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Calculus and functional thinking are closely related. Functional thinking includes thinking in 

variations and functional dependencies with a strong emphasis on the aspect of change. Calculus is 

a climax within school mathematics and the education to functional thinking can be seen as 

propaedeutics to it. Many authors describe that functions at school are mainly treated in a static 

way, by regarding them as pointwise relations. This often leads to the underrepresentation of the 

aspect of change at school. Moreover calculus at school is mainly procedure-oriented and 

structural understanding is lacking. In this work two specially designed interactive activities for 

the teaching and learning of concepts of calculus based on Dynamic Geometry Software are 

presented. They accentuate the aspect of change and the object aspect of functions by using a 

double stage visualization. Moreover the activities allow the discovery and exploration of some 

concepts of calculus in a qualitative-structural way without knowing or using curve sketching 

routines. The activities were used in a qualitative study with 10th grade students of age 15 to 16 in 

secondary schools in Berlin, Germany. Some pairs of students were videotaped while working 

with the activities. After transcribing, the interactions of the students were interpreted and 

analyzed focusing to the use of the computer. The results show how the students mobilize their 

knowledge about functions working on the given tasks, and using the activities to formulate 

important concepts of calculus in a qualitative way. Also some important epistemological 

obstacles can be detected.    

Keywords: interactive learning activity, functional thinking, calculus, qualitative 

study, epistemological obstacles  

1 Introduction and Rationale 

Since the term of functional thinking and its connection to calculus is of special 

importance for this work, it will be discussed first. Calculus was introduced to the 
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German curricula as a result of the so-called Meraner Reform of 1905. The reform 

was initiated by Felix Klein and was meant as a reform of the whole complex of 

mathematics and nature science education at school. The term functional thinking 

was used for the first time in Germany within this reform, and the education to 

functional thinking was a main task of this reform. Functional thinking was meant 

in a very broad sense: as thinking in variations and functional dependencies 

spanning the whole mathematics education – always emphasizing the aspect of 

change. Calculus was seen as a climax in mathematics education and the 

education to functional thinking as propaedeutics to calculus. In her outstanding 

dissertation Krüger (2000) describes the background of this reform and addresses 

especially the education to functional thinking as a special task within the reform.  

The connection between functional thinking and calculus is also similarly 

described by Tall (1996): “One purpose of the function is to represent how things 

change. With this meaning it is natural to move on to consider the calculus 

concepts of the rate of change (differentiation) and cumulative growth 

(integration) together with the remarkable fundamental theorem of calculus that 

tells us that differentiation and integration are essentially inverse processes. […] 

It [calculus] is both a climax of school mathematics and a gateway to further 

theoretical developments” (p. 289). 

Commonly in didactic literature there are several aspects of functional thinking 

specified (Vollrath 1989, Dubinsky & Harel 1992b, Sfard 1991): 

• The mapping aspect: Functions are regarded as pointwise relations (static 

view) 

• The aspect of change: Dynamic view of functions including the aspect of 

covariation of values as well as the description of change in sense of 

concepts of calculus (e.g. rate of change) 

• The object aspect: regarding global characteristics of functions, and the 

treatment of functions as algebraic objects  

The last two aspects are similar to the meaning of functional thinking during the 

Meraner Reform and are of importance when dealing with concepts of calculus in 

the sense of Tall (see above). Sfard (1991) points out that the transition to an 

object view is espcially difficult and needs special attention. 

Of course the above aspects are only discriminable in theory and theses 

distinctions are introduced for the sake of didactical research. In fact, all aspects 
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are strongly connected with each other. For example when trying to describe the 

object property monotonicity or symmetry it is done in a dynamic way by saying: 

‘For all 

! 

x " y : 

! 

f (x) " f (y) ’ or ‘For all 

! 

x : 

! 

f (x) = f ("x)’. 

The presented work is aligned with the term of functional thinking within the 

Meraner Reform: functional thinking with an emphasis on the aspect of change 

and the object aspect is seen as propaedeutics to calculus. 

1.1 Students’ difficulties related to functional thinking and calculus 

In didactic literature many difficulties in connection with functions and functional 

thinking are described. Here only some of the difficulties with regard to the focus 

of the study are pointed out. An overview of misconceptions and problems related 

to functions is given in the papers in Dubinsky & Harel (1992a) for example.  

