert spaces. Compared to the
case of bounded linear functionals on general Banach spaces, the case of bounded
linear functionals on Hilbert spaces is considerably easy but it has far reaching con-
sequences.

Theorem 2.44 (Riesz-Fréchet). Let H be a Hilbert space. Then for every bounded
linear functional φ ∈ H ′ there exists a unique y ∈ H such that

φ(x) = ⟨x,y⟩ for every x ∈ H.

Proof. Uniqueness. Let y1, y2 ∈ H be two elements such that

φ(x) = ⟨x,y1⟩= ⟨x,y2⟩ for every x ∈ H.

Then ⟨x,y1−y2⟩= 0 for every x ∈ H, in particular also for x = y1−y2. This implies
∥y1 − y2∥2 = 0, that is, y1 = y2.
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Existence. We may assume that φ ̸= 0 since the case φ = 0 is trivial. Let ỹ ∈
(kerφ)⊥ \{0}. Since H ̸= kerφ and since kerφ is closed, such a ỹ exists. Next, let

y := φ(ỹ)/∥ỹ∥2 ỹ.

Note that φ(y) = ∥y∥2 = ⟨y,y⟩. Recall that every x ∈ H can be uniquely written as
x = x0 +λy with x0 ∈ kerφ and λ ∈K so that λy ∈ (kerφ)⊥. Note that (kerφ)⊥ is
one-dimensional. Hence, for every x ∈ H,

φ(x) = φ(x0 +λy)

= φ(x0)+λφ(y)
= λφ(y)
= λ ⟨y,y⟩
= ⟨λy,y⟩
= ⟨x0,y⟩+ ⟨λy,y⟩
= ⟨x,y⟩.

The claim is proved.

Corollary 2.45. Let J : H → H ′ be the mapping which maps to every y ∈ H the
functional Jy ∈ H ′ given by Jy(x) = ⟨x,y⟩. Then J is antilinear if K= C and linear
if K= R. Moreover, J is isometric and bijective.

Proof. The fact that J is isometric follows from the Cauchy-Schwarz inequality.
Antilinearity (or linearity in case K = R) follows from the sesquilinearity (resp.
bilinearity) of the scalar product on H. Since J is isometric, it is injective. The
surjectivity of J follows from Theorem 2.44.

Remark 2.46. The theorem of Riesz-Fréchet allows us to identify any (real) Hilbert
space H with its dual space H ′. Note, however, that there are situations in which one
does not identify H ′ with H. This is for example the case when V is a second Hilbert
space which embeds continuously and densely into H, that is, for which there exists
a bounded, injective J : V → H with dense range.

2.5 Weak convergence in Hilbert spaces

Let H be a Hilbert space. We say that a sequence (xn) ⊆ H converges weakly to
some element x ∈ H if for every y ∈ H one has limn→∞⟨xn,y⟩ = ⟨x,y⟩. We write

xn ⇀ x or xn
weak
→ x if (xn) converges weakly to x.

Theorem 2.47. Every bounded sequence (xn) in a Hilbert space H admits a weakly
convergent subsequence, that is, there exists x ∈ H and there exists a subsequence

(xnk) of (xn) such that xnk

weak
→ x.
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In the proof of this theorem, we will use the following general result.

Lemma 2.48. Let X and Y be two normed spaces, let (Tn) ∈L (X ,Y ) be a bounded
sequence of bounded operators. Assume that there exists a dense set M ⊆ X such
that limn→∞ Tnx exists for every x ∈ M. Then limn→∞ Tnx =: T x exists for every x ∈ X
and T ∈ L (X ,Y ).

Proof. Define T x := limn→∞ Tnx for every x ∈ spanM. Then

∥T x∥= lim
n→∞

∥Tnx∥ ≤ sup
n
∥Tn∥∥x∥,

that is. T : spanM →Y is a bounded linear operator. Since M is dense in X , T admits
a unique bounded extension T : X → Y .

Let x ∈ X and ε > 0. Since M is dense in X , there exists y∈M such that ∥x−y∥≤
ε . By assumption, there exists n0 such that for every n ≥ n0 we have ∥Tny−Ty∥≤ ε .
Hence, for every n ≥ n0,

∥Tnx−T x∥ ≤ ∥Tnx−Tny∥+∥Tny−Ty∥+∥Ty−T x∥
≤ sup

n
∥Tn∥∥x− y∥+ ε +∥T∥∥x− y∥

≤ ε(sup
n
∥Tn∥+1+∥T∥),

and therefore limn→∞ Tnx = T x.

Proof (of Theorem 2.47). As in the proof of the Arzela-Ascoli theorem (Theorem
1.36), we use Cantor’s diagonal sequence argument. Let (xn) be a bounded sequence
in H. We first assume that H is separable, and we let (ym)⊆ H be a dense sequence.

Since (⟨xn,y1⟩) is bounded by the boundedness of (xn), there exists a subse-
quence (xφ1(n)) of (xn) (φ1 : N→ N is increasing, unbounded) such that

lim
n→∞

⟨xφ1(n),y1⟩ exists.

Similarly, there exists a subsequence (xφ2(n)) of (xφ1(n)) such that

lim
n→∞

⟨xφ2(n),y2⟩ exists.

Note that for this subsequence, we also have that

lim
n→∞

⟨xφ2(n),y1⟩ exists.

Iterating this argument, we find a subsequence (xφ3(n)) of (xφ2(n)) and finally for
every m ∈ N, m ≥ 2, a subsequence (xφm(n)) of (xφm−1(n)) such that

lim
n→∞

⟨xφm(n),y j⟩ exists for every 1 ≤ j ≤ m.

Let (x′n) := (xφn(n)) be the ’diagonal sequence’. Then (x′n) is a subsequence of
(xn) and
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lim
n→∞

⟨x′n,ym⟩ exists for every m ∈ N.

By Lemma 2.48 and the Riesz-Fréchet representation theorem (Theorem 2.44),
there exists x ∈ H such that

lim
n→∞

⟨x′n,y⟩= ⟨x,y⟩ for every y ∈ H,

and the claim is proved in the case when H is separable.
If H is not separable as we first assumed, then one may replace H by H̃ :=

span{xn : n ∈ N} which is separable. By the above, there exists x ∈ H̃ and a subse-
quence of (xn) (which we denote again by (xn)) such that for every y ∈ H̃,

lim
n→∞

⟨xn,y⟩= ⟨x,y⟩,

that is, (xn) converges weakly in H̃. On the other hand, for every y ∈ H̃⊥ and every
n,

⟨xn,y⟩= ⟨x,y⟩= 0.

The decomposition H = H̃ ⊕ H̃⊥ therefore yields that (xn) converges weakly in H.





Chapter 3
Dual spaces and weak convergence

3.1 The theorem of Hahn-Banach

Given a normed space X , we denote by X ′ := L (X ,K) the space of all bounded
linear functionals on X . It is called the dual space of X . Recall that X ′ is always a
Banach space by Corollary 1.29 of Chapter 1.

However, a priori it is not clear whether there exists any bounded linear func-
tional on a normed space X (apart from the zero functional). This fundamental ques-
tion and the analysis of dual spaces (analysis of functionals) shall be developed in
this chapter.

The existence of nontrivial bounded functionals is guaranteed by the Hahn-
Banach theorem which actually admits several versions. However, before stating
the first version, we need the following definition.

Let X be a real or complex vector space. A function p : X →R is called sublinear
if

(i) p(λx) = λ p(x) for every λ > 0, x ∈ X , and

(ii) p(x+ y)≤ p(x)+ p(y) for every x, y ∈ X .

Example 3.1. On a normed space X , the norm ∥ · ∥ is sublinear. Every linear p :
X → R is sublinear.

Theorem 3.2 (Hahn-Banach; version of linear algebra, real case). Let X be a
real vector space, U ⊆ X a linear subspace, and p : X →R sublinear. Let φ : U →R
be linear such that

φ(x)≤ p(x) for all x ∈U.

Then there exists a linear φ̃ : X →R such that φ̃(x) = φ(x) for every x ∈U (that is,
φ̃ is an extension of φ) and

φ̃(x)≤ p(x) for all x ∈ X . (3.1)

47
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The following lemma asserts that this version of Hahn-Banach is true in the spe-
cial case when X/U has dimension 1. It is an essential step in the proof of Theorem
3.2.

Lemma 3.3. Take the assumptions of Theorem 3.2 and assume in addition that
dimX/U = 1. Then the assertion of Theorem 3.2 is true.

Proof. If dimX/U = 1, then there exists x0 ∈ X \U such that every x ∈ X can be
uniquely written in the form x = u + λx0 with u ∈ U and λ ∈ R. So we define
φ̃ : X → R by

φ̃(x) := φ̃(u+λx0) := φ(u)+λ r,

where r ∈ R is a parameter which has to be chosen such that (3.1) holds, that is,
such that for every u ∈U , λ ∈ R,

φ(u)+λ r ≤ p(u+λx0). (3.2)

If λ = 0, then this condition clearly holds for every u ∈U by the assumption on φ .
If λ > 0, then (3.2) holds for every u ∈U if and only if

λ r ≤ p(u+λx0)−φ(u) for every u ∈U

⇔ r ≤ p(
u
λ
+ x0)−φ(

u
λ
) for every u ∈U

⇔ r ≤ inf
v∈U

p(v+ x0)−φ(v).

Similarly, if λ < 0, then (3.2) holds for every u ∈U if and only if

λ r ≤ p(u+λx0)−φ(u) for every u ∈U

⇔−r ≤ p(
u
−λ

− x0)−φ(
u
−λ

) for every u ∈U

⇔ r ≥ sup
w∈U

φ(w)− p(w− x0).

So it is possible to find an appropriate r ∈ R in the definition of φ̃ if and only if

φ(w)− p(w− x0)≤ p(v+ x0)−φ(v) for all v, w ∈U,

or, equivalently, if

φ(w)+φ(v)≤ p(v+ x0)+ p(w− x0) for all v, w ∈U.

However, by the assumptions on φ and p, for every v, w ∈U ,

φ(w)+φ(v) = φ(w+v)≤ p(w+v) = p(v+x0 +w−x0)≤ p(v+x0)+ p(w−x0).

For the second step in the proof of Theorem 3.2, we need the Lemma of Zorn.

Lemma 3.4 (Zorn). Let (M,≤) be a ordered set. Assume that every totally ordered
subset T ⊆ M (i.e. for every x, y ∈ T one either has x ≤ y or y ≤ x) admits an
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upper bound. Then for every x ∈ M there exists a maximal element m ≥ x (that is,
an element m such that m ≤ m̃ implies m = m̃ for every m̃ ∈ M).

Proof (of Theorem 3.2). Define the following set

M := {(V,φV ) : V ⊆ X linear subspace,U ⊆V, φV : V → R linear, s.t.
φ(x) = φV (x)(x ∈U) and φV (x)≤ p(x)(x ∈V )},

and equip it with the order relation ≤ defined by

(V1,φV1)≤ (V2,φV2) :⇔V1 ⊆V2 and φV1(x) = φV2(x) for all x ∈V1.

Then (M,≤) is an ordered set. Let T = ((Vi,φVi))i∈I ⊆M be a totally ordered subset.
Then the element (V,φV ) ∈ M defined by

V :=
∪
i∈I

Vi and φV (x) = φVi(x) for x ∈Vi

is an upper bound of T . By the Lemma of Zorn, the set M admits a maximal element
(X0,φX0). Assume that X0 ̸= X . Then, by Lemma 3.3, we could construct an element
which is strictly larger than (X0,φX0), a contradiction to the maximality of (X0,φX0).
Hence, X = X0, and φ̃ := φX0 is an element we are looking for.

The complex version of the Hahn-Banach theorem reads as follows.

Theorem 3.5 (Hahn-Banach; version of linear algebra, complex case). Let X be
a complex vector space, U ⊆ X a linear subspace, and p : X → R sublinear. Let
φ : U → C be linear such that

Reφ(x)≤ p(x) for all x ∈U.

Then there exists a linear φ̃ : X → C such that φ̃(x) = φ(x) for every x ∈U (that is
φ̃ is an extension of φ) and

Re φ̃(x)≤ p(x) for all x ∈ X . (3.3)

Proof. We may consider X also as a real vector space. Note that ψ(x) := Reφ(x) is
an R-linear functional on X . By Theorem 3.2, there exists an extension ψ̃ : X → R
of ψ satisfying

ψ̃(x)≤ p(x) for every x ∈ X .

Let
φ̃(x) := ψ̃(x)− iψ̃(ix), x ∈ X .

It is an exercise to show that φ̃ is C-linear, that φ(x) = φ̃(x) for every x ∈U and it
is clear from the definition that Re φ̃(x) = ψ̃(x). Thus, φ̃ is a possible element we
are looking for.

Theorem 3.6 (Hahn-Banach; extension of bounded linear functionals). Let X
be a normed space and U ⊆ X a linear subspace. Then for every bounded linear
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u′ : U → K there exists a bounded linear extension x′ : X → K (that is, x′|U = u′)
such that ∥x′∥= ∥u′∥.

Proof. We first assume that X is a real normed space. The function p : X → R
defined by p(x) := ∥u′∥∥x∥ is sublinear and

u′(x)≤ p(x) for every x ∈U.

By the first Hahn-Banach theorem (Theorem 3.2), there exists a linear x′ : X → R
extending u′ such that

x′(x)≤ p(x) = ∥u′∥∥x∥ for every x ∈ X .

Replacing x by −x, this implies that

|x′(x)| ≤ ∥u′∥∥x∥ for every x ∈ X .

Hence, x′ is bounded and ∥x′∥ ≤ ∥u′∥. On the other hand, one trivially has

∥x′∥= sup
x∈X
∥x∥≤1

|x′(x)| ≥ sup
x∈U
∥x∥≤1

|x′(x)|= sup
x∈U
∥x∥≤1

|u′(x)|= ∥u′∥.

If X is a complex normed space, then the second Hahn-Banach theorem (Theorem
3.5) implies that there exists a linear x′ : X → C such that

Rex′(x)≤ p(x) = ∥u′∥∥x∥ for every x ∈ X .

In particular,

|x′(x)|= sup
θ∈[0,2π]

Rex′(eiθ x)≤ ∥u′∥∥x∥ for every x ∈ X ,

so that again x′ is bounded and ∥x′∥ ≤ ∥u′∥. The inequality ∥x′∥ ≥ ∥u′∥ follows as
above.

Corollary 3.7. If X is a normed space, then for every x ∈ X \{0} there exists x′ ∈ X ′

such that
∥x′∥= 1 and x′(x) = ∥x∥.

In particular, X ′ separates the points of X, i.e. for every x1, x2 ∈ X, x1 ̸= x2, there
exists x′ ∈ X ′ such that x′(x1) ̸= x′(x2).

Proof. By the Hahn-Banach theorem (Theorem 3.6), there exists an extension x′ ∈
X ′ of the functional u′ : span{x} → K defined by u′(λx) = λ∥x∥ such that ∥x′∥ =
∥u′∥= 1.

For the proof of the second assertion, set x := x1 − x2.

Corollary 3.8. If X is a normed space, then for every x ∈ X
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∥x∥= sup
x′∈X ′
∥x′∥≤1

|x′(x)|. (3.4)

Proof. For every x′ ∈ X ′ with ∥x′∥ ≤ 1 one has

|x′(x)| ≤ ∥x′∥∥x∥ ≤ ∥x∥,

which proves one of the required inequalities. The other inequality follows from
Corollary 3.7.

Remark 3.9. The equality (3.4) should be compared to the definition of the norm
of an element x′ ∈ X ′:

∥x′∥= sup
x∈X
∥x∥≤1

|x′(x)|.

From now on, it will be convenient to use the following notation. Given a normed
space X and elements x ∈ X , x′ ∈ X ′, we write

⟨x′,x⟩ := ⟨x′,x⟩X ′×X := x′(x).

For the bracket ⟨·, ·⟩, we note the following properties. The function

⟨·, ·⟩ : X ′×X →K,

(x′,x) 7→ ⟨x′,x⟩= x′(x)

is bilinear and for every x′ ∈ X ′, x ∈ X ,

|⟨x′,x⟩| ≤ ∥x′∥∥x∥.

The bracket ⟨·, ·⟩ thus appeals to the notion of the scalar product on inner product
spaces, and the last inequality appeals to the Cauchy-Schwarz inequality, but note,
however, that the bracket is not a scalar product since it is defined on a pair of
two different spaces. Moreover, even if X = H is a complex Hilbert space, then the
bracket differs from the scalar product in that it is bilinear instead of sesquilinear.

Corollary 3.10. Let X be a normed space, U ⊆ X a closed linear subspace and
x ∈ X \U. Then there exists x′ ∈ X ′ such that

x′(x) ̸= 0 and x′(u) = 0 for every u ∈U.

Proof. Let π : X → X/U be the quotient map (π(x) = x+U). Since x ̸∈U , we have
π(x) ̸= 0. By Corollary 3.7, there exists φ ∈ (X/U)′ such that φ(π(x)) ̸= 0. Then
x′ := φ ◦π ∈ X ′ is a functional we are looking for.

A linear operator P : X → X on a linear space X is called a projection if P2 = P.
A linear subspace U of a normed space X is called complemented if there exists a
projection P ∈ L (X) such that ranP =U .
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Remark 3.11. If P is a projection, then Q = I −P is also a projection and ranP =
kerQ. Hence, if P is a bounded projection on a normed space, then ranP is neces-
sarily closed. Thus, a necessary condition for U to be complemented is that U is
closed.

Corollary 3.12. Every finite dimensional subspace of a normed space is comple-
mented.

Proof. Let U be a finite dimensional subspace of a normed space X . Let (bi)1≤i≤N
be a basis of U . By Corollary 3.10, there exist functionals x′i ∈ X ′ such that

⟨x′i,b j⟩=

{
1 if i = j,

0 otherwise.

Let P : X → X be defined by

Px :=
N

∑
i=1

⟨x′i,x⟩bi, x ∈ X .

Then Pbi = bi for every 1 ≤ i ≤ N, and thus P2 = P, that is, P is a projection.
Moreover, ranP =U by construction. By the estimate

∥Px∥ ≤
N

∑
i=1

|⟨x′i,x⟩|∥bi∥

≤
( N

∑
i=1

∥x′i∥∥bi∥
)
∥x∥,

the projection P is bounded.

The following lemma which does not depend on the Hahn-Banach theorem is
stated for completeness.

Lemma 3.13. In a Hilbert space every closed linear subspace is complemented.

Proof. Take the orthogonal projection onto the closed subspace as a possible pro-
jection.

Corollary 3.14. If X is a normed space such that X ′ is separable, then X is separa-
ble, too.

Proof. Let D′ = {x′n : n ∈ N} be a dense subset of the unit sphere of X ′. For every
n ∈N we choose an element xn ∈ X such that ∥xn∥ ≤ 1 and |⟨x′n,xn⟩| ≥ 1

2 . We claim
that D := span{xn : n ∈ N} is dense in X . If this was not true, i.e. if D̄ ̸= X , then,
by Corollary 3.10, we find an element x′ ∈ X ′ \ {0} such that x′(xn) = 0 for every
n ∈N. We may without loss of generality assume that ∥x′∥= 1. Since D′ is dense in
the unit sphere of X ′, we find n0 ∈ N such that ∥x′− x′n0

∥ ≤ 1
4 . But then
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1
2
≤ |⟨x′n0

,xn0⟩|= |⟨x′n0
− x′,xn0⟩| ≤ ∥x′n0

− x′∥∥xn0∥ ≤
1
4
,

which is a contradiction. Hence, D̄ = X and X is separable by Lemma 2.15 of Chap-
ter 2.

3.2 Weak∗ convergence and the theorem of Banach-Alaoglu

Let X be a Banach space. We say that a sequence (x′n) ⊆ X ′ converges weak∗ to
some element x′ ∈ X ′ if for every x ∈ X one has limn→∞⟨x′n,x⟩ = ⟨x′,x⟩. We write

x′n
weak∗
→ x′ if (x′n) converges weak∗ to x′.

Theorem 3.15 (Banach-Alaoglu). Let X be a separable Banach space. Then every
bounded sequence (x′n)⊆ X ′ admits a weak∗ convergent subsequence, that is, there

exists x′ ∈ X ′ and there exists a subsequence (x′nk
) of (x′n) such that x′nk

weak∗
→ x′.

Proof. As in the proof of the Arzelá-Ascoli theorem (Theorem 1.36) and the theo-
rem about weak sequential compactness of the unit ball in Hilbert spaces (Theorem
2.47), we use Cantor’s diagonal sequence argument. Let (x′n) be a bounded sequence
in X ′.

Since X is separable by assumption, we can choose a dense sequence (xm)⊆ X .
Since (⟨x′n,x1⟩) is bounded by the boundedness of (x′n), there exists a subsequence
(x′φ1(n)

) of (x′n) (φ1 : N→ N is increasing, unbounded) such that

lim
n→∞

⟨x′φ1(n)
,x1⟩ exists.

Similarly, there exists a subsequence (x′φ2(n)
) of (x′φ1(n)

) such that

lim
n→∞

⟨x′φ2(n)
,x2⟩ exists.

Note that for this subsequence, we also have that

lim
n→∞

⟨x′φ2(n)
,x1⟩ exists.

Iterating this argument, we find a subsequence (x′φ3(n)
) of (x′φ2(n)

) and finally for
every m ∈ N, m ≥ 2, a subsequence (x′φm(n)

) of (x′φm−1(n)
) such that

lim
n→∞

⟨x′φm(n),x j⟩ exists for every 1 ≤ j ≤ m.

Let (y′n) := (x′φn(n)
) be the ’diagonal sequence’. Then (y′n) is a subsequence of

(x′n) and
lim
n→∞

⟨y′n,xm⟩ exists for every m ∈ N.



54 3 Dual spaces and weak convergence

By Lemma 2.48 of Chapter 2, there exists x′ ∈ X ′ such that

lim
n→∞

⟨y′n,x⟩= ⟨x′,x⟩ for every x ∈ X .

This is the claim.

3.3 Weak convergence and reflexivity

Given a normed space X , we call X ′′ := (X ′)′ = L (X ′,K) the bidual of X .

Lemma 3.16. Let X be a normed space. Then the mapping

J : X → X ′′,

x 7→ (x′ 7→ ⟨x′,x⟩),

is well defined and isometric.

Proof. The linearity of x′ 7→ ⟨x′,x⟩ is clear, and from the inequality

|Jx(x′)|= |⟨x′,x⟩| ≤ ∥x′∥∥x∥,

follows that Jx ∈ X ′′ (that is, J is well defined) and ∥Jx∥ ≤ ∥x∥. The fact that J is
isometric follows from Corollary 3.7.

A normed space X is called reflexive if the isometry J from Lemma 3.16 is
surjective, i.e. if JX = X ′′. In other words: a normed space X is reflexive if for every
x′′ ∈ X ′′ there exists x ∈ X such that

⟨x′′,x′⟩= ⟨x′,x⟩ for all x′ ∈ X ′.

Remark 3.17. If a normed space is reflexive then X and X ′′ are isometrically iso-
morphic (via the operator J). Since X ′′ is always complete, a reflexive space is nec-
essarily a Banach space.

Note that it can happen that X and X ′′ are isomorphic without X being reflexive
(the example of such a Banach space is however quite involved). We point out that
reflexivity means that the special operator J is an isomorphism.

Lemma 3.18. Every Hilbert space is reflexive.

Proof. By the Theorem of Riesz-Fréchet, we may identify H with its dual H ′ and
thus also H with its bidual H ′′. The identification is done via the scalar product. It is
an exercise to show that this identification of H with H ′′ coincides with the mapping
J from Lemma 3.16.

Remark 3.19. It should be noted that for complex Hilbert spaces, the identification
of H with its dual H ′ is only antilinear, but after the second identification (H ′ with
H ′′) it turns out that the identification of H with H ′′ is linear.
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Lemma 3.20. Every finite dimensional Banach space is reflexive.

Proof. It suffices to remark that if X is finite dimensional, then

dimX = dimX ′ = dimX ′′ < ∞.

Surjectivity of the mapping J (which is always injective) thus follows from linear
algebra.

Theorem 3.21. The space Lp(Ω) is reflexive if 1 < p < ∞ ((Ω ,A ,µ) being an
arbitrary measure space).

We will actually only prove the following special case.

Theorem 3.22. The spaces lp are reflexive if 1 < p < ∞.

The proof of Theorem 3.22 is based on the following lemma.

Lemma 3.23. Let 1 ≤ p < ∞ and let q := p
p−1 be the conjugate exponent so that

1
p +

1
q = 1. Then the operator

T : lq → (lp)′,

(an) 7→ ((xn) 7→ ∑
n

anxn),

is an isometric isomorphism, that is, (lp)′ = lq.

Proof. Linearity of T is obvious. Assume first p > 1, so that q < ∞. Note that for
every a := (an) ∈ lq \{0} the sequence (xn) := (cān|an|q−2) (c = ∥a∥−q/p

q ) belongs
to lp and

∥x∥p
p = ∥a∥−q

q ∑
n
|an|(q−1)p = 1.

This particular x ∈ lp shows that

∥Ta∥(lp)′ ≥ ∑
n

anxn = ∥a∥−q/p
q ∑

n
|an|q = ∥a∥q(p−1)/p

q = ∥a∥q.

On the other hand, by Hölder’s inequality,

∥Ta∥(lp)′ = sup
∥x∥p≤1

|∑
n

anxn| ≤ ∥a∥q,

so that T is isometric in the case p ∈ (1,∞). The case p = 1 is very similar and will
be omitted.

In order to show that T is surjective, let φ ∈ (lp)′. Denote by en the n-th unit
vector in lp, and let an := φ(en). If p = 1, then (an) ∈ l∞ = lq by the trivial estimate

|an|= |φ(en)| ≤ ∥φ∥∥en∥1 = ∥φ∥.
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If p > 1, then we may argue as follows. For every N ∈ N,

N

∑
n=1

|an|q =
N

∑
n=1

an ān |an|q−2

= φ(
N

∑
n=1

ān |an|q−2 en)

≤ ∥φ∥
( N

∑
n=1

|an|(q−1)p) 1
p

= ∥φ∥
( N

∑
n=1

|an|q
) 1

p ,

which is equivalent to

( N

∑
n=1

|an|q
)1− 1

p =
( N

∑
n=1

|an|q
) 1

q ≤ ∥φ∥.

Since the right-hand side of this inequality does not depend on N ∈ N, we obtain
that a := (an) ∈ lq and ∥a∥q ≤ ∥φ∥.

Next, observe that for every x ∈ lp one has

x = ∑
n

xnen = lim
N→∞

N

∑
n=1

xnen,

the series converging in lp (here we need the restriction p < ∞!). Hence, for every
x ∈ lp, by the boundedness of φ ,

φ(x) = lim
N→∞

φ(
N

∑
n=1

xnen)

= lim
N→∞

N

∑
n=1

xnan

= ∑
n

xnan

= Ta(x).

Hence, T is surjective.

Proof (of Theorem 3.22). By Lemma 3.23, we may identify (lp)′ with lq and, if
1< p<∞ (!), also (lp)′′ = (lq)′ with lp. One just has to notice that this identification
of lp with (lp)′′ = lp (the identity map on lp) coincides with the operator J from
Lemma 3.16, so that lp is reflexive if 1 < p < ∞.

Lemma 3.24. The spaces l1, L1(Ω) (Ω ⊆ RN) and C([0,1]) are not reflexive.

Proof. For every t ∈ [0,1], let δt ∈C([0,1])′ be defined by
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⟨δt , f ⟩ := f (t), f ∈C([0,1]).

Then ∥δt∥= 1 and whenever t ̸= s, then

∥δt −δs∥= 2.

In particular, the uncountably many balls B(δt ,
1
2 ) (t ∈ [0,1]) are mutually disjoint

so that C([0,1])′ is not separable.
Now, if C([0,1]) were reflexive, then C([0,1])′′ = C([0,1]) would be separable

(since C([0,1]) is separable), and then, by Corollary 3.14, C([0,1])′ would be sepa-
rable; a contradiction to what has been said before. This proves that C([0,1]) is not
reflexive.

The cases of l1 and L1(Ω) are proved similarly. They are separable Banach
spaces with nonseparable dual.

Theorem 3.25. Every closed subspace of a reflexive Banach space is reflexive.

Proof. Let X be a reflexive Banach space, and let U ⊆ X be a closed subspace. Let
u′′ ∈U ′′. Then the mapping x′′ : X ′ →K defined by

⟨x′′,x′⟩= ⟨u′′,x′|U ⟩, x′ ∈ X ′,

is linear and bounded, i.e. x′′ ∈ X ′′. By reflexivity of X , there exists x ∈ X such that

⟨x′,x⟩= ⟨u′′,x′|U ⟩, x′ ∈ X ′. (3.5)

Assume that x ̸∈U . Then, by Corollary 3.10, there exists x′ ∈ X ′ such that x′|U = 0
and ⟨x′,x⟩ ̸= 0; a contradiction to the last equality. Hence, x ∈U . We need to show
that

⟨u′′,u′⟩= ⟨u′,x⟩,∀u′ ∈U ′. (3.6)

However, if u′ ∈U ′, then, by Hahn-Banach we can choose an extension x′ ∈ X ′, i.e.
x′|U = u′. The equation (3.6) thus follows from (3.5).

Corollary 3.26. The Sobolev spaces W k,p(Ω) (Ω ⊆ RN open) are reflexive if 1 <
p < ∞, k ∈ N.

Proof. For example, for k = 1, the operator

T : W 1,p(Ω)→ Lp(Ω)1+N ,

u 7→ (u,
∂u
∂x1

, . . . ,
∂u

∂xN
),

is isometric, so that we may consider W 1,p(Ω) as a closed subspace of Lp(Ω)1+N

which is reflexive by Theorem 3.21. The claim follows from Theorem 3.25.

Corollary 3.27. A Banach space is reflexive if and only if its dual is reflexive.
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Proof. Assume that the Banach space X is reflexive. Let x′′′ ∈ X ′′′ (the tridual!).
Then the mapping x′ : X →K defined by

⟨x′,x⟩ := ⟨x′′′,JX (x)⟩, x ∈ X ,

is linear and bounded, i.e. x′ ∈ X ′ (here JX denotes the isometry X → X ′′). Let x′′ ∈
X ′′ be arbitrary. Since X is reflexive, there exists x ∈ X such that JX x = x′′. Hence,

⟨x′′′,x′′⟩= ⟨x′′′,JX x⟩= ⟨x′,x⟩= ⟨x′′,x′⟩,

which proves that JX ′x′ = x′′′, i.e. the isometry JX ′ : X ′ → X ′′′ is surjective. Hence,
X ′ is reflexive.

On the other hand, assume that X ′ is reflexive. Then X ′′ is reflexive by the pre-
ceeding argument, and therefore X (considered as a closed subspace of X ′′ via the
isometry J) is reflexive by Theorem 3.25.

Let X be a normed space. We say that a sequence (xn)⊆ X converges weakly to
some x ∈ X if

lim
n→∞

⟨x′,xn⟩= ⟨x′,x⟩ for every x′ ∈ X ′.

Notations: if (xn) converges weakly to x, then we write xn ⇀ x, w− limn→∞ xn = x,
xn → x in σ(X ,X ′), or xn → x weakly.

Theorem 3.28. In a reflexive Banach space every bounded sequence admits a
weakly convergent subsequence.

Proof. Let (xn) be a bounded sequence in a reflexive Banach space X . We first
assume that X is separable. Then X ′′ is separable by reflexivity, and X ′ is separable
by Corollary 3.14. Let (x′m)⊆ X ′ be a dense sequence.

Since (⟨x′1,xn⟩) is bounded by the boundedness of (xn), there exists a subse-
quence (xφ1(n)) of (xn) (φ1 : N→ N is increasing, unbounded) such that

lim
n→∞

⟨x′1,xφ1(n)⟩ exists.

Similarly, there exists a subsequence (xφ2(n)) of (xφ1(n)) such that

lim
n→∞

⟨x′2,xφ2(n)⟩ exists.

Note that for this subsequence, we also have that

lim
n→∞

⟨x′1,xφ2(n)⟩ exists.

Iterating this argument, we find a subsequence (xφ3(n)) of (xφ2(n)) and finally for
every m ∈ N, m ≥ 2, a subsequence (xφm(n)) of (xφm−1(n)) such that

lim
n→∞

⟨x′j,xφm(n)⟩ exists for every 1 ≤ j ≤ m.
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Let (yn) := (xφn(n)) be the ’diagonal sequence’. Then (yn) is a subsequence of
(xn) and

lim
n→∞

⟨x′m,yn⟩ exists for every m ∈ N.

By Lemma 2.48 of Chapter 2, there exists x′′ ∈ X ′′ such that

lim
n→∞

⟨x′,yn⟩= ⟨x′,x′′⟩ for every x′ ∈ X ′.

Since X is reflexive, there exists x ∈ X such that Jx = x′′. For this x, we have by
definition of J

lim
n→∞

⟨x′,yn⟩= ⟨x′,x⟩ exists for every x′ ∈ X ′,

that is, (yn) converges weakly to x.
If X is not separable as we first assumed, then one may replace X by X̃ :=

span{xn : n ∈ N} which is separable. By the above, there exists x ∈ X̃ and a sub-
sequence of (xn) (which we denote again by (xn)) such that for every x̃′ ∈ X̃ ′,

lim
n→∞

⟨x̃′,xn⟩= ⟨x̃′,x⟩,

that is, (xn) converges weakly in X̃ . If x′ ∈ X ′, then x′|X̃ ∈ X̃ ′, and it follows easily
that the sequence (xn) also converges weakly in X to the element x.

3.4 * Minimization of convex functionals

Recall from page 31 that subset K of a real or complex vector space is convex if for
every x, y ∈ K and every t ∈ [0,1] one has tx+(1− t)y ∈ K.

Theorem 3.29 (Hahn-Banach; separation of convex sets). Let X be a Banach
space, K ⊆ X a closed, nonempty, convex subset, and x0 ∈ X \K. Then there exists
x′ ∈ X ′ and ε > 0 such that

Re⟨x′,x⟩+ ε ≤ Re⟨x′,x0⟩, x ∈ K.

Lemma 3.30. Let K be an open, nonempty, convex subset of a Banach space X such
that 0 ∈ K. Define the Minkowski functional p : X → R by

p(x) = inf{λ > 0 :
x
λ

∈ K}.

Then p is sublinear, there exists M ≥ 0 such that

p(x)≤ M ∥x∥, x ∈ X ,

and K = {x ∈ X : p(x)< 1}.

Proof. Since B(0,r)⊆ K for some r > 0, we find that
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p(x)≤ 1
r
∥x∥ for every x ∈ X .

The property p(αx) = α p(x) for every α > 0 and every x ∈ X is obvious.
Next, if p(x) < 1, then there exists λ ∈ (0,1) such that x/λ ∈ K. Hence, by

convexity, x= λ x
λ = λ x

λ +(1−λ )0∈K. On the other hand, if x∈K, then (1+ε)x∈
K, since K is open. Hence, p(x)≤ (1+ ε)−1 < 1, so that K = {x ∈ X : p(x)< 1}.

