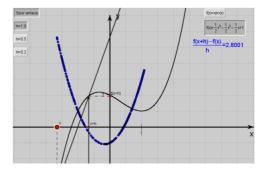

Name:	Arbeitsbogen	Datum:
	"Auf dem Weg zur Ableitungsfunktion"	


Bearbeite die folgenden Aufgaben mit Hilfe der Lernumgebung im Internet. Notiere deine Lösungen auf dem Arbeitsblatt und ggf. weiteren Blättern.

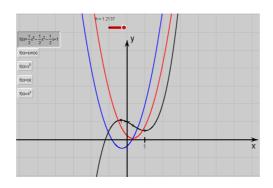
Aufgabe 1:

Wie du weißt, gelangt man zur Ableitung einer Funktion an einer Stelle x mit Hilfe des Differenzenquotienten $\frac{f(x+h)-f(x)}{h}$, indem man h gegen 0 gehen lässt.

Zu einem festen Wert h berechnen wir den Wert des Differenzenquotienten und zeichnen den Punkt $\left(x \middle| \frac{f(x+h)-f(x)}{h}\right)$.

1. Interpretiere den Differenzenquotienten geometrisch. Beschreibe, was bei Verschiebung von x geschieht.

2. In welchen Fällen ist der Wert des Differenzenquotienten positiv, in welchen negativ, in welchen ist er gleich Null? Erkläre, was ein positiver/negativer Wert bzw. ein Wert gleich Null geometrisch bedeuten.


3. Schalte die Spur des blauen Punktes an und bewege x. Erkläre, wie der Graph dieser Funktion entsteht.

Beschreibe die Auswirkungen beim Umschalten auf andere Werte von h.	
5. Wie kann man mit Hilfe der Abbildung die ungefähren Werte für die Ableitur an verschiedenen Stellen x bestimmen? Bestimme annähernd die Ableitur der Funktion f an den Stellen 0, 1, 1.5 und -0.5, -1, -1.5. Welchen Wert von wählst du dabei und warum?	
Aufgabe 2 In der Abbildung siehst du den Graphen einer Funktion f (schwarzer Graph). Zeinem festen Wert h zeichnen wir den Graphen der Funktion $g(x)$ $\frac{f(x+h)-f(x)}{h}$ (blauer Graph). Hierfür bilden wir also an jeder Stelle x der	
Differenzenquotienten von f und tragen diesen Wert ab.	
Beschreibe die Auswirkungen der Änderung des Wertes von h auf de Graphen von g. Welche Besonderheiten fallen dir dabei auf?	
2. Erkläre einige deiner Beobachtungen.	

	Wenn h nahezu 0 ist, so entspricht der blaue Graph nahezu dem Graphen der Ableitungsfunktion von f (falls f tatsächlich ableitbar ist).		
ε	Welche Eigenschaften von f lassen sich dann aus dieser ("genäherten") Ableitungsfunktion herauslesen, z.B. was bedeuten die Nullstellen, das Vorzeichen oder das Monotonieverhalten von g in Bezug auf f? Begründe.		
k	b. Welche der Funktionen f haben eine Ableitungsfunktion, welche nicht? Begründe.		
4. War	rum ist es in der Abbildung nicht möglich h=0 einzustellen?		
	alte auch auf die anderen Funktionen um und bearbeite 1., 2. und 3. auf em gesonderten Blatt auch für diese.		

Aufgabe 3

In der Abbildung siehst du neben dem Graphen einer Funktion f und dem Graphen der Funktion g, welche für ein festes h durch $g(x) = \frac{f(x+h)-f(x)}{h}$ festgelegt ist, noch einen weiteren Graphen k. Der rote Graph von k gehört zur Funktion $k(x) = \frac{f(x+h)-f(x-h)}{2h}$ (für einen festen Wert von h).

- 1. Wenn du h gegen 0 gehen lässt, entspricht auch die Funktion k nahezu der Ableitungsfunktion von f (falls f ableitbar ist). Begründe dieses Verhalten von k auf zwei Weisen:
 - a. Rechnerisch: Was geschieht mit den Ausdrücken $\frac{f(x+h)-f(x)}{h}$ und $\frac{f(x+h)-f(x-h)}{2h}$, wenn h gegen 0 geht?
 - b. Geometrisch: Fertige eine Skizze an, die den Ausdruck $\frac{f(x+h)-f(x-h)}{2h}$ für eine Stelle x geometrisch darstellt. Vergleiche dies mit dem Ausdruck $\frac{f(x+h)-f(x)}{h}$.

2.	Beschreibe die Auswirkung der Änderung von h auf die rote Funktion k im Vergleich zur blauen Funktion g.
3.	Erkläre einige der Unterschiede und Gemeinsamkeiten rechnerisch und/oder geometrisch.
4.	Schalte auch auf die anderen Funktionen um und bearbeite hierfür die beiden vorigen Aufgaben.