1.1.1 Concept definition, concept image, and problems with the aspect of 

change 

In german schools the following definition for function is usually taught:  

A function is an assignment rule by which each element x of a set is assigned to 

exactly one element y of (another) set. 

This definition normally appears in grade 8 (student age: 13 years) and is 

introduced by investigating examples and non-examples often on finite or 

countably infinite sets. The above definition is however abstract and very general. 

There are many aspects and associations that are not ‘covered’ by this definition. 

For example the aspect of change is not evident in this definition. The neglection 

of the dynamic view in the definition, the primacy of numerical settings 

(Goldenberg et al. 1992) and the lack of qualitative examinations of functional 

dependencies and graphs (Janvier 1978) cause the students’ difficulties with the 

aspect of change and the idea of covariation (Falcade et al. 2007).  

Being able to reproduce the definition does not mean, that one understands the 

whole scope of the notion of function with all aspects and facets. Fischer & Malle 

(1985) also state that the true benefit of using functions becomes clear not until 

questions of calculus are addressed. Since the students only get to know a few 

classes of functions (starting with linear functions, quadratic functions, 

polynomials etc.) the generality of the definition does not seem to be appropriate 

(Fischer & Malle 1985, Malik 1980). The ‘limited’ experiences of the students 



4 

with functions and functional dependencies form their concept image. The 

concept image is the set of all mental images and characteristics connected with 

the concept of function. The concept definition is the definition for function one 

would give (Vinner & Dreyfus 1989). Vinner and Dreyfus pointed out that 

students make decisions about whether a given example is a function or not, based 

on their concept image and not on the concept definition. The concept image often 

contains images like: a function has to be one rule, has to ‘look reasonable’, is 

injective, does not have any jump discontinuities. The concept image and concept 

definition are often non-consistent. 

1.1.2 Epistemologigal obstacles and the work of Sierpinska 

The work of Vinner & Dreyfus (ibid.) and their description of the concept image 

is related to the work of Sierpinska (1992) who describes typical epistemological 

obstacles when working with functions. Originally the term epistemological 

obstacle was shaped by Brousseau (1983).  It is assumed that the process of 

learning is not linear. In the course of learning there are mental barriers or breaks 

that appear. Those barriers are natural and result from a genetic progression of the 

subject. The illusion of linearity is an example for such an obstacle. Besides in 

Sierpinska (1992) this obstacle is also described by Freudenthal (1983) in the 

following way: “Linearity is such a suggestive property of relations that one 

readily yields to the seduction to deal with each numerical relation as though it 

were linear.” (p. 267) 

Epistemological obstacles depend on the mental images, ideas and interpretations 

one has of a notion or concept. In this sense they are related to the concept image 

of functions. Obstacles are objects that need to be understood and therefore need 

to be identified in order to tackle them productively in the learning process. In this 

sense they are valuable and essential elements in the process of conceptualization. 

Some more epistemological obstacles related to functions are (Sierpinska 1992): 

functions are identified with tables and that tables are not worth being studied as 

objects, laws in physics and functions have nothing in common, only relationships 

describable by an analytic formula are functions.  



5 

1.1.3 The teaching of calculus at school 

Tall (1993, 1996) gives an overview of students’ difficulties in calculus. One main 

problem is the “consequent student preference for procedural methods rather 

than conceptual understanding” (Tall 1993, p. 17). Dreyfus and Eisenberg (1991) 

talk about the students’ reluctance to visual concepts of calculus and their 

preference of a numerical and symbolic approach. Also many german authors 

point out that calculus at school is often procedure-oriented and consists of curve-

sketching routines rather than structural understanding (e.g. Blum & Kirsch 1979; 

Bender 1991; Hahn & Prediger 2008). This has led to an ongoing request for a 

qualitative-structural approach to school calculus - a request which is in fact 100 

years old and was already formulated at the time of the Meraner Reform (Krüger 

2000). 

1.1.4 An illustrative example 

The following example illustrates and connects some of the difficulties with the 

concept of function described above. This example led to the idea of the first 

interactive activity and is therefore presented in more detail. The problem in 

figure 1 was given to more than 100 students who started their bachelor in 

mathematics at Technische Universität Berlin. 

 

Figure 1. The dashed line moves rightwards. F(x) is the area of the grey part of the triangle 

dependent on the distance x. Which graph fits and why? (Schlöglhofer 2000) 

 

The main mistake was to put a cross under the graph on the right side together 

with a reason like “The area of the graph is just like the area F(x)”.  