Let finally x, y∈X . Then for every ε > 0, x/(p(x)+ε)∈K and y/(p(y)+ε)∈K.
In particular, for every t ∈ [0,1],

t
p(x)+ ε

x+
1− t

p(y)+ ε
y ∈ K.

Setting t = (p(x)+ ε)/(p(x)+ p(y)+2ε), one finds that

x+ y
p(x)+ p(y)+2ε

∈ K,

so that p(x+ y) ≤ p(x)+ p(y)+ 2ε . Since ε > 0 was arbitrary, we find p(x+ y) ≤
p(x)+ p(y). The claim is proved.

Proof (of Theorem 3.29). We prove the theorem for the case when X is a real Banach
space. The complex case is proved similarly.

We may without loss of generality assume that 0 ∈ K; it suffices to translate K
and x0 for this. Since x0 ̸∈ K and since K is closed, we find that d := dist(x0,K)> 0.
Put

Kd := {x ∈ X : dist(x,K)< d/2},

so that Kd is an open, convex subset such that 0 ∈ Kd . Let p be the corresponding
Minkowski functional (see Lemma 3.30).

Define on the one-dimensional subspace U := {λx0 : λ ∈ R} the functional u′ :
U → R by ⟨u′,λx0⟩= λ . Then

⟨u′,u⟩ ≤ p(u), u ∈U.

By the Hahn-Banach theorem 3.2, there exists a linear extension x′ : X → R such
that

⟨x′,x⟩ ≤ p(x), x ∈ X . (3.7)

In particular, by Lemma 3.30,

|⟨x′,x⟩| ≤ M ∥x∥,

so that x′ ∈ X ′ and ∥x′∥ ≤ M. By construction, ⟨x′,x0⟩ = 1. Moreover, by (3.7) and
Lemma 3.30, ⟨x′,x⟩< 1 for every x ∈ K ⊆ Kd , so that

⟨x′,x⟩ ≤ ⟨x′,x0⟩(= 1), x ∈ Kd .
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Replacing the above argument with (1− ε ′)x0 instead of x0 (where ε ′ > 0 is chosen
so small that (1− ε ′)x0 ̸∈ Kd), we find that

⟨x′,x⟩+ ε ′⟨x′,x0⟩ ≤ ⟨x′,x0⟩, x ∈ K ⊆ Kd ,

and putting ε := ε ′ = ε ′⟨x′,x0⟩> 0 yields the claim.

Corollary 3.31. Let X be a Banach space and K ⊆X a closed, convex subset (closed
for the norm topology). If (xn)⊆ K converges weakly to some x ∈ X, then x ∈ K.

Proof. Assume the contrary, that is, x ̸∈ K. By the Hahn-Banach theorem (Theorem
3.29), there exist x′ ∈ X ′ and ε > 0 such that

Re⟨x′,xn⟩+ ε ≤ Re⟨x′,x⟩ for every n ∈ N,

a contradiction to the assumption that xn ⇀ x.

A function f : K →R on a convex subset K of a Banach space X is called convex
if for every x, y ∈ K, and every t ∈ [0,1],

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y). (3.8)

Corollary 3.32. Let X be a Banach space, K ⊆ X a closed, convex subset, and f :
K → R a continuous, convex function. If (xn)⊆ K converges weakly to x ∈ K, then

f (x)≤ liminf
n→∞

f (xn).

Proof. For every l ∈ R, the set Kl := {x ∈ K : f (x)≤ l} is closed (by continuity of
f ) and convex (by convexity of f ). After extracting a subsequence, if necessary, we
may assume that l := liminfn→∞ f (xn) = limn→∞ f (xn). Then for every ε > 0 the
sequence (xn) is eventually in Kl+ε , i.e. except for finitely many xn, the sequence
(xn) lies in Kl+ε . Hence, by Corollary 3.31, x ∈Kl+ε , which means that f (x)≤ l+ε .
Since ε > 0 was arbitrary, the claim follows.

Let K ⊆ X be a convex subset of a real or complex vector space. A function
f : K → R is called convex if for every x, y ∈ K and every t ∈ [0,1] one has

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y).

It is called strictly convex if for every x, y ∈ K, x ̸= y and every t ∈ (0,1) the above
inequality is strict.

Theorem 3.33. Let X be a reflexive Banach space, K ⊆ X a closed, convex,
nonempty subset, and f : K → R a continuous, convex function such that

lim
∥x∥→∞

x∈K

f (x) = +∞ (coercivity).

Then there exists x0 ∈ K such that
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f (x0) = inf{ f (x) : x ∈ K}>−∞.

Proof. Let (xn)⊆ K be such that limn→∞ f (xn) = inf{ f (x) : x ∈ K}. By the coerciv-
ity assumption on f , the sequence (xn) is bounded. Since X is reflexive, there exists
a weakly convergent subsequence (Theorem 3.28); we denote by x0 the limit. By
Corollary 3.31, x0 ∈ K. By Corollary 3.32,

f (x0)≤ lim
n→∞

f (xn) = inf{ f (x) : x ∈ K}.

The claim is proved.

Remark 3.34. Theorem 3.33 remains true if f is only lower semicontinuous, i.e. if

liminf
n→∞

f (xn)≥ f (x)

for every convergent (xn) ⊆ K with x = limxn. In fact, already Corollary 3.32 re-
mains true if f is only lower semicontinuous (and then Corollary 3.32 says that
lower semicontinuity of a convex function in the norm topology implies lower semi-
continuity in the weak topology). It suffices for example to remark that the sets
Kl := { f ≤ l} (l ∈ R) are closed as soon as f is lower semicontinuous.

3.5 * The von Neumann minimax theorem

In the following theorem, we call a function f : K → R on a convex subset K of a
Banach space X concave if − f is convex, or, equivalently, if for every x, y ∈ K and
every t ∈ [0,1],

f (tx+(1− t)y)≥ t f (x)+(1− t) f (y). (3.9)

A function f : K → R is called strictly convex (resp. strictly concave) if for every x,
y ∈ K, x ̸= y, f (x) = f (y) the inequality in (3.8) (resp. (3.9)) is strict for t ∈ (0,1).

Theorem 3.35 (von Neumann minimax theorem). Let K and L be two closed,
bounded, nonempty, convex subsets of reflexive Banach spaces X and Y , respec-
tively. Let f : K ×L → R be a continuous function such that

x 7→ f (x,y) is strictly convex for every y ∈ L, and

y 7→ f (x,y) is concave for every x ∈ K.

Then there exists (x̄, ȳ) ∈ K ×L such that

f (x̄,y)≤ f (x̄, ȳ)≤ f (x, ȳ) for every x ∈ K, y ∈ L. (3.10)

Remark 3.36. A point (x̄, ȳ) ∈ K×L satisfying (3.10) is called a saddle point of f .
A saddle point is a point of equilibrium in a two-person zero-sum game in the

following sense: If the player controlling the strategy x modifies his strategy when
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the second player plays ȳ, he increases his loss; hence, it is his interest to play x̄.
Similarly, if the player controlling the strategy y modifies his strategy when the
first player plays x̄, he diminishes his gain; thus it is in his interest to play ȳ. This
property of equilibrium of saddle points justifies their use as a (reasonable) solution
in a two-person zero-sum game ([Aubin (1979)]).

Proof. Define the function F : L →R by F(y) := infx∈K f (x,y) (y ∈ L). By Theorem
3.33, for every y ∈ L there exists x ∈ K such that F(y) = f (x,y). By strict convexity,
this element x is uniquely determined. We denote x := Φ(y) and thus obtain

F(y) = inf
x∈K

f (x,y) = f (Φ(y),y), y ∈ L. (3.11)

By concavity of the function y 7→ f (x,y) and by the definition of F , for every y1,
y2 ∈ L and every t ∈ [0,1],

F(ty1 +(1− t)y2) = f (Φ(ty1 +(1− t)y2), ty1 +(1− t)y2)

≥ t f (Φ(ty1 +(1− t)y2),y1)+(1− t) f (Φ(ty1 +(1− t)y2),y2)

≥ t F(y1)+(1− t)F(y2),

so that F is concave. Moreover, F is upper semicontinuous: let (yn)⊆ L be conver-
gent to y ∈ L. For every x ∈ K and every n ∈N one has F(yn)≤ f (x,yn), and taking
the limes superior on both sides, we obtain, by continuity of f ,

limsup
n→∞

F(yn)≤ limsup
n→∞

f (x,yn) = f (x,y).

Since x ∈ K was arbitrary, this inequality implies limsupn→∞ F(yn)≤ F(y), i.e. F is
upper semicontinuous.

By Theorem 3.33 (applied to −F ; use also Remark 3.34), there exists ȳ ∈ L such
that

f (Φ(ȳ), ȳ) = F(ȳ) = sup
y∈L

F(y).

We put x̄ = Φ(ȳ) and show that (x̄, ȳ) is a saddle point. Clearly, for every x ∈ K,

f (x̄, ȳ)≤ f (x, ȳ). (3.12)

Therefore it remains to show that for every y ∈ L,

f (x̄, ȳ)≥ f (x̄,y). (3.13)

Let y ∈ L be arbitrary and put yn := (1− 1
n )ȳ+

1
n y and xn = Φ(yn). Then, by

concavity,
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F(ȳ)≥ F(yn) = f (xn,yn)

≥ (1− 1
n
) f (xn, ȳ)+

1
n

f (xn,y)

≥ (1− 1
n
)F(ȳ)+

1
n

f (xn,y),

or
F(ȳ)≥ f (xn,y) for every n ∈ N.

Since K is bounded and closed, the sequence (xn) ⊆ K has a weakly convergent
subsequence which converges to some element x0 ∈ K (Theorem 3.28 and Corollary
3.31). By the preceeding inequality and Corollary 3.32,

F(ȳ)≥ f (x0,y).

This is just the remaining inequality (3.13) if we can prove that x0 = x̄. By concavity,
for every x ∈ K and every n ∈ N,

f (x,yn)≥ f (xn,yn)

≥ (1− 1
n
) f (xn, ȳ)+

1
n

f (xn,y)

≥ (1− 1
n
) f (xn, ȳ)+

1
n

F(y).

Letting n → ∞ in this inequality and using Corollary 3.32 again, we obtain that for
every x ∈ K,

f (x, ȳ)≥ f (x0, ȳ).

Hence, x0 = Φ(ȳ) = x̄ and the theorem is proved.



Chapter 4
Uniform boundedness, bounded inverse and
closed graph

This chapter is devoted to the other fundamental theorems in functional analysis;
other than the Hahn-Banach theorem which has been discussed in the previous chap-
ter. These fundamental results are

• the uniform boundedness principle or the Banach-Steinhaus theorem,
• the bounded inverse theorem (and the related open mapping theorem), and
• the closed graph theorem.

All these fundamental results rely on an abstract lemma for metric spaces.

4.1 The lemma of Baire

Lemma 4.1 (Baire). Let (M,d) be a complete metric space, and let (On) be a
sequence of open and dense subsets of M. Then

∩
n On is dense in M.

Proof. We can assume that M is not empty since the statement is trivial otherwise.
Let x0 ∈ M and ε > 0 be arbitrary. We have to prove that

∩
n On ∩B(x0,ε) is not

empty.
Since O1 is dense and open in M, the intersection B(x0,ε)∩ O1 is open and

nonempty. Hence, there exists ε1 > 0 (w.l.o.g. ε1 ≤ ε/2) and x1 ∈ B(x0,ε)∩O1 such
that

B(x1,ε1)⊆ B(x0,ε)∩O1.

Choosing ε1 a little bit smaller, if necessary, we can even assume that

B(x1,ε1)⊆ B(x0,ε)∩O1.

Since O2 is dense and open in M, the intersection B(x1,ε1)∩O2 is open and
nonempty. Hence, there exists ε2 > 0 (w.l.o.g. ε2 ≤ ε1/2) and x2 ∈ B(x1,ε1)∩O2
such that

B(x2,ε2)⊆ B(x1,ε1)∩O2 ⊆ B(x0,ε)∩O1 ∩O2.

65
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Proceeding inductively, we can construct sequences (εn) ⊆ (0,∞) and (xn) ⊆ M
such that

(i) εn ≤ εn−1/2 and

(ii) for every n ∈ N

B(xn,εn)⊆ B(xn−1,εn−1)∩On ⊆ B(x0,ε)∩
n∩

j=1

O j.

In particular, xm ∈ B(xn,εn) for every m≥ n and limn→∞ εn = 0. Hence, the sequence
(xn) is a Cauchy sequence in M. Since M is complete, there exists x := limn→∞ xn ∈
M. By the above,

x ∈ B(xn,εn) for every n ∈ N,

or
x ∈

∩
n

B(xn,εn)⊆ B(x0,ε)∩
∩
n

On.

The claim is proved.

Lemma 4.2 (Baire). Let (M,d) be a complete, nonempty, metric space, and let
(An) be a sequence of closed subsets in M such that M =

∪
n An. Then there exists

n0 ∈ N such that An0 has nonempty interior.

Proof. Assume the contrary, i.e. that every An has empty interior. In this case, the
sets On := M \An are open and dense. By assumption,

/0 = M \
∪
n

An =
∩
n

On,

a contradiction to Lemma 4.1 and the assumption that M is nonempty.

Remark 4.3. The assumption in Lemma 4.1 or Lemma 4.2 that M is complete is
necessary in general. For example,

Q=
∪

x∈Q
{x},

and this union is countable. Each one point set {x} is closed but in this example,
none of these sets has nonempty interior.

Remark 4.4. As a corollary to the lemma of Baire one obtains for example that
there exists a continuous function f ∈ C([0,1]) which is nowhere differentiable. In
fact, the set of such functions is dense in C([0,1]); see [Werner (1997)].
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4.2 The uniform boundedness principle

Theorem 4.5 (Uniform boundedness principle; Banach-Steinhaus). Let X, Y be
Banach spaces and let (Ti)i∈I ⊆ L (X ,Y ) be a family of bounded linear operators
such that

sup
i∈I

∥Tix∥< ∞ for every x ∈ X .

Then
sup
i∈I

∥Ti∥< ∞.

Remark 4.6. Theorem 4.5 is in general not true if X is only a normed space. For
example, let X = c00(= Y ) be the space of all finite sequences equipped with the
supremum norm (or any other reasonable norm). Let

Tnx = Tn(xm) = (anmxm)

with

anm =

{
m if m ≤ n,

0 if m > n.

Then supn ∥Tnx∥ is finite for every x ∈ X , but ∥Tn∥= n is unbounded.

Remark 4.7. The fact that in Theorem 4.5 we suppose also Y to be a Banach space is
not important. In fact, if Y is not complete, then we may embed Y into its completion
Ỹ and consider every operator Ti ∈ L (X ,Y ) also as an operator in L (X ,Ỹ ).

Proof (Proof of Theorem 4.5). Let An := {x ∈ X : supi∈I ∥Tix∥ ≤ n}. Since arbitrary
intersections of closed sets are closed, and by the boundedness of the Ti, the sets An
are closed for every n ∈ N. By assumption, X =

∪
n An.

Hence, by the lemma of Baire (Lemma 4.2), there exists n0 ∈N such that An0 has
nonempty interior, i.e. there exist n0 ∈ N, x0 ∈ X and ε > 0 such that

sup
i∈I

∥Tix∥ ≤ n0 for every x ∈ B(x0,ε),

or, in other words, there exists n0 ∈ N, x0 ∈ X and ε > 0 such that

∥Ti(x0 + εx)∥ ≤ n0 for every x ∈ B(0,1), i ∈ I.

This implies, by the triangle inequality,

ε ∥Tix∥ ≤ n0 +∥Tix0∥ ≤ 2n0 for every x ∈ B(0,1), i ∈ I.

The claim is proved.

Corollary 4.8. Let X, Y be Banach spaces and let (Tn) ⊆ L (X ,Y ) be a strongly
convergent sequence of bounded linear operators, i.e.
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T x := lim
n→∞

Tnx exists for every x ∈ X .

Then supn∈N ∥Tn∥=: M < ∞ and T ∈ L (X ,Y ).

Proof. Linearity of T is clear. Since (Tn) is strongly convergent, the sequence (Tnx)
is bounded for every x ∈ X . By the uniform bounded principle (Theorem 4.5),
supn∈N ∥Tn∥=: M < ∞. As a consequence, for every x ∈ X ,

∥T x∥= lim
n→∞

∥Tnx∥ ≤ M ∥x∥,

so that T is bounded.

Corollary 4.9. Every weakly convergent sequence in a Banach space is bounded.

Proof. Let X be a Banach space and (xn) ⊆ X be weakly convergent. Considering
the xn as elements in X ′′ = L (X ′,K) by the embedding J : X → X ′′, the claim
follows from Corollary 4.8.

4.3 Open mapping theorem, bounded inverse theorem

Theorem 4.10 (Open mapping theorem). Let X, Y be two Banach spaces and let
T ∈ L (X ,Y ) be surjective. Then there exists r > 0 such that

T BX (0,1)⊇ BY (0,r). (4.1)

Proof. First step: We show that there exists r > 0 such that

B(0,2r)⊆ T B(0,1). (4.2)

For this, we remark first that by surjectivity,

Y = T X =
∪
n

T B(0,n) =
∪
n

T B(0,n).

By the Lemma of Baire, there exists n0 such that T B(0,n0) has nonempty interior,
i.e. there exist x ∈ T B(0,n0) and ε > 0 such that

B(x,ε)⊆ T B(0,n0).

By symmetry,
B(−x,ε)⊆ T B(0,n0),

and adding both ’inequalities’ together, we obtain

B(0,ε)⊆ T B(0,n0),

which implies the required inclusion (4.2) if we put r = ε
2n0

.
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Second step: We prove (4.1). Let y ∈ B(0,r), where r > 0 is as in (4.2) from the
first step. Then, by (4.2), for every ε > 0 there exists x ∈ B(0, 1

2 ) such that ∥y−
T x∥ < ε . In particular, if we choose ε = r

2 , then there exists x1 ∈ B(0, 1
2 ) such that

∥y−T x1∥< r
2 .

Similarly, since y − T x1 ∈ B(0, r
2 ), there exists x2 ∈ B(0, 1

4 ) such that ∥(y −
T x1)− T x2∥ ≤ r

4 . Iterating this construction, we find a sequence (xn) such that
xn ∈ B(0,2−n) and such that ∥y − ∑n

j=1 T xn∥ ≤ 2−nr. Since X is complete and
since ∑n xn is absolutely convergent with ∑n ∥xn∥ < 1, the limit x = ∑n xn exists
and x ∈ B(0,1). By the preceeding estimates, ∥y−T x∥= 0 or T x = y. Thus we have
proved (4.1).

Remark 4.11. It is not difficult to prove that if an operator T ∈ L (X ,Y ) satisfies
(4.1), then TO is open for every open O ⊆ X . A function which maps open sets into
open sets is called open; whence the name of the open mapping theorem.

Corollary 4.12 (Bounded inverse theorem). Let X, Y be two Banach spaces and
let T ∈ L (X ,Y ) be bijective. Then T−1 ∈ L (Y,X).

Proof. Linearity of T−1 is clear. By the open mapping theorem (Theorem 4.10), we
have

T−1BY (0,1)⊆ BX (0,
1
r
)

for some r > 0. Hence, T−1 is bounded.

Corollary 4.13. Let ∥ · ∥1 and ∥ · ∥2 be two norms on a vector space X such that
(X ,∥ · ∥1) and (X ,∥ · ∥2) are complete. If there exists a constant C > 0 such that

∥x∥2 ≤C∥x∥1 for every x ∈ X ,

then the two norms are equivalent.

Proof. It suffices to consider the identity I : (X ,∥·∥1)→ (X ,∥·∥2). It is bounded by
assumption, and clearly it is bijective. By the bounded inverse theorem (Corollary
4.12), the inverse I−1 : (X ,∥·∥2)→ (X ,∥·∥1) is bounded, i.e. there exists c > 0 such
that

∥x∥1 ≤ c∥x∥2 for every x ∈ X .

4.4 Closed graph theorem

Let X , Y be two Banach spaces, and let domT ⊆ X be a linear subspace. A linear
operator T : domT → Y is called a closed operator if the graph

GraphT := {(x,T x) : x ∈ domT}

is closed in X ×Y .
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Lemma 4.14. A linear operator T : X ⊇ domT → Y is closed if and only if

domT ∋ xn → x in X and

T xn → y in Y

}
⇒ x ∈ domT and T x = y. (4.3)

Proof. Exercise.

Lemma 4.15. Every bounded linear operator T ∈ L (X ,Y ) (X, Y Banach spaces)
is closed.

Proof. This is an immediate consequence of Lemma 4.14.

Lemma 4.16. A linear operator T : X ⊇ domT →Y is closed if and only if the space
domT equipped with the graph norm

∥x∥domT := ∥x∥X +∥T x∥Y , x ∈ X ,

is complete.

Proof. ⇒ Assume that T is closed. Let (xn) be a Cauchy sequence in (domT,∥ ·
∥domT ). Then (xn) is a Cauchy sequence in X and (T xn) is a Cauchy sequence in
Y . Since X and Y are complete, there exist x ∈ X and y ∈ Y such that xn → x and
T xn → y. Since T is closed, and by Lemma 4.14, this implies x ∈ domT and T x = y.
Moreover,

∥xn − x∥domT = ∥xn − x∥X +∥T xn −T x∥Y → 0,

so that (xn) converges in (domT,∥ · ∥domT ). Hence, domT equipped with the graph
norm is complete.

⇐ Assume that (domT,∥·∥domT ) is complete. Assume that domT ∋ xn → x ∈ X
and T xn → y ∈ Y . Then (xn) and (T xn) are Cauchy sequences in X and Y , re-
spectively. By the definition of ∥ · ∥domT , this implies that (xn) is a Cauchy se-
quence in (domT,∥ · ∥domT ). By completeness, there exists x̄ ∈ domT such that
xn → x̄ in domT (with respect to the graph norm). Since convergence of (xn) in
domT implies the convergence of (xn) in X , and since (xn) converges to x in X ,
we find x = x̄ ∈ domT by the uniqueness of the limit. Moreover, since T is al-
ways bounded from domT (when equipped with the graph norm) into Y , we have
T x = limn→∞ T xn = y. Hence, by Lemma 4.14, T is closed.

Example 4.17. Let X =Y =C([0,1]) be equipped with the supremum norm, and let
domT :=C1([0,1])⊆ X . Let T f := f ′ for f ∈ domT . Then T is a closed operator.
In fact, the graph norm ∥ · ∥domT coincides with the canonical norm on C1([0,1]),
i.e.

∥ f∥C1 := ∥ f∥∞ +∥ f ′∥∞,

and (C1([0,1]),∥ · ∥C1) is complete.

Theorem 4.18 (Closed graph theorem). Let X, Y be two Banach spaces and let
T : X → Y be a closed operator. Then T is bounded.
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Remark 4.19. The important assumption in Theorem 4.18, besides the assump-
tion that T is closed, is the assumption that domT = X! The Example 4.17 shows
that closed operators need not be bounded in general; when considered from
(domT,∥ · ∥X ) with values in Y . Note that in Example 4.17, domT is not complete
when equipped with the norm coming from X .

Proof (Proof of Theorem 4.18). By assumption (X ,∥ · ∥X ) is a Banach space, and
by closedness of T and Lemma 4.16, also (X ,∥ · ∥domT ) is a Banach space, where
∥ · ∥domT denotes the graph norm. Moreover, trivially,

∥x∥X ≤ ∥x∥domT for every x ∈ X .

By Corollary 4.13, the two norms ∥ · ∥X and ∥ · ∥domT are equivalent, that is, there
exists a constant C ≥ 0 such that

∥x∥X +∥T x∥Y ≤C∥x∥X for every x ∈ X .

As a consequence, T is bounded.

Example 4.20 (Sobolev embedding). Let −∞ < a < b < ∞. Then the embedding

J : W 1,p(a,b)→C([a,b]),

u 7→ u

is well defined and bounded, that is, there exists a constant C ≥ 0 such that

∥u∥∞ ≤C∥u∥W 1,p for every u ∈W 1,p(a,b).

Recall that this embedding is well defined since every function u ∈W 1,p(a,b) is
continuous on [a,b] by Theorem 9.8 of Chapter 9.

In order to see that J is also bounded, we apply the closed graph theorem together
with the characterization in Lemma 4.14: let (un) ⊆ W 1,p(a,b) be such that u =
limn→∞ un exists in W 1,p(a,b) and such that v = limn→∞ un exists in C([a,b]). The
convergence in W 1,p ⊆ Lp implies that un → u almost everywhere if we extract a
subsequence. The convergence in C implies that un → v everywhere. Hence u = v
almost everyhwere, and since both functions are continuous, we obtain u= v. Hence,
the embedding is closed. By the closed graph theorem, the embedding W 1,p →C is
bounded.

Exercise 4.21 Let T : X ⊇ domT → Y be a closed, injective operator. Define

domT−1 := ranT = {T x : x ∈ domT} ⊆ Y,

T−1y :=x where x ∈ domT is the unique element such that T x = y.

Then T−1 is a closed operator.
If in addition T is surjective, then T−1 : Y → X is bounded.
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4.5 * Vector-valued analytic functions

Let X be a complex Banach space and let Ω ⊆ C be an open subset. We say that a
function f : Ω → X is analytic (or: holomorphic) if

f ′(z0) := lim
z→z0

f (z)− f (z0)

z− z0
exists for every z0 ∈ Ω .

We say that f : Ω → X is weakly analytic (or: weakly holomorphic) if x′ ◦ f :
Ω → C is analytic for every x′ ∈ X ′.

Theorem 4.22. A function f : Ω → X is analytic if and only if it is weakly analytic.

Proof. Cleary, if f is analytic, then f is weakly analytic. So we only have to prove
the other direction.

By considering X as a closed subspace of X ′′ (via the embedding J), and by
replacing then X by X ′′ (so that the function f becomes X ′′-valued), we can assume
that X is a dual space. But doing this, we no longer assume that f is weakly analytic.
The assertion which we have to prove is then the following:

Let X be a complex Banach space, and let X ′ be its dual. Let f : Ω → X ′ be such
that ⟨ f ,x⟩ : Ω → C is analytic for every x ∈ X . Then f is analytic.

In fact, it suffices to prove that for fixed z0 ∈ Ω there exists M ≥ 0 such that for
every y, z ∈ Ω \{z0} ’close’ to z0,∥∥∥∥ f (z)− f (z0)

z− z0
− f (y)− f (z0)

y− z0

∥∥∥∥≤ M |z− y|. (4.4)

Let K := B(z0,r)\{z0}, where r > 0 is chosen so small that K ⊆ Ω . Let

K̃ = (K ×K)\{(z,z) : z ∈ K}

be the cartesian product of K and K from which we take out the ’diagonal’.
By assumption, for every x ∈ X , the function ⟨ f ,x⟩ is analytic. Hence, for every

x ∈ X we have

sup
(y,z)∈K̃

∣∣∣∣∣∣
⟨ f (z)− f (z0)

z−z0
− f (y)− f (z0)

y−z0

y− z
,x

⟩∣∣∣∣∣∣< ∞.

By the uniform boundedness principle, this implies

sup
(y,z)∈K̃

∥∥∥∥∥∥
f (z)− f (z0)

z−z0
− f (y)− f (z0)

y−z0

y− z

∥∥∥∥∥∥=: M < ∞,

which actually implies (4.4) for every y, z ∈ K.

By Theorem 4.22, many important properties of ’classical’ analytic functions
Ω → C carry over to vector-valued analytic functions Ω → X . For example:



4.5 * Vector-valued analytic functions 73

• Every analytic function f : Ω → X is infinitely many times differentiable.
• Every analytic function f : Ω → X can be locally developed into a power series

of the form ∑∞
n=0 an(z− z0)

n with an ∈ X . In fact: an =
1
n! f (n)(z0).

• Cauchy’s integral formula f (z) = 1
2πi
∫

γ
f (y)
z−y dy holds true for appropriate paths γ .

Note, however, that we have not yet defined integrals of vector-valued functions.

An important example of a vector-valued analytic function will be the resolvent of
an operator T ∈ L (X); see the Chapter 5.





Chapter 5
Spectral theory of operators on Banach spaces,
compact operators, nuclear operators

5.1 Spectrum of closed operators

Let X be a Banach space. A linear operator between two Banach spaces X and Y
is a pair (A,domA) where domA ⊆ X is a linear subspace and A : domA → Y is a
linear mapping. We call domA the domain of A. Furthermore, we define the kernel,
the range, and the graph of A respectively by

kerA := {x ∈ X : Ax = 0},
ranA := {y ∈ Y : ∃x ∈ domA s.t. Ax = y} and

graphA := {(x,y) ∈ X ×Y : x ∈ domA and Ax = y}.

We say that a linear operator from X into Y is densely defined if its domain is
dense in X . If the domain is clear from the context, then we simply speak of a
linear operator A on X . For a bounded, linear operator A we always assume, unless
otherwise stated, that domA = X . Recall that an operator A on X is closed if its
graph graphA is closed in X ×X . We recall that an operator A on X is closed if
and only if its domain, equipped with the graph norm, is complete. We also recall
the Closed Graph Theorem (Theorem 4.18) which says that every closed operator A
with domain domA = X is automatically bounded.

For every λ ∈K we write λ −A := λ I−A, where I is the identity operator on X
and dom(λ −A) := domA. We define the resolvent set of A by

ρ(A) := {λ ∈K : λ −A : domA → X is bijective and

(λ −A)−1 is bounded on X}.

We emphasize that the inverse (λ −A)−1 is considered as an operator from X into X ,
and not as an operator from X into domA, although it effectively maps into domA.
For every λ ∈ ρ(A) we write

R(λ ,A) := (λ −A)−1,

75
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and we call R(λ ,A) the resolvent of A at λ . The mapping ρ(A) → L (X), λ 7→
R(λ ,A) is called the resolvent of A.

The set
σ(A) :=K\ρ(A)

is called the spectrum of A. Moreover, we define the point spectrum, the approx-
imative point spectrum, the continuous spectrum and the residual spectrum,
respectively, by

σp(A) := {λ ∈K : λ −A is not injective}
= {λ ∈K : ∃x ∈ X \{0} s.t. Ax = λx}

σap(A) := {λ ∈K : ∃(xn)⊆ domA s.t.∥xn∥= 1 and (λ −A)xn → 0},
σc(A) := {λ ∈K : λ −A is injective, has dense range, but

(λ −A)−1 : ranA → X is not bounded}, and
σr(A) := {λ ∈K : ran(λ −A) is not dense in X}.

Our first lemma shows that if we look for operators with non-empty resolvent
set, then we necessarily have to search in the class of closed operators.

Lemma 5.1. If the resolvent set of a linear operator A on a Banach space X is non-
empty, then A is closed.

Proof. Let A be a linear operator on a Banach space X . Assume that the resolvent set
is non-empty, and let λ ∈ ρ(A). Then λ −A is bijective and (λ −A)−1 is a bounded,
linear operator on X . In particular, (λ −A)−1 is closed. This means that

graph(λ −A)−1 = {(y,x) ∈ X ×X : (λ −A)−1y = x}

is closed in X ×X . Hence,

graph(λ −A) = {(x,y) ∈ X ×X : x ∈ domA and (λ −A)x = y}

is closed in X ×X . This easily implies that A has closed graph.

Lemma 5.2 (Resolvent identity). For every λ , µ ∈ ρ(A) one has

R(λ ,A)−R(µ ,A) = (µ −λ )R(µ,A)R(λ ,A).

Proof. For every λ , µ ∈ ρ(A)

µ −λ = (µ −A)− (λ −A).

Multiplying both sides by R(µ ,A) and R(λ ,A), one obtains the claim.

Lemma 5.3 (The resolvent is analytic). The resolvent set ρ(A) is open in K and the
resolvent ρ(A)→ L (X), λ 7→ R(λ ,A) is analytic, which means that it can locally
near every point λ ∈ ρ(A) be developped into a power series which converges to
the resolvent itself.
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Proof. Let λ ∈ ρ(A) and µ ∈K. Then

µ −A = µ −λ +λ −A = ((µ −λ )R(λ ,A)+ I)(λ −A),

and the right-hand side is invertible if |µ−λ |< 1/∥R(λ ,A)∥ by the Neumann series.
Hence, ρ(A) is open in K. The Neumann series precisely yields

R(µ,A) =
∞

∑
n=0

(−1)nR(λ ,A)n+1(µ −λ )n,

so that the function λ 7→ R(λ ,A) can be locally developped into a power series. As
a consequence, this function is analytic.

Remark 5.4. One may also employ the resolvent identity in order to prove that the
function λ 7→R(λ ,A) is analytic; but in this case one should at least prove continuity
of the resolvent R(·,A).

Lemma 5.5 (Growth of the resolvent near the spectrum). For every λ ∈ ρ(A)
one has

∥R(λ ,A)∥ ≥ dist(λ ,σ(A))−1.

Proof. As we have seen in the proof of the preceding Lemma 5.3, for λ ∈ ρ(A) the
condition

|µ −λ |∥R(λ ,A)∥< 1

implies µ ∈ ρ(A). The claim follows.

Lemma 5.6 (The topological boundary of the spectrum belongs to the approxi-
mative point spectrum). For every linear operator A one has

∂σ(A)⊆ σap(A).

Proof. If λ ∈ ∂σ(A), then there exists (λn) ⊆ ρ(A) such that limn→∞ λn = λ . By
Lemma 5.5, limn→∞ ∥R(λn,A)∥ = ∞. By the definition of the operator norm, there
exists a sequence (yn)⊆ X , ∥yn∥= 1, such that

lim
n→∞

∥R(λn,A)yn∥= ∞.

Put xn := R(λn,A)yn
∥R(λn,A)yn∥ , so that xn ∈ domA and ∥xn∥= 1. Then

λxn −Axn = (λ −λn)xn +
yn

∥R(λn,A)yn∥
→ 0 (n → ∞).

As a consequence, λ ∈ σap(A).

Lemma 5.7. For a bounded, linear operator T ∈ L (X) one has

{λ ∈ C : |λ |> ∥T∥} ⊆ ρ(T ),
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and

R(λ ,T ) =
∞

∑
n=0

T n

λ n+1 , |λ |> ∥T∥.

Proof. Use the identity

λ −T = λ (I − T
λ
)

and the Neumann series.

Remark 5.8. In fact, λ ∈ ρ(T ) as soon as

|λ |> liminf
n→∞

∥T n∥
1
n =: r(T ).

The number r(T )≥ 0 is called the spectral radius of T .

Lemma 5.9. For every bounded, linear operator T ∈L (X) with X ̸= {0} a complex
Banach space, the spectrum σ(T ) is nonempty and compact.

Proof. The compactness of σ(T ) follows Lemma 5.3 and 5.7. If σ(T ) was empty,
then, by Lemma 5.3, the resolvent λ 7→ R(λ ,T ) is an entire function. On the other
hand, by Lemma 5.7,

lim
|λ |→∞

∥R(λ ,T )∥= 0.

By Liouville’s theorem, this implies R(λ ,T )≡ 0, which is only possible if X = {0}
is the trivial space.

Let (A,domA) be a densely defined, linear operator between two Banach spaces
X and Y . We defined the adjoint operator or dual operator (A′,domA′) between
Y ′ and X ′ by

domA′ := {y′ ∈ Y ′ : ∃x′ ∈ X ′∀x ∈ domA : ⟨x′,x⟩X ′,X = ⟨y′,Ax⟩Y ′,Y} and
A′y′ := x′.

Lemma 5.10. For every linear operator (A,domA) between X and Y , the adjoint
operator (A′,domA′) between Y ′ and X ′ is closed.

Proof. Let (y′n) be any sequence in domA′ such that y′n → y′ in Y ′ and A′y′n → x′ in
X ′. Then, for every x ∈ domA,

⟨x′,x⟩X ′,X = lim
n
⟨A′y′n,x⟩X ′,X

= lim
n
⟨y′n,Ax⟩Y ′,Y

= ⟨y′,Ax⟩Y ′,Y .

By definition of the adjoint operator, this equality implies y′ ∈ domA′ and A′y′ = x′.
As a consequence, (A′,domA′) is closed.
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Lemma 5.11. For every linear operator (A,domA) on a Banach space X, one has
dom(λ −A)′ = domA′ and (λ −A)′ = λ −A′

Proof. Exercise.

If T ∈ L (X ,Y ) is a bounded, linear operator between two Banach spaces X and
Y , then, for every y′ ∈ Y ′, the linear mapping X → K, x 7→ ⟨y′,T x⟩ is bounded on
X . We denote this linear mapping by T ′y′ ∈ X ′. The resulting operator T ′ : Y ′ → X ′

is just the adjoint operator as defined above; its domain domT ′ is equal to Y ′. For
every x ∈ X and every y′ ∈ Y ′,

⟨y′,T x⟩Y ′,Y = ⟨T ′y′,x⟩X ′,X .

Lemma 5.12. For every bounded, linear operator T ∈ L (X ,Y ), the adjoint T ′ :
Y ′ → X ′ is bounded and ∥T∥= ∥T ′∥.

Proof. For every y′ ∈ Y ′,

∥T ′y′∥= sup
∥x∥≤1

|⟨T ′y′,x⟩|= sup
∥x∥≤1

|⟨y′,T x⟩| ≤ ∥T∥∥y′∥,

which proves that T ′ is bounded and that ∥T ′∥ ≤ ∥T∥. On the other hand, by Hahn-
Banach (Corollary 3.8 of Chapter 3),

∥T ′∥= sup
∥y′∥≤1

∥T ′y′∥

= sup
∥y′∥≤1

sup
∥x∥≤1

|⟨T ′y′,x⟩|

= sup
∥x∥≤1

sup
∥y′∥≤1

|⟨y′,T x⟩|

= sup
∥x∥≤1

∥T x∥

= ∥T∥,

and the claim is proved.

Lemma 5.13. For every closed, densely defined, linear operator (A,domA) one has
σ(A) = σ(A′). For every λ ∈ ρ(A) one has

R(λ ,A)′ = R(λ ,A′).

Proof. Let λ ∈ ρ(A). For every x′ ∈ domA′ and every x ∈ X we have

⟨R(λ ,A)′(λ −A′)x′,x⟩= ⟨(λ −A′)x′,R(λ ,A)x⟩
= ⟨x′,(λ −A)R(λ ,A)x⟩
= ⟨x′,x⟩,

so that R(λ ,A)′ is a right-inverse of λ −A′. Moreover, for every x′ ∈ X ′ and every
x ∈ domA we have



80 5 Spectral theory of operators on Banach spaces, compact operators, nuclear operators

⟨(λ −A′)R(λ ,A)′x′,x⟩= ⟨R(λ ,A)′x′,(λ −A)x⟩
= ⟨x′,R(λ ,A)(λ −A)x⟩
= ⟨x′,x⟩.

Since domA is dense in X , this equality implies that R(λ ,A)′ is also a left-inverse
of λ −A′. Hence, λ ∈ ρ(A′) and R(λ ,A′) = R(λ ,A)′.

Let X be a Banach space and X ′ its dual. For every subset M ⊆ X we define the
annihilator

M⊥ := {x′ ∈ X ′ : ⟨x′,x⟩= 0∀x ∈ M}.

For every subset M′ ⊆ X ′, we define the preannihilator

M′
⊥ := {x ∈ X : ⟨x′,x⟩= 0∀x′ ∈ M′}.

It is easy to show that M⊥ and M′
⊥ are closed linear subspaces of X ′ and X , respec-

tively.

Lemma 5.14. Let X be a Banach space and let (A,domA) be a closed, linear oper-
ator on X. Then:

a) (ranA)⊥ = kerA′.

b) ranA = (kerA′)⊥.

c) (kerA)⊥ ⊇ ranA′

d) kerA = (ranA′)⊥.

Proof. In order to prove (a), we observe

x′ ∈ (ranA)⊥ ⇔∀x ∈ X : ⟨x′,Ax⟩= 0
⇔ x′ ∈ domA′ and ∀x ∈ X : ⟨A′x′,x⟩= 0
⇔ x′ ∈ domA′ and A′x′ = 0
⇔ x′ ∈ kerA′.

(b) If x ∈ ranA, x = Ay for some y ∈ domA, and if x′ ∈ kerA′, then

⟨x′,x⟩= ⟨x′,Ay⟩= ⟨A′x′,y⟩= 0.

Hence, ranA ⊆ (kerA′)⊥, and since the latter space is closed, we obtain ranT ⊆
(kerT ′)⊥. Assume that the inclusion is strict. Then there exists x0 ∈ (kerA′)⊥ which
does not belong to ranA. By Hahn-Banach (Theorem 3.29 of Chapter 3), there exist
x′ ∈ X ′ and ε > 0 such that

Re⟨x′,x⟩+ ε ≤ Re⟨x′,x0⟩, x ∈ ranA. (5.1)

Since ranA is a subspace of X , in particular x ∈ ranA implies λx ∈ ranA for every
λ ∈K, we deduce from this inequality that ⟨x′,x⟩= 0 for every x ∈ ranA. Hence, by
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(a), x′ ∈ kerA′. But then ⟨x′,x0⟩= 0, too, and this is a contradiction to (5.1). Hence,
we have proved (b).

(c) If x′ ∈ ranA′, x′ = A′y′ for some y′ ∈ domA′, and if x ∈ kerA, then

⟨x′,x⟩= ⟨A′y′,x⟩= ⟨y′,Ax⟩= 0.

This implies ranA′ ⊆ (kerA)⊥, and since the latter space is closed, we obtain (c).
(d) Similarly as in (a), we observe

x ∈ kerA ⇔ x ∈ domA and Ax = 0
⇔ x ∈ domA and ∀x′ ∈ X ′ : ⟨x′,Ax⟩= 0
⇔ x ∈ domA and ∀x′ ∈ domA′ : ⟨A′x′,x⟩= 0
⇔ x ∈ (ranA′)⊥.

Lemma 5.15. For every linear operator (A,domA) on X one has

σr(A) = σp(A′).

Proof. Let λ ∈σr(A). Then, by definition of the residual spectrum, ran(λ −A) is not
dense in X . By the Hahn-Banach theorem (see in particular Corollary 3.10), there
exists a bounded, linear functional x′ ∈ X ′ \{0} which vanishes on ran(λ −A), that
is,

⟨x′,λx−Ax⟩= 0 for every x ∈ domA.

In other words, (ran(λ −A))⊥ ̸= {0}. By Lemma 5.14 (a), this means ker(λ −A′) ̸=
{0}, or, by definition of the point spectrum, λ ∈ σp(A′).

Conversely, if λ ∈σp(A′), then ker(λ −A′) ̸= {0}. This implies (ker(λ −A′))⊥ ̸=
X . By Lemma 5.14 (b), this means that ran(λ −A) is not dense in X . Hence, λ ∈
σr(A).

5.2 Compact operators

A linear operator T : X → Y between two Banach spaces X and Y is called a com-
pact operator if T B(0,1) is relatively compact in Y . The set of all compact linear
operators from X into Y is denoted by K (X ,Y ). We denote K (X) := K (X ,X).

Remark 5.16. A linear operator T : X → Y is compact if and only if for every se-
quence (xn) ⊆ B(0,1) there exists a subsequence (again denoted by (xn)) such that
(T xn) is convergent (or Cauchy).

Since relatively compact subsets of normed spaces are necessarily bounded, ev-
ery compact operator is bounded.

Lemma 5.17. Let X, Y , Z be Banach spaces. Then:

a) The set K (X ,Y ) is a closed linear subspace of L (X ,Y ).
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b) If T ∈ K (X ,Y ) and S ∈ L (Y,Z), then ST ∈ K (X ,Z).

c) If T ∈ L (X ,Y ) and S ∈ K (Y,Z), then ST ∈ K (X ,Z).

d) The set K (X) is a two-sided ideal in L (X).

Proof. (a) If T , S ∈ K (X ,Y ), λ ∈ K, then clearly λT ∈ K (X ,Y ). Moreoever, if
(xn) ⊆ B(0,1) is any sequence, then we can choose a subsequence (again denoted
by (xn)) such that (T xn) converges. From this subsequence, we extract another sub-
sequence (again denoted by (xn)) such that (Sxn) converges. Then (T xn +Sxn) con-
verges, and therefore T + S ∈ K (X ,Y ). Hence, K (X ,Y ) is a linear subspace of
L (X ,Y ).

In order to see that K (X ,Y ) is closed in L (X ,Y ), let (Tn) ⊆ K (X ,Y ) be con-
vergent to some element in T ∈ L (X ,Y ). Let (x j) ⊆ B(0,1) be any sequence. A
diagonal sequence argument implies that we can choose a subsequence (again de-
noted by (x j)) such that

lim
j→∞

Tnx j exists for every n ∈ N.

Let ε > 0 be arbitrary, and choose n ∈ N so large such that ∥T −Tn∥ < ε . Choose
j0 ∈N so large that ∥Tnx j −Tnxk∥< ε for every j, k ≥ j0. Then, for every j, k ≥ j0,

∥T x j −T xk∥ ≤ ∥T x j −Tnx j∥+∥Tnx j −Tnxk∥+∥Tnxk −T xk∥< 3ε.

Hence, (T x j) is a Cauchy sequence. Since Y is complete, (T x j) is convergent. As
a consequence, for every sequence (x j)⊆ B(0,1) we have extracted a subsequence
(again denoted by (x j)) such that (T x j) converges. This means that T ∈ K (X ,Y ).
Hence, K (X ,Y ) is closed in L (X ,Y ).

(b), (c) Let T ∈ L (X ,Y ) and S ∈ L (Y,Z). If T is compact, then T B(0,1) is
relatively compact, and since S is continuous, ST B(0,1) is relatively compact in Z
by Lemma 0.19 of chapter 0. Hence, ST ∈ K (X ,Z). If on the other hand T is only
bounded and S is compact, then T B(0,1) is bounded in Y , and therefore ST B(0,1)
is relatively compact in Z, i.e. ST ∈ K (X ,Z).

(d) This is an immediate consequence of (b) and (c).

Lemma 5.18. Let X, Y be Banach spaces. Then:

a) If T ∈ L (X ,Y ) has finite rank, that is, if dimranT < ∞, then T ∈ K (X ,Y ).

b) If (Tn)⊆K (X ,Y ) is a uniformly convergent sequence of finite rank operators,
then T := limn→∞ Tn ∈ K (X ,Y ).

Proof. Assertion (a) follows from the Theorem of Heine-Borel, while (b) is a con-
sequence of Lemma 5.17.

Example 5.19 (Rank-1-operator). For every x′ ∈ X ′ and y ∈ Y we may define the
operator T : X → Y by

T x := ⟨x′,x⟩y (x ∈ X).
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Then T has rank 1 (unless x′ = 0 or y = 0 in which case T = 0), and it is therefore
a compact operator. Operators of the form above are also denoted by x′⊗ y. Every
rank-1-operator is of this form.

Lemma 5.20. A Banach space X is finite dimensional if and only if the identity
operator I ∈ L (X) is compact.

Proof. This is an immediate consequence of Theorem 1.15 of Chapter 1 which itself
was a consequence of the Lemma of Riesz (Lemma 1.14).

A difficult problem is in general to decide which operators are compact. By the
very definition of compact operators, it is thus important to know which subsets
of (infinite dimensional) Banach spaces are relatively compact. Boundedness of the
subset alone does not suffice as the Lemma of Riesz shows (see also the preceeding
lemma). In the case when the underlying Banach space is C(K) (K a compact metric
space) we have already seen a satisfactory characterization of relatively compact
subsets; see the Theorem of Arzela-Ascoli (Theorem 1.36).

Example 5.21 (Sobolev embedding). Consider the embedding J : W 1,p(a,b) →
C([a,b]) from Example 4.20 of Chapter 4. The closed graph theorem showed that J
is bounded, i.e. there exists C ≥ 0 such that

∥u∥∞ ≤C∥u∥W 1,p , u ∈W 1,p(a,b).

We can show in addition that the embedding is compact if p > 1. Let

M := {u ∈W 1,p(a,b) : ∥u∥W 1,p < 1}= JB(0,1)⊆C([a,b])

be the image of the unit ball under J. By boundedness of J, M is bounded in C([a,b]).
Moreover, by Hölder’s inequality (we assume p> 1), for every t, s∈ [a,b] (t ≥ s)and
every u ∈ M,

|u(t)−u(s)|= |
∫ t

s
u′(r) dr| ≤

∫ t

s
|u′(r)| dr ≤ ∥u′∥p (t − s)

p−1
p ≤ (t − s)

p−1
p .

This implies that M is equicontinuous if p > 1 (choose for every ε > 0 the δ equal
to ε

p
p−1 in order to check equicontinuity).

By the Arzela-Ascoli Theorem (Theorem 1.36), M is relatively compact in
C([a,b]), and therefore the embedding W 1,p(a,b) ↪→C([a,b]) is compact if p > 1.

Exercise 5.22 (Sobolev embedding) Show that the embedding W 1,1(a,b) ↪→
C([a,b]) is not compact.

Exercise 5.23 (Multiplication operators in sequence spaces) Let X = lp (1 ≤
p < ∞) or let X = c0. Let m ∈ l∞ and define the associated multiplication oper-
ator M ∈ L (X) by

Mx = M(xn) = (mnxn), x ∈ X .

Show that M is compact if and only if m ∈ c0.
Hint: Use Lemma 5.18.
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Exercise 5.24 (Kernel operators) Let Ω ⊆Rn be a compact (!) set. Let k ∈C(Ω ×
Ω), and define the associated kernel operator K ∈ L (C(Ω)) by

K f (t) =
∫

Ω
k(t,s) f (s) ds, t ∈ Ω , f ∈C(Ω).

Then K is compact.

Theorem 5.25 (Schauder). An operator T ∈ L (X ,Y ) is compact if and only if
T ′ ∈ L (Y ′,X ′) is compact.

Proof. Assume that T ∈K (X ,Y ), and let K := T BX (0,1)⊆Y . Then K is compact.
Let M := BY ′(0,1) be considered as a subset of C(K). Then clearly M is bounded,
and it is not difficult to see that M is also equicontinuous. By the theorem of Arzela-
Ascoli, M is relatively compact in C(K). This means that for every sequence (y′n) ∈
BY ′(0,1) there exists a convergent subsequence (convergent in C(K)!). If we denote
this subsequence again by (y′n), then we obtain

0 = lim
n,m→∞

∥y′n − y′m∥C(K) ≥ lim
n,m→∞

sup
∥x∥≤1

|⟨y′n − y′m,T x⟩|= lim
n,m→∞

∥T ′y′n −T ′y′m∥X ′ ,

which just means that T ′ is compact.
Assume on the other hand that T ′ ∈ K (Y ′,X ′). By what we have just proved,

this implies T ′′ ∈ K (X ′′,Y ′′). Hence, if (xn) ∈ BX (0,1) is any sequence, then there
exists a subsequence (again denoted by (xn)) such that (T ′′xn) is convergent in Y ′′

(note that we have considered (xn) also as a sequence in X ′′ via the embedding J).
However, T ′′xn = T xn, and the claim is proved.

Theorem 5.26 (Riesz-Schauder). Let X be a Banach space, and T ∈ K (X).
Then:

a) ker(I −T ) is finite dimensional.

b) ran(I −T ) is closed and ran(I −T ) = ker(I −T ′)⊥.

c) ker(I −T ) = {0} if and only if ran(I −T ) = X.

d) dimker(I −T ) = dimker(I −T ′) = dim(X/ran(I −T )).

An immediate consequence of the Riesz-Schauder Theorem is Fredholm’s alter-
native.

Corollary 5.27 (Fredholm alternative). Let X be a Banach space, and T ∈K (X).
Then, either for every y ∈ Y the equation

x−T x = y, (5.2)

there exists a solution x ∈ X, and in this case the solution x is unique, or the homo-
geneous equation

x−T x = 0
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has a a finite number of linearly independent solutions (xi)1≤i≤n and the equation
(5.2) has a solution if and only if y satisfies n equations of orthogonality ⟨x′i,y⟩= 0,
where the x′i ∈ ker(I −T ′) are linearly independent.

Remark 5.28. If T ∈ K (X), then, by property (c) of Theorem 5.26, I −T is injec-
tive if and only if I−T is surjective. In finite dimensions, this property of linear map-
pings is well-known. This property of operators of the form I−T with T compact is
however not shared by arbitrary bounded operators on infinite-dimensional Banach
spaces. For example, the left-shift L on lp(N) defined by Lx = L(xn) := (xn+1) is
surjective but not injective.

Remark 5.29. An operator S ∈ L (X ,Y ) such that kerS is finite dimensional and
such that ranS is closed and has finite codimension (that is, dim(X/ ranS) < ∞) is
called a Fredholm operator, and

indS := dimkerS−dim(X/ ranS)

is called the Fredholm index of S. By Theorem 5.26, S = I −T ∈ L (X) is a Fred-
holm operator of Fredholm index 0 if T ∈ K (X).

Proof (of Theorem 5.26). (a) On ker(I−T ) we have T = I, and since T is compact,
ker(I −T ) must be finite dimensional.

(b) Let (xn) ⊆ X be such that un := xn − T xn → u ∈ X . We have to show that
u ∈ ran(I −T ). Since ker(I −T ) is finite dimensional, for every n ∈ N there exists
yn ∈ ker(I −T ) such that

dist(xn,ker(I −T )) = ∥xn − yn∥.

We show that the sequence (xn−yn) is bounded. Otherwise, after extracting a subse-
quence, we may assume that limn→∞ ∥xn − yn∥= ∞. Putting wn := xn−yn

∥xn−yn∥ , we find
that wn−Twn = un/∥xn−yn∥→ 0. After extracting a subsequence, we may assume
that Twn → z (T is compact). But then wn → z, too, and therefore z ∈ ker(I−T ). On
the other hand,

dist(wn,ker(I −T )) =
dist(xn,ker(I −T ))

∥xn − yn∥
= 1,

a contradiction. Hence, the sequence (xn − yn) is bounded.
But then, by compactness of T , we can extract a subsequence (again denoted by

(xn − yn)) such that T (xn − yn)→ v. Hence,

xn − yn = un +T (xn − yn)→ u+ v.

We deduce that T (u+ v) = v, or u = (u+ v)− T (u+ v), so that u ∈ ran(I − T ).
Hence, ran(I −T ) is closed.

Since the equality ran(I −T ) = ker(I − T ′)⊥ always holds true (Lemma 5.14),
we have thus proved (b).
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(c) Assume first that I −T is injective, i.e. ker(I −T ) = {0}. Assume that X1 :=
ran(I −T ) ̸= X , that is, X1 is a closed (by (b)) proper subspace of X . Then T |X1 ∈
K (X1), so that, by (b) again, X2 = (I − T )X1 is a closed subspace of X1. Since
I −T is injective, X2 ̸= X1. Iterating this argument and putting Xn = (I −T )nX , we
obtain a decreasing sequence (Xn) of closed subspaces of X such that Xn+1 ̸= Xn.
By the Lemma of Riesz, for every n ≥ 1 there exists xn ∈ Xn such that ∥xn∥= 1 and
dist(xn,Xn+1)≥ 1

2 . For every n > m we have

T xn −T xm =−(xn −T xn)+(xm −T xm)+ xn − xm

and
−(xn −T xn)+(xm −T xm)+ xn ∈ Xm+1.

Hence, ∥T xn −T xm∥ ≥ 1
2 whenever n ̸= m, a contradiction to the assumption that T

is compact. Hence, ran(I −T ) = X .
Assume now on the other hand that ran(I − T ) = X . Then, by Lemma 5.14,

ker(I−T ′) = {0}. Since T ′ is compact by Schauder’s theorem, this implies ran(I−
T ′) = X ′ by the preceeding step. By Lemma 5.14, ker(I −T ) = {0}.

(d) For every closed subspace U of X the dual (X/U)′ is isomorphic to U⊥. In
particular, for U = ran(I −T ) one obtains (using Lemma 5.14)

ker(I −T ′) = (ran(I −T ))⊥ ∼= (X/ ran(I −T ))′ ∼= X/ ran(I −T ).

The last isomorphy holds since we know by the first isomorphy that (X/ ran(I−T ))′

is finite dimensional. In particular,

dimker(I −T ′) = dimX/ ran(I −T ),

so that we have proved the second inequality.
It remains to prove that

dimX/ ran(I −T ) = dimker(I −T ).

Since T x = x for every x ∈ ker(I −T ), we see that T leaves ker(I −T ) invariant. In
particular, the operator

T̃ : X/ker(I −T )→ X/ker(I −T ),

x+ker(I −T ) 7→ T x+ker(I −T ),

is well-defined and one easily checks that T̃ is compact since T is compact. By
construction, ker(I − T̃ ) = {0} so that, by (c), ran(I − T̃ ) = X/ker(I − T ). This
means that for every y ∈ X there exists x ∈ X and x0 ∈ ker(I −T ) such that

(I −T )x = y− x0,

or
y = (I −T )x+ x0 =: x1 + x0.
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In particular, every y ∈ X can be written as a sum x1 +x0 of an element x1 ∈ ran(I−
T ) and an element x0 ∈ ker(I −T ). Hence,

dimker(I −T ′) = dimX/ ran(I −T )≤ dimker(I −T ).

Replacing T by T ′ (which is compact by Schauder’s theorem), we obtain

dimker(I −T ′′)≤ dimker(I −T ′)≤ dimker(I −T ).

On the other hand, since I −T ′′ extends I −T , one trivially has

dimker(I −T )≤ dimker(I −T ′′).

The claim is proved

Theorem 5.30 (Spectrum of a compact operator). Let X be a Banach space and
let T ∈ K (X). Then:

a) If X is infinite-dimensional, then 0 ∈ σ(T ).

b) σ(T )\{0}= σp(T )\{0}.

c) Either σ(T ) is finite or σ(T )\{0}= {λn : n∈N} for some sequence (λn)⊆C
such that limn→∞ λn = 0.

Proof. (a) If 0 ∈ ρ(T ), then T−1 exists and is bounded. Hence, I = T T−1 is com-
pact; a contradiction to the assumption that X is infinite dimensional.

(b) Let λ ∈ σ(T ) \ {0}. If λ ̸∈ σp(T ), then ker(λ − T ) = {0}. By the Riesz-
Schauder Theorem (Theorem 5.26), this implies ran(λ −T ) = X so that λ −T is
bijective; a contradiction to the assumption λ ∈ σ(T ).

(c) It suffices to prove that σ(T )∩{λ ∈ C : |λ | ≥ R} is finite for every R > 0. If
this was not the case, then we find a sequence (λn)⊆ σ(T )\{0} such that λn ̸= λm
for n ̸= m and |λn| ≥ R > 0. By (b), for every n ∈ N there exists xn ∈ X \ {0} such
that λnxn −T xn = 0. Note that the family (xn) are linearly independent. Otherwise,
we find a smallest n ∈ N such that the family (xi)1≤i≤n is linearly independent, but
xn+1 = ∑n

i=1 αixi for some scalars αi. Then

n

∑
i=1

αiλn+1xi = λn+1xn+1 = T xn+1 =
n

∑
i=1

αiλixi,

and this implies αi(λn+1−λi) = 0 for every 1 ≤ i ≤ n. Since λn+1 ̸= λi for 1 ≤ i ≤ n,
we obtain αi = 0; a contradiction to xn+1 ̸= 0. Let Xn := span{xi : 1 ≤ i ≤ n}. Then
(Xn) is an increasing sequence of closed subspaces of X such that Xn ̸= Xn+1 (the
latter by linear independence of the vectors xn). By the Lemma of Riesz, for every
n ≥ 2 there exists yn ∈ Xn such that ∥yn∥= 1 and dist(yn,Xn−1)≥ 1

2 . Then, for every
n > m ≥ 2,
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∥Tyn −Tym∥= ∥− (λnyn −Tyn)+(λmym −Tym)+λnyn −λmym∥
≥ dist(λnyn,Xn−1)

≥ λn

2
≥ R

2
.

This is a contradiction to the compactness of T , and hence (c) is proved.

5.3 Nuclear operators

Let X and Y be two Banach spaces. An operator T : X → Y is called nuclear oper-
ator, if there exist sequences (x′k) in X ′ and (yk) in Y such that

(i) ∑k ∥x′k∥∥yk∥< ∞, and

(ii) T x = ∑k⟨x′k,x⟩yk for every x ∈ X .

Taking up the notation from Example 5.19 (Rank-1-operators), the condition (ii) is
equivalent to

T = ∑
k

x′k ⊗ yk,

the series converging absolutely in L (X ,Y ), thanks to condition (i). Note that the
representation of T in the above form is not unique in the sense that the sequences
(x′k) and (yk) are not uniquely determined by T . We denote by N (X ,Y ) the space
of all nuclear operators from X into Y ; N (X) := N (X ,X). When being equipped
with the norm

∥T∥N := inf{∑
k
∥x′k∥∥yk∥ : x′k ∈ X ′, y ∈ Y, T = ∑

k
x′k ⊗ yk},

the space N (X ,Y ) becomes a Banach space (sic!).

Lemma 5.31. Every nuclear operator is compact, that is, in other words,
N (X ,Y ) ⊆ K (X ,Y ). Moreover, the embedding N (X ,Y ) → K (X ,Y ), T 7→ T ,
is continuous.

Proof. Let T ∈ N (X ,Y ). By definition, there exist sequences (x′k)k in X ′ and (yk)
in Y such that ∑k ∥x′k∥∥yk∥< ∞, and

T = ∑
k

x′k ⊗ yk = lim
K→∞ ∑

k≤K
x′k ⊗ yk,

the limit being taken with respect to the norm in L (X ,Y ). In particular, T is limit
in L (X ,Y ) of the finite rank operators ∑k≤K x′k ⊗ yk, and hence T is compact by
Lemma 5.18.

Moreover,

∥T∥= ∥∑
k

x′k ⊗ yk∥ ≤ ∑
k
∥x′k ⊗ yk∥= ∑

k
∥x′k∥∥yk∥
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for every representation of T . Taking the infimum over all representations of T , we
obtain ∥T∥ ≤ ∥T∥N , so that the embedding N (X ,Y )⊆ K (X ,Y ) is continuous.

Exercise 5.32 (Multiplication operators in sequence spaces) Let X = lp (1 ≤
p < ∞) or let X = c0. Let m ∈ l∞ and define the associated multiplication opera-
tor M ∈ L (X) as in Exercise 5.23:

Mx = M(xn) = (mnxn), x ∈ X .

Show that M is nuclear if and only if m ∈ ℓ1.

5.4 * The mean ergodic theorem

A bounded, linear operator T on a Banach space X is called powerbounded if
supn≥0 ∥T n∥ < ∞. Clearly, the spectral radius of a powerbounded linear operator is
less than or equal to 1, which implies that its spectrum is contained in the closed unit
disk D̄ := {λ ∈ C : |λ | ≤ 1}. Here, we are particularly interested in the asymptotic
behaviour of orbits of powers of T , or, in other words, in the asymptotic behaviour
of the discrete, linear dynamical system (T n).

Lemma 5.33. Let T ∈ L (X) be a powerbounded operator. Then:

a) For every x ∈ ker(I −T ) and every n ∈ N one has T nx = x.

b) For every x ∈ ran(I −T ) one has

lim
N→∞

1
N

N−1

∑
n=0

T nx = 0,

that is, the orbit (T nx) converges in the Cesaro mean to 0.

c) ker(I −T )∩ ran(I −T ) = {0}.

Proof. (a) If x ∈ ker(I−T ), then T x = x. An iteration gives T nx = x for every n ∈N.
(b) First let x ∈ ran(I −T ). Then x = y−Ty for some y ∈ X . Hence,

1
N

N−1

∑
n=0

T nx =
1
N

N−1

∑
n=0

T n(y−Ty)

=
1
N

N−1

∑
n=0

(T ny−T n+1y)

=
1
N
(y−T Ny)

→ 0 as N → ∞,

due to the assumption that T is powerbounded. The assumption that T is power-
bounded also implies that the Cesaro means 1

N ∑N−1
n=0 T n are uniformly bounded. A
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simple 3ε-argument implies that

lim
N→∞

1
N

N−1

∑
n=0

T nx = 0

for every x ∈ ran(I −T ).
(c) If x ∈ ker(I −T )∩ ran(I −T ), then, by part (a),

x =
1
N

N−1

∑
n=0

T nx for every N ∈ N.

By part (b), the right-hand side of this equality converges to 0 as N → ∞. Hence
x = 0.

Theorem 5.34 (Mean ergodic theorem). Let T ∈ L (X) be a powerbounded op-
erator. Then, for every x ∈ X, the following assertions are equivalent:

(i) x ∈ ker(I −T )⊕ ran(I −T ), that is, x = x0 + x1 for some x0 ∈ ker(I −T ) and
some x1 ∈ ran(I −T ).

(ii) The limit limN→∞
1
N ∑N−1

n=0 T nx exists in X.

(iii) The limit limN→∞
1
N ∑N−1

n=0 T nx exists weakly in X.

(iv) The sequence ( 1
N ∑N−1

n=0 T nx) of Cesaro means has a weakly convergent subse-
quence.

If one of the equivalent conditions (i)–(iv) holds true, then

lim
N→∞

1
N

N−1

∑
n=0

T nx = x0.

We say that a sequence (xn) in a Banach space X converges in Cesaro mean to
some element x ∈ X if

lim
N→∞

1
N

N−1

∑
n=0

xn = x.

One can prove (exercise!) that if a sequence (xn) converges in the usual sense to
some element x ∈ X , then it also converges in the Cesaro mean to the same ele-
ment. However, the converse is not true: the sequence ((−1)n) does obviously not
converge in R, but

lim
N→∞

1
N

N−1

∑
n=0

(−1)n = lim
N→∞

1
N

1
2
(1+(−1)N+1) = 0,

that is, this sequence converges in the Cesaro mean to 0. We also say that the Cesaro
average of this sequence is 0.

If one of the equivalent conditions (i)–(iv) in the Mean Ergodic Theorem above
holds true, then the final conclusion is that the sequence (T nx) of iterates of T ap-



5.4 * The mean ergodic theorem 91

plied to x converges in Cesaro mean to x0. Note that the sequence (T nx) need not
converge in the usual sense.

Proof (of Theorem 5.34). The implication (i)⇒(ii) follows from Lemma 5.33, while
the implications (ii)⇒(iii) and (iii)⇒(iv) are trivial. So let us prove the remaining
implication (iv)⇒(i). Assume that the sequence ( 1

N ∑N−1
n=0 T nx) admits a weak accu-

mulation point. Then there exists x0 ∈ X and an increasing sequence (Nk) in N such
that

w− lim
k→∞

1
Nk

Nk−1

∑
n=0

T nx = x0.

Since every bounded, linear operator is also weak-weak continuous, this implies

(I −T )x0 = w− lim
k→∞

1
Nk

Nk−1

∑
n=0

T n(I −T )x

= w− lim
k→∞

1
Nk

Nk−1

∑
n=0

(T nx−T n+1x)

= w− lim
k→∞

1
Nk

(x−T Nk x)

= 0,

so that x0 ∈ ker(I −T ). On the other hand, for every k one has

x− 1
Nk

Nk−1

∑
n=0

T nx =
1

Nk

Nk−1

∑
n=0

(x−T nx)

=
1

Nk

Nk−1

∑
0

n−1

∑
j=0

T j(I −T )x

= (I −T )
[ 1

Nk

Nk−1

∑
0

n−1

∑
j=0

T jx
]
∈ ran(I −T ).

Hence,

x− x0 = x−weak− lim
k→∞

1
Nk

Nk−1

∑
n=0

T nx

= weak− lim
k→∞

[
x− 1

Nk

Nk−1

∑
n=0

T nx
]

=: x1 ∈ ran(I −T ),

and we have proved that (i) holds.

Corollary 5.35 (Mean ergodic theorem in reflexive spaces). Let T ∈ L (X) be a
powerbounded operator on a reflexive Banach space X. Then
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X = ker(I −T )⊕ ran(I −T )

and if P ∈ L (X) denotes the projection onto ker(I −T ) along ran(I −T ), then, for
every x ∈ X

lim
N→∞

1
N

N−1

∑
n=0

T nx = Px,

that is, the iterates of T converge strongly, and in the Cesaro mean, to the projection
P. If 1 is not an eigenvalue of T , then, for every x ∈ X,

lim
N→∞

1
N

N−1

∑
n=0

T nx = 0.

Proof. If suffices to note that for every x ∈ X the sequence ( 1
N ∑N−1

n=0 T nx) of Cesaro
means is bounded in X . Since X is assumed to be reflexive, this sequence thus admits
a weakly convergent subsequence by Theorem 3.28. The claims thus follow from
the Mean Ergodic Theorem (Theorem 5.34).

Since Hilbert spaces are in particular reflexive spaces, we immediately obtain the
following corollary, due to von Neumann.

Corollary 5.36 (von Neumann mean ergodic theorem). Let T be a contraction
on a Hilbert space H. Then, for every f ∈ H, the Cesaro limit

lim
N→∞

1
N

N−1

∑
n=0

T n f =: P f

exists in H, P being the projection onto ker(I −T ) along ran(I −T ). If 1 is not an
eigenvalue of T , then, for every f ∈ H,

lim
N→∞

1
N

N−1

∑
n=0

T n f = 0.