Here the graph is interpreted as a photographical image of the situation resulting 

from an insufficient dynamic view of the functional dependency. We call this a 

graph-as-image-misconception (Clement 1989). One reason might be that usually 

in class the pointwise view of functions is predominant, whereas the dynamic 

view is underrepresented.  
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The student solution below shows how this example leads to fundamental 

concepts of calculus. 

 

Figure 2. Student reasoning (translation): “The area increases until the line g, g

! 

"AB, C

! 

"g, then 

it decreases. 

! 

dx =
x
2

2
"  thus we have a quadratic function (CB is a straight line and CA ist a 

straight line also), whose run is not a straight line”. 

 

This student used the concept of integration by identifying the triangle with a 

piecewise linear function whose antiderivative must be quadratic. This answer is 

still combined with the graph-as-image-misconception, because the chosen graph 

decreases after C is passed. The student uses the concept of integration without 

activating a dynamic view of the function. 

The mathematical background of this example is the Fundamental Theorem of 

Calculus: The triangle interpreted as piecewise linear function is the derivative of 

the area function F, and the area function is an antiderivative. Besides 

monotonicity of the area function there is an inflection point where the quality of 

the growth changes: the growth of the area increases until this point and decreases 

afterwards. Note that the inflection point in this example cannot be found by 

applying the common routine using the second derivative, because the piecewise 

linear function is not differentiable in C. 

1.2 Objectives 

The presented work is meant as a contribution to a qualitative-structural approach 

to school calculus using the computer. Using the DGS Cinderella (Kortenkamp & 

Richter-Gebert 2006), learning activities including interactive visualizations were 

built, and design principles emphasizing the dynamic and object view of functions 
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where developed. An emphasis of the aspect of change and the object aspect is 

easy to achieve when using a DGS. While CAS is input/output based, and gives 

back information and changes  asynchronously, the use of dynamic geometry 

software (DGS) allows interactivity and immediate response (Kortenkamp 2007). 

This is used to emphasize the dynamic view of functional dependencies. The 

activities were used in a qualitative study on grade 10 students (age 15/16) in 

German ‘Gymnasiums’ (comparable to english ‘grammar schools’), before the 

students had learned about curve sketching routines. Two of the activities, the 

design principles, the framework and some results of the study are presented 

below. 

Since the activities allow only predefined forms of manipulation (mainly by 

moving points on graphs and in situations including a functional dependency), it 

is asked if the students are just moving around some geometric objects like dots or 

lines or if they really ‘see and do’ mathematics respectively analysis when 

manipulating the visualization.  

More precisely it is asked if and by which processes the students formulate certain 

concepts of calculus by using the dynamic visualization. The role of the computer 

and the special design of the activities are of particular interest. Since the 

activities are meant to support a process of conceptualization, it is also examined 

if certain epistemologigal obstacles occur.  

While the concept image and epistemological obstacles depend on experiences 

one has had with a notion or concept, it is assumed that the activities described 

below could enrich the experiences in a positive way fostering the process of 

conceptualization in calculus. 

The exact formulations of the research questions will follow after the description 

of the activities. 

1.3 The use of technology 

Before the description of the activities, a few comments about the use of 

technology for conceptualization in calculus are made. In calculus courses at 

school, Computer algebra systems (CAS) are often used. They allow the 

combination of different representations of functions, such as symbolic and 

graphic ones. In Tall (1996) some common approaches to concepts of calculus 

using the computer are described. Visual approaches include the use of computer 
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graphics to magnify function graphs. Numerical representations occur when using 

spreadsheets, for example: “Placing the data (from an experiment, or from a 

function formula) into a spreadsheet gives opportunities for investigative 

exploration” (ibid., p. 315). 

As mentioned before, DGS could be used to emphasize the dynamic view of 

functional dependencies or as Ferrara, Pratt & Robutti (2006) write: 

“But the big revolution in teaching mathematics with technologies was the 

introduction of dynamicity in software: A dynamic way to control and master the 

virtual objects on the computer let the student explore many situations and notice 

what changes and what does not. And the mathematics of change is the first step 

on the road to calculus.” (p. 257) 

There are few studies about the use of DGS when dealing with the function 

concept or concepts of calculus. Two approaches shall be mentioned here. 

One interesting study (Falcade et al. 2007) is about the design of a teaching 

experiment using a DGS (here: Cabri) environment to introduce the idea of 

function. The use of DGS, especially the dragging tool, allows the students to 

experience the idea of covariation. In Falcade et al.’s study the Trace tool plays an 

important role and is used “to introduce the twofold meaning of trajectory, at the 

same time global and pointwise” (ibid., p. 317). Falcade et al. regard these tools 

as semiotic mediators in the sense of Vygotsky (1978): “[..] a Vygotskian 

perspective may explain the contribution of tool mediated action to concept 

formation: signs generated in relation to the use of a tool, through the complex 

process of internalization accomplished after social interchange, may shape new 

meanings.” Functions are introduced as geometric functions and variation is 

represented by motion. With the guidance of the teacher, such a tool can be 

internalized by students, and the concept of independent and dependent variables 

can be constructed using the tool as semiotic mediator.  

Within the CalGeo-Project (http://www.math.uoa.gr/calgeo), learning 

environments based on dynamic geometry were developed to teach calculus 

concepts. The topics in the environments include the introduction to infinite 

processes, limit, continuity, derivative and integral. Besides using the DGS as 

function plotter with the special feature of magnification, DGS was used to 

visualize the concept of limit in a dynamic way. For example the students 

explored the concept of derivative dynamically and at the same time used the 
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magnification tool to ‘see’ the property ‘local straightness’. The material was 

tested in classroom accompanied by a special teacher training. The outcome of the 

project is that it seems to be a fruitful approach to achieve conceptualisation, but 

there is also a need for further investigation and more systematic research 

(Zachariades et al. 2007, Biza & Zachariades 2007). 

2 Interactive activities – basic ideas and design 

principles 

Basic idea is the use of interactive visualizations to accentuate the dynamic 

component of functional thinking and to aim at the development of qualitative-

structural concepts with regard to propaedeutics of calculus.  

For the design of the activities the following presuppositions were taken: The 

activities are designed to be applied at the end of grade 10 or the beginning of 

grade 11 at a ‘Gymnasium’. At that point the students have already had certain 

experiences with different classes of functions (like linear functions, polynomials, 

and exponential functions) usually approaching them in a numerical setting. 

Concepts of calculus are not taught so far. Graphs are usually ‘drawn’ by using 

tables of values and connecting points in the plane. This method does not 

emphasize the dynamic aspect of the functional dependencies. To approach 

concepts of calculus intuitively, dynamic visualizations of graphs are considered 

to be helpful as described in the preceding paragraph.  

In the above context three learning activities were developed in a joint work with 

Andreas Fest, PH Ludwigsburg. The activities consist of Java applets embedded 

into a webpage and can be used with a standard Internet browser (low technical 

overhead). Next to each applet some work orders are given. These work orders are 

also given on an accompanying worksheet on which the students can write their 

answers down. The activities and related teaching material (worksheets etc.) are 

accessible at http://www.math.tu-berlin.de/~hoffkamp or as digital content on the 

website of the Intergeo Project http://i2geo.net. 

In the next paragraph the design principles of the activities are described in more 

detail and a mathematical analysis is given. 
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2.1 Design principles and the learning activity ‘Dreiecksfläche’ (‘Area 
of a triangle’) 

The design principles are also described in Hoffkamp 2009 and 2010, but an 

overview will be given in the following. Figure 3 shows the learning activity 

‘Dreiecksfläche’ (‘area of a triangle’). 

 

Figure 3. Screenshot of the interactive learning activity ‘Dreiecksfläche’ (‘area of a triangle’).  

 

The activity allows the students to explore the functional dependency between the 

distance AD and the dark area within the triangle. Moving D visualizes the 

dynamic aspect of the functional dependency simultaneously in the situation and 

the graph. Moving B and C changes the triangle and the graph as a whole. As 

already described in paragraph 1.1.4 the underlying mathematical background is 

the Fundamental Theorem of Calculus. What are the ‘mathematical aims’ of the 

activity for the students? The students are asked to describe and give reasons for 

the shape of the graph based on the dynamic visualization. In particular the 

curvature and the change of curvature at the inflection point needs to be described 

dynamically and related to the change in area within the triangle.  