Convergence in the Abel mean of powerbounded operators

Let T ∈ L (X) be a powerbounded operator, and let M ≥ 0 be a constant such that ∥T n∥ ≤ M for
every n ≥ 0. From the Neumann series (see also the short proof of Lemma 5.7 and the Remark
5.8), we obtain for every λ ∈K with |λ |> 1 the estimate

∥R(λ ,T )∥= ∥ ∑
n≥0

T n

λ n+1 ∥

≤ M ∑
n≥0

1
|λ |n+1

= M
1

|λ |−1
.
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In particular,
∥(λ −1)R(λ ,T )∥ ≤ M for every real λ > 1. (5.3)

Lemma 5.37. Let T ∈ L (X) be a powerbounded operator. Then:

a) For every x ∈ ker(I −T ) and every real λ > 1 one has (λ −1)R(λ ,T )x = x.

b) For every x ∈ ran(I −T ) one has limλ→1+(λ −1)R(λ ,A)x = 0.

c) ker(I −T )∩ ran(I −T ) = {0}.

Proof. (a) Let x ∈ ker(I −T ). Then

0 = x−T x =−(λ −1)x+(λ −T )x for every real λ > 1.

Multiplying this equality with R(λ ,T ) yields the claim.
(b) Assume first that x ∈ ran(I −T ), that is, x = y−Ty for some y ∈ X . Then

lim
λ→1+

(λ −1)R(λ ,T )x = lim
λ→1+

(λ −1)R(λ ,T )((1−λ )y+λy−Ty)

= lim
λ→1+

[
(λ −1)2R(λ ,T )y+(λ −1)y

]
= 0.

The full claim follows from this equality, from the estimate (5.3), and from a simple density argu-
ment (compare with Lemma 2.48).

(c) Let x ∈ ker(I −T )∩ ran(I −T ). Then the previous two points yield

x = (λ −1)R(λ ,T )x for every real λ > 1,

and
lim

λ→1+
(λ −1)R(λ ,T )x = 0,

which is only possible if x = 0.

Theorem 5.38 (Mean ergodic theorem). Let T ∈ L (X) be a powerbounded operator. Then, for
every x ∈ X, the following assertions are equivalent:

(i) x ∈ ker(I − T )⊕ ran(I −T ), that is, x = x0 + x1 for some x0 ∈ ker(I − T ) and some x1 ∈
ran(I −T ).

(ii) The limit limλ→1+(λ −1)R(λ ,A)x exists strongly (in X).

(iii) The limit limλ→1+(λ −1)R(λ ,A)x exists weakly.

(iv) The net ((λ − 1)R(λ ,A)x)λ↘1 admits a weakly convergent subsequence in the sense that
there exists a sequence (λn) in R, λn → 1+, such that ((λn − 1)R(λn,A)x)n converges
weakly.

(v) The limit limN→∞
1
N ∑N−1

n=0 T nx exists strongly.

If one of the equivalent conditions (i)–(v) holds true, then

lim
λ→1+

(λ −1)R(λ ,A)x = lim
n→∞

1
n

n−1

∑
0

T kx = x0.

We say that a sequence (xn) in a Banach space X converges in Abel mean to some element
x ∈ X if the power series ∑∞

n=0 xnλ n converges (absolutely) for every λ ∈ D, and if

lim
λ→1−

(1−λ )
∞

∑
n=0

xnλ n = x.
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One can prove that if a sequence (xn) converges in Cesaro mean to some element x ∈ X , then it also
converges in the Abel mean to the same element. The converse, however, is not true. In general,
we have thus the implications

(xn) converges in the usual sense to x ∈ X

⇓
(xn) converges in the Cesaro mean to x ∈ X

⇓
(xn) converges in the Abel mean to x ∈ X .

The second Mean Ergodic Theorem (Theorem 5.38) says that the algebraic condition (i) is equiva-
lent to convergence in the Abel mean of the sequence (T nx) of iterates of T applied to x (condition
(iv)), which in turn is equivalent to convergence in the Cesaro mean (condition (v)). Hence, in this
special situation, convergence in the Abel mean and in the Cesaro mean are equivalent.

Proof (of Theorem 5.38). The implication (i)⇒(ii) follows from the preceding Lemma 5.33, as-
sertions (a) and (b). The lemma also yields the equality limλ→1+(λ −1)R(λ ,A)x = x0.
The implications (ii)⇒(iii) and (iii)⇒(iv) are trivial.
(iv)⇒(i) We assume that there exists x0 ∈ X and a sequence (λn) in R, λn → 1+, such that
weak− limn(λn −1)R(λn,A)x = x0.Then, for every x′ ∈ X ′,

⟨x′,x0⟩= lim
n
⟨x′,(λn −1)R(λn,T )x⟩

= lim
n
⟨x′,(1−λn +λn −T +T )(λn −1)R(λn,T )x⟩

= lim
n
⟨x′,−(λn −1)2R(λn,T )x+(λn −1)x+T (λn −1)R(λn,T )x⟩

= lim
n
⟨x′,T (λn −1)R(λn,T )x⟩

= ⟨x′,T x0⟩.

Hence x0 = T x0, or, in other words, x0 ∈ ker(I − T ). It remains to show that x1 := x − x0 ∈
ran(I −T ). Note that for every n one has

x− (λn −1)R(λn,T )x = x− (λn −T +T −1)R(λn,T )x

= (I −T )R(λn,T )x ∈ ran(I −T ).

Hence,

x1 = x− x0

= x−weak− lim
n→∞

(λn −1)R(λn,T )x

= weak− lim
n→∞

[x− (λn −1)R(λn,T )x] ∈ ran(I −T ),

which proves that (i) holds.
The equivalence (i)⇔(v) follows from the Mean Ergodic Theorem 5.34.

The mean ergodic theorem for general resolvents

The preceding situation can still be generalized. We now consider a general closed, linear operator
(A,domA) on a Banach space X , and we study the relation between the behaviour of the resolvent
of A near the boundary of the spectrum and some algebraic properties of A.
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Lemma 5.39. Let (A,domA) be a closed, linear operator on a Banach space X. Let λ0 ∈K be such
that there exists a sequence (λn) in ρ(A) satisfying limn λn = λ0 and ∥(λn −λ0)R(λn,A)∥ ≤ M for
every n and some constant M ≥ 0. Then:

a) For every x ∈ ker(λ0 −A) one has (λn −λ0)R(λn,A)x = x for every n.

b) For every x ∈ ran(λ0 −A) one has limn(λn −λ0)R(λn,A)x = 0.

c) ker(λ0 −A)∩ ran(λ0 −A) = {0}.

Proof. (a) Let x ∈ ker(λ0 −A). Then x ∈ domA and

0 = (λ0 −A)x = (λ0 −λn)x+(λn −A)x for every n.

Multiplying this equality with R(λn,A) yields the claim.
(b) Assume first that x ∈ ran(λ0 −A), that is, x = (λ0 −A)y for some y ∈ domA. Then

lim
n
(λn −λ0)R(λn,A)x = lim

n
(λn −λ0)R(λn,A)(λ0 −λn +λn −A)y

= lim
n

[
(λn −λ0)

2R(λn,A)y+(λn −λ0)y
]

= 0.

The full claim follows from this equality, from the assumption that the sequence ((λn −
λ0)R(λn,A))n is bounded in L (X), and from a simple density argument (compare with Lemma
2.48).

(c) Let x ∈ ker(λ0 −A)∩ ran(λ0 −A). Then the previous two points give

x = (λn −λ0)R(λn,A)x → 0 as n → ∞,

that is, x = 0.

Theorem 5.40 (Mean ergodic theorem for resolvents). Let (A,domA) be a closed, linear oper-
ator on a Banach space X. Let λ0 ∈K be such that there exists a sequence (λn) in ρ(A) satisfying
limn λn = λ0 and ∥(λn −λ0)R(λn,A)∥ ≤ M for every n and some constant M ≥ 0. Then, for every
x ∈ X, the following assertions are equivalent:

(i) x ∈ ker(λn − A)⊕ ran(λ0 −A), that is, x = x0 + x1 for some x0 ∈ ker(λ0 − A) and some
x1 ∈ ran(λ0 −A).

(ii) The sequence ((λn −λ0)R(λn,A)x)n converges strongly (in X).

(iii) The sequence ((λn −λ0)R(λn,A)x)n converges weakly.

(iv) The sequence ((λn −λ0)R(λn,A)x)n admits a weakly convergent subsequence.

If one of the equivalent conditions (i)–(iv) holds true, then

lim
n
(λn −λ0)R(λn,A)x = x0.

Proof. The implication (i)⇒(ii) follows from the preceding Lemma 5.39, assertions (a) and (b). It
also yields the equality limn(λn −λ0)R(λn,A)x = x0.
The implications (ii)⇒(iii) and (iii)⇒(iv) are trivial.
So let us prove the implication (iv)⇒(i). We assume that ((λn −λ0)R(λn,A)x)n admits a weakly
convergent subsequence. After passing to a subsequence, if necessary, we may in fact assume that
the sequence ((λn −λ0)R(λn,A)x)n itself converges weakly, say, to some element x0 ∈ X . Then,
for every x′ ∈ X ′,
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⟨x′,λ0x0⟩= lim
n
⟨x′,λ0(λn −λ0)R(λn,A)x⟩

= lim
n
⟨x′,(λ0 −λn +λn −A+A)(λn −λ0)R(λn,A)x⟩

= lim
n
⟨x′,(λ0 −λn)

2R(λn,A)x+(λ0 −λn)x+A(λn −λ0)R(λn,A)x⟩

= lim
n
⟨x′,A(λn −λ0)R(λn,A)x⟩

= ⟨x′,Ax0⟩

Since A is closed, this equality implies x0 ∈ domA and λ0x = Ax. In other word, x0 ∈ ker(λ0 −A).
It remains to show that x1 := x−x0 ∈ ran(λ0 −A). Note that for every n one has R(λn,A)x ∈ domA
and

x− (λn −1)R(λn,A)x = x− (λn −A+A−1)R(λn,A)x

= (I −A)R(λn,A)x ∈ ran(I −A).

Hence,

x1 = x− x0

= x−weak− lim
n→∞

(λn −1)R(λn,A)x

= weak− lim
n→∞

[x− (λn −1)R(λn,A)x] ∈ ran(I −A),

which proves that (i) holds.

Corollary 5.41 (Mean ergodic theorem for resolvents in reflexive spaces). In addition to the
assumption of the preceding Theorem 5.40, assume that the underlying Banach space X is reflexive.
Then X = ker(λ0 −A)⊕ ran(λ0 −A) and the for every x ∈ X the limit

lim
n
(λn −λ0)R(λn,A)x =: x0

exists, and the limit x0 coincides with the projection of x onto ker(λ0 −A) along ran(λ0 −A).

Proof. By assumption, for every x ∈ X , the sequence ((λn −λ0)R(λn,A)x)n is bounded. Since X
is reflexive and by Theorem 3.28, for every x ∈ X the sequence ((λn − λ0)R(λn,A)x)n admits a
weakly convergent subsequence. The claim follows from Theorem 5.40.



Chapter 6
Banach algebras

6.1 Banach algebras and the theorem of Gelfand

A normed space A is called a normed algebra if it is an algebra, and if

∥ab∥ ≤ ∥a∥∥b∥ for every a, b ∈ A.

A complete, normed algebra is also called Banach algebra.

Examples 6.1. 1. Let X be a normed space. Then the space A = L (X) of all
bounded, linear operators on X is a normed algebra for the usual multiplication
which is the composition of operators (Lemma 1.26). It is a Banach algebra as
soon as X is a Banach space (Lemma 1.27).

2. Let X be a Banach space. Then the space A = K (X) of all compact, linear op-
erators on X is a Banach algebra. Actually, K (X) is a closed, two-sided ideal in
L (X).

3. Let K be a compact space. Then A = C(K) is a Banach algebra for the usual
(pointwise) multiplication of functions. Similarly, if Ω is a locally compact
space, then the space of continuous functions Ω → K vanishing at infinity,
C0(Ω), is a Banach algebra. Finally, if M is an arbitrary topological space, then
the space of continuous, bounded functions M → K, Cb(M), is a Banach alge-
bra. All spaces of continuous functions in this example are equipped with the
supremum norm.

4. Let Ω be a measure space. Then A = L∞(Ω) is a Banach algebra for the usual
(pointwise) multiplication.

5. Let A = L1(RN) be equipped with the convolution product

f ∗g(x) :=
∫
RN

f (x− y)g(y) dy ( f , g ∈ L1(RN), x ∈ RN).

Then A is a Banach algebra.

Proof. Let f , g ∈ L1(RN). By Tonelli’s theorem,

97
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∫
RN

| f (x− y)g(y)| dy dx =
∫
RN

∫
RN

| f (x− y)g(y)| dx dy

=
∫
RN

| f (x)| dx
∫
RN

|g(y)| dy

= ∥ f∥L1 ∥g∥L1 < ∞.

This inequality first implies that f ∗ g(x) exists for almost every x ∈ RN , and
second that ∫

RN
| f ∗g(x)| dx ≤ ∥ f∥L1 ∥g∥L1 < ∞,

that is, f ∗ g ∈ L1(RN). In particular, the convolution product is well-defined.
However, the above inequality also implies a particular case of Young’s inequal-
ity

∥ f ∗g∥L1 ≤ ∥ f∥L1 ∥g∥L1 ,

which implies that L1(RN) equipped with the convolution product is a Banach
algebra.

6. Let A = L1(R+) be equipped with the convolution product

f ∗g(t) :=
∫ t

0
f (t − s)g(s) ds ( f , g ∈ L1(R+), t ∈ R+).

Then A is a Banach algebra.
7. Let A be a Banach algebra, and let I ⊆ A be a closed, two-sided ideal. Then the

factor space A/I is a Banach algebra for the multiplication

(a+ I) · (b+ I) = ab+ I (a, b ∈ A);

note that this product is well-defined since I is a two-sided ideal.

A Banach algebra A is unital if it admits a neutral element for the multiplication,
usually denoted by 1 or by e.

Remark 6.2 (Adjunction of a unit). Let A be a Banach algebra without unit. Con-
sider the product space

Ā := A×C,

equipped with the sum norm. Then Ā is a unital Banach algebra for the multiplica-
tion given by

(a,λ )(b,µ) := (ab+µa+λb,λ µ) ((a,λ ), (b,µ) ∈ Ā).

The unit element is the element (0,1).

Given a unital Banach algebra A, we say that an element a ∈ A is invertible
(respectively, left-invertible, right-invertible), if there exists an element b∈ A such
that

ab = ba = 1 (respectively, ba = 1 or ab = 1).
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If a is invertible, then the element b ∈ A satisfying ab = ba = 1 is uniquely deter-
mined. We write b =: a−1, and we call a−1 the inverse of a. We define the resolvent
set of an element a ∈ A by

ρ(a) := {λ ∈K : λ −a is invertible},

and the spectrum by
σ(a) :=K\ρ(a).

For every λ ∈ ρ(a) we write R(λ ,a) := (λ − a)−1, and we call R(λ ,a) the
resolvent of a at λ . The function R(·,a) is simply called the resolvent of a.

Several of the lemmas on the structure of the resolvent set and the spectrum of a
bounded, linear operator on a Banach space, which are stated in the preceding chap-
ter, remain true in the general context of Banach algebras and elements in Banach
algebras. We start with the resolvent identity.

Lemma 6.3 (Resolvent identity). Let A be a unital Banach algebra, and a ∈ A.
Then, for every λ , µ ∈ ρ(a) one has

R(λ ,a)−R(µ,a) = (µ −λ )R(µ,a)R(λ ,a).

Proof. For every λ , µ ∈ ρ(a)

µ −λ = (µ −a)− (λ −a).

Multiplying both sides by R(µ ,a) and R(λ ,a), one obtains the claim.

Lemma 6.4 (Neumann series). Let A be a unital Banach algebra, and let a ∈ A be
such that ∥a∥< 1. Then 1−a is invertible, and

(1−a)−1 =
∞

∑
n=0

an,

the series being absolutely convergent in A.

Lemma 6.5 (The resolvent is analytic). Let A be a unital Banach algebra. For
every a ∈ A the resolvent set ρ(a) is open in K and the resolvent ρ(a) → A, λ 7→
R(λ ,a) is analytic.

Proof. Let λ ∈ ρ(a) and µ ∈K. Then

µ −a = µ −λ +λ −a = ((µ −λ )R(λ ,a)+ I)(λ −a),

and the right-hand side is invertible if |µ−λ |< 1/∥R(λ ,a)∥ by the Neumann series.
Hence, ρ(a) is open in K. The Neumann series (Lemma 6.4) precisely yields

R(µ ,a) =
∞

∑
n=0

(−1)nR(λ ,a)n+1(µ −λ )n,
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that is, the resolvent λ 7→ R(λ ,a) can be locally developped into a power series. In
other words, the resolvent is analytic.

Lemma 6.6 (Growth of the resolvent near the spectrum). For every λ ∈ ρ(a) one
has

∥R(λ ,a)∥ ≥ dist(λ ,σ(a))−1.

Proof. As we have seen in the proof of the preceding Lemma 6.5, for λ ∈ ρ(a) the
condition

|µ −λ |∥R(λ ,a)∥< 1

implies µ ∈ ρ(a). The claim follows.

Lemma 6.7. For every a ∈ A one has

{λ ∈K : |λ |> ∥a∥} ⊆ ρ(a),

and

R(λ ,a) =
∞

∑
n=0

an

λ n+1 (|λ |> ∥a∥).

Proof. Use the identity
λ −a = λ (I − a

λ
)

and the Neumann series.

Remark 6.8. Similarly as in Remark 5.8, we can remark here that λ ∈ ρ(a) as soon
as

|λ |> liminf
n→∞

∥an∥
1
n =: r(a).

As in the case of bounded, linear operators, the number r(a)≥ 0 is called the spec-
tral radius of a.

Lemma 6.9. Let A ̸= {0} be a complex, unital Banach algebra. Then for every a∈A
the spectrum σ(a) is nonempty and compact, and

r(a) = sup{|λ | : λ ∈ σ(a)}.

Proof. The compactness of σ(a) follows Lemma 6.5 and 6.7. If σ(a) was empty,
then, by Lemma 6.5, the resolvent λ 7→ R(λ ,a) is an entire function. On the other
hand, by Lemma 6.7,

lim
|λ |→∞

∥R(λ ,a)∥= 0.

By Liouville’s theorem, this implies R(λ ,a)≡ 0, which is only possible if A = {0}
is the trivial algebra.

Theorem 6.10 (Gelfand-Mazur). Let A ̸= {0} be a complex, unital Banach alge-
bra such that every element a ̸= 0 is invertible (that is, A is a division algebra).
Then A = C.
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Proof. Let a ∈ A. Then, by Lemma 6.9, there exists λ ∈ C such that λ − a is not
invertible. By assumption, this implies λ − a = 0, or, in other words, a = λ is a
scalar multiple of the unit element.

A (two-sided) ideal I in a Banach algebra is called maximal ideal if I ̸= A and if
there does not exist an other (two-sided) ideal J in A such that I ⊊ J ⊊ A.

Lemma 6.11. Every ideal in a unital Banach algebra is contained in a maximal
ideal.

Proof. Let I be an ideal in a unital Banach algebra A with unit denoted by 1. Define
the set M := {J : J is an ideal in A and I ⊆ J ⊊ A}, and equip it with the order
relation ≤ given by inclusion: J1 ≤ J2 ⇔ J1 ⊆ J2. Let J ⊆ M be a totally ordered
subset and define J̄ :=

∪
J∈J J. Then clearly J̄ is an ideal in A which contains I.

On the other hand, J̄ ̸= A, since all the ideals J are strictly contained in A, and
since therefore 1 ̸∈ J for every J ∈ J . Hence, J̄ ∈ M . Clearly, J̄ is a supremum
for J , and we have proved that every totally ordered set admits a supremum. By
the Lemma of Zorn, M admits a maximal element which, by definition, must be a
maximal ideal of A.

Lemma 6.12. Every maximal ideal in a Banach algebra is closed.

Proof. Let A be a Banach algebra, and let I be a maximal ideal. Assume first that
A is unital. By the Neumann series, the set G(A) of all invertible elements in A is
open, and since 1 ∈ G(A), this set is also nonempty. Clearly, I ∩G(A) = /0, for if I
contained an invertible element, then 1 ∈ I, which is only possible if I = A. By the
preceding two arguments, I ⊆ Ī ⊆ A\G(A) ̸= A, and clearly, the closure of I is also
an ideal. Since I is a maximal ideal, we obtain I = Ī, that is, I is closed.

Now if A is not unital, then we consider the unital algebra Ā from Remark 6.2,
which results from A by adjunction of a unit element. Then I is also an ideal in Ā,
which is contained, by Lemma 6.11, in a maximal ideal J. By the first part of this
proof, J is closed. As a consequence, I = J∩A is closed.

Let A be a Banach algebra. A character is a nonzero algebra homomorphism
A →K.

Lemma 6.13. Every character on a Banach algebra is automatically continuous.

Proof. Let A be a Banach algebra, and let χ : A→K be a character. Assume first that
A is unital. Since χ is an algebra homomorphism, then ker χ is an ideal. Consider
the associated, commutative diagram

A
χ−−−−→ Kyqχ

xiχ

A/ker χ
bχ−−−−→ K
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where qχ , bχ and iχ are the canonical surjection (quotient map) onto A/ker χ , the
canonical bijection onto ran χ (here, K), and the canonical injection from ran χ into
K (here, the identity map). The kernel ker χ having codimension 1 (bχ being bi-
jective), it must be a maximal ideal. By Lemma 6.12, ker χ is closed, and hence
the canonical surjection qχ is continuous onto the normed quotient space A/ker χ .
Since the other two homomorphisms bχ and iχ are homomorphisms between finite-
dimensional (in fact: one-dimensional) normed spaces, they are continuous, too.
Hence, χ is continuous.

If A is not a unital Banach algebra, then we consider the unital algebra Ā from
Remark 6.2, which results from A by adjunction of a unit element. We then define
the linear functional

χ̄ : Ā →K,

(a,λ ) 7→ χ(a)+λ .

For every (a,λ ), (b,µ) ∈ Ā we have, since χ is an algebra homomorphism,

χ̄((a,λ )(b,µ)) = χ̄(ab+λb+µa,λ µ)
= χ(ab+λb+µa)+λ µ
= χ(a)χ(b)+λ χ(b)+µχ(a)+λ µ
= (χ(a)+λ )(χ(b)+µ)
= χ̄(a,λ ) χ̄(b,µ),

so that χ̄ is a character (= algebra homomorphism). By the first part of the proof, χ̄
is continuous, which implies that χ is continuous, too.

Let A be a Banach algebra, and let A′ be its dual space. The set of all characters
is denoted by σ(A), and it is called the spectrum of the algebra A, or the Gelfand
space of the algebra A. By the preceding lemma, the Gelfand space is a subset of A′.
The following lemma says that the Gelfand space is in fact a subset of the unit ball
of A′.

Lemma 6.14. Let A be a Banach algebra. Then, for every character χ ∈ σ(A) one
has ∥χ∥A′ ≤ 1, with equality if A is a unital Banach algebra and if ∥1∥= 1.

Proof. Let χ ∈ σ(A), and let a ∈ A be such that ∥a∥ ≤ 1. Then, for every n ∈ N,

|⟨χ,a⟩|n = |⟨χ,a⟩n|
= |⟨χ,an⟩|
≤ ∥χ∥∥an∥
≤ ∥χ∥∥a∥n

≤ ∥χ∥.

Since the right-hand side is finite, we necessarily obtain |⟨χ,a⟩| ≤ 1, and hence
∥χ∥ ≤ 1.
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If A is unital, and if ∥1∥ = 1, then ∥χ∥ ≥ |⟨χ,1⟩| = 1, which together with the
preceding inequality implies ∥χ∥= 1.

Remark 6.15. If A is a unital Banach algebra, then one does not necessarily have
∥1∥= 1. However, there always exists an equivalent Banach algebra norm ∥ · ∥1 for
which one has ∥1∥1 = 1. Such a norm is for example given by

∥a∥1 := sup
∥b∥≤1

∥ab∥.

By the preceding lemma, the Gelfand space of any Banach algebra A is a sub-
set of the closed unit ball in A′. The closed unit ball in A′, however, when being
equipped with the topology which is induced by the weak∗ topology on A′, is, by
the Theorem of Banach-Alaoglu, a compact space. In the following, we shall always
consider the Gelfand space as a topological space, equipped with the topology which
is induced by the weak∗ topology on A′, too. The following theorem, in combina-
tion with Lemma 6.11, shows in particular that the Gelfand space of a nontrivial,
complex, commutative, unital Banach algebra is nonempty.

Theorem 6.16 (Gelfand-Mazur). In a complex, commutative Banach algebra,
there is a one-to-one correspondence between the set of maximal ideals and the
Gelfand space. In fact, every maximal ideal is the kernel of some unique character,
and, conversely, the kernel of every character is a closed, maximal ideal.

In particular, the Gelfand space of a nontrivial, complex, commutative, unital
Banach algebra is nonempty.

Proof. Let I be a maximal ideal of a complex, commutative Banach algebra A. As-
sume first that A is unital. Since A is commutative, the left, right and two-sided
ideals all coincide, and hence there is no other left or right ideal strictly included
between I and A. As a consequence, the quotient algebra A/I is a complex, commu-
tative, unital Banach algebra without any left or right ideals, except the trivial ones.
However, if B is a complex, commutative, unital Banach algebra with any left or
right ideal, except the trivial ones, then for every a ∈ B, the ideal aB generated by a
must be either equal to {0} or B. Since B is unital, aB contains a, and thus aB = B
for every nonzero B. But then every nonzero element is invertible which implies, by
the first theorem of Gelfand-Mazur (Theorem 6.10), that B is isomorphic to C. As a
consequence, A/I is isomorphic to C. Now, the quotient map χ : A → A/I = C is a
character, and I = ker χ .

If A is not unital, then we consider the unital Banach algebra Ā from Remark
6.2, which we obtain from A by adjunction of a unit. By Lemma 6.11, there exists a
maximal ideal J ⊆ Ā such that J ⊇ I×{0}. By the preceding argument, there exists
a character χ̄ on Ā such that ker χ̄ = J. The restriction of χ̄ to A×{0} = A is a
character on A such that ker χ = I.

Conversely, if χ ∈ σ(A) is a character, then ker χ is an ideal of codimension 1,
hence a maximal ideal. Moreover, since χ is continuous by Lemma 6.13, ker χ is
closed.



104 6 Banach algebras

The existence of a character in a complex, commutative, unital Banach algebra
now follows from this first part of the proof and the fact that there exists a maximal
ideal (Lemma 6.11) and that every maximal ideal is closed (Lemma 6.12). Hence,
σ(A) is nonempty.

Lemma 6.17. Let A be a Banach algebra. The set σ(A)∪ {0} is a closed subset
of the closed unit ball B̄A′(0,1). If A is a unital Banach algebra, then the Gelfand
space σ(A) itself is a closed subset of B̄A′(0,1). In particular, if A is a unital Banach
algebra, then the Gelfand space σ(A) is a compact, nonempty space. In general, the
Gelfand space is a locally compact space (which may, however, be empty).

Proof. Let (χα)α be a net in σ(A)∪ {0}, which converges in B̄A′(0,1) to some
element a′. Then, for every a, b ∈ A

⟨a′,ab⟩= lim
α
⟨χα ,ab⟩

= lim
α
⟨χα ,a⟩⟨χα ,b⟩

= lim
α
⟨a′,a⟩⟨a′,b⟩.

In other words, a′ is a multiplicative functional, which means either a′ ∈ σ(A), or
a′ = 0. As a consequence, σ(A)∪{0} is closed in B̄A′(0,1).

If, in addition, A is a unital Banach algebra, and if (χα)α is a net in σ(A) which
converges to some a′ ∈ B̄A′(0,1), then, by the preceding argument, a′ ∈ σ(A), or
a′ = 0. However,

⟨a′,1⟩= lim
α
⟨χα ,1⟩= 1,

which actually excludes the possibility a′ = 0. Hence, σ(A) is closed in B̄A′(0,1).

Example 6.18 (Gelfand space of C(K)). We consider the Banach algebra C(K),
where K is a compact Hausdorff space. We claim that

σ(C(K)) is homeomorphic to K,

or, with a slight abuse of language, the Gelfand space of C(K) is equal to K. In fact,
for every x ∈ K the Dirac functional δx : C(K)→K, f 7→ f (x) is a character, so that
K can be naturally identified with a subset of σ(C(K)). On the other hand, every
character in σ(C(K)) must be a Dirac functional. In fact, let us argue from the point
of view of maximal ideals. If I is a maximal ideal, then there must be some x ∈ K
such that f (x) = 0 for every f ∈ I. In fact, if this was not true, then there exists
f ∈ I which never vanishes on K (sic!). By continuity of f and compactness of K,
| f | is uniformly bounded away from 0, and f−1 exists in C(K). Since I is an ideal,
we obtain 1 = f f−1 ∈ I, and therefore I =C(K), a contradiction to the assumption
that I is a maximal ideal. On the other hand, again since I is a maximal ideal, there
exists exactly one x ∈ K such that f (x) = 0 for every f ∈ I. Hence, I = kerδx for
the corresponding Dirac functional. Thus, the mapping K 7→ σ(C(K)), x 7→ δx is a
bijection, which is clearly also continuous thanks to continuity of elements in C(K)
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and the definition of the weak∗ topology. By compactness of K and σ(C(K)), this
bijection is a homeomorphism.

Examples 6.19 (Gelfand space of L1(RN) or L1(R+)).

1. We consider the Banach algebra L1(RN), equipped with the convolution product
∗, as in Example 6.1.5. The dual space of L1(RN) can be identified with L∞(RN),
the duality being given by

⟨ f ,g⟩L∞,L1 :=
∫
RN

f g.

Let χ ∈ L∞(RN) be a character. Then, by Lemma 6.14, ∥χ∥∞ ≤ 1, and by defini-
tion of character, for every f , g ∈ L1(RN),∫

RN
χ(x) f (x) dx

∫
RN

χ(y)g(y) dy = ⟨χ, f ⟩L∞,L1 ⟨χ,g⟩L∞,L1

= ⟨χ, f ∗g⟩L∞,L1

=
∫
RN

χ(x)
∫
RN

f (x− y)g(y) dy dx

=
∫
RN

∫
RN

χ(x+ y) f (x)g(y) dy dx.

It is not difficult to deduce from this equality, that every character χ satisfies the
functional equation

χ(x+ y) = χ(x)χ(y) for almost every x, y ∈ RN .

Since χ is measurable, bounded and nonzero, this functional equation implies
that there exists ξ ∈ RN such that

χ(x) = eiξ x for every x ∈ RN .

Thus, the Gelfand space of L1(RN) is given by

σ(L1(RN)) = {eiξ · : ξ ∈ RN}.

One can show that this space, equipped with the weak∗ topology, is homeomor-
phic to the space RN , equipped with the usual Euclidean topology.

2. Now we consider the Banach algebra L1(R+), equipped with the convolution
product, as in Example 6.1.6. As in the previous example, one shows that every
character χ ∈ L∞(R+) satisfies the functional equation

χ(t + s) = χ(t)χ(s) for almost every t, s ∈ R+.

This implies that there exists λ ∈ C with Reλ ≥ 0 such that

χ(t) = e−λ t for every t ∈ R+.
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Hence,
σ(L1(R+)) = {e−λ · : λ ∈ C, Reλ ≥ 0}.

One can show that this space is homeomorphic to the closed right half-plane
{λ ∈ C : Reλ ≥ 0}.

Let A be a Banach algebra with Gelfand space σ(A), and let a ∈ A. Then we
define the function

â : σ(A)∪{0}→K,

χ 7→ â(χ) := ⟨χ,a⟩,

and we note that this function is continuous and vanishing at infinity. In fact, if
(χα)α is a convergent net in σ(A)∪{0}, limα χα =: χ , then, by definition of the
weak∗ topology,

lim
α

â(χα) = lim
α
⟨χα ,a⟩= ⟨χ,a⟩= â(χ).

As a consequence, â ∈ C(σ(A)∪{0}). In the following, we consider the function
â only to be defined on the Gelfand space itself. If A is a unital Banach algebra,
then σ(A) is already compact by the preceding lemma, and â ∈ C(σ(A)). If A is a
non-unital Banach algebra, then the Gelfand space σ(A) is only locally compact,
and â ∈ C0(σ(A)), the space of continuous functions vanishing at infinity. Since
C(K) =C0(K) for every compact space K, we may always write â ∈C0(σ(A)).

Theorem 6.20 (Gelfand). Let A be a complex, commutative Banach algebra, and
let σ(A) be its Gelfand space (considered as a locally compact space for the weak∗

topology). Then the Gelfand transform

ˆ: A →C0(σ(A)),
a 7→ â,

where â(χ) := ⟨χ,a⟩ (χ ∈ σ(A)), is a bounded Banach algebra homomorphism.

Proof. We have already shown above that the Gelfand transform is well-defined. By
Lemma 6.14,

∥â∥C0(σ(A)) = sup
χ∈σ(A)

|â(χ)|

= sup
χ∈σ(A)

|⟨χ,a⟩|

≤ sup
χ∈σ(A)

∥χ∥∥a∥

≤ ∥a∥,

so that ˆ is actually a contraction. It is clear that ˆ is linear. Moreover, for every a,
b ∈ A and every χ ∈ σ(A) one has
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âb(χ) = ⟨χ,ab⟩
= ⟨χ,a⟩⟨χ,b⟩
= â(χ) b̂(χ),

that is, âb = â b̂. We have proved that ˆ is an algebra homomorphism.

Theorem 6.21. Let A be a complex, commutative, unital Banach algebra. Then, for
every a ∈ A,

σ(a) = {⟨χ,a⟩ : χ ∈ σ(A)}.

Proof. ”⊆” Let λ ∈ σ(a). Then λ − a is not invertible, which means that λ − a is
contained in some maximal ideal. Hence, there exists a character χ ∈ σ(A) such that
⟨χ,λ −a⟩= 0. However, ⟨χ,λ ⟩= λ ⟨χ,1⟩= λ , and hence λ ∈ {⟨χ,a⟩ : χ ∈ σ(A)}.
”⊇” Now assume that λ ∈ {⟨χ,a⟩ : χ ∈ σ(A)}. Then there exists χ ∈ σ(A) such that
0 = λ −⟨χ,a⟩= ⟨χ,λ −a⟩. In other words, λ −a is contained in the kernel of some
character χ , or, equivalently, in some maximal ideal. As a consequence, λ −a is not
invertible, that is, λ ∈ σ(a).

6.2 C∗-algebras and the theorem of Gelfand-Naimark

An involution on a (complex) Banach algebra A is a mapping ∗ : A → A, a 7→ a∗

such that

a) (a+b)∗ = a∗+b∗ and (λa)∗ = λ̄ a∗ for every a, b ∈ A, λ ∈ C,

b) (ab)∗ = b∗ a∗ for every a, b ∈ A,

c) a∗∗ = a for every a ∈ A.

If A is unital, and if e is the unit element, then automatically

e∗ = e.

Indeed, for every a ∈ A, by properties (2) and (3),

e∗ a = e∗ a∗∗

= (a∗e)∗

= a∗∗

= a,

and similarly, ae∗ = a. Hence, e∗ is a unit element, too. By uniqueness of the unit
element, e = e∗.