For example the monotonicity property is now very easy to formulate: ‘There is 

more and more dark area added when moving D to the right.’ The inflection point 

is dynamically observable as a point where the quality of growth changes. This 

allows the students to find formulations like: ‘After the black point over C the 

added area decreases’. Note that the area function F is piecewise quadratic, and 

does not belong to the common classes of functions taught at school.  

The underlying design principles are:  
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Starting point of the activities is always a dynamic connection situation-graph. 

The graph representation form was chosen because it relates to the dynamic 

aspect of functional thinking in an eminent way and contains the information 

about the function ‘at a glance’. This is why graphs are important representations 

of functions in calculus. 

Each activity contains two levels of variation:  

First, moving D allows variation within the situation. The aspect of change 

becomes simultaneously visible in both representation forms - situation and graph. 

The underlying idea is the idea of supplantation (Salomon 1994). To understand a 

dynamic situation one needs to construct an ‘executable’ mental model to achieve 

mental simulation. Supplantation means the visual support of mental simulation 

processes.  

The second variation level allows - by moving points B and C - to change the 

situation itself and the function as a whole. This variation form will be named 

metavariation in the following. It relates to the object view of the function. 

Metavariation forces the detachment from concrete values and leads to a 

qualitative view of the functional dependency and its local and global 

characteristics. Characteristics like ‘monotonicity’ or ‘existence of an inflection 

point’ are emphasized by being invariant under metavariation (or in case of the 

inflection point ‘nearly invariant’).  

When working with the applets the students are always asked to verbalize their 

observations. The role of language as a mediator between the representations and 

the mental images of the student is of special importance in the conceptualization 

process. Janvier (1978) examined the interaction between a graphical 

representation and a given situation. He emphasized the importance of a constant 

interrelation between graph and situation for the transfer between the 

representations. In this context Janvier points out the relevance of verbalization of 

the properties detected within the different representations. He considers language 

as a mediator between the representations and the students’ mental concepts. 

The principle of contiguity (Mayer 2005) is essential. Representations referring to 

each other are close in space and time. Especially the fact, that movement takes 

place where the mouse pointer operates is important to achieve an integrative 

visualization where dynamic can be experienced. 
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2.2 Learning activity ‘Einbeschriebene Rechtecke’ (‘inscribed 
rectangles’) 

Figure 4 shows parts of the activity ‘Einbeschriebene Rechtecke’ (‘inscribed 

rectangles’).  

 

Figure 4. Applet constellations within the first part of the activity ‘Einbeschriebene Rechtecke’ 

(‘inscribed rectangles’).  

Students are asked to move point P on the line BC so that an inscribed rectangle 

appears. After fixing P on BC by using a button, P can be moved on BC and the 

relation between the area of the rectangle and the x-coordinate of P can be 

explored by answering questions like: ‘Describe how the area of the rectangle 

changes, when moving P on BC.’, ‘Which values does the area take? Also 100?’, 

‘Are there different rectangles with the same area? If yes, give examples for it.’ 

When using a ‘hint’-button the coordinates of P and the value of the area appear. 

Figure 5 shows the applets within part two and three of the activity. 

  

Figure 5. The two levels of variation within the activity ‘Einbeschriebene Rechtecke’ (‘inscribed 

rectangles’). 

The left screenshot in figure 4 shows the variation within the situation. Moving P 

on BC leads to simultaneous movement of the point in the area graph leaving a 

trace. Students are asked to answer the questions: ‘When is the area at its 

maximum?’, ‘Why is the area graph shaped like this?’, ‘Explain which values for 

the area do not appear, appear once, twice using the graph.’ On the right side the 

applet referring to the level of metavariation is shown. Students are asked to move 
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B and C on the axes and describe the influence on the graph. Two main questions 

are: ‘Give two examples for triangles so that the rectangle with maximum area is 

15. Describe how you found these triangles.’ and ‘Give two examples of triangles 

so that the maximum is taken at x=4. Describe how you found these triangles.’ In 

particular the situation in figure 5 shows an isosceles triangle where the rectangle 

with maximum area is a square. 

Mathematically the students are asked to characterize certain properties of the 

functional dependency, such as symmetry, maximum, non-linearity, using a 

dynamic approach that connects a geometric situation with a function graph.   

3 Qualitative Study 

3.1 Research questions 

The study was guided by the following research questions: 

1. Which terms and mental concepts with regard to a dynamic view of 

functional dependencies do the students develop when working with the 

activities, especially when local and global characteristics of the functions 

are described qualitatively in connection to concepts of calculus? 