A Banach algebra with involution is called a Banach ∗-algebra. A Banach ∗-
algebra such that

∥aa∗∥= ∥a∥2 for every a ∈ A (6.1)
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is called a C∗-algebra. An example of a (commutative) C∗-algebra is the algebra
C(K) (K a compact space) with the natural involution f 7→ f̄ (pointwise complex
conjugation). The following theorem says that – up to isomorphism – this is the only
example of a commutative, unital C∗-algebra.

Theorem 6.22 (Gelfand-Naimark). Let A be a unital, commutative C∗-algebra.
Then the Gelfand transform ˆ : A → C(σ(A)) is an isometric ∗-isomorphism, that
is, it is an isometric isomorphism and

¯̂a = â∗ for every a ∈ A.

Proof. Let χ ∈ σ(A) be a character. Let a ∈ A be a selfadjoint element, that is,
a = a∗, and write χ(a) = α + iβ with α , β ∈ R. Let e ∈ A be the unit element and
define, for every t ∈ R

b := a+ it e.

Then
χ(b) = χ(a)+ itχ(e) = α + i(β + t)

and
bb∗ = (a+ it e)(a+ it e)∗ = (a+ it e)(a− ite) = a2 + t2 e.

As a consequence,

α2 +(β + t)2 = |χ(b)|2

≤ ∥b∥2

= ∥bb∗∥

≤ ∥a∥2 + t2,

and therefore
α2 +β 2 +2β t ≤ ∥a∥2 .

This is only possible if β = 0. Hence, we have proved χ(a) ∈ R.
If a ∈ A is an arbitrary element, then a = u+ iv with u, v ∈ A such that u = u∗ and

v = v∗ (in fact, take u = a+a∗
2 and v = a−a∗

2i ). Then a∗ = u− iv and therefore, using
the first step,

χ(a∗) = χ(u)− iχ(v)

= χ(u)+ iχ(v)

= χ(a).

By the definition of the Gelfand transform, this is equivalent to saying that ¯̂a = â∗,
that is,ˆis a ∗-homomorphism.

Next, we prove that the Gelfand transform is isometric. For every a ∈ A we have
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∥â∥∞ = sup
χ∈σ(A)

|χ(a)|

= sup
λ∈σ(a)

|λ | (by Theorem 6.21)

= r(a) (r(a) being the spectral radius)

= lim
n→∞

∥an∥
1
n .

Note that, by properties (2) and (3), (aa∗)∗ = a∗∗ a∗ = aa∗, and therefore, by prop-
erty (6.1),

∥aa∗∥2 = ∥(aa∗)(aa∗)∗∥=
∥∥(aa∗)2∥∥ .

By induction, this inequality implies

∥aa∗∥2m
=
∥∥∥(aa∗)2m

∥∥∥ for every m ∈ N.

This equality, again property (6.1) and the commutativity imply∥∥∥a2m
∥∥∥2

=
∥∥∥a2m

(a∗)2m
∥∥∥= ∥∥∥(aa∗)2m

∥∥∥= ∥aa∗∥2m
= ∥a∥2·2m

,

and thus
∥â∥∞ = ∥a∥ ,

which yields that the Gelfand transform is isometric.
Like any isometric, linear operator, the Gelfand transform is injective and the

range Â is a closed subalgebra of C(σ(A)). Since, by the first step, the Gelfand
transform is a ∗-homomorphism, the algebra Â is closed under taking complex con-
jugation. Clearly, 1 = ê ∈ Â. Also, Â separates the points of σ(A). Thus, by the
Stone-Weierstraß theorem, Â = C(σ(A)), that is, the Gelfand transform is surjec-
tive.

Corollary 6.23. Let A be a unital, commutative C∗-algebra generated by a single
element a ∈ A, that is, the linear span of elements of the form an (a∗)m (n, m ∈ N0)
is dense in A. Then

â : σ(A)→ σ(a),

χ 7→ χ(a) = â(χ),

is a homeomorphism. Moreover, if we denote byˇthe inverse of the Gelfand transform
(see Theorem 6.22), then

Φ : C(σ(a))→ A,

f 7→ (̌ f ◦ â)

is an isometric ∗-isomorphism such that

Φ(1) = e and Φ(id) = a.
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Proof. Note that by Theorem 6.21, â maps the Gelfand space continuously onto the
spectrum σ(a) ⊆ C. We show that the mapping â is injective. In fact, if χ1, χ2 ∈
σ(A) are such that χ1(a) = χ2(a), then, by the fact that the Gelfand transform is a
∗-homomorphism (Theorem 6.22), χ1(a∗) = χ2(a∗). Hence, by the multiplicativity
of χ1 and χ2, χ1(an(a∗)m) = χ2(an(a∗)m) for every n, m ∈ N0. By assumption, χ1
and χ2 therefore coincide on a dense subspace of A. By continuity of the characters,
χ1 = χ2, and injectivity of â is proven. The function â being a continuous bijection
between the compact spaces σ(A) and σ(a), it is necessarily a homeomorphism.

The mapping C(K)→ C(σ(A)), f 7→ f ◦ â is then an isometric ∗-isomorphism,
and the same is true for the inverseˇ: C(σ(A))→ A of the Gelfand transform. Thus,
Φ is an isometric ∗-isomorphism. The properties Φ(1) = e and Φ(id) = a follow
easily from the definition of Φ .



Chapter 7
Operators on Hilbert spaces

7.1 Spectral theorem for compact selfadjoint operators

Let H, K be two Hilbert spaces, T ∈L (H,K). For every y∈K the mapping H →K,
x 7→ ⟨T x,y⟩K is a bounded linear functional on H which admits a unique represen-
tation by T ∗y ∈ H such that

⟨T x,y⟩K = ⟨x,T ∗y⟩H (x ∈ H).

The resulting linear operator T ∗ : K → H is called the (Hilbert space) adjoint of
T .

Lemma 7.1. Let H1, H2, and H3 be three Hilbert spaces, T , S ∈ L (H1,H2), R ∈
L (H2,H3) and λ ∈K. Then:

a) (T +S)∗ = T ∗+S∗.

b) (λT )∗ = λ̄T ∗.

c) (RT )∗ = T ∗R∗.

d) T ∗ ∈ L (H2,H1) and ∥T ∗∥= ∥T∥.

e) T ∗∗ = T .

f) ∥T ∗T∥= ∥T T ∗∥= ∥T∥2.

g) kerT = (ranT ∗)⊥ and kerT ∗ = (ranT )⊥ (orthogonal spaces).

Proof. The properties (a)–(c) are simple exercises. Concerning (d), note that

111
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∥T ∗∥ := sup
∥y∥H2≤1

∥T ∗y∥H1

= sup
∥y∥H2≤1

sup
∥x∥H1≤1

|⟨T ∗y,x⟩H1 |

= sup
∥x∥H1≤1

sup
∥y∥H2≤1

|⟨y,T x⟩H2 |

= sup
∥x∥H1≤1

∥T x∥H2

= ∥T∥.

Next, for every x ∈ H1, y ∈ H2,

⟨T ∗∗x,y⟩H2 = ⟨x,T ∗y⟩H1

= ⟨T ∗y,x⟩H1

= ⟨y,T x⟩H2

= ⟨T x,y⟩H2 ,

which implies (e). Finally, note that

∥T ∗T∥= sup
∥x∥≤1

∥T ∗T x∥

= sup
∥x∥≤1

sup
∥y∥≤1

∣∣⟨T ∗T x,y⟩
∣∣

= sup
∥x∥≤1

sup
∥y∥≤1

∣∣⟨T x,Ty⟩
∣∣

≥ sup
∥x∥≤1

∣∣⟨T x,T x⟩
∣∣

= sup
∥x∥≤1

∥T x∥2

= ∥T∥2,

while the inequality ∥T ∗T∥ ≤ ∥T ∗∥∥T∥ = ∥T∥2 (using also (d)) is trivial. Hence,
we have proved (f). The property (g) is also left as an exercise.

Remark 7.2. Let A be a complex Banach algebra. A mapping ∗ : A →A is called
an involution if for every a, b ∈ A , λ ∈ C,

(a+b)∗ = a∗+b∗, (ab)∗ = b∗a∗, (λa)∗ = λ̄a∗, (a∗)∗ = a.

If a complex Banach algebra A admits an involution ∗ such that for every a ∈ A ,

∥a∗a∥= ∥a∥2,

then A is called a C∗-algebra.
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If H is a Hilbert space, then L (H) is a C∗-algebra for the involution T 7→ T ∗,
where T ∗ is the (Hilbert space) adjoint of T . This follows from Lemma 7.1.

The simplest C∗-algebra is C (the involution being the complex conjugation).
In the space of matrices CN×N = L (CN), the involution as defined above, that is,
the Hilbert space adjoint with respect to the Euclidean inner product, is given by
A∗ = Āt (complex conjugation and transposition).

Given a compact space K, the space C(K) is also a C∗-algebra for the usual
algebra structure and the involution f 7→ f ∗ given by f ∗(x) := ¯f (x) (x ∈ K).

Let H be a complex Hilbert space. An operator T ∈ L (H) is called selfadjoint
if T = T ∗, or, equivalently, if for every x, y ∈ H,

⟨T x,y⟩= ⟨x,Ty⟩.

We say that the operator T is positive semidefinite and we write T ≥ 0, if it is
selfadjoint, and

⟨T x,x⟩ ≥ 0 for every x ∈ H.

An operator T ∈L (H) is called normal if T T ∗ = T ∗T . An operator U ∈L (H,K)
between two Hilbert spaces is called unitary if U is an isomorphism and U∗U = IH
and UU∗ = IK .

Remark 7.3. In every C∗-algebra A one can define that an element a is selfadjoint
if a = a∗. The selfadjoint elements of A = C are the real numbers. The selfadjoint
elements of CN×N are the hermitian matrices, that is, the matrices A for which A =
Āt .

Theorem 7.4 (Hellinger-Toeplitz). Let T : H → H be linear and symmetric, that
is,

⟨T x,y⟩= ⟨x,Ty⟩ for every x, y ∈ H.

Then T is bounded.

Proof. Let (xn)⊆ H be convergent to x ∈ H and such that (T xn) converges to y ∈ H.
Then, for every z ∈ H,

⟨T x,z⟩= ⟨x,T z⟩= lim
n→∞

⟨xn,T z⟩= lim
n→∞

⟨T xn,z⟩= ⟨y,z⟩.

Hence, T x = y. This means that T is closed, and by the closed graph theorem, T is
bounded.

Lemma 7.5. Let T ∈ L (H) be a selfadjoint operator on a Hilbert space H. Then

σ(T )⊆W (T )⊆ R. (7.1)

where
W (T ) := {⟨T x,x⟩ : ∥x∥= 1}. (7.2)

is the numerical range of T .
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Proof. Since ⟨T x,x⟩= ⟨x,T x⟩= ⟨T x,x⟩ by symmetry, we obtain W (T )⊆ R.
Let λ ∈K be such that d := dist(λ ,W (T ))> 0. Then, for every x ∈ H such that

∥x∥= 1,

d = d ∥x∥ ≤ |λ −⟨T x,x⟩|= |⟨(λ −T )x,x⟩| ≤ ∥(λ −T )x∥.

By linearity, this estimates remains true for every x ∈ H. This estimate then implies
that λ −T is injective and that ran(λ −T ) is closed. If ran(λ −T ) ̸= H, then there
exists x0 ∈ (ran(λ −T ))⊥ such that ∥x0∥= 1. For this x0 we have

0 = ⟨(λ −T )x0,x0⟩= λ −⟨T x0,x0⟩ ≥ d > 0,

a contradiction. Hence, λ −T is invertible, or λ ∈ ρ(T ). Thus we have proved also
the first inclusion in (7.1).

Lemma 7.6. Let T ∈ L (H) be a selfadjoint operator on a Hilbert space H. Then

supW (T ) ∈ σ(T ) and infW (T ) ∈ σ(T ),

where W (T ) is the numerical range defined in (7.2).

Proof. Let λ := supW (T ). By definition of W (T ), the form a(x,y) := λ ⟨x,y⟩ −
⟨T x,y⟩ is sesquilinear in the case of a complex Hilbert space, or bilinear and sym-
metric in the case of a real Hilbert space. Moreover, this form is positive semidefi-
nite, that is, a(x,x)≥ 0 for every x ∈ H.

By the Cauchy-Schwarz inequality applied to the form a(x,y), for every x, y ∈ H,

|⟨λx−T x,y⟩| ≤ ⟨λx−T x,x⟩
1
2 ⟨λy−Ty,y⟩

1
2 .

This inequality implies that there exists a constant C ≥ 0 such that for every x ∈ H,

∥λx−T x∥ ≤C ⟨λx−T x,x⟩
1
2 .

Let (xn)⊆ H, ∥xn∥= 1 be such that ⟨T xn,xn⟩ → λ . Then the preceeding inequality
implies that limn→∞ ∥λxn −T xn∥= 0. Hence, λ ∈ σap(T )⊆ σ(T ).

The proof that infW (T ) ∈ σ(T ) is similar.

Lemma 7.7. Let T ∈ L (H) be a selfadjoint operator on a Hilbert space H. Then

∥T∥= sup
∥x∥=1

|⟨T x,x⟩|= sup
λ∈σ(T )

|λ |.

Proof. The second equality follows from Lemma 7.6 combined with Lemma 7.5.
Moreover, the inequality

sup
∥x∥=1

|⟨T x,x⟩| ≤ ∥T∥

is obvious, by the definition of ∥T∥ and the Cauchy-Schwarz inequality. Using the
fact that T = T ∗, one easily calculates for every x, y ∈ H,
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4 Re⟨T x,y⟩= ⟨T (x+ y),x+ y⟩−⟨T (x− y),x− y⟩.

Hence,

∥T∥= sup
∥x∥=1

∥T x∥

= sup
∥x∥=1

sup
∥y∥=1

Re⟨T x,y⟩

=
1
4

sup
∥x∥=1

sup
∥y∥=1

[⟨T (x+ y),x+ y⟩−⟨T (x− y),x− y⟩]

≤ 1
4

sup
∥x∥=1

sup
∥y∥=1

[|⟨T (x+ y),x+ y⟩|+ |⟨T (x− y),x− y⟩|]

≤ sup
∥z∥=1

|⟨T z,z⟩| 1
4

sup
∥x∥=1

sup
∥y∥=1

[∥x+ y∥2 +∥x− y∥2]

≤ sup
∥z∥=1

|⟨T z,z⟩| 1
2

sup
∥x∥=1

sup
∥y∥=1

[∥x∥2 +∥y∥2]

≤ sup
∥z∥=1

|⟨T z,z⟩|,

which is just the remaining inequality.

Lemma 7.8. Let T ∈ L (H) be a selfadjoint operator on a complex Hilbert space,
and let x, y ∈ H be two eigenvectors corresponding to two distinct eigenvalues λ ,
µ ∈ σp(T ). Then ⟨x,y⟩= 0.

Proof. Since T is selfadjoint and λ , µ ∈ R (Lemma 7.5),

λ ⟨x,y⟩= ⟨λx,y⟩= ⟨T x,y⟩= ⟨x,Ty⟩= ⟨x,µy⟩= µ⟨x,y⟩.

Since λ ̸= µ , this equality can only hold if ⟨x,y⟩= 0.

Theorem 7.9 (Spectral theorem for compact, selfadjoint operators). Let H be
a separable Hilbert space, and let T ∈ K (H) be a compact, selfadjoint operator.
Then there exists an orthonormal basis (en)n of H, and a family (λn)n of real num-
bers such that limn→∞ λn = 0 and

Ten = λnen for every n,

that is, there is an orthonormal basis (en)n consisting only of eigenvectors of T . In
other words, T is unitarily equivalent to the multiplication operator M : ℓ2 → ℓ2,
M(xn)n := (λnxn)n, that is, there exists a unitary operator U : H → ℓ2 such that the
diagram

H T−−−−→ HyU

xU∗=U−1

ℓ2 M−−−−→ ℓ2
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commutes

Proof. By the spectral theory of compact operators, σ(T ) is at most countable, every
µ ∈ σ(T ) \ {0} is an eigenvalue, and its eigenspace Hµ := ker(µ − T ) is finite-
dimensional.

Let (µn) be the (finite or countable) family of all nonzero eigenvalues of T
(µn ̸= µm if n ̸= m), and let dn := dim ker(µn − T ) be their multiplicities. Let
( f n

k )1≤k≤dn be an orthonormal basis of Hµn = ker(µn −T ). If the kernel H0 := kerT
is nontrivial, then choose also an orthonormal basis ( fk)0≤k<dimH0 of H0. Next, let
(en) be the family which is obtained by taking successively the union over all eigen-
vectors f n

k and fk, and let (λn) be the family which is obtained by taking the eigen-
values corresponding to f n

k or fk. For simplicity, assume that the kernel H0 = kerT is
trivial. Then e1 = f 1

1 , . . . , ed1 = f 1
d1

, ed1+1 = f 2
1 , . . . , ed1+d2 = f 2

d2
, etc., and λ1 = µ1,

. . . , λd1 = µ1, λd1+1 = µ2, . . . , λd1+d2 = µ2, etc.
The family (en) thus obtained is an orthonormal system by construction and by

Lemma 7.8. Moreover, by construction, Ten = λnen for every n. It remains only to
show that span{en : n}=: H0 is dense in H.

Let H1 := (H0)⊥ be the orthogonal complement. For every x ∈ H1 and every n,
since T is selfadjoint,

⟨T x,en⟩= ⟨x,Ten⟩= ⟨x,λnen⟩= λ̄n⟨x,en⟩= 0.

Hence, T H1 ⊂H1, that is, T leaves the space H1 invariant. We may thus consider the
restriction T 1 := T |H1 ∈ L (H1) which inherits the property from T to be compact
and selfadjoint. Since all eigenvectors of T are contained in H0, T 1 does not have
any eigenvalue. In other words, σ(T 1) ⊆ {0}. By Lemma 7.7, this implies T 1 = 0.
However, as we just remarked, T 1 does also not admit any eigenvector for the only
possible eigenvalue 0. Hence, H1 = kerT 1 = {0}, which implies that H0 is dense in
H.

To complete the proof, consider the operator U : H → ℓ2 given by Ux :=
(⟨x,en⟩)n. This operator does the work, that is, U is unitary and T = U∗MU , as
one easily shows.

Remark 7.10. Let T ∈ K (H) be a compact, selfadjoint operator on a general (not
necessarily separable) Hilbert space. Then H = kerT ⊕ (kerT )⊥, where (kerT )⊥ =
ranT is separable (any compact, metric space is separable, and ranT is spanned by
the relatively compact set T BH(0,1). Applying the above spectral theorem (which
holds only on separable Hilbert spaces) to the restriction of T to ranT , we obtain an
orthonormal basis of ranT which consists only of eigenvectors of T . This (at most
countable) orthonormal basis can be completed by an orthonormal basis of kerT ,
which consists necessarily of eigenvectors to the eigenvalue 0. As a conclusion, we
obtain an orthonormal eigenbasis of H which consists only of eigenvectors of T .
We thus see that the assumption of separability of H can be dropped in the spectral
theorem.

We may immediately generalize the spectral theorem to the larger class of normal
operators. For this, we also need the following variant of Schauder’s theorem.
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Lemma 7.11. Let H, K be two Hilbert spaces and T ∈L (H,K). Then T is compact
if and only if T ∗ is compact.

Proof. It is intructive to represent the Hilbert space adjoint T ∗ by using the Banach
space adjoint T ′ ∈ L (K′,H ′) and the (antilinear) isomorphisms ΦH : H ′ → H and
ΦK : K′ →K which one obtains from the Theorem of Riesz-Fréchet (Theorem 2.44).
In fact,

T ∗ = ΦHT ′Φ−1
K .

If T is compact, then T ′ is compact by Schauder’s theorem (Theorem 5.25), and
hence T ∗ is compact due to the above representation. Conversely, if T ∗ is compact,
then, by what has just been said, T ∗∗ is compact. However, T ∗∗ = T (Lemma 7.1
(e)), and the claim is proved.

Theorem 7.12 (Spectral theorem for compact, normal operators). Let H be a
complex, separable Hilbert space, and let T ∈ K (H) be a compact, normal op-
erator. Then there exists an orthonormal basis (en)n∈I ⊆ H (I ⊆ N) of H, and a
sequence (λn)n∈I ⊆ C such that limn→∞ λn = 0 and

Ten = λnen for every n ∈ I,

that is, (en) is an orthonormal basis consisting only of eigenvectors of T .

Proof. We define

ReT :=
T +T ∗

2
and ImT :=

T −T ∗

2i
.

Since T is normal, the operators ReT and ImT commute. Moreover, they are easily
seen to be selfadjoint and compact (for compactness, we use Lemma 7.11). We show
that ReT and ImT can be diagonalized simultaneously.

By the spectral theory of compact operators, σ(ReT ) is at most countable, every
α ∈ σ(ReT ) \ {0} is an eigenvalue, and its eigenspace Hα := ker(α −T ) is finite-
dimensional.

Let (αn) be the (finite or countable) family of all nonzero eigenvalues of ReT
(αn ̸= αm if n ̸= m), and let dn := dim ker(αn −T ) be their multiplicities. For every
e ∈ Hαn one has

ReTe = αne.

We apply ImT on both sides of this equality, and use the fact that ReT and ImT
commute, and we find that the vector ImTe is also an eigenvector of ReT for the
eigenvalue αn. In other words, the eigenspaces Hαn are left invariant under ImT . By
applying the spectral theorem for compact, selfadjoint operators to the restrictions
of ImT to Hαn , we find for every n an orthonormal basis ( f n

k )1≤k≤dn of Hαn , and we
find a family (β n

k )1≤k≤dn of real numbers such that

ImT f n
k = β n

k f n
k for every 1 ≤ k ≤ dn.

Of course, we still have
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ReT f n
k = αn f n

k for every 1 ≤ k ≤ dn.

If H0 := kerReT is nontrivial, then we may repeat the arguments from above in
order to see that ImT leaves H0 invariant. We may also apply the spectral theorem
for compact, selfadjoint operators to the restriction of ImT to H0, and we find an or-
thonormal basis ( fk)0≤k<dimH0 and a sequence (βk)0≤k<dimH0 of real numbers such
that

ImT fk = βk fk for every 0 ≤ k < dimH0.

Of course, we have

ReT fk = 0 for every 0 ≤ k < dimH0.

From the above relations and from the equality T = ReT + i ImT we obtain

T f n
k = (αn + iβ n

k ) f n
k =: µn

k f n
k for every 1 ≤ k ≤ dn

and
T fk = iβk fk =: µk fk for every 0 ≤ k < dimH0,

that is, the f n
k and fk are eigenvectors of T for the complex eigenvalues µn

k and µk,
respectively.

Next, let (en) be the family which is obtained by taking successively the union
over all eigenvectors f n

k and fk, and let (λn) be the family which is obtained by
taking the eigenvalues corresponding to f n

k or fk. For simplicity, assume that the
kernel H0 = kerReT is trivial. Then e1 = f 1

1 , . . . , ed1 = f 1
d1

, ed1+1 = f 2
1 , . . . , ed1+d2 =

f 2
d2

, etc., and λ1 = µ1
1 , . . . , λd1 = µ1

d1
, λd1+1 = µ2

1 , . . . , λd1+d2 = µ2
d2

, etc.
The family (en) thus obtained is orthonormal by construction and by Lemma 7.8

(applied to ReT ). Moreover, by construction, Ten = λnen for every n. It remains only
to show that span{en : n∈N}=: H0 is dense in H. For this, one proceeds similarly as
in the proof of the spectral theorem for compact, selfadjoint operators. One shows
that ReT and ImT leave H1 = (H0)⊥ invariant but admit no eigenvectors in H1.
This implies for example ReT = 0 in H1, and thus H1 = {0}. As a consequence,
H0 is dense, and (en) an orthonormal basis.

7.2 Spectral theorem for bounded, normal operators

The continuous functional calculus

Theorem 7.13 (Spectral theorem for bounded, normal operators - the continu-
ous functional calculus). Let T ∈ L (H) be a normal operator, and let K := σ(T )
be its spectrum. Then there exists an C∗-algebra homomorphism

Φ : C(K)→ L (H)
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with the following properties:

(i) Φ(id) = T and in particular Φ(p) = p(T ) for every polynomial p.

(ii) Φ is isometric, that is, ∥Φ( f )∥L (H) = ∥ f∥∞ for every f ∈C(K).

(iii) Φ is positive in the sense that if f ≥ 0, then Φ( f )≥ 0.

(iv) (Spectral mapping theorem) For every f ∈ C(K) one has σ(Φ( f )) =
f (σ(T )) = f (K).

(v) (Spectral mapping theorem for the point spectrum) For every f ∈ C(K) and
every λ ∈σp(T ) and every corresponding eigenvector x∈H (that is, T x= λx)
one has Φ( f )x = f (λ )x.

Proof. This theorem is a direct consequence of Corollary to the Gelfand-Naimark
theorem (Theorem 6.22, applied to the commutative C∗-subalgebra of L (H) gen-
erated by T (commutativity of this subalgebra follows from the assumption that T
is normal).

The Riesz-Markov representation theorem

Let K be a compact space. We denote by B(K) the Borel-σ -algebra on K, that is,
the smallest σ -algebra on K which contains the open sets. A Borel measure on K is
a measure on the Borel-σ -algebra B(K), that is, a σ -additive function µ : B(K)→
[0,+∞] (we consider here only nonnegative measures). A Borel measure µ on K is
regular if for every Borel measurable set A ⊆ K

(i) µ(A) = inf{µ(O) : O ⊇ A, O open}, and

(ii) µ(A) = sup{µ(C) : C ⊆ A, C compact}.

We say that µ is finite if µ(K) < ∞. The following Riest-Markov representation
theorem characterizes positive, linear functionals on C(K). We say that a functional
φ ∈C(K)′ is positive if φ( f )≥ 0 for every function f ∈C(K) taking its values in
R+ (the notion of positivity makes also sense on the complex space C(K)). Finally,
we define B(K) to be the space of all bounded, Borel measurable functions K → C.
Equipped with the sup-norm, B(K) is a Banach space which contains C(K) as a
closed, linear subspace.

Theorem 7.14 (Riesz-Markov representation theorem). Let K be a compact
space. Then, for every positive functional φ ∈ C(K)′ there exists a finite, regular
Borel measure µ on K such that

φ( f ) =
∫

K
f dµ for every f ∈C(K).

Proof. Let φ ∈C(K)′ be a positive functional. If necessary, we restrict φ to the (real)
subspace of real-valued continuous functions. By Hahn-Banach, we may extend the
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functional φ to a functional φ̃ on the space B(K) of bounded Borel measurable
functions, such that ∥φ̃∥B(K)′ = ∥φ∥C(K)′ .

Since φ is positive, then φ(1) = ∥φ∥C(K)′ . Hence, for every Borel function f ∈
B(K) satisfying ∥ f∥∞ ≤ 1 one has

|φ̃( f )| ≤ ∥φ̃∥B(K)′ = ∥φ∥C(K)′ = φ(1).

In particular, if f ∈ B(K) is a positive Borel function such that ∥ f∥∞ ≤ 1, then
1− f is also a positive Borel function, ∥1− f∥∞ ≤ 1, and thus |φ̃( f )| ≤ φ(1) and
|φ̃(1− f )| ≤ φ(1). On the other hand,

0 ≤ φ(1) = φ̃(1) = φ̃( f )+ φ̃(1− f ),

which, together with the preceding estimates, is only possible if φ̃( f ) ≥ 0 (and
φ̃(1− f ) ≥ 0). We have thus proved that the extension φ̃ is a positive linear func-
tional on B(K).

For every Borel measurable set A ⊆ K, we now define

µ(A) := φ̃(χA)≥ 0,

where χA ∈ B(K) is the characteristic function of the set A. We claim that µ is a
bounded, regular, Borel measure which represents φ as stated in the theorem.

First, µ is finitely additive by additivity of φ̃ , and µ is monotone (µ(A) ≤ µ(B)
whenever A ⊆ B) by positivity of φ̃ .

The spectral theorem for bounded, normal operators

Lemma 7.15. Let T ∈ L (H) be a normal operator on a separable Hilbert space,
for which there exists x ∈ X such that span{T n(T ∗)mx : n, m ∈ N0} is dense in H.
Let K = σ(T ) be the spectrum of T . Then there exists a regular, finite Borel measure
µ on K and a unitary operator U : H → L2(K;dµ) such that the diagram

H T−−−−→ HyU

xU∗=U−1

L2(K;dµ) M−−−−→ L2(K;dµ)

commutes. Here, M : L2(K;dµ) → L2(K;dµ) is the multiplication operator given
by

M f (ω) = ω f (ω) ( f ∈ L2(K;dµ), ω ∈ K).

In other words, T is unitarily equivalent to a multiplication operator.

Proof. Let x ∈ H be any vector, and let Φ : C(K)→ L (H) be the continuous func-
tional calculus associated with T (Theorem 7.13). Then the linear mapping
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φx : C(K)→ C,
f 7→ ⟨Φ( f )x,x⟩,

is bounded and positive (Theorem 7.13 (ii), (iii)). By the Riesz-Markov representa-
tion theorem (Theorem 7.14), there exists a finite, regular Borel measure µx on K
such that

φx( f ) = ⟨Φ( f )x,x⟩=
∫

K
f dµ for every f ∈C(K).

As a consequence of this equality and by using the properties of Φ , for every f ∈
C(K),

∥Φ( f )x∥2
H = ⟨Φ( f )∗Φ( f )x,x⟩H

= ⟨Φ( f̄ f )x,x⟩H

=
∫

K
| f |2 dµ .

This equality shows first that if f1, f2 ∈ C(K) coincide µ-almost everywhere, then
Φ( f1)x = Φ( f2)x. Hence, the operator

U∗ : L2(K;dµ)→ H,

f 7→U∗ f = Φ( f )x

is well defined first for equivalence classes of continuous functions, but then, by the
above equality and by continuous extension, everywhere on L2(K;dµ). Moreover,
the operator thus defined is isometric.

Now we suppose that the vector x∈H, which was arbitrary in the beginning, is as
in the statement. Then the operator U∗ is isometric and invertible, and thus a unitary
operator. In fact, U∗ being isometric, it is injective and has closed range. Moreover,
the range of U∗ contains the set {T n(T ∗)mx : n,m ∈ N0} = {Φ(Idn ¯idm

)x : n,m ∈
N0} which is dense in H by the assumption and the choice of x. Hence, U∗ is sur-
jective.

Finally, for every f ∈C(K),

TU∗ f = T Φ( f )x

= Φ(id)Φ( f )x

= Φ(id · f )x

=U∗(id · f ),

and thus UTU∗ (U = (U∗)−1) is the multiplication operator given in the statement.

Lemma 7.16. Let T ∈ L (H) be a normal operator on a Hilbert space H. Then
there exists a family (Hi)i∈I of closed subspaces such that

a) the Hi are mutually orthogonal,

b) H =
⊕

i∈I Hi,
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c) each Hi is invariant under T and T ∗, and

d) for every i ∈ I there exists x ∈ Hi such that {T n(T ∗)mx : n,m ∈ N0} is dense
in Hi.

Proof.

Theorem 7.17 (Spectral theorem for bounded, normal operators). Let T ∈
L (H) be a normal operator on a separable Hilbert space H. Then there exists
a measure space (Ω ,A ,µ), a function m ∈ L∞(Ω ;dµ), and a unitary operator
U : H → L2(Ω ;dµ) such that the diagram

H T−−−−→ HyU

xU∗=U−1

L2(Ω ;dµ) M−−−−→ L2(Ω ;dµ)

commutes. Here, M : L2(Ω ;dµ)→ L2(Ω ;dµ) is the multiplication operator given
by

M f (ω) = m(ω) f (ω) ( f ∈ L2(Ω ;dµ), ω ∈ Ω).

In other words, T is unitarily equivalent to a multiplication operator.

Proof. Choose a family (Hi)i∈I (with I ⊆N) as in Lemma 7.16. By Lemma 7.15, for
every i ∈ I there exists a finite, regular Borel measure µi on σ(T |Hi) ⊆ σ(T ) =: K
and a unitary operator U∗

i : L2(σ(T );dµi)→Hi such that UiT |HiU
∗
i =Mi, where Mi :

L2(K;dµi)→ L2(K;dµi) is the multiplication operator given by Mi f (ω) = ω f (ω).
Set Ω := K × I =

∪
i∈I σ(T )×{i}, and let µ be the Borel measure on Ω whose

restriction to σ(T )×{i} ∼= σ(T ) coincides with µi, that is,

µ(
∪
i∈I

Bi ×{i}) := ∑
i∈I

µi(Bi) (Bi ∈ B(K)).

Note that

L2(Ω ;dµ)∼=
⊕
i∈I

L2(K;dµi)

in a canonical way, and that, via this identification, U∗ =
⊕

i∈I U∗
i defines a unitary

operator from L2(Ω ;dµ) onto H =
⊕

i∈I Hi. It is now a short exercise to show that
UTU∗ = M, where ML2(Ω ;dµ)→ L2(Ω ;dµ) is the multiplication operator given
by

M f (ω, i) = ω f (ω, i).

The measurable functional calculus

In the following, given a Borel measurable K ⊆ R, we define the space
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B(K) := { f : K → C : f is bounded and Borel measurable}.

Equipped with the supremum norm ∥ · ∥∞, this space is a C∗-algebra for the nat-
ural (pointwise) scalar multiplication, addition and multiplication. Clearly, if K is
compact, B(K) contains C(K) as a closed subspace.

Theorem 7.18 (Spectral theorem - the measurable functional calculus). Let T ∈
L (H) be a normal operator on a separable Hilbert space H. Let the measure space
(Ω ,A ,µ), the unitary operator U : H → L2(Ω ;dµ), the function m ∈ L∞(Ω ;dµ)
and the multiplication operator M ∈ L (L2(Ω ;dµ)) be as in the Spectral Theorem
(Theorem 7.17). Let K := σ(T ). Then the operator

Φ̃ : B(K)→ L (H),

f 7→ Φ̃( f ) :=U∗ f (M)U,

where f (M) ∈ L (L2(Ω ;dµ)) is the multiplication operator given by

f (M)g(ω) := f (m(ω))g(ω) (g ∈ L2(Ω ;dµ), ω ∈ Ω),

is a C∗-algebra homomorphism which extends the continuous functional calculus Φ
from Theorem 7.13, and which has the properties:

(i) ∥Φ̃∥= 1,

(ii) Φ̃( f )≥ 0 whenever f ≥ 0, and

(iii) if ( fn) is a bounded sequence in B(K) which converges µ-almost everywhere
to a function f ∈ B(K), then, for every x ∈ H,

lim
n

Φ̃( fn)x = Φ̃( f )x.

Remark 7.19. Note that we can choose the multiplication operator M such that the
range of m is a subset of K, so that the expression f (m(ω)) is well defined.

Proof. In the special case T =M, that is, when T already is a multiplication operator
(and U =U∗ = I), the properties of Φ̃ are easy to verify, even property (iii), which
relies only on Lebesgue’s dominated convergence theorem. The case of general T
follows then from this special case and the Spectral Theorem (Theorem 7.17).

Spectral measures and spectral decomposition

7.3 Spectral theorem for unbounded selfadjoint operators

In the preceding two sections, we have actually proved more than just solvability of
an elliptic and a hyperbolic partial differential equation. We have proved that the
Dirichlet-Laplace operator is selfadjoint, that it has a compact resolvent, and that
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therefore it is diagonalisable. In this last section, we discuss the spectral theorem
for unbounded selfadjoint operators with compact resolvent.

Let H be a complex Hilbert space, and let A : H ⊇ domA → H be a densely
defined (that is, the domain domA is dense in H) and linear operator. We define

domA∗ := {x ∈ H : ∃y ∈ H ∀z ∈ domA : ⟨Az,x⟩H = ⟨z,y⟩H},
A∗x := y.

The operator (A∗,domA∗) is called the (Hilbert space) adjoint of A. For every
x ∈ domA, y ∈ domA∗ one has

⟨Ax,y⟩= ⟨x,A∗y⟩.

Remark 7.20. The adjoint A∗ is well-defined in the sense that the element y ∈ H is
uniquely determined (use that domA is dense in H).

Lemma 7.21. Let A : domA → H be a densely defined, linear operator. Then A∗ :
domA∗ → H is closed.

Proof. Let (xn) ⊆ domA∗ be convergent to some x ∈ H and such that (A∗xn) con-
verges to y ∈ H. Then, for every z ∈ domA,

⟨z,y⟩= lim
n→∞

⟨z,A∗xn⟩

= lim
n→∞

⟨Az,xn⟩

= ⟨Az,x⟩.

By definition of A∗ this implies x ∈ domA∗ and A∗x = y. Hence, A∗ is closed.

Let H be a complex Hilbert space, and let A : H ⊇ domA → H be a densely
defined, linear operator. We say that A is symmetric if for every x, y ∈ domA,

⟨Ax,y⟩= ⟨x,Ay⟩.

We say that A is selfadjoint if A = A∗.

Remark 7.22. Saying that A is selfadjoint, that is, that A = A∗, means that domA =
domA∗ and A = A∗. By Lemma 7.21, every selfadjoint operator is necessarily
closed. Note, however, that a symmetric closed linear operator A need in general
not be selfadjoint! However, if domA = H, then symmetric implies selfadjoint by
the Theorem of Hellinger-Toeplitz (Theorem 7.4).

Remark 7.23. If a bounded operator A : H → H (domA = H!) is selfadjoint in the
sense of the definition for unbounded operators (see page 124), then A is selfadjoint
in the sense of the definition for bounded operators (see page 113), and vice versa.

Lemma 7.24. Let A : domA → H be densely defined and symmetric. Then the fol-
lowing are equivalent:
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(i) A is selfadjoint.

(ii) A is closed and ker(A∗± i) = {0}.

(iii) ran(A± i) = H.

Proof. We first remark that if (A,domA) is symmetric, then ker(A± i) = {0}. In
fact, let x ∈ H be such that (A− i)x = 0. Since A is symmetric,

i∥x∥2 = ⟨ix,x⟩= ⟨Ax,x⟩= ⟨x,Ax⟩=−i∥x∥2.

Hence, x = 0. Similarly, one proves ker(A+ i) = {0}.
(i)⇒(ii). Now assume that A is selfadjoint. By Lemma 7.21, A∗ is closed, and

therefore A (= A∗) is closed. Since A is symmetric, and since A∗ = A, we find
ker(A∗± i) = {0} by the above argument.

(ii)⇒(iii). Similarly as in Lemma 5.14 one proves that

ker(A∗− i) = (ran(A+ i))⊥,

where ⊥ now means the Hilbert space orthogonal. Hence, if ker(A∗ − i) = {0},
then ran(A+ i) is dense in H. We prove that ran(A+ i) is also closed. Since A is
symmetric, we have ⟨Ax,x⟩ ∈ R for every x ∈ domA. Hence, for every x ∈ domA,

∥(A+ i)x∥= ∥Ax∥2 +∥x∥2 +2Re⟨Ax, ix⟩
= ∥Ax∥2 +∥x∥2 ≥ ∥x∥2.

Let (xn) ⊆ domA be such that limn→∞(A+ i)xn = y ∈ H exists. By the preceding
inequality, this implies that (xn) is a Cauchy sequence in H. Hence, x := limn→∞ xn ∈
H exists. Since A+ i is closed, we obtain x∈ domA and (A+ i)x= y. We have shown
that ran(A+ i) is closed. Similarly, one shows that ran(A− i) is closed.

(iii)⇒(i). Since A is symmetric, domA ⊆ domA∗ and Ax = A∗x for every
x ∈ domA. It remains to show that domA∗ ⊆ domA. Let y ∈ domA∗. Since
ran(A+ i) = H, there exists x ∈ domA such that (A∗+ i)y = (A+ i)x. By the inclu-
sion (A,domA)⊆ (A∗,domA∗), (A∗+ i)y = (A∗+ i)x. Since ran(A− i) = H implies
ker(A∗+ i) = {0} (compare again with Lemma 5.14), this implies x = y ∈ domA.

Exercise 7.25 The Dirichlet-Laplace operator A defined in (7.4) is selfadjoint.

Lemma 7.26. Let A : domA → H be densely defined and closed. Then, for every
λ ∈ ρ(A) one has λ̄ ∈ ρ(A∗) and

R(λ ,A)∗ = R(λ̄ ,A∗).

Proof. For every x ∈ domA and every y ∈ domA∗ one has

⟨x,R(λ ,A)∗(λ̄ −A∗)y⟩= ⟨R(λ ,A)x,(λ̄ −A∗)y⟩
= ⟨(λ −A)R(λ ,A)x,y⟩
= ⟨x,y⟩
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and

⟨x,(λ̄ −A∗)R(λ ,A)∗y⟩= ⟨(λ −A)x,R(λ ,A)∗y⟩
= ⟨R(λ ,A)(λ −A)x,y⟩
= ⟨x,y⟩,

so that λ̄ −A∗ is invertible and R(λ̄ ,A∗) = R(λ ,A)∗.

Theorem 7.27 (Spectral mapping theorem). Let A : domA → H be densely de-
fined, closed. Assume that ρ(A) is not empty. Then, for every λ ∈ ρ(A),

(λ −σ(A))−1 = σ((λ −A)−1)\{0}.

Proof. The proof is an exercise.

We say that a closed, linear operator (A,domA) on a Banach space X has com-
pact resolvent if ρ(A) is nonempty, and if there exists λ ∈ ρ(A) such that R(λ ,A)
is compact.

Lemma 7.28. Let (A,domA) be a closed, linear operator on a Banach space X such
that ρ(A) ̸= /0. Then the following are equivalent:

(i) A has compact resolvent.

(ii) For every λ ∈ ρ(A), the resolvent R(λ ,A) is compact.

(iii) The embedding j : (domA,∥ · ∥domA)→ (X ,∥ · ∥X ), x 7→ x is compact.

Proof. The implication (ii)⇒(i) is trivial, while the converse (i)⇒(ii) is a conse-
quence of the resolvent identity

R(µ,A) = R(λ ,A)+(λ −µ)R(µ,A)R(λ ,A).

(i)⇒(iii) Assume that λ ∈ ρ(A) is such that R(λ ,A) is compact. Let (xn) be a
bounded sequence in (domA,∥ · ∥domA), that is, there exists C ≥ 0 such that

∥xn∥X +∥Axn∥X ≤C for every n.

Since R(λ ,A) is invertible from X onto domA, there exists a sequence (yn) in X
such that R(λ ,A)yn = xn. Using the equality AR(λ ,A) = λR(λ ,A)− I, the above
estimate for the xn yields

∥R(λ ,A)yn∥X +∥λR(λ ,A)yn − yn∥X ≤C for every n.

This estimate yields that (yn) is necessarily bounded in X . Since R(λ ,A) is compact,
there exists a subsequence of (yn) (which we denote for simplicity again by (yn))
such that (R(λ ,A)yn) = (xn) converges in X . In other words, for every bounded
sequence (xn) in (domA,∥ · ∥domA) we can extract a subsequence which converges
in X . Hence, the embedding j : (domA,∥ · ∥domA)→ (X ,∥ · ∥X ), x 7→ x is compact.



7.3 Spectral theorem for unbounded selfadjoint operators 127

(iii)⇒(i) Choose any λ ∈ ρ(A). Then the operator j : (domA,∥ · ∥domA) → (X ,∥ ·
∥X ), x 7→ λx−Ax is continuous (by definition of the graph norm) and invertible
(by the choice of λ ). By the bounded inverse theorem, R(λ ,A) is a bounded linear
operator from (X ,∥ · ∥X ) onto (domA,∥ · ∥domA). Composing this operator with j,
we obtain that R(λ ,A) is a compact operator on X .

Lemma 7.29. Consider the meromorphic functions f and g on C given by

f (z) :=
i− z
i+ z

and

g(z) := i
1− z
1+ z

(z ∈ C).

Then, for every z ∈ C:

a) If z ∈ R, then | f (z)|= 1. If |z|= 1, then f (z) ∈ iR.

b) If z ∈ iR, then |g(z)|= 1. If |z|= 1, then g(z) ∈ R.

c) f (g(z)) = g( f (z)) = z.

The functions f and g in the preceding lemma are two special Möbius transforms.
A general Möbius transform has the form f (z) = az+b

cz+d and it always has the property
that it maps straight lines to straight lines or circles, and circles to straight lines or
circles. Möbius transforms are the affine mappings on the Riemann sphere. We use
their properties in the following lemma in order to transform selfadjoint operators
(which have spectrum in the real line) to unitary operators (which have spectrum in
the unit circle) and back.

Lemma 7.30 (Cayley transform). Let H be a Hilbert space.

a) Let A : domA → H be a densely defined, selfadjoint operator. Then its Cayley
transform

f (A) :=U := (i−A)(i+A)−1

is a unitary operator such that rg(I +U) = domA. In particular, I +U has
dense range.

b) If U ∈ L (H) is a unitary operator such that I +U has dense range, then

g(U) := A := i(I −U)(I +U)−1

with maximal domain domA := rg(I +U)→ H is selfadjoint.

c) Let A : domA → H be a densely defined, selfadjoint operator. Then g( f (A)) =
A.

Theorem 7.31 (Spectral theorem for unbounded selfadjoint operators with
compact resolvent). Let A : domA → H be densely defined, selfadjoint, having
compact resolvent. Then there exists an orthonormal basis (en)⊆ H and a sequence
(λn)⊆ R such that limn→∞ |λn|= ∞,
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en ∈ domA and Aen = λnen for every n.

Moreover, σ(A) = σp(A) = {λn : n}.

Proof. Let λ ∈ ρ(A) be such that R(λ ,A)∈K (H). By Theorem 5.30, σ(R(λ ,A)) is
countable. Hence, by Theorem 7.27, σ(A) is countable. In particular, there exists µ ∈
ρ(A)∩R. By Lemma 7.28 (that is, by the resolvent identity), R(µ,A) is compact,
too. Moreover, since µ ∈ R, for every x, y ∈ H,

⟨R(µ ,A)x,y⟩= ⟨R(µ,A)x,(µ −A)R(µ,A)y⟩
= ⟨(µ −A)R(µ ,A)x,R(µ,A)y⟩
= ⟨x,R(µ,A)y⟩,

so that R(µ ,A) is selfadjoint. By the spectral theorem for selfadjoint compact op-
erators, there exists an orthonormal basis (en) of H and a sequence (µn) ⊆ R\{0}
such that limn→∞ µn = 0 and such that

µnen = R(µ ,A)en for every n.

This equation implies on the one hand that en ∈ domA and on the other hand, when
we multiply by µ −A,

λnen = Aen for every n,

with λn = µ − 1
µn

. Clearly, limn→∞ |λn| = ∞, and by the spectral mapping theorem
(Theorem 7.27), σ(A) = σp(A) = {λn : n}. The claim is proved.

7.4 Hilbert-Schmidt operators and trace class operators

7.5 * Elliptic partial differential equations

Let Ω ⊆RN be open and bounded, λ ∈C, and consider the elliptic partial differen-
tial equation {

λu−∆u = f in Ω ,

u = 0 in ∂Ω ,
(7.3)

where ∆ stands for the Laplace operator and f ∈ L2(Ω).
Recall from Chapter 2 that a function u ∈ H1

0 (Ω) is a weak solution of (7.3) if
for every φ ∈ H1

0 (Ω) one has

λ
∫

Ω
uφ̄ +

∫
Ω

∇u∇φ =
∫

Ω
f φ̄.

Let H := L2(Ω) and define
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domA := {u ∈ H1
0 (Ω) : ∃ f ∈ L2(Ω)∀φ ∈ H1

0 (Ω) : (7.4)∫
Ω

∇u∇φ =−
∫

Ω
f φ̄}

Au := f ,

so that A : domA → L2(Ω) is a linear operator on L2(Ω). By definition, u ∈ domA
and −Au = f if and only if u is a weak solution of (7.3) for λ = 0. Moreover, a
function u ∈ H1

0 (Ω) is a weak solution of (7.3) if and only if

u ∈ domA and λu−Au = f . (7.5)

In this sense, we may say that A is the realization of the Laplace operator with
Dirichlet boundary conditions. The problem (7.5) is a functional analytic reformu-
lation of (7.3). Instead of solving a partial differential equation we now have to solve
an algebraic equation. Clearly, the operator A is linear.

Theorem 7.32. There exists an orthonormal basis (en) of L2(Ω) and a sequence
(λn)⊂ R− such that limn→∞ λn =−∞ and for every n ∈ N

en ∈ domA and λnen −Aen = 0.

Moreover, σ(A) = σp(A) = {λn : n ∈ N}.

Remark 7.33. Theorem 7.32 gives also a description of the spectrum of the
Dirichlet-Laplace operator A. Every spectral value is an eigenvalue. Every
eigenspace is finite dimensional and there exists an orthonormal basis consisting
only of eigenvectors. For every λ ̸∈ σ(A) and every f ∈ L2(Ω) there exists a unique
weak solution u ∈ H1

0 (Ω) of (7.3).
Theorem 7.32 also implies that the Dirichlet-Laplace operator is unitarily equiv-

alent to a multiplication operator on an l2 space, that is, the Dirichlet-Laplace oper-
ator is diagonalizable.

In order to prove Theorem 7.32, we need the following theorem which will not be
proved here. We only remark that in the case when Ω ⊂ R is a bounded interval we
have given a proof in Example 5.21. For a proof for general Ω , see [Brézis (1992)].

Theorem 7.34 (Rellich-Kondrachov). Let Ω ⊂RN be open and bounded. Then the
embedding

H1
0 (Ω)→ L2(Ω), u 7→ u,

is compact.

Proof (of Theorem 7.32). Let u, v ∈ domA. Then,

⟨Au,v⟩L2 =
∫

Ω
Auv̄ = −

∫
Ω

∇u∇v

=−
∫

Ω
∇v∇u =

∫
Ω

Avū

= ⟨Av,u⟩L2 = ⟨u,Av⟩.
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This equality means that A is symmetric.
By Theorem 9.23 of Chapter 2, for every f ∈ L2(Ω) there exists a unique weak

solution u ∈ H1
0 (Ω) of (7.3) with λ = 1. This means that I − A : domA → H is

bijective. Let J := (I −A)−1 : H → domA ⊆ H be the inverse. For every u, v ∈ H,
u = u1 −Au1, v = v1 −Av1, by the symmetry of A,

⟨Ju,v⟩= ⟨u1,v1 −Av1⟩= ⟨u1 −Au1,v1⟩= ⟨u,v1⟩= ⟨u,Jv⟩.

Hence, J is symmetric. By the Theorem of Hellinger-Toeplitz (Theorem 7.4), J :
H → H is bounded, and thus also selfadjoint. Since J is also a linear operator from
H into H1

0 (Ω), and since J is closed when considered as such an operator, we obtain
in fact that J : H → H1

0 (Ω) is bounded by the closed graph theorem. Since the
embedding H1

0 (Ω) → L2(Ω) is compact by the Rellich-Kondrachov theorem, we
obtain that J ∈ K (H).

By the spectral theorem for selfadjoint compact operators, there exists an or-
thonormal basis (en) of H = L2(Ω) and a sequence (µn)⊂R such that limn→∞ µn =
0 and

µnen = Jen for every n ∈ N.

Since ranJ = domA, we obtain also that en ∈ domA for every n ∈ N. Multiplying
the above equation by I −A, we obtain

λnen −Aen = 0 for every n ∈ N,

with λn := µn−1
µn

∈ R. Since, by Theorem 9.23 of Chapter 2, λ −A is invertible for
every λ > 0, we obtain λn ∈ R−. Clearly, the sequence (λn) is unbounded since
µn → 0.

Now let λ ̸∈ {λn : n ∈ N}, and let f ∈ L2(Ω). If λ = 1 (or even λ > 0), then
we have seen above that the operator λ −A : domA → H is bijective. So we can
assume that λ ̸= 1. Then 1

1−λ ∈ ρ(J) and we can define u := R(1,A)R( 1
1−λ ,J)

f
λ−1 .

Clearly, u ∈ domA, and an easy calculation shows that λu− Au = f . Moreover,
every solution of λu−Au = f is of the form above, and thus λ −A is bijective.

The claim is proved.

Corollary 7.35. The operator A is closed and

domA = {u ∈ L2(Ω) : (λn⟨u,en⟩) ∈ ℓ2}.

Proof. If an operator A : X ⊇ domA → X on a Banach space X has nonempty re-
solvent set, then A is necessarily closed. In fact, (λ −A)−1 is bounded for some
λ ∈ ρ(A) ̸= /0; in particular, (λ −A)−1 is closed, and thus λ −A is closed.

Note that the Dirichlet-Laplace operator A defined above has nonempty resolvent
set by Theorem 7.32, and thus A is closed.

The remaining claim follows easily from the fact that, by Theorem 7.32, A is
unitarily equivalent to the (unbounded) multiplication operator
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domM := {(xn) ∈ l2 : (λnxn) ∈ ℓ2},
M(xn) := (λnxn),

where the unitary operator is given by

U : L2(Ω)→ ℓ2,

u 7→ (⟨u,en⟩),

that is, A =U−1MU .

7.6 * The heat equation

Let Ω ⊂ RN be open and bounded, and consider the heat equation
ut −∆u = 0 in R+×Ω ,

u = 0 in R+×∂Ω ,

u(0,x) = u0(x) in Ω ,

(7.6)

where ∆ denotes the Laplace operator, and u0 ∈ L2(Ω).
We call a function u ∈C(R+;L2(Ω)) a mild solution of (7.6) if u(0) = u0 and if

for every φ ∈ domA the function t 7→ ⟨u(t),φ⟩L2 is continuously differentiable and
if

d
dt
⟨u,φ⟩L2 = ⟨u,Aφ⟩L2 .

Here, A is the realization of the Dirichlet-Laplace operator on L2(Ω) defined in
(7.4).

Theorem 7.36. For every u0 ∈ L2(Ω) there exists a unique mild solution u of (7.6).

Proof. Let A be the realization of the Dirichlet-Laplace operator as defined in the
previous section. By Theorem 7.32, there exists an orthonormal basis (en) and an
unbounded sequence (λn)⊂ R− such that for every n ∈ N one has λnen = Aen.

Assume that u is a mild solution of the heat equation (7.6). Then, for every n ∈N,

d
dt
⟨u(t),en⟩L2 = ⟨u(t),Aen⟩L2 = λn⟨u(t),en⟩L2 .

This implies
⟨u(t),en⟩L2 = eλnt⟨u0,en⟩L2 , t ≥ 0.

Hence, since (en) is an orthonormal basis,

u(t) = ∑
n∈N

eλnt⟨u0,en⟩L2 en, t ≥ 0. (7.7)
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This proves uniqueness of mild solutions.
On the other hand, let u0 ∈ L2(Ω) and define u(t) as in (7.7). Since |eλnt | ≤ 1 for

every t ≥ 0 and since t 7→ eλnt is continuous, u(t) ∈ L2(Ω) for every t ≥ 0, and the
function t 7→ u(t), R+ → L2(Ω) is continuous. Moreover, u(0) = u0.

Let φ ∈ domA. By Corollary 7.35, (λn⟨φ ,en⟩) ∈ ℓ2. As a consequence, t 7→
⟨u(t),φ⟩L2 is continuously differentiable and, by the symmetry of A,

d
dt
⟨u,φ⟩L2 = ∑

n∈N
λneλnt⟨u0,en⟩L2 ⟨en,φ⟩L2

= ∑
n∈N

eλnt⟨u0,en⟩L2 ⟨Aen,φ⟩L2

= ∑
n∈N

eλnt⟨u0,en⟩L2 ⟨en,Aφ⟩L2

= ⟨u,Aφ⟩L2 , t ≥ 0.

This proves existence of mild solutions.

Remark 7.37. The concrete form (7.7) of the solution u of the heat equation (7.6)
allows us to prove that in fact

u ∈C∞((0,∞);L2(Ω)),

or even
u ∈C∞((0,∞);domAk) for every k ≥ 1,

where domAk is the domain of Ak equipped with the graph norm. The heat equation
thus has a regularizing effect in space and time; even if u0 belongs ’only’ to L2(Ω),
then u(t) belongs already to domAk for every k ≥ 1. Moreover, the solution is C∞

with values in domAk for every k ≥ 1.

7.7 * The wave equation

Let Ω ⊂ RN be open and bounded, and consider the wave equation

utt −∆u = 0 in R+×Ω ,

u = 0 in R+×∂Ω ,

u(0,x) = u0(x) in Ω ,

ut(0,x) = u1(x) in Ω ,

(7.8)

where ∆ denotes the Laplace operator, u0 ∈ H1
0 (Ω), and u1 ∈ L2(Ω).

We call a function u ∈ C(R+;H1
0 (Ω))∩C1(R+;L2(Ω)) a mild solution of (7.8)

if u(0) = u0, ut(0) = u1, if for every φ ∈ H1
0 (Ω) the function t 7→ ⟨u,φ⟩L2 is twice

continuously differentiable and if
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d2

dt2 ⟨u(t),φ⟩L2 +
∫

Ω
∇u(t)∇φ = 0.

Theorem 7.38. For every u0 ∈ H1
0 (Ω) and every u1 ∈ L2(Ω) there exists a unique

mild solution of (7.8).

For the proof of Theorem 7.38, we need the following result which we shall not
prove here; compare with Corollary 7.35.

Lemma 7.39. Let A be the Dirichlet-Laplace operator as defined in (7.4), and let
(en) and (λn) be as in Theorem 7.32. Then

H1
0 (Ω) = {u ∈ L2(Ω) : (

√
−λn⟨u,en⟩) ∈ ℓ2}.

Proof (of Theorem 7.38). Let A be the realization of the Dirichlet-Laplace operator
as defined in Section 7.5. By Theorem 7.32, there exists an orthonormal basis (en)
and an unbounded sequence (λn) ⊂ R− such that for every n ∈ N one has λnen =
Aen.

Assume that u is a mild solution of the wave equation (7.8). Then, for every
n ∈ N,

d2

dt2 ⟨u(t),en⟩L2 = ⟨u(t),Aen⟩L2 = λn⟨u(t),en⟩L2 .

Setting αn :=
√
−λn, this implies

⟨u(t),en⟩L2 = cos(αnt)⟨u0,en⟩L2 +
1

αn
sin(αnt)⟨u1,en⟩L2 , t ≥ 0.

Hence, since (en) is an orthonormal basis,

u(t) = ∑
n∈N

cos(αnt)⟨u0,en⟩L2 en + ∑
n∈N

1
αn

sin(αnt)⟨u1,en⟩L2 en, t ≥ 0. (7.9)

This proves uniqueness of mild solutions.
On the other hand, let u0 ∈ H1

0 (Ω) and u1 ∈ L2(Ω), and define u(t) as in (7.9).
Since |cos(αnt)| ≤ 1 and |sin(αnt)| ≤ 1 for every t ≥ 0 and since cos and sin are
continuous, by Lemma 7.39, u(t)∈H1

0 (Ω) for every t ≥ 0, and the function t 7→ u(t),
R+ → H1

0 (Ω) is continuous. Moreover, u(0) = u0. By the same reasons, t 7→ u(t),
R+ → L2(Ω) is continuously differentiable and ut(0) = u1.

Let φ ∈ H1
0 (Ω). By Lemma 7.39, (αn⟨φ,en⟩) ∈ ℓ2. As a consequence, t 7→

⟨u(t),φ⟩ is twice continuously differentiable and, by the symmetry of A,
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d2

dt2 ⟨u,φ⟩=− ∑
n∈N

λn cos(αnt)⟨u0,en⟩L2 ⟨en,φ⟩L2−

− ∑
n∈N

αn sin(αnt)⟨u1,en⟩L2 ⟨en,φ⟩L2

=− ∑
n∈N

cos(αnt)⟨u0,en⟩L2 ⟨Aen,φ⟩L2−

− ∑
n∈N

1
αn

sin(αnt)⟨u1,en⟩L2 ⟨Aen,φ⟩L2

=− ∑
n∈N

cos(αnt)⟨u0,en⟩L2

∫
Ω

∇en∇φ−

− ∑
n∈N

1
αn

sin(αnt)⟨u1,en⟩L2

∫
Ω

∇en∇φ

=−
∫

Ω
∇u∇φ, t ≥ 0.

This proves existence of mild solutions.

Remark 7.40. The concrete form (7.9) of the solution u of the wave equation (7.8)
shows that it can be uniquely extended to a solution u defined on R. However, for
the wave equation (7.8) there is no regularizing effect as for the heat equation (7.6).

7.8 * The Schrödinger equation

Let Ω ⊂ RN be open and bounded, and consider the Schrödinger equation
ut − i∆u = 0 in R+×Ω ,

u = 0 in R+×∂Ω ,

u(0,x) = u0(x) in Ω ,

(7.10)

where ∆ denotes the Laplace operator, i =
√
−1 is the complex unity, and u0 ∈

L2(Ω).
We call a function u ∈C(R+;L2(Ω)) a mild solution of (7.10) if u(0) = u0 and

if for every φ ∈ domA the function t 7→ ⟨u,φ⟩L2 is continuously differentiable and
if

d
dt
⟨u,φ⟩L2 = i⟨u,Aφ⟩L2 , t ≥ 0.

Here, A is the realization of the Dirichlet-Laplace operator on L2(Ω) defined in
(7.4).

Theorem 7.41. For every u0 ∈ L2(Ω) there exists a unique mild solution u of (7.10).



7.8 * The Schrödinger equation 135

Proof. Let A be the realization of the Dirichlet-Laplace operator as defined in (7.4).
By Theorem 7.32, there exists an orthonormal basis (en) and an unbounded se-
quence (λn)⊂ R− such that for every n ∈ N one has λnen = Aen.

Assume that u is a mild solution of the Schrödinger equation (7.10). Then, for
every n ∈ N,

d
dt
⟨u(t),en⟩L2 = i⟨u(t),Aen⟩L2 = iλn ⟨u(t),en⟩L2 .

This implies
⟨u(t),en⟩L2 = eiλnt ⟨u0,en⟩L2 , t ≥ 0.

Hence, since (en) is an orthonormal basis,

u(t) = ∑
n∈N

eiλnt⟨u0,en⟩L2 en, t ≥ 0. (7.11)

This proves uniqueness of mild solutions.
On the other hand, let u0 ∈ L2(Ω) and define u(t) as in (7.11). Since |eiλnt | ≤ 1

for every t ≥ 0 and since t 7→ eiλnt is continuous, u(t) ∈ L2(Ω) for every t ≥ 0, and
the function t 7→ u(t), R+ → L2(Ω) is continuous. Moreover, u(0) = u0.

Let φ ∈ domA. By Corollary 7.35, (λn⟨φ ,en⟩) ∈ ℓ2. As a consequence, t 7→
⟨u(t),φ⟩L2 is continuously differentiable and, by the symmetry of A,

d
dt
⟨u,φ⟩L2 = ∑

n∈N
iλn eiλnt⟨u0,en⟩L2 ⟨en,φ⟩L2

= i ∑
n∈N

eiλnt⟨u0,en⟩L2 ⟨Aen,φ⟩L2

= i ∑
n∈N

eiλnt⟨u0,en⟩L2 ⟨en,Aφ⟩L2

= i⟨u,Aφ⟩L2 , t ≥ 0.

This proves existence of mild solutions.

Remark 7.42. The concrete form (7.11) of the solution u of the Schrödinger equa-
tion (7.10) shows that it can be uniquely extended to a solution u defined on R.
However, similarly as for the wave equation (7.8), there is no regularizing effect for
the Schrödinger equation (7.10).





Chapter 8
Calculus on Banach spaces

8.1 Differentiable functions between Banach spaces

Let X , Y be two Banach spaces, and let U ⊆ X be open. A function f : U → Y is
differentiable at x ∈U if there exists a bounded linear operator T ∈ L (X ,Y ) such
that

lim
∥h∥→0

f (x+h)− f (x)−T h
∥h∥

= 0. (8.1)

We say that f is differentiable if it is differentiable at every point x ∈ U . If f is
differentiable at a point x ∈U , then T ∈ L (X ,Y ) is uniquely determined. We write
D f (x) := f ′(x) := T and call D f (x) = f ′(x) the derivative of f at x.

Lemma 8.1. If a function f : U → Y is differentiable at x ∈U, then it is continuous
at x. In particular, every differentiable function is continuous.

Proof. Let (xn)⊆U be convergent to x. By definition (equation (8.1)) and continuity
of f ′(x),

∥ f (xn)− f (x)∥ ≤ ∥ f (xn)− f (x)− f ′(x)(x− xn)∥+∥ f ′(x)(x− xn)∥
→ 0,

as n → ∞.

Let X , Y be two Banach spaces, and let U ⊆ X be open. A function f : U → Y is
called continuously differentiable if it is differentiable and if f ′ : U → L (X ,Y ) is
continuous. We denote by

C1(U ;Y ) := { f : U → Y : f differentiable and f ′ ∈C(U ;L (X ,Y ))}

the space of all continuously differentiable functions. Moreover, for k ≥ 2, we de-
note by

Ck(U ;Y ) := { f : U → Y : f differentiable and f ′ ∈Ck−1(U ;L (X ,Y ))}

137
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the space of all k times continuously differentiable functions.

Let Xi (1 ≤ i ≤ n) and Y be Banach spaces. Let U ⊆
⊗n

i=1 Xi be open. We say that
a function f : U → Y is at a = (ai)1≤i≤n ∈U partially differentiable with respect
to the i-th coordinate if the function

fi : Ui ⊆ Xi → Y, xi 7→ f (a1, . . . ,xi, . . . ,an)

is differentiable in ai. We write ∂ f
∂xi

(a) := f ′i (ai) ∈ L (Xi,Y ).

8.2 Local inverse function theorem and implicit function theorem

Let X and Y be two Banach spaces and let U ⊆ X be an open subset. The following
are two classical theorems in differential calculus.

Theorem 8.2 (Local inverse function theorem). Let f : U → Y be continuously
differentiable and x̄∈U such that f ′(x̄) : X →Y is an isomorphism, that is, bounded,
bijective and the inverse is also bounded. Then there exist neighbourhoods V ⊆ U
of x̄ and W ⊆ Y of f (x̄) such that f : V → W is a C1 diffeomorphism, that is f is
continuously differentiable, bijective and the inverse f−1 : W → V is continuously
differentiable, too.

Theorem 8.3 (Implicit function theorem). Assume that X = X1 ×X2 for two Ba-
nach spaces X1, X2, and let f : X ⊃ U → Y be continuously differentiable. Let
x̄ = (x̄1, x̄2) ∈ U be such that ∂ f

∂x2
(x̄) : X2 → Y is an isomorphism. Then there exist

neighbourhoods U1 ⊆ X1 of x̄1 and U2 ⊆ X2 of x̄2, U1 ×U2 ⊆U, and a continuously
differentiable function g : U1 →U2 such that

{x ∈U1 ×U2 : f (x) = f (x̄)}= {(x1,g(x1)) : x1 ∈U1}.

For the proof of the local inverse theorem, we need the following lemma.

Lemma 8.4. Let f : U →Y be continuously differentiable such that f : U → f (U) is
a homeomorphism, that is, continuous, bijective and with continuous inverse. Then
f is a C1 diffeomorphism if and only if for every x ∈U the derivative f ′(x) : X → Y
is an isomorphism.

Proof. Assume first that f is a C1 diffeomorphism. When we differentiate the iden-
tities x = f−1( f (x)) and y = f ( f−1(y)), which are true for every x ∈ U and every
y ∈ f (U), then we find

IX = ( f−1)′( f (x)) f ′(x) for every x ∈U and

IY = f ′( f−1(y))( f−1)′(y)

= f ′(x)( f−1)′( f (x)) for every x = f−1(y) ∈U.
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As a consequence, f ′(x) is an isomorphism for every x ∈U .
For the converse, assume that f ′(x) is an isomorphism for every x ∈U . For every

x1, x2 ∈U one has, by differentiability,

f (x2) = f (x1)+ f ′(x1)(x2 − x1)+o(x2 − x1),

where o depends on x1 and limx2→x1
o(x2−x1)
∥x2−x1∥

= 0. We have x1 = f−1(y1) and x2 =

f−1(y2) if we put yi := f (xi). Hence, the above identity becomes

y2 = y1 + f ′( f−1(y1))( f−1(y2)− f−1(y1))+o( f−1(y2)− f−1(y1)).

To this identity, we apply the inverse operator ( f ′( f−1(y1)))
−1 and we obtain

f−1(y2)= f−1(y1)+( f ′( f−1(y1)))
−1(y2−y1)−( f ′( f−1(y1)))

−1o( f−1(y2)− f−1(y1)).

Since f−1 is continuous, the last term on the right-hand side of the last equality is
sublinear. Hence, f−1 is differentiable and

( f−1)′(y1) = ( f ′( f−1(y1)))
−1.

From this identity (using that f−1 and f ′ are continuous) we obtain that f−1 is
continuously differentiable. The claim is proved.

Proof (Proof of the local inverse function theorem). Consider the function

g : U → X ,

x 7→ f ′(x̄)−1 f (x).

It suffices to show that g : V → W is a C1 diffeomorphism for appropriate neigh-
bourhoods V of x̄ and W of g(x̄).

Consider also the function

φ : U → X ,

x 7→ x−g(x).

This function φ is continuously differentiable and φ ′(x)= I− f ′(x̄)−1 f ′(x) for every
x ∈U . In particular, φ ′(x̄) = 0. By continuity of φ ′, there exists r > 0 and L < 1 such
that ∥φ ′(x)∥ ≤ L for every x ∈ B̄(x̄,r)⊆U . Hence,

∥φ(x1)−φ(x2)∥ ≤ L∥x1 − x2∥ for every x1, x2 ∈ B̄(x̄,r).