2. What kinds of interaction processes can be described? Here the 

interactions between the students and the student-computer interactions are 

of particular interest. What is the role of the two levels of variations 

(variation within the situation, variation of the situation/metavariation) 

within the interactions?  

3. Which epistemological obstacles occur when the students discuss the 

special properties of the visualized functions? Are there hints that the 

students could overcome certain obstacles by using the activities? Can we 

find obstacles that may be tackled productively in class when teaching the 

concepts of calculus? 

3.2 Framework of the study 

After a pretest and a makeover, the activities were employed within the 

framework of a qualitative study in grade 10 of two different grammar school 

classes (‘Gymnasien’) in Berlin, Germany. Note that the concepts of calculus like 

differentiation, integration, and curve sketching routines are taught in grade 11 
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and 12. At that time the students should have been familiar with certain classes of 

functions like linear, quadratic, polynomial, logarithmic, exponential, and some 

trigonometric functions.  

Both classes consisted of about 25 students and were only taught by the researcher 

during the time of the study within the conventional lessons. For each activity a 

block period of 90 minutes was used. An additional single lesson of 45 minutes 

was used in the end to take a short test and to answer a questionnaire. In the first 

45 minutes of each block period the students worked nearly autonomously in pairs 

at one computer. For each activity a worksheet was provided. Usually one of the 

students was in charge of handling the applet while the other wrote the answers 

down (in alternating roles). The second 45 minutes were used to discuss the 

questions and answers with the whole class. 

Per class two pairs of students where videotaped while working with the activities 

using the software ‘ScreenFlow’. This software allows to record and watch the 

students, their discussions, and the computer actions simultaneously. These 

recordings served as the main material for the analysis. The discussion with the 

whole class was also videotaped. Additional material for analysis consisted of the 

students’ worksheets, the short test in the end, and the questionnaires. 

3.3 Methodological aspects 

It was expected that the diverse material for analysis would enable the researcher 

to get a sophisticated impression of the students’ train of thoughts. The main 

objective was to understand the students’ negotiations in order to constitute 

mathematical sense. Therefore it was essential to analyze the recordings of the 

pairs of students working on the activity sequentially using a microethnographical 

approach. By such an analysis it is possible to get insights into the microculture 

of this special classroom situation. For the analysis the researcher applied the 

principles of the tradition of the German interpretative classroom studies (Maier 

& Voigt 1991, Voigt 1995). The basic assumptions of this approach are that the 

teaching and learning of mathematics are instances of a social process. 

Mathematical meaning of symbols, means, and classroom activities are not 

naturally or automatically there, but need to be negotiated. Mathematical sense is 

interactively constituted. The aim is the re-construction of meaning by a deep 

sequential analysis of texts (mainly transcripts and texts written by students). The 
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results of such analyses allow the recognition of the polymorphy of possibilities 

within individual cases and the detection of similarities or regularities. They help 

to sensitize for perception, and the own didactical attitude and didactical action. 

The main material for analysis consists of the recordings of the pairs of students 

working on the activity. In the first step, raw documents for analysis were created 

by going through the recordings sequentially. These documents consist of large 

tables with the following columns: time, paraphrase, computer action, raw 

transcript, tentative interpretation. The information from the students’ worksheets 

was also integrated.  

These raw documents serve as overviews of a whole session of a pair of students 

working with the digital material. The interpretation of the actions and 

conversations and the re-construction of mathematical meaning is based on the 

chronology of their appearance.  

Based on these raw documents some episodes were chosen for detailed 

transcription. Episodes were especially chosen where the students discussed lively 

and controversally or where there was a lot of computer action. However episodes 

in which wrong mathematical statements occurred were also chosen. These 

episodes were analyzed more deeply, also taking into account the worksheets, 

questionnaires and tests.  

When interpreting the transcripts by going through them line by line, the raw 

documents allowed the researcher to embed the interpretation in the chronological 

course of events. This was especially important when statements of students were 

open to several interpretations, and gave hints for the most likely interpretation of 

a sequence. They also allowed the researcher at each point to look forward and 

backwards in the chronology of events. 