By the definition of φ , this implies

∥g(x1)−g(x2)∥= ∥x1 − x2 − (φ(x1)−φ(x2))∥ (8.2)
≥ ∥x1 − x2∥−L∥x1 − x2∥
= (1−L)∥x1 − x2∥.
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We claim that for every y ∈ B̄(g(x̄),(1−L)r) there exists a unique x ∈ B̄(x̄,r) such
that g(x) = y.

The uniqueness follows from (8.2).
In order to prove existence, let x0 = x̄, and then define recursively xn+1 = y+

φ(xn) = y+ xn − f ′(x̄)−1 f (xn) for every n ≥ 0. Then

∥xn − x̄∥= ∥
n−1

∑
k=0

xk+1 − xk∥

≤ ∥x1 − x0∥+
n−1

∑
k=1

∥φ(xk)−φ(xk−1)∥

≤
n−1

∑
k=0

Lk ∥x1 − x0∥

=
1−Ln

1−L
∥y−g(x̄)∥

≤ (1−Ln)r ≤ r,

which implies xn ∈ B̄(x̄,r) for every n ≥ 0. Similarly, for every n ≥ m ≥ 0,

∥xn − xm∥ ≤
n−1

∑
k=m

Lk ∥y−g(x̄)∥,

so that the sequence (xn) is a Cauchy sequence in B̄(x̄,r). Since B̄(x̄,r) is complete,
there exists limn→∞ xn =: x ∈ B̄(x̄,r). By continuity,

x = y+φ(x) = y+ x−g(x),

or
g(x) = y.

This proves the above claim, that is, g is locally invertible. It remains to show that
g−1 is continuous (then g is a homeomorphism, and therefore a C1 diffeomorphism
by Lemma 8.4). Contiunity of the inverse function, however, is a direct consequence
of (8.2) (which even implies Lipschitz continuity).

Remark 8.5. The iteration formula

xn+1 = y+ xn − f ′(x̄)−1 f (xn)

used in the proof of the local inverse theorem in order to find a solution of g(x) =
f ′(x̄)−1 f (x) = y should be compared to the discrete Newton iteration

xn+1 = y+ xn − f ′(xn)
−1 f (xn);

see Theorem 8.8 below.

Proof (Proof of the implicit function theorem). Consider the function
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F : U → X1 ×Y,

(x1,x2) 7→ (x1, f (x1,x2)).

Then F is continuously differentiable and

F ′(x̄)(h1,h2) = (h1,
∂ f
∂x1

(x̄)h1 +
∂ f
∂x2

(x̄)h2).

In particular, by the assumption, F ′(x̄) is locally invertible with inverse

F ′(x̄)−1(y1,y2) = (y1,(
∂ f
∂x2

(x̄))−1(y2 −
∂ f
∂x1

(x̄)y1)).

By the local inverse theorem (Theorem 8.2), there exists a neighbourhood U1 of x̄1,
a neighbourhood U2 of x̄2 and a neighbourhood V of (x̄1, f (x̄)) = F(x̄) such that
F : U1 ×U2 →V is a C1 diffeomorphism. The inverse is of the form

F−1(y1,y2) = (y1,h2(y1,y2)),

where h2 is a function such that f (y1,h2(y1,y2)) = y2. Let

Ũ1 := {x1 ∈U1 : (x1, f (x̄)) ∈V}.

Then Ũ1 is open by continuity of the function x1 7→ (x1, f (x̄)), and x̄1 ∈ Ũ1. We
restrict F to Ũ1 ×U2, and we define

g : Ũ1 → X2, (8.3)

x1 7→ g(x1) = F−1(x1, f (x̄))2,

where F−1(·)2 denotes the second component of F−1(·). Then g is continuously dif-
ferentiable, g(Ũ1)⊆U2 and g satisfies the required property of the implicit function.

Lemma 8.6 (Higher regularity of the local inverse). Let f ∈ Ck(U ;Y ) for some
k ≥ 1 and assum that f : U → f (U) is a C1 diffeomorphism. Then f is a Ck diffeo-
morphism, that is, f−1 is k times continuously differentiable.

Proof. For every y ∈ f (U) we have

( f−1)′(y) = f ′( f−1(y))−1.

The proof therefore follows by induction on k.

Lemma 8.7 (Higher regularity of the implicit function). If, in the implicit func-
tion theorem (Theorem 8.3), the function f is k times continuously differentiable,
then the implicit function g is also k times continuously differentiable.

Proof. This follows from the previous lemma (Lemma 8.6) and the definition of the
implicit function in the proof of the implicit function theorem.
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8.3 * Newton’s method

Theorem 8.8 (Newton’s method). Let X and Y be two Banach spaces, U ⊆ X an
open set. Let f ∈C1(U ;Y ) and assume that there exists x̄ ∈U such that (i) f (x̄) = 0
and (ii) f ′(x̄) ∈ L (X ,Y ) is an isomorphism. Then there exists a neighbourhood
V ⊆ U of x̄ such that for every x0 ∈ V the operator f ′(x0) is an isomorphism, the
sequence (xn) defined iteratively by

xn+1 = xn − f ′(xn)
−1 f (xn), n ≥ 0, (8.4)

remains in V and limn→∞ xn = x̄.

Proof. By Corollary 1.35 and continuity, there exists a neighbourhood Ṽ ⊆ U of
x̄ such that f ′(x) is isomorphic for all x ∈ Ṽ . Next, it will be useful to define the
auxiliary function φ : Ṽ → X by

φ(x) := x− f ′(x)−1 f (x), x ∈ Ṽ .

Since f (x̄) = 0, we find that for every x ∈ Ṽ

φ(x)−φ(x̄) = x− f ′(x)−1( f (x)− f (x̄))− x̄

= x− x̄− f ′(x)−1( f ′(x̄)(x− x̄)+ r(x− x̄)),

so that by the continuity of f ′(·)−1

lim
x→x̄

∥φ(x)−φ(x̄)∥
∥x− x̄∥

= 0.

Hence, there exists r > 0 such that V := B(x̄,r) ⊆ Ṽ ⊆ U and such that for every
x ∈V

∥φ(x)− x̄∥= ∥φ(x)−φ(x̄)∥ ≤ 1
2
∥x− x̄∥.

This implies that for every x0 ∈ V one has φ(x0) ∈ V and if we define iteratively
xn+1 = φ(xn) = φn+1(x0), then

∥xn − x̄∥ ≤
(1

2
)n ∥x0 − x̄∥→ 0 as n → ∞.



Chapter 9
Sobolev spaces

9.1 Test functions, convolution and regularization

Let Ω ⊆ Rd be an open set. For every continuous function φ ∈C(Ω) we define the
support

suppφ := {x ∈ Ω : φ(x) ̸= 0},

where the closure is to be understood in Rd . Thus, the support is by definition always
closed in Rd , but it is not necessarily a subset of Ω . Next we let

D(Ω) :=C∞
c (Ω) := {φ ∈C∞(Ω) : suppφ ⊆ Ω is compact}

be the space of test functions on Ω , and

L1
loc(Ω) := { f : Ω →K measurable :

∫
K
| f |< ∞∀K ⊆ Ω compact}

the space of locally integrable functions on Ω . For every f ∈ L1
loc(Rd) and every

φ ∈ D(Rd) we define the convolution f ∗φ by

f ∗φ(x) :=
∫
Rd

f (x− y)φ(y) dy

=
∫
Rd

f (y)φ(x− y) dy.

Lemma 9.1. For every f ∈ L1
loc(Rd) and every φ ∈ D(Rd) one has f ∗φ ∈C∞(Rd)

and for every 1 ≤ i ≤ d,
∂

∂xi
( f ∗φ) = f ∗ ∂φ

∂xi
.

Proof. Let ei ∈ Rd be the i-th unit vector. Then

lim
h→0

1
h
(φ(x+hei)−φ(x)) =

∂φ
∂xi

(x)

143
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uniformly in x ∈ Rd (note that φ has compact support). Hence, for every x ∈ Rd

1
h
( f ∗φ(x+hei)− f ∗φ(x))

=
1
h

∫
Rd

f (y)(φ(x+hei − y)−φ(x− y)) dy

→
∫
Rd

f (y)
∂φ
∂xi

(x− y) dy.

The following theorem is proved in courses on measure theory. We omit the
proof.

Theorem 9.2 (Young’s inequality). Let f ∈ Lp(Rd) and φ ∈D(Rd). Then f ∗φ ∈
Lp(Rd) and

∥ f ∗φ∥p ≤ ∥ f∥p ∥φ∥1.

Theorem 9.3. For every 1 ≤ p < ∞ and every open Ω ⊆ Rd the space D(Ω) is
dense in Lp(Ω).

Proof. The technique of this proof (regularization and truncation) is important in
the theory of partial differential equations, distributions and Sobolev spaces. The
first step (regularization) is based on Lemma 9.1. The truncation step is in this case
relatively easy.

Regularization. Let φ ∈ D(Rd) be a positive function such that ∥φ∥1 =
∫
Rd φ =

1. One may take for example the function

φ(x) :=

{
ce1/(1−|x|2) if |x|< 1,

0 otherwise,
(9.1)

with an appropriate constant c > 0. Then let φn(x) := ndφ(nx), so that ∥φn∥1 =∫
Rd φn = 1 for every n ∈ N.

Let f ∈ Lp(Rd). By Lemma 9.1 and Young’s inequality (Theorem 9.2), for every
n ∈ N, fn := f ∗φn ∈C∞(Rd)∩Lp(Rd) and ∥ fn∥p ≤ ∥ f∥p. Hence, for every n ∈ N
the operator Tn : Lp(Rd)→ Lp(Rd), f 7→ f ∗φn is linear and bounded and ∥Tn∥ ≤ 1.
Moreover, if f = 1I for some bounded interval I = (a1,b1)× ·· · × (ad ,bd) ⊆ Ω ,
then

∥ fn − f∥p
p =

∫
Rd

∣∣∣∣∫Rd
f (x− y)φ(ny)nd dy− f (x)

∣∣∣∣p dx

=
∫
Rd

∣∣∣∣∫Rd
( f (x− y

n
)− f (x))φ(y) dy

∣∣∣∣p dx

≤
∫
Rd

(∫
Rd

| f (x− y
n
)− f (x)|φ(y) dy

)p

dx → 0

as n → ∞ by Lebesgue’s dominated convergence theorem. In other words,
limn→∞ ∥Tn f − f∥p = 0 for every f = 1I with I as above. Since span{1I : I ⊆ Rd
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bounded interval} is dense in Lp(Rd), we find that limn→∞ ∥Tn f − f∥p = 0 for ev-
ery f from a dense subset M of Lp(Rd). Since the Tn are bounded, we conclude
from Lemma 2.48 that Tn f → f in Lp(Rd) for every f ∈ Lp(Rd). This proves that
Lp ∩C∞(Rd) is dense in Lp(Rd).

Truncation. Now we consider a general open set Ω ⊆ Rd and prove the claim.
Let φ ∈ D(Rd) be a positive test function such that suppφ ⊆ B(0,1) and

∫
Rd φ = 1

(one may take for example the function from (9.1)). Then let φn(x) := ndφ(nx).
For every n ∈ N we let

Kn := {x ∈ Ω : dist(x,∂Ω)≥ 1
n
}∩B(0,n),

so that Kn ⊆ Ω is compact for every n ∈ N.
Now let f ∈ Lp(Ω)⊆ Lp(Rd) and ε > 0. Let

f 1Kn(x) =

{
f (x) if x ∈ Kn,

0 if x ∈ Ω \Kn.

By Lebesgue’s dominated convergence theorem (since
∪

n Kn = Ω ),

∥ f − f 1Kn∥p
p =

∫
Ω
| f |p(1−1Kn)

p → 0 as n → ∞.

In particular, there exists n ∈ N such that ∥ f − f 1Kn∥p ≤ ε .
For every m ≥ 4n we define gm := ( f 1Kn)∗φm ∈ Lp ∩C∞(Rd); note that we here

consider Lp(Ω) as a subspace of Lp(Rd) by extending functions in Lp(Ω) by 0
outside Ω . However, since gm = 0 outside K2n, we find that actually gm ∈ D(Ω).
By the first step (regularisation), there exists m ≥ 4n so large that ∥gm− f 1Kn∥p ≤ ε .
For such m we have ∥ f −gm∥p ≤ 2ε , and the claim is proved.

Lemma 9.4. Let f ∈ L1
loc(Ω) be such that∫

Ω
f φ = 0 for every φ ∈ D(Ω).

Then f = 0.

Proof. We first assume that f ∈ L1(Ω) is real and that Ω has finite measure. By
Theorem 9.3, for every ε > 0 there exists g ∈ D(Ω) such that ∥ f − g∥1 ≤ ε . By
assumption, this implies

|
∫

Ω
gφ|= |

∫
Ω
( f −g)φ| ≤ ε∥φ∥∞ ∀φ ∈ D(Ω).

Let K1 := {x ∈ Ω : g(x) ≥ ε} and K2 := {x ∈ Ω : g(x) ≤ −ε}. Since g is a test
function, the sets K1, K2 are compact. Since they are disjoint and do not touch the
boundary of Ω ,

inf{|x− y|, |x− z|, |y− z| : x ∈ K1, y ∈ K2, z ∈ ∂Ω}=: δ > 0.
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Let Kδ
i := {x ∈ Ω : dist(x,Ki)≤ δ/4} (i = 1, 2). Then Kδ

1 and Kδ
2 are two compact

disjoint subsets of Ω . Let

h(x) :=


1 if x ∈ Kδ

1 ,

−1 if x ∈ Kδ
2 ,

0 else,

choose a positive test function φ ∈ D(Rd) such that
∫
Rd φ = 1 and suppφ ⊆

B(0,δ/8), and let ψ := h ∗φ . Then ψ ∈ D(Ω), −1 ≤ ψ ≤ 1, ψ = 1 on K1 and
ψ =−1 on K2. Let K := K1 ∪K2. Then∫

K
|g|=

∫
K

gψ ≤ ε +
∫

Ω\K
|gψ| ≤ ε +

∫
Ω\K

|g|.

Hence, ∫
Ω
|g|=

∫
K
|g|+

∫
Ω\K

|g| ≤ ε +2
∫

Ω\K
|g| ≤ ε(1+2 |Ω |),

which implies ∫
Ω
| f | ≤

∫
Ω
| f −g|+

∫
Ω
|g| ≤ 2ε(1+ |Ω |).

Since ε > 0 was arbitrary, we find that f = 0.
The general case can be obtained from the particular case ( f ∈ L1 and |Ω |< ∞)

by considering first real and imaginary part of f separately, and then by considering
f 1B for all closed (compact) balls B ⊆ Ω .

9.2 Sobolev spaces in one dimension

Recall the fundamental rule of partial integration: if f , g ∈C1([a,b]) on some com-
pact interval [a,b], then∫ b

a
f g′ = f (b)g(b)− f (a)g(a)−

∫ b

a
f ′g.

In particular, for every f ∈C1([a,b]) and every φ ∈ D(a,b)∫ b

a
f φ ′ =−

∫ b

a
f ′φ , (9.2)

since φ(a) = φ(b) = 0.

Let −∞ ≤ a < b ≤ ∞ and 1 ≤ p ≤ ∞. We define

W 1,p(a,b) := {u ∈ Lp(a,b) : ∃g ∈ Lp(a,b)∀φ ∈ D(a,b) :
∫ b

a
uφ ′ =−

∫ b

a
gφ}.
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The space W 1,p(a,b) is called (first) Sobolev space. If p = 2, then we also write
H1(a,b) :=W 1,2(a,b).

By Lemma 9.4, the function g ∈ Lp(a,b) is uniquely determined if it exists. In
the following, we will write u′ := g, in accordance with (9.2). We equip W 1,p(a,b)
with the norm

∥u∥W 1,p := ∥u∥p +∥u′∥p,

and if p = 2, then we define the inner product

⟨u,v⟩H1 :=
∫ b

a
uv+

∫ b

a
u′v′,

which actually yields the norm ∥u∥H1 = (∥u∥2
2 + ∥u′∥2

2)
1
2 (which is equivalent to

∥ · ∥W 1,2).

Lemma 9.5. The Sobolev spaces W 1,p(a,b) are Banach spaces, which are separa-
ble if p ̸= ∞. The space H1(a,b) is a separable Hilbert space.

Proof. The fact that the W 1,p are Banach spaces, or that H1 is a Hilbert space, is an
exercise. Recall that Lp(a,b) is separable (Remark 2.37). Hence, the product space
Lp(a,b)× Lp(a,b) is separable, and also every subspace of this product space is
separable. Now consider the linear mapping

T : W 1,p(a,b)→ Lp(a,b)×Lp(a,b), u 7→ (u,u′),

which is bounded and even isometric. Hence, W 1,p is isometrically isomomorphic
to a subspace of Lp ×Lp which is separable. Hence W 1,p is separable.

Lemma 9.6. Let u ∈W 1,p(a,b) be such that u′ = 0. Then u is constant.

Proof. Choose ψ ∈ D(a,b) such that
∫ b

a ψ = 1. Then, for every φ ∈ D(a,b), the
function φ −(

∫ b
a φ)ψ is the derivative of a test function since

∫ b
a (φ −(

∫ b
a φ)ψ) = 0.

Hence, by definition,

0 =
∫ b

a
u(φ − (

∫ b

a
φ)ψ),

or, with c =
∫ b

a uψ = const,∫ b

a
(u− c)φ = 0 ∀φ ∈ D(a,b).

By Lemma 9.4, u = c almost everywhere.

Lemma 9.7. Let −∞ < a < b < ∞ and let t0 ∈ [a,b]. Let g ∈ Lp(a,b) and define

u(t) :=
∫ t

t0
g(s) ds, t ∈ [a,b].

Then u ∈W 1,p(a,b) and u′ = g.
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Proof. Let φ ∈ D(a,b). Then, by Fubini’s theorem,∫ b

a
uφ ′ =

∫ b

a

∫ t

t0
g(s) dsφ ′(t) dt

=
∫ t0

a

∫ t

t0
g(s) dsφ ′(t) dt +

∫ b

t0

∫ t

t0
g(s) dsφ ′(t) dt

=−
∫ t0

a

∫ s

a
φ ′(t) dtg(s) ds+

∫ b

t0

∫ b

s
φ ′(t) dtg(s) ds

=−
∫ t0

a
φ(s)g(s) ds−

∫ b

t0
φ(s)g(s) ds

=−
∫ b

a
gφ.

Theorem 9.8. Let u ∈ W 1,p(a,b) (bounded or unbounded interval). Then there ex-
ists ũ ∈C((a,b)) which is continuous up to the boundary of (a,b), which coincides
with u almost everywhere and such that for every s, t ∈ (a,b)

ũ(t)− ũ(s) =
∫ t

s
u′(r) dr.

Proof. Fix t0 ∈ (a,b) and define v(t) :=
∫ t

t0 u′(s) ds (t ∈ (a,b)). Clearly, the function
v is continuous. By Lemma 9.7, v ∈ W 1,p(c,d) for every bounded interval (c,d) ⊆
(a,b), and v′ = u′. By Lemma 9.6, u−v =C for some constant C which clearly does
not depend on the choice of the interval (c,d). This proves that u coincides almost
everywhere with the continuous function ũ = v+C. By Lemma 9.7,

ũ(t)− ũ(s) = v(t)− v(s) =
∫ t

s
u′(r) dr.

Remark 9.9. By Theorem 9.8, we will identify every function u ∈ W 1,p(a,b) with
its continuous representant, and we say that every function in W 1,p(a,b) is continu-
ous.

Lemma 9.10 (Extension lemma). Let u∈W 1,p(a,b). Then there exists ũ∈W 1,p(R)
such that ũ = u on (a,b).

Proof. Assume first that a and b are finite and define

g(t) :=



u′(t) if t ∈ [a,b],

u(a) if t ∈ [a−1,a),

−u(b) if t ∈ (b,b+1],

0 else.
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Then g ∈ Lp(R). Let ũ(t) :=
∫ t
−∞ g(s) ds, so that ũ = u on (a,b). By Lemma 9.7,

ũ ∈ W 1,p(c,d) for every bounded interval (c,d) ∈ R. However, ũ = 0 outside (a−
1,b+1) which implies that ũ ∈W 1,p(R).

The case of a =−∞ or b = ∞ is treated similarly.

Lemma 9.11. For every 1 ≤ p < ∞, the space D(R) is dense in W 1,p(R).

Proof. Let u ∈W 1,p(R).
Regularization: Choose a positive test function φ ∈D(R) such that

∫
R φ = 1 and

put φn(x) = nφ(nx). Then un := u∗φn ∈C∞ ∩Lp(R), u′n = u′ ∗φn ∈ Lp(R) and

lim
n→∞

∥u−un∥p = 0 and

lim
n→∞

∥u′−u′n∥p = 0,

so that limn→∞ ∥u − un∥W 1,p = 0. This proves that W 1,p(R)∩C∞(R) is dense in
W 1,p(R).

Truncation: Choose a sequence (ψn) ⊆ D(R) such that 0 ≤ ψn ≤ 1, ψn = 1 on
[−n,n] and ∥ψ ′

n∥∞ ≤C for all n ∈N. Let ε > 0. Choose v ∈C∞ ∩W 1,p(R) such that
∥u− v∥W 1,p ≤ ε (regularization step). For every n ∈ N, one has vψn ∈ D(R) and it
is easy to check that for all n large enough, ∥v−vψn∥W 1,p ≤ ε . The claim is proved.

Corollary 9.12. For every u ∈W 1,p(a,b) (bounded or unbounded interval, 1 ≤ p <
∞) and every ε > 0, there exists v ∈ D(R) such that ∥u− v|(a,b)∥W 1,p ≤ ε .

Proof. Given u ∈ W 1,p(a,b), we first choose an extension ũ ∈ W 1,p(R) (extension
lemma 9.10) and then a test function v∈D(R) such that ∥ũ−v∥W 1,p(R) ≤ ε (Lemma
9.11). Then ∥ũ− v∥W 1,p(a,b) = ∥u− v∥W 1,p(a,b) ≤ ε .

Corollary 9.13 (Sobolev embedding theorem). Every function u ∈ W 1,p(a,b) is
continuous and bounded and there exists a constant C ≥ 0 such that

∥u∥∞ ≤C∥u∥W 1,p for every u ∈W 1,p(a,b).

Proof. If p = ∞, there is nothing to prove. We first prove the claim for the case
(a,b) = R.

So let 1 ≤ p < ∞ and let v ∈ D(R). Then G(v) := |v|p−1v ∈C1
c (R) and G(v)′ =

p|v|p−1v′. By Hölder’s inequality,

|G(v)(x)|= p |
∫ x

−∞
|v|p−1v′| ≤ p∥v∥p−1

p ∥v′∥p,

so that by Young’s inequality (ab ≤ 1
p ap + 1

p′ b
p′ )

∥v∥∞ = ∥G(v)∥1/p
∞ ≤C∥v∥W 1,p .

Since D(R) is dense in W 1,p(R) by Lemma 9.11, the claim for (a,b) = R follows
by an approximation argument.

The case (a,b) ̸= R is an exercise.
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Theorem 9.14 (Product rule, partial integration). Let u, v ∈W 1,p(a,b) (1 ≤ p ≤
∞). Then:

(i) (Product rule). The product uv belongs to W 1,p(a,b) and

(uv)′ = u′v+uv′.

(ii) (Partial integration). If −∞ < a < b < ∞, then∫ b

a
u′v = u(b)v(b)−u(a)v(a)−

∫ b

a
uv′.

Proof. Since every function in W 1,p(a,b) is bounded, we find that uv, u′v+ uv′ ∈
Lp(a,b). Choose sequences (un), (vn) ⊆ D(R) such that limn→∞ un|(a,b) = u and
limn→∞ vn|(a,b) = v in W 1,p(a,b) (Corollary 9.12). By Corollary 9.13, this implies
also limn→∞ ∥un|(a,b)−u∥∞ = limn→∞ ∥vn|(a,b)−v∥∞ = 0. The classical product rule
implies

(unvn)
′ = u′nvn +unv′n for every n ∈ N,

and the classical rule of partial integration implies∫ b

a
u′nvn = un(b)vn(b)−un(a)vn(a)−

∫ b

a
unv′n for every n ∈ N.

The claim follows upon letting n tend to ∞.

For every 1 ≤ p ≤ ∞ and every k ≥ 2 we define inductively the Sobolev spaces

W k,p(a,b) := {u ∈W 1,p(a,b) : u′ ∈W k−1,p(a,b)},

which are Banach spaces for the norms

∥u∥W k,p :=
k

∑
j=0

∥u( j)∥p.

We denote Hk(a,b) :=W k,2(a,b) which is a Hilbert space for the scalar product

⟨u,v⟩Hk :=
k

∑
j=0

u( j)v( j)
L2 .

Finally, we define

W k,p
0 (a,b) := D(a,b)

∥·∥Wk,p
,

that is, W k,p
0 (a,b) is the closure of the test functions in W k,p(a,b), and we put

Hk
0(a,b) :=W k,2

0 (a,b).

Theorem 9.15. Let −∞ < a < b < ∞. A function u ∈ W 1,p
0 (a,b) if and only if u ∈

W 1,p(a,b) and u(a) = u(b) = 0.
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Theorem 9.16 (Poincaré inequality). Let −∞ < a < b < ∞ and 1 ≤ p < ∞. Then
there exists a constant λ > 0 such that

λ
∫ b

a
|u|p ≤

∫ b

a
|u′|p for every u ∈W 1,p

0 (a,b).

Proof. Let u ∈W 1,p(a,b). Then∫ b

a
|u(x)|p dx =

∫ b

a

∣∣∣∣∫ x

a
u′(y) dy

∣∣∣∣p dx

≤
∫ b

a

(∫ b

a
|u′(y)| dy

)p

dx

≤
∫ b

a
(b−a)p−1

∫ b

a
|u′(y)|p dy dx

= (b−a)p
∫ b

a
|u′(y)|p dy.

Between the first and the second line, we have used the assumption that u(a) = 0,
while in the following inequality we applied Hölder’s inequality.

Theorem 9.17. Let −∞ < a < b < ∞. For every f ∈ L2(a,b) there exists a unique
function u ∈ H1

0 (a,b)∩H2(a,b) such that{
u−u′′ = f and

u(a) = u(b) = 0 .
(9.3)

Proof. We first note that if u ∈ H1
0 (a,b)∩H2(a,b) is a solution, then, by partial

integration (Theorem 9.14), for every v ∈ H1
0 (a,b)∫ b

a
(uv+u′v′) = (u,v)H1

0
=
∫ b

a
f v. (9.4)

By the Cauchy-Schwarz inequality, the linear functional φ ∈ H1
0 (a,b)

′ defined
by φ(v) =

∫ b
a f v is bounded:

|φ(v)| ≤ ∥ f∥2 ∥v∥2 ≤ ∥ f∥2 ∥v∥H1
0
.

By the theorem of Riesz-Fréchet, there exists a unique u ∈ H1
0 (a,b) such that

(9.4)holds true for all v ∈ H1
0 (a,b). This proves uniqueness of a solution of (9.3),

and if we prove that in addition u∈H2(a,b), then we prove existence, too. However,
(9.4)holds in particular for all v ∈ D(a,b), i.e.∫ b

a
u′v′ =−

∫ b

a
(u− f )v ∀v ∈ D(a,b)
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and u− f ∈ L2(a,b) by assumption. Hence, by definition, u′ ∈ H1(a,b), i.e. u ∈
H2(a,b) and u′′ = u− f . Using also Theorem 9.15, the claim is proved.

9.3 Sobolev spaces in several dimensions

In order to motivate Sobolev spaces in several space dimensions, we have to recall
the partial integration rule in this case.

Theorem 9.18 (Gauß). Let Ω ⊆ Rd be open and bounded such that ∂Ω is of class
C1. Then there exists a unique Borel measure σ on ∂Ω such that for every u, v ∈
C1(Ω̄) and every 1 ≤ i ≤ d∫

Ω
u

∂v
∂xi

=
∫

∂Ω
uvni dσ −

∫
Ω

∂u
∂xi

v,

where n(x) = (ni(x))1≤i≤d denotes the outer normal vector at a point x ∈ ∂Ω .

In particular, if u ∈C1(Ω̄) and φ ∈ D(Ω), then∫
Ω

u
∂φ
∂xi

=−
∫

Ω

∂u
∂xi

φ .

Let Ω ⊆ Rd be any open set and 1 ≤ p ≤ ∞. We define

W 1,p(Ω) := {u ∈ Lp(Ω) : ∀1 ≤ i ≤ d∃gi ∈ Lp(Ω)

∀φ ∈ D(Ω) :
∫

Ω
u

∂φ
∂xi

=−
∫

Ω
giφ}.

The space W 1,p(Ω) is called (first) Sobolev space. If p = 2, then we also write
H1(Ω) :=W 1,2(Ω).

Let u ∈W 1,p(Ω). By Lemma 9.4, the functions gi are uniquely determined. We
write ∂u

∂xi
:= gi and call ∂u

∂xi
the partial derivative of u with respect to xi. As in the

one-dimensional case, the following holds true.

Lemma 9.19. The Sobolev spaces W 1,p(Ω) are Banach spaces for the norms

∥u∥W 1,p := ∥u∥p +
d

∑
i=1

∥ ∂u
∂xi

∥p (1 ≤ p ≤ ∞),

and H1(Ω) is a Hilbert space for the inner product

⟨u,v⟩H1 := ⟨u,v⟩L2 +
d

∑
i=1

⟨ ∂u
∂xi

,
∂v
∂xi

⟩L2 .
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Proof. Exercise.

Not all properties of Sobolev spaces on intervals carry over to Sobolev spaces
on open sets Ω ⊆Rd . For example, it is not true that every function u ∈W 1,p(Ω) is
continuous (without any further restrictions on p and Ω )!

For every open Ω ⊆ Rd , 1 ≤ p ≤ ∞ and every k ≥ 2 we define inductively the
Sobolev spaces

W k,p(Ω) := {u ∈W 1,p(Ω) : ∀1 ≤ i ≤ d :
∂u
∂xi

∈W k−1,p(Ω)},

which are Banach spaces for the norms

∥u∥W k,p := ∥u∥p +
k

∑
i=0

∥ ∂u
∂xi

∥W k−1,p .

We denote Hk(Ω) :=W k,2(Ω) which is a Hilbert space for the inner product

⟨u,v⟩Hk := ⟨u,v⟩L2 +
k

∑
i=0

⟨ ∂u
∂xi

,
∂v
∂xi

⟩Hk−1 .

Finally, we define

W k,p
0 (Ω) := D(Ω)

∥·∥Wk,p
,

that is, W k,p
0 (Ω) is the closure of the test functions in W k,p(Ω), and we put

Hk
0(Ω) :=W k,2

0 (Ω).

Theorem 9.20 (Poincaré inequality). Let Ω ⊆ Rd be a bounded domain, and let
1 ≤ p < ∞. Then there exists a constant C ≥ 0 such that∫

Ω
|u|p ≤Cp

∫
Ω
|∇u|p for every u ∈W 1,p

0 (Ω).

We note that the Poincaré inequality implies that

∥u∥ :=
(∫

Ω
|∇u|p

) 1
p

defines an equivalent norm on W 1,p
0 (Ω) if Ω ⊆ Rd is bounded. Clearly,

∥u∥ ≤ ∥u∥W 1,p
0

for every u ∈W 1,p
0 ,

by the definition of the norm in W 1,p. On the other hand,
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∥u∥W 1,p
0

≤C (∥u∥Lp +∥∇u∥Lp)

≤C∥∇u∥Lp =C∥u∥,

by the Poincaré inequality.

We also state the following two theorems without proof.

Theorem 9.21 (Sobolev embedding theorem). Let Ω ⊆ Rd be an open set with
C1 boundary. Let 1 ≤ p ≤ ∞ and define

p∗ :=

{ d p
d−p if 1 ≤ p < d

∞ if d < p,

and if p = d, then p∗ ∈ [1,∞). Then, for every p ≤ q ≤ p∗ we have

W 1,p(Ω)⊆ Lq(Ω)

with continuous embedding, that is, there exists C =C(p,q)≥ 0 such that

∥u∥Lq ≤C∥u∥W 1,p for every u ∈W 1,p(Ω).

Theorem 9.22 (Rellich-Kondrachov). Let Ω ⊆ Rd be an open and bounded set
with C1 boundary. Let 1 ≤ p ≤ ∞ and define p∗ as in the Sobolev embedding theo-
rem. Then, for every p ≤ q < ∞ the embedding

W 1,p(Ω)⊆ Lq(Ω)

is compact, that is, every bounded sequence in W 1,p(Ω) has a subsequence which
converges in Lq(Ω).

9.4 * Elliptic partial differential equations

Let Ω ⊆ Rd be an open, bounded set, f ∈ L2(Ω), and consider the elliptic partial
differential equation {

u−∆u = f in Ω ,

u = 0 in ∂Ω ,
(9.5)

where

∆u(x) :=
d

∑
i=1

∂ 2

∂x2
i

u(x)

stands for the Laplace operator.
If u ∈ H1

0 (Ω)∩H2(Ω) is a solution of (9.5), then, by definition of the Sobolev
spaces, for every v ∈ D(a,b)
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⟨u,v⟩H1
0
=
∫

Ω

(
uv+

d

∑
i=1

∂u
∂xi

∂v
∂xi

)
=
∫

Ω

(
uv−

d

∑
i=1

∂ 2u
∂x2

i
v
)

=
∫

Ω
(u−∆u)v

=
∫

Ω
f v.

By density of the test functions in H1
0 (Ω), this equality holds actually for all v ∈

H1
0 (Ω). This may justify the following definition of a weak solution. A function

u ∈ H1
0 (Ω) is called a weak solution of (9.5) if for every v ∈ H1

0 (Ω)

⟨u,v⟩H1
0
=
∫

Ω
uv+

∫
Ω

∇u∇v =
∫

Ω
f v, (9.6)

where ∇u is the usual, euclidean gradient of u.

Theorem 9.23. Let Ω ⊆ Rd be an open, bounded set. Then, for every f ∈ L2(Ω)
there exists a unique weak solution u ∈ H1

0 (Ω) of the problem (9.5).

Proof. By the Cauchy-Schwarz inequality, the linear functional φ ∈H1
0 (Ω)′ defined

by φ(v) =
∫

Ω f v is bounded:

|φ(v)| ≤ ∥ f∥2 ∥v∥2 ≤ ∥ f∥2 ∥v∥H1
0
.

By the theorem of Riesz-Fréchet, there exists a unique u ∈ H1
0 (Ω) such that (9.6)

holds true for all v ∈ H1
0 (a,b). The claim is proved.