4 Selected Results 

In the following some selected results relating to the interactive activities 

‘Dreiecksfläche’ (‘area of a triangle’) and ‘Einbeschriebene Rechtecke’ 

(‘inscribed rectangles’) are presented. We focus on how the students construct 

mathematical sense using the dynamic visualizations, and which mathematical 

terms they find and use during the learning process. The impact of the level of 

metavariation on the learning process is of particular interest. Some occurring 

epistemological obstacles are also pointed out. 
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For the demonstration of the results the author chose to depict some recurrent 

phenomena. The phenomena are described by presenting different episodes in 

form of excerpts of transcripts, student remarks on worksheets, and their 

interpretation.  

4.1 Selected results – ‘Dreiecksfläche’ (‘area of a triangle’) 

4.1.1 Distinction between ‘stock and change’ 

The main difficulty of this activity was the distinction between ‘stock of area’ and 

‘change of area’. Stock and change had to be described in the situation as well as 

in the graph representation form. It appeared that the description within the 

situation was more difficult. In the situation one has to describe the aspect of 

change by analyzing the growth of area qualitatively, whereas in the 

representation form graph this can be described by using terms like ‘slope’ or 

‘gradient’. 

We present an excerpt of a transcript showing the discussion of the question ‘Why 

is the graph shaped like this?’ Prior to the beginning of the transcript S1 stated 

that the graph increases at first and decreases after point C is passed. S2 does not 

agree. The excerpt shows a very small part of a long discussion which got pretty 

loud in the end. Finally a third student (S3) intervened. 

 

S2:  But for me it does not decrease, it definitely increases.  

S1: But it, can’t you see this here (points at the monitor) 

S2: If it, if it would decrease, it would go down again like that (points at 

monitor)  

S1: It does not have to- 

S2: This is decreasing. 

S1:  No, it really declines. It’s the ratio that declines.  

S2:  No. 

S1: Look, if it goes down like this. 

S2:  Ok, then let’s say the ratio declines, but here (points to the monitor) it still 

increases. It also increases here and also there. 

S1: Yes, but however that is always the ratio. However, the graph is the ratio. 

S2: No (.) Yes, ok, the graph could be the ratio but it definitely does not 

decrease here (points at monitor) 
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S1:  But proportionally it decreases.  

[..] 

S3: How about saying ‘the slope decreases’? 

S1: (smiling) That’s right. Good. 

S2: I am warm. 

 

For S2 the graph represents the stock of area whereas S1 tries to find information 

about change in the graph, but is not able to find appropriate terms for describing 

her observations in the situation. She speaks about some ‘ratio’ that decreases 

after point C is passed, but does not specify which ratio she means. In fact she 

realises that the curvature of the graph changes. S3 helps with the term ‘slope’ to 

describe the change on the graphical side.  

Why is this difficult from a mathematical point of view? In fact the applet shows 

the stock graph (area function) next to the change graph (triangle interpreted as 

piecewise linear function is the derivative). The stock graph is monotonic 

increasing, while the qualitative change of growth when passing point C is 

simultanously visible in the decrease of the derivative. In other words: Change in 

the stock graph means stock in the change graph. Stock and change are 

dynamically connected by the learning activity. Therefore both – stock and 

change – are mentally accessible in an intuitive and implicit way. This difficulty is 

also evident from the students’ answer on the worksheet: 

“Because the area increases in the beginning dependent on AD, then the slope 

slightly decreases, because the line AD decreases in proportion to the area. The 

graph always has to increase, because the area also increases all the time.” 

On the graphical side they were able to describe the change by using the term 

slope. Whereas in the situation they were not able to give a description and 

explanation for the shape of the graph. Their attempt of describing a ratio is a 

good start when thinking about a rate of change, but they do not make clear which 

ratio they exactly mean. They always seem to consider the distance AD and not 

the segments of distance on the x-axis for their ratio. Even if they form the ratio 

distance(AD)/area(distance(AD)) the statement the ratio declines when passing C 

is wrong. 

The description of monotonicity was not a problem at all: It was described in  

both - the situation and the graph representation form. 
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During the above discussion the students did not use the possibility to drag points. 

Later they used the level of metavariation in the following way: 

 

S2: No, you have to move C. 

S1: (moving C to the left side, the first section of the curve from (0/0) to the 

inflection point is now shorter than the latter one) This should be as small  

as possible.  (moves C to left again) Can you see that now? Can you see 

that it is just the same here. That it is going like this? 

S1: Yes, of course. I can see that, but it is not decreasing here! 

S2: Yes, the slope decreases. 

S1: Yes. 