Chapter 10
Bochner-Lebesgue and Bochner-Sobolev spaces

10.1 The Bochner integral

Let X and Y be Banach spaces with norms denoted by ∥·∥X and ∥·∥Y , respectively.
If the norm is clear from the context, we simply write ∥·∥. The space of all bounded,
linear operators from X into Y is denoted by L (X ,Y ). Let (Ω ,A ,µ) be a measure
space. A function f : Ω → X is called step function, if there exists a sequence
(An) ⊆ A of mutually disjoint measurable sets and a sequence (xn) ⊆ X such that
f =∑n 1An xn. A function f : Ω →X is called measurable, if there exists a sequence
( fn) of step functions fn : Ω → X such that fn → f pointwise µ-almost everywhere.

Remark 10.1. Note that there may be a difference to the definition of mesurability
of scalar valued functions. On the one hand, measurability of a function is here
depending on the measure µ . However, if the measure space (Ω ,A ,µ) is complete
in the sense that µ(A) = 0 and B ⊆ A implies B ∈ A , then the above definition of
measurability and the classical definition of measurability coincide. Note that one
may always consider complete measure spaces. On the other hand, measurability of
a function between two measurable spaces is defined via the property that preimages
of measurable sets are measurable. Although one may always equip a Banach space
with the Borel-σ -algebra, this definition via preimages is not appropriate for the
following purposes.

Lemma 10.2. If f : Ω → X is measurable, then ∥ f∥X : Ω →R is measurable. More
generally, if f : Ω → X is measurable and if g : X → Y is continuous, then g ◦ f :
Ω → Y is measurable.

Proof. This is an easy consequence of the definition of measurability and the conti-
nuity of g. Note that in particular the norm ∥·∥X : X → R is continuous.

Lemma 10.3. If f : Ω → X and g : Ω → K are measurable, then f g : Ω → X is
measurable. Similarly, if f : Ω →X and g : Ω →X ′ are measurable, then ⟨g, f ⟩X ′,X :
Ω →K is measurable.

157
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Proof. For the proof it suffices to use the definition of measurability and to show
that the (duality) product of two step functions is again a step function. This is,
however, straightforward.

Theorem 10.4 (Pettis). A function f : Ω → X is measurable if and only if ⟨x′, f ⟩
is measurable for every x′ ∈ X ′ (we say that f is weakly measurable) and if there
exists a µ-null set N ∈ A such that f (Ω \N) is separable (we say that f is almost
separably valued).

For the following proof of Pettis’ theorem, see HILLE & PHILLIPS
[Hille and Phillips (1957)].

Proof. Sufficiency. Assume that f is measurable. Then f is weakly measurable by
Lemma 10.2. Moreover, by definition, there exists a sequence ( fn) of step functions
and a µ-null set N ∈ A such that

fn(t)→ f (t) for all t ∈ Ω \N.

Hence,
f (Ω \N)⊆

∪
n

fn(Ω).

Since for every step function fn the range is countable, the set on the right-hand side
of this inclusion is separable, and hence f is almost separably valued.

Necessity. Assume that f is weakly measurable and almost separably valued. We
first show that ∥ f∥X is measurable. By assumption, there exists a µ-null set and
a sequence (xn) in X such that D := {xn : n ∈ N} is dense in f (Ω \ N). By the
Hahn-Banach theorem, there exists a sequence (x′n) in X ′ such that ∥x′n∥X = 1 and
⟨x′n,xn⟩= ∥xn∥X . Since f is weakly measurable, |⟨x′n, f ⟩| is measurable for every n.
As a consequence, supn |⟨x′n, f ⟩| is measurable. But supn |⟨x′n, f ⟩| = ∥ f∥X on Ω \N
by the choice of the sequence (x′n) and the density of D in the f (Ω \N). Since
our measure space (Ω ,A ,µ) is supposed to be complete, we obtain that ∥ f∥X is
measurable. In a similar way, one shows that | f −x|X is measurable for every x ∈ X ,
and in particular for x = xn.

Now fix m ∈ N and define

Am1 := {∥ f − x1∥X ≤ inf
1≤k≤m

∥ f − xk∥X},

Am2 := {∥ f − x2∥X ≤ inf
1≤k≤m

∥ f − xk∥X}\Am1,

Am3 := {∥ f − x3∥X ≤ inf
1≤k≤m

∥ f − xk∥X}\ (Am1 ∪Am2),

...
...

Amm := {∥ f − xm∥X ≤ inf
1≤k≤m

∥ f − xk∥X}\ (
m−1∪
k=1

Amk).
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Then (Amn)1≤n≤m is a family of measurable, mutually disjoint sets such that∪m
n=1 Amn = Ω . Define1

fm :=
m

∑
n=1

1Amnxn.

Then ( fm) is a sequence of step functions, (∥ fm − f∥X )m is decreasing pointwise
everywhere, and since D is dense in f (Ω \N),

lim
m→∞

∥ fm(t)− f (t)∥X = 0 for every t ∈ Ω \N.

that is, fm → f µ-almost everywhere. As a consequence, f is measurable.

Remark 10.5. The above proof of Pettis’ theorem shows that a measurable function
can always be approximated almost everywhere by a sequence of finite step func-
tions. The proof in [Hille and Phillips (1957)] is slightly different and shows that a
measurable, separably valued function can always be approximated uniformly by a
sequence of step functions.

Corollary 10.6. If ( fn) is a sequence of measurable functions Ω → X such that
fn → f pointwise µ-almost everywhere, then f is measurable.

Proof. We assume that this corollary is known in the scalar case, that is, when X =
K.

By Pettis’s theorem (Theorem 10.4), for all n there exists a µ-null set Nn ∈ A
such that fn(Ω \Nn) is separable. Moreover there exists a µ-null set N0 ∈ Ω such
that fn(t)→ f (t) for all t ∈Ω \N0. Let N :=

∪
n≥0 Nn; as a countable union of µ-null

sets, N is a µ-null set.
Then f (restricted to Ω \N) is the pointwise limit everywhere of the sequence

( fn). In particular f is weakly measurable. Moreover, f (Ω \N) is separable since

f (Ω \N)⊆
∪
n

fn(Ω \N),

and since fn(Ω \N) is separable. The claim follows from Pettis’ theorem.

A measurable function f : Ω → X is called integrable if
∫

Ω ∥ f∥X dµ < ∞.

Lemma 10.7. For every integrable step function f : Ω → X, f = ∑n 1Anxn the series
∑n xnµ(An) converges absolutely and its limit is independent of the representation
of f .

Proof. Let f = ∑n 1An xn be an integrable step function. The sets (An) ⊆ A are
mutually disjoint and (xn)⊆ X . Then

∑
n
∥xn∥X µ(An) =

∫
Ω
∥ f∥X dµ < ∞.

1 We are grateful to Anton Claußnitzer for the idea of the definition of the sets Amn and the functions
fm.
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Let f : Ω → X be an integrable step function, f = ∑n 1An xn. We define the
Bochner integral (for integrable step functions) by∫

Ω
f dµ := ∑

n
xn µ(An).

Lemma 10.8. a) For every measurable function f : Ω → X there exists a se-
quence ( fn) of step functions Ω → X such that ∥ fn∥X ≤ ∥ f∥X and fn → f
pointwise µ-almost everywhere.

b) Let f : Ω → X be integrable. Let ( fn) be a sequence of integrable step func-
tions such that ∥ fn∥X ≤ ∥ f∥X and fn → f pointwise µ-almost everywhere.
Then

x := lim
n→∞

∫
Ω

fn dµ exists

and
∥x∥X ≤

∫
Ω
∥ f∥X dµ .

Proof. (a) Let f : Ω → X be measurable. Then ∥ f∥X : Ω →R is measurable. There-
fore there exists a sequence (gn) of real step functions such that 0 ≤ gn ≤ ∥ f∥X and
gn →∥ f∥X pointwise µ-almost everywhere.

Since f is measurable, there exists a sequence ( f̃n) of step functions Ω → X such
that f̃n → f pointwise µ-almost everywhere. Put

fn :=
f̃n gn∥∥ f̃n
∥∥

X + 1
n

.

(b) For every integrable step function g : Ω → X one has∣∣∣∣∫Ω
g dµ

∣∣∣∣
X
≤
∫

Ω
∥g∥X dµ.

Hence, for every n, m ∣∣∣∣∫Ω
fn − fm dµ

∣∣∣∣
X
≤
∫

Ω
∥ fn − fm∥X dµ,

and by Lebesgue’s dominated convergence theorem the sequence (
∫

Ω fn dµ) is a
Cauchy sequence. When we put x = limn→∞

∫
Ω fn dµ then

∥x∥X ≤ liminf
n→∞

∫
Ω
∥ fn∥X dµ =

∫
Ω
∥ f∥X dµ.

Let f : Ω → X be integrable. We define the Bochner integral∫
Ω

f dµ := lim
n→∞

∫
Ω

fn dµ ,
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where ( fn) is a sequence of (integrable) step functions Ω → X such that ∥ fn∥X ≤
∥ f∥X and fn → f pointwise µ-almost everywhere (Lemma 10.8 (a)). The definition
of the Bochner integral for integrable functions is independent of the choice of the
sequence ( fn) of step functions, by Lemma 10.8 (b). Moreover, if f is a step func-
tion, then this definition of the Bochner integral and the previous definition coincide.
Finally, by Lemma 10.8 (b),∣∣∣∣∫Ω

f dµ
∣∣∣∣
X
≤
∫

Ω
∥ f∥X dµ (triangle inequality). (10.1)

Remark 10.9. We will also use the following notation for the Bochner integral:∫
Ω

f or
∫

Ω
f (t) dµ(t),

and if Ω = (a,b) is an interval in R:∫ b

a
f or

∫ b

a
f (t) dµ(t).

If µ = λ is the Lebesgue measure then we also write∫
Ω

f (t) dt or
∫ b

a
f (t)dt.

Lemma 10.10. Let f : Ω → X be integrable and T ∈ L (X ,Y ). Then T f : Ω → Y
is integrable and ∫

Ω
T f dµ = T

∫
Ω

f dµ.

Proof. Exercise.

Theorem 10.11 (Lebesgue, dominated convergence). Let ( fn) be a sequence of
integrable functions. Suppose there exists an integrable function g : Ω → R and
an (integrable) measurable function f : Ω → X such that ∥ fn∥ ≤ g and fn → f
pointwise µ-almost everywhere. Then∫

Ω
f dµ = lim

n→∞

∫
Ω

fn dµ.

Proof. By the triangle inequality and the classical Lebesgue dominated convergence
theorem, ∣∣∣∣∫Ω

f dµ −
∫

Ω
fn dµ

∣∣∣∣
X
≤
∫

Ω
∥ f − fn∥X dµ → 0 as n → ∞.
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10.2 Bochner-Lebesgue spaces

Given a measure space (Ω ,A ,µ) and a Banach space X , we define

L p(Ω ;X) := { f : Ω → X measurable :
∫

Ω
∥ f∥p

X dµ < ∞} if 1 ≤ p < ∞, and

L ∞(Ω ;X) := { f : Ω → X measurable : ∃C ≥ 0 such that µ({∥ f∥X ≥C}) = 0}.

Similarly as in the scalar case one shows that these sets a linear spaces and that

∥ f∥p :=
(∫

Ω
∥ f∥p

X dµ
)1/p

(1 ≤ p < ∞), resp.

∥ f∥∞ := inf{C ≥ 0 : µ({∥ f∥X ≥C}) = 0},

are seminorms. Starting with these definitions, and building on the following general
principle, the proof of which is left as an exercise, we define the Bochner-Lebesgue
Lp spaces.

Lemma 10.12. If ∥·∥X is a seminorm on the vector space X , then

N := {x ∈ X : ∥x∥X = 0}

is a linear subspace. Moreover, the quotient space

X := X /N

becomes a normed space for the norm

∥[x]∥X := ∥x∥X ([x] = x+N ∈ X).

By Lemma 10.12, for every 1 ≤ p ≤ ∞

Np := { f ∈ L p(Ω ;X) : ∥ f∥p = 0}
= { f ∈ L p(Ω ;X) : f = 0 µ-almost everywhere}

is a linear subspace of L p(Ω ;X). The Bochner-Lebesgue Lp space is then defined
to be the quotient space

Lp(Ω ;X) := L p(Ω ;X)/Np,

which is the space of all equivalence classes

[ f ] := f +Np, f ∈ L p(Ω ;X).

By Lemma 10.12, it is a normed space for the norm

∥[ f ]∥p := ∥ f∥p .
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Remark 10.13. As in the scalar case we will in the following identify functions
f ∈ L p(Ω ;X) with their equivalence classes [ f ] ∈ Lp(Ω ;X), and we say that Lp is
a function space although we should be aware that it is only a space of equivalence
classes of functions.

Remark 10.14. For Ω = (a,b) an interval in R and for µ = λ the Lebesgue measure
we simply write

Lp(a,b;X) := Lp((a,b);X).

We can do so since the spaces Lp([a,b];X) and Lp((a,b);X) coincide since the end
points {a} and {b} have Lebesgue measure zero and there is no danger of confusion.

Theorem 10.15 (Fischer-Riesz). For every 1 ≤ p ≤ ∞, the space Lp(Ω ;X) is a
Banach space.

Proof. The proof follows the same lines as in the classical case, that is, when X =K.

Lemma 10.16. For every 1 ≤ p < ∞, the set of all p-integrable step functions Ω →
X is dense in Lp(Ω ;X).

Proof.

Lemma 10.17. Let the measure space (Ω ,A ,µ) be such that Lp(Ω) is separable
for 1 ≤ p < ∞ (for example, Ω ⊂ Rd be an open set with the Lebesgue measure).
Let X be separable. Then Lp(Ω ;X) is separable for 1 ≤ p < ∞.

Proof. By assumption the spaces Lp(Ω) and X are separable. Let (hn)⊆ Lp(Ω ;X)
and (xn)⊆ X be two dense sequences. Then the set

F := { f : Ω → X : f = hn xm}

is countable. It suffices to shows that F ⊆ Lp(Ω ;X) is total, that is, spanF is dense
in Lp(Ω ;X). This is an exercise.

Lemma 10.18. Let Ω ⊂ Rd be open and bounded. Then C(Ω̄ ;X) ⊆ Lp(Ω ;X) for
every 1 ≤ p ≤ ∞.

Proof. Actually, for finite measure spaces, we have the more general inclusions

L∞(Ω ;X)⊆ Lp(Ω ;X)⊆ Lq(Ω ;X)⊆ L1(Ω ;X)

if 1 ≤ q ≤ p ≤ ∞.

Theorem 10.19. Let Ω be as in Lemma 10.17. Let 1 < p < ∞ and assume that X is
reflexive. Then the space Lp(Ω ;X) is reflexive and

Lp(Ω ;X)′ ∼= Lp′(Ω ;X ′).

Proof. Without proof.
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10.3 The convolution

Theorem 10.20 (Young’s inequality). Let T ∈ L1(RN ;L (X ,Y )) and f ∈
Lp(RN ;X) (1 ≤ p ≤ ∞). Then for almost every x ∈ RN the integral

T ∗ f (x) :=
∫
RN

T (x− y) f (y) dy

converges absolutely, and for the function T ∗ f thus defined one has

T ∗ f ∈ Lp(RN ;Y ) and

∥T ∗ f∥Lp ≤ ∥T∥L1 ∥ f∥Lp .

Proof. The case p = ∞ is almost trivial. Actually, the strong continuity of the shift
semigroup on L1 yields continuity (and thus measurability) of T ∗ f while the bound-
edness of T ∗ f and Young’s inequality are immediate from the triangle inequality.

Assume now that p = 1. By Tonnelli’s theorem, we have∫
RN

∫
RN

∥T (x− y)∥L (X ,Y ) ∥ f (y)∥X dy dx

=
∫
RN

∫
RN

∥T (x− y)∥L (X ,Y ) ∥ f (y)∥X dx dy

= ∥T∥L1 ∥ f∥L1 ,

and from this equality follows the claim.
Assume now 1 < p < ∞. From the previous case we deduce that for almost all

x ∈ RN

∥T (x−·)∥L (X ,Y ) ∥ f (·)∥p
X ∈ L1(RN),

and thus

∥T (x−·)∥
1
p
L (X ,Y ) ∥ f (·)∥X ∈ Lp(RN).

On the other hand, ∥T (x−·)∥
1
p′
L (X ,Y ) ∈ Lp′(RN) for every x ∈ RN . By Hölder’s in-

equality, for almost every x ∈ RN ,

∥T (x−·)∥L (X ,Y ) ∥ f (·)∥X ∈ L1(RN),

and



10.3 The convolution 165∫
RN

(∫
RN

∥T (x− y)∥L (X ,Y ) ∥ f (y)∥X dy
)p

dx

≤
∫
RN

(∫
RN

∥T (x− y)∥L (X ,Y ) dy
) p

p′
∫
RN

∥T (x− y)∥L (X ,Y ) ∥ f (y)∥p
X dy dx

= ∥T∥p−1
L1

∫
RN

∫
RN

∥T (x− y)∥L (X ,Y ) ∥ f (y)∥p
X dx dy

= ∥T∥p
L1 ∥ f∥p

Lp

< ∞.

For every T ∈ L1(RN ;L (X ,Y )) and every f ∈ L1(RN ;X) we call the function
T ∗ f ∈ Lp(RN ;Y ) the convolution of T and f . It is a fundamental tool in harmonic
analysis and the theory of partial differential equations. One first property is the
following regularizing effect of the convolution. We recall that we adopt multi-index
notation. For example, for every multi-index α ∈ NN

0 we define

|α| :=
N

∑
k=1

αk,

α! :=
N

∏
k=1

αk!, and

xα :=
N

∏
k=1

xαk
k (x ∈ CN).

Moreover, we denote by ∂k the partial derivative operator with respect to the k-th
variable, and define the α-th partial derivative

∂ α := ∂ α1
1 . . .∂ αN

N .

Let Ω ⊆ RN be an open set. For every function f ∈ C(Ω ;X) we define the sup-
port

supp f := {x ∈ Ω : f (x) ̸= 0},

where the closure has to be taken in Ω ! We then define for k ∈ N0 ∪{∞}

Ck
c(Ω ;X) := { f ∈ Ck(Ω ;X) : supp f is compact},

the space of compactly supported Ck-functions. In the special case X =K we define

D(Ω) := C∞
c (Ω).

Elements of D(Ω) are called test functions.

Lemma 10.21 (Regularization). For every f ∈L1
loc(RN ;X) and every φ ∈C∞

c (RN)
one has f ∗φ ∈ C∞(RN ;X) and

∂ α( f ∗φ) = f ∗∂ α φ.
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Proof. Let ei ∈ Rd be the i-th unit vector. Then

lim
h→0

1
h
(φ(x+hei)−φ(x)) =

∂φ
∂xi

(x)

uniformly in x ∈ Rd (note that φ has compact support). Hence, for every x ∈ Rd

1
h
( f ∗φ(x+hei)− f ∗φ(x))

=
1
h

∫
Rd

f (y)(φ(x+hei − y)−φ(x− y)) dy

→
∫
Rd

f (y)
∂φ
∂xi

(x− y) dy.

Proof. Let i ∈ {1, . . . ,N} and let ei ∈ RN be the i-th canonical unit basis vector.

Lemma 10.22 (Strong continuity of the shift-group). For every x ∈RN and every
1 ≤ p ≤ ∞ we define the shift operator S(x) ∈ L (Lp(RN ;X)) by

(S(x) f )(y) := f (x+ y) ( f ∈ Lp(RN ;X), y ∈ RN).

Then S(x) is an isometric isomorphism and, if p < ∞,

lim
x→0

∥S(x) f − f∥Lp = 0 for every f ∈ Lp(RN ;X).

Proof. The first statement about S(x) being an isometric isomorphism is easy (with
S(x)−1 = S(−x)). Next, for every simple step function f = 1Q ⊗ x with a cube Q ⊆
RN , the second statement follows easily from Lebesgue’s dominated convergence
theorem. By linearity, the second statement holds for every f in the dense subspace

D := span{1Q ⊗ x : Q ⊆ RN a cube, x ∈ X}.

Now fix f ∈ Lp(RN ;X) and let ε > 0. Then there exists g ∈ D such that ∥ f −g∥Lp <
ε . Moreover, there exists δ > 0 such that ∥S(x)g−g∥Lp < ε for every x ∈ RN with
∥x∥X < δ . Hence, for every x ∈ RN with ∥x∥X < δ

∥S(x) f − f∥Lp ≤ ∥S(x) f −S(x)g∥Lp +∥S(x)g−g∥Lp +∥g− f∥Lp

≤ 2 ∥g− f∥Lp +∥S(x)g−g∥Lp

< 3ε.

If φ ∈ L1(RN) is such that
∫
RN φ = 1, then we call the sequence (φn)n given by

φn(x) := nN φ(nx) (x ∈ RN , n ∈ N)

an approximate identity or an approximate unit. The reason for this notion fol-
lows from the following lemma.
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Lemma 10.23 (Property of an approximate identity). Let f ∈ Lp(RN ;X) (1 ≤
p < ∞) and let (φn)n be an approximate identity. Then

lim
n→∞

f ∗φn = f in Lp(RN ;X).

Proof. By Tonnelli’s theorem, the Hölder inequality, by the strong continuity of the
shift-group and by Lebesgue’s dominated convergence theorem we have

∥ f ∗φn − f∥p
Lp =

∫
RN

∣∣∣∣∫RN
f (x− y)φn(y) dy− f (x)

∣∣∣∣p dx

≤
∫
RN

(∫
RN

∥ f (x− y)− f (x)∥ |φn(y)| dy
)p

dx

≤
∫
RN

∫
RN

∥ f (x− y)− f (x)∥p |φn(y)| dy ∥φn∥p−1
L1 dx

= ∥φn∥p−1
L1

∫
RN

∫
RN

∥ f (x− y)− f (x)∥p dx |φn(y)| dy

= ∥φn∥p−1
L1

∫
RN

∫
RN

∥∥∥ f (x− y
n
)− f (x)

∥∥∥ dxφ(y) dy

→ 0 (n → ∞).

Corollary 10.24. For every 1 ≤ p < ∞ the space C∞
c (RN ;X) is dense in Lp(RN ;X).

Proof (by regularization and truncation). Let f ∈ Lp(RN ;X). In the first step, the
regularization step, we choose an approximate identity (φn) starting with a test func-
tion φ ∈ C∞

c (RN). By Young’s inequality, f ∗ φn ∈ Lp(RN ;X), by Lemma 10.21,
f ∗φn ∈ C∞(RN), and by Lemma 10.23,

lim
n→∞

∥ f ∗φn − f∥Lp = 0.

In the second step, the truncation step, we choose a sequence (ψm)m of test func-
tions satisfying 0 ≤ ψm ≤ 1 and ψm = 1 on the ball B(0,m) (such functions can
be obtained by convolving characteristic functions χB(0,2m) with appropriate posi-
tive test functions, relying on Lemma 10.21). It is clear from Lebesgue’s dominated
convergence theorem, that for every g ∈ Lp(RN ;X) one has

lim
m→∞

∥gψm −g∥Lp = 0.

Combining the preceding two equalities, we find a sequence (mn)n in N such that

lim
n→∞

∥( f ∗φn)ψmn − f∥Lp = 0,

and since ( f ∗φn)ψmn ∈ C∞
c (RN ;X), the claim is proved.

Corollary 10.25. Let f ∈ L1
loc(RN ;X) be such that
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RN

f φ = 0 for every φ ∈ D(RN).

Then f = 0.

Proof. The assumption implies that

f ∗φ(x) =
∫
RN

f (y)φ(x− y) dy = 0 for every x ∈ RN , φ ∈ D(RN),

which just means that

f ∗φ = 0 for every φ ∈ D(RN).

The claim now follows upon choosing an approximate identity (φn) out of a test
function φ and by applying Lemma 10.23.

10.4 Bochner-Sobolev spaces

Let Ω ⊆ RN be an open set, 1 ≤ p ≤ ∞ and k ∈ N. We define the Bochner-Sobolev
space

W k,p(Ω ;X) := {u ∈ Lp(Ω ;X) : ∀α ∈ NN
0 ∃vα ∈ Lp(Ω ;X)∀φ ∈ D(Ω)∫

Ω
u∂ α φ = (−1)|α|

∫
Ω

vα φ}

The functions vα in this definition of the space W k,p(Ω ;X) are uniquely determined.
We write vα =: ∂ α u and we call the function ∂ α u the weak α-th partial derivative
of u. The space W k,p(Ω ;X) becomes a Banach space for the norm

∥u∥W k,p := ∑
α∈NN

0
|α|≤k

∥∂ α u∥Lp .

Similarly as in the case of the Lp-spaces we write W k,p(a,b;X) instead of
W k,p((a,b);X). In the special case when p = 2 and X = H is a Hilbert space, we
also write

Hk(Ω ;H) :=W k,2(Ω ;H).

This space is a Hilbert space for the inner product

⟨u,v⟩Hk := ∑
α∈NN

0
|α|≤k

⟨∂ α u,∂ α v⟩L2 .

The resulting norm ∥·∥Hk is equivalent to the norm ∥·∥W k,2 defined above.
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The main results about Sobolev spaces of scalar-valued functions remain true for
Sobolev spaces of Banach space valued functions if interpreted properly. In particu-
lar, the Sobolev embedding theorem, a version of the product rule, the integration by
parts formula and Poincaré’s inequality remain true. Even a version of the Rellich-
Kondrachev theorem remains true.

Lemma 10.26. For every −∞ < a < b < ∞ and every 1 ≤ p ≤ ∞ one has
W 1,p(a,b;X) ⊆ Cb((a,b);X). For every u ∈ W 1,p(a,b;X) and every s, t ∈ (a,b)
one has

u(t)−u(s) =
∫ t

s
u′(r) dr.

Lemma 10.27. Assume that the embedding V ↪→ H is continuous and let u ∈
W 1,2(0,T ;H)∩L∞(0,T ;V ). Then u is weakly continuous with values in V , that is,
for every v ∈V ′ the function t 7→ ⟨v,u(t)⟩V ′,V is continuous on [0,T ].

Proof. Since every function u∈W 1,2(0,T ;H) is continuous (and hence weakly con-
tinuous) with values in H, the claim follows from [Temam (1984), Lemma 1.4, page
263] .

Lemma 10.28. Assume that the embedding V ↪→ H is continuous and let (un) be a
sequence such that

un ⇀ u in W 1,2(0,T ;H) and

un
w∗
→ u in L∞(0,T ;V ).

Then there exists a subsequence of (un) (which we denote again by (un)) such that

un(t)⇀ u(t) in V for every t ∈ [0,T ].

Proof. Using the fact that the point evaluation in t ∈ [0,T ] from W 1,2(0,T ;H) into
H is bounded and linear, and maps weakly convergent sequences into weakly con-
vergent sequences, the assumption implies that for every t ∈ [0,T ]

un(t)⇀ u(t) in H.

Let now w ∈ H ′ and t ∈ [0,T ]. Then one has

⟨w,un(t)−u(t)⟩V ′,V = ⟨w,un(t)−u(t)⟩H ′,H −→ 0.

Using the fact that H ′ is dense in V ′ and that the sequence (un(t)) is bounded in V ,
the claim follows from Lemma ??.
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[Brezis (1973)] Brezis, H. : Opérateurs maximaux monotones et semi-groupes de contractions
dans les espaces de Hilbert. Vol. 5 of North Holland Mathematics Studies. North-Holland,
Amsterdam, London, 1973.
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[Ladyženskaja et al. (1967)] Ladyženskaja, O. A., Solonnikov, V. A., Ural′ceva, N. N. : Linear
and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Trans-
lations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence,
R.I., 1967.



174 References

[Laplace (1878–1912a)] Laplace, P. S. d. : Oeuvres complètes de Laplace. Tome 10 / publiées sous
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Paris, 1878–1912a.

[Laplace (1878–1912b)] Laplace, P. S. d. : Oeuvres complètes de Laplace. Tome 12 / publiées sous
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[Oğuztöreli et al. (1981)] Oğuztöreli, M. N., Lakshmikantham, V., Leela, S. : An algorithm for the
construction of Liapunov functions. Nonlinear Anal. 5 (11), 1981, 1195–1212.
URL http://dx.doi.org/10.1016/0362-546X(81)90013-4

[Otto (2001)] Otto, F. : The geometry of dissipative evolution equations: the porous medium equa-
tion. Comm. Partial Differential Equations 26 (1-2), 2001, 101–174.

[Ouhabaz (1992)] Ouhabaz, E.-M. : L∞-contractivity of semigroups generated by sectorial forms.
J. London Math. Soc. (2) 46 (3), 1992, 529–542.
URL http://dx.doi.org/10.1112/jlms/s2-46.3.529

[Ouhabaz (1996)] Ouhabaz, E.-M. : Invariance of closed convex sets and domination criteria for
semigroups. Potential Anal. 5 (6), 1996, 611–625.
URL http://dx.doi.org/10.1007/BF00275797

[Ouhabaz (2004)] Ouhabaz, E. M. : Analysis of Heat Equations on Domains. Vol. 30 of London
Mathematical Society Monographs. Princeton University Press, Princeton, 2004.

[Phelps (1993)] Phelps, R. R. : Convex functions, monotone operators and differentiability, 2nd
Edition. Vol. 1364 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.

[Rudin (1973)] Rudin, W. : Functional analysis. McGraw-Hill Book Co., New York, 1973.
[Rudin (1974)] Rudin, W. : Real and complex analysis, 2nd Edition. McGraw-Hill Book Co., New

York, 1974.
[Siskakis (1996)] Siskakis, A. G. : Semigroups of composition operators on the Dirichlet space.

Results Math. 30 (1-2), 1996, 165–173.
URL http://dx.doi.org/10.1007/BF03322189

[Tarasov (2005)] Tarasov, V. E. : Fractional generalization of gradient systems. Lett. Math. Phys.
73 (1), 2005, 49–58.
URL http://dx.doi.org/10.1007/s11005-005-8444-z

[Temam (1984)] Temam, R. : Navier-Stokes Equations. Vol. 2 of Studies in Mathematics and its
Applications. Elsevier Science Publishers, 1984.

[Triebel (1983)] Triebel, H. : Theory of Function Spaces. Birkhäuser, Basel, 1983.
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inequality
Bessel, 35, 37
Cauchy-Schwarz, 30
Poincaré, 151, 153
triangle, 1, 11

from below, 13
Young, 98, 144, 164

inner product space, 29
integrable function, 159
integral, 160
interior, 3
involution, 107, 112
isometry, 24
isomorphic, 24

isometrically, 24
isomorphism, 24

kernel, 75
kernel operator, 84

Laplace operator, 128, 154
Lebesgue’s theorem, 161
Lemma

Baire, 65, 66
Neumann series, 24, 99
Pythagoras, 32
Riemann-Lebesgue, 38
Riesz, 16
Zorn, 48

Lipschitz continuous, 7

maximal ideal, 101
measurable function, 157
metric, 1

discrete, 2
induced, 2

metric space, 1
completion, 8

mild solution, 131, 134
Minkowski functional, 59
multi-index, 165
multiplication operator, 22, 83

neighbourhood, 3
Neumann series, 24, 99
Newton’s method, 142
norm, 11

equivalent, 14
graph, 70

normal operator, 113
normed algebra, 97
normed space, 11

completion, 17
nuclear operator, 88
numerical range, 113

open, 3
operator

adjoint, 78, 111, 124
closed, 69, 75
compact, 81
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finite rank, 82
Fredholm, 85
isometry, 24
isomorphism, 24
kernel, 84
Laplace, 128
left-shift, 22
multiplication, 22, 83
normal, 113
nuclear, 88
positive semidefinite, 113
powerbounded, 89
projection, 33, 51
resolvent, 76
right-shift, 22
selfadjoint, 113, 124
symmetric, 113, 124
unitary, 36, 113

orthogonal
complement, 32
space, 32
vectors, 32

parallelogram identity, 31
Parseval identity, 36
partial derivative, 165

weak partial derivative, 168
partially differentiable, 138
Pettis’ theorem, 158
Poincaré inequality, 151, 153
point spectrum, 76

approximative, 76
positive functional, 119
positive semidefinite, 113
powerbounded, 89
preannihilator, 80
product space, 2, 17
projection, 33, 51

quotient space, 18

range, 75
reflexive, 54
regular Borel measure, 119
regularization, 165
residual spectrum, 76
resolvent, 76, 99

identity, 76, 99
resolvent set, 75
Riesz Lemma, 16
Riesz-Markov, 119

saddle point, 62
Schrödinger equation, 134

selfadjoint operator, 113, 124
separable, 33
sequence

Cauchy, 4
convergent, 4

weak∗, 53
weakly, 43, 58

sequentially closed, 4
sequentially continuous, 7
series

absolutely convergent, 15
convergent, 15
Fourier, 38
unconditionally convergent, 37

set
boundary, 3
closed, 3
closure, 3
equicontinuous, 25
interior, 3
neighbourhood, 3
open, 3
sequentially closed, 4

shift operator, 22
shift-group, 166
Sobolev space, 147, 150, 152, 153, 168
space

Banach, 14
bidual, 54
Bochner-Lebesgue, 162
compact, 6
complemented, 51
dual, 47
Hilbert, 31
inner product, 29
isomorphic, 24
metric, 1
normed, 11
of test functions, 143
product, 2, 17
quotient, 18
reflexive, 54
separable, 33
sequentially compact, 6
Sobolev, 147, 150, 152, 153
Sobolev space, 168

spectral radius, 78, 100
spectrum, 76, 99, 102

approximative point, 76
continuous, 76
point, 76
residual, 76

step function, 157
sublinear, 47
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support, 143, 165
symmetric operator, 113, 124

test function, 143, 165
Theorem

Arezlà-Ascoli, 25
Banach - Alaoglu, 53
Banach-Steinhaus, 67
Bounded inverse theorem, 69
Closed graph theorem, 70
Féjer, 42
Fredholm alternative, 84
Gelfand, 106
Gelfand - Mazur, 100, 103
Hahn - Banach

geometric version, 59
version of functional analysis, 49
version of linear algebra, 47, 49

Hellinger-Toeplitz, 113
Implicit function theorem, 138
Local inverse function theorem, 138
Mean ergodic theorem, 90, 91, 93, 95
Minimization of convex functionals, 61
Open mapping theorem, 68
Plancherel, 41
projection onto closed, convex sets, 31
Rellich-Kondrachov, 154
Riesz - Fréchet, 42

Riesz-Markov, 119
Riesz-Schauder, 84
Schauder, 84
Sobolev embedding, 149, 154
Spectral theorem, 122
Uniform boundedness principle, 67
von Neumann mean ergodic, 92
von Neumann minimax, 62

theorem
Fischer-Riesz, 163
Lebesgue, 161
Pettis, 158
Young, 164

topology, 4
local uniform convergence, 4

triangle inequality, 1, 11
from below, 13

unconditionally convergent, 37
uniformly continuous, 7
unitarily equivalent, 36
unitary operator, 36, 113

weak solution, 128
weakly convergent, 43, 58
weakly measurable, 158

Young’s inequality, 98, 144