 

S1 uses the level of metavariation to make the change of the curvature at the 

inflection point more obvious. She experiences the inflection point as being 

invariant under metavariation (‘Can you see that it is just the same here?’). In this 

sense the students are forced to view the functional dependency in a qualitative 

way. In this case metavariation is used to affirm the students’ statements by 

emphasizing the characteristic properties of the area function. 

4.1.2 Epistemological obstacle ‘slope in one point’ 

The next excerpt of a transcript illustrates one notable epistemological obstacle 

occurring in the learning process with the activity. The students try to describe the 

shape of the graph, especially the shape at the inflection point corresponding to C: 

 

S1: I’d say the slope of the function changes. 

S2: No, no, the slope, the function does not have a slope, because, if it would 

have one, it would be a line. 

S1: Move it. 

S2: (moving C horizontally back and forth) It. Look, because he, it, aah, there 

is no slope, because the slope is different everywhere. There is no exact 

slope especially not here (moves C above the middle of AB) 

 

So far these students encountered the term slope only in connection with slope of 

lines. That is why S2 does not accept the term slope in the case of the area graph 
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at first. Moving point C (using the level of metavariation) seems to lead to 

another visual impression - the impression, that the slope is different everywhere 

and that it is not exact, which could mean that there is no exact mathematical 

description possible. Metavariation serves as visual accentuation, which could 

lead to further mathematical investigation: S2 moves C and says ‘the slope is 

different everywhere’ although she stated ‘the function does not have a slope’ 

before. The use of metavariation led to two contradictory statements.  

In fact student S2 formulates the need for an extension of the concept of slope 

from lines to general differentiable graphs by herself. This need is initiated by 

using the level of metavaration. There seems to be an epistemological obstacle 

here (which is maybe related to the ‘illusion of linearity’ mentioned in paragraph 

1.1.2). The ideas and mental images the student connects with the concept of 

slope are limited and the contradictory statements of S2 lead to the need of 

extension of the concept of slope. In class this could be used productively as a 

starting point for a discussion about the slope of a function like the given one, and 

about the possibilities to extend the concept of slope in a consistent way.  

4.2 Selected results – ‘Einbeschriebene Rechtecke’ (‘inscribed 
rectangles’) 

4.2.1 Epistemological obstacle ‘continuity’ 

The concept of continuity is strongly related to characteristic properties of the real 

numbers (like completeness or uncountability) and the idea of approximation. In 

diverse situations while working with the applets the students faced observations 

requiring mental concepts concerning continuity. In the following some examples 

are given. 

Working with applet one (figure 4) the students make conjectures about the 

change of the area of the inscribed rectangle. The following excerpt is part of a 

discussion of a pair of students working with applet one: 

 

S2: Ok, so the area (moving P on B, P is not fixed on the line BC) is zero at B  

(moving P slowly on BC from B towards C) then it gets larger. 

S1: Why does it get larger? 

S2: Oh well, because from here it (moves P on B and then slowly towards C)  

here it is zero and then it grows at first. 
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S1: How do you know that it is larger? It is just not that long. 

S2: Yes, but anyway, it is larger than zero. Thus it is getting larger at first.  

[..] 

S1: No, it is (.) I think the area is always the same! 

 

The fact that the area changes continuously does not seem to be intuitively 

obvious for all students. S2 implicitly assumes the continuity of the area function 

(“the area is zero at B then it gets larger”, “it grows at first”), whereas S1 thinks 

that “the area is always the same”, although S1 recognized that the area is zero 

when P coincides with B or C. But this would mean a jump discontinuity of the 

area function. In fact the continuity of the area function is not really visible in the 

situation. If P equals B or C there is no green rectangle visible, but in all other 

cases there is. The continuity is better represented by the graph, because the graph 

visualizes the continuous change in area and moving the point visualizes this 

change in a dynamic way. This could serve as a dynamic basis for the 

development of the concept of continuity. 

 

Closely related to the concept of continuity is the concept of approximation. 

When the students started to search for the maximum area, they usually gathered 

some approximate (imprecise) values. They were not aware of the necessity to 

choose more and more precise values while coming closer to the maximum. In the 

following excerpt  the students work with applet one (figure 4) gathering some 

sample values for the area and trying to find the maximum. 

 

S2: Now, we have (moves P to the approx. coordinates P(6.68|4.98)) five 

times six-and-a-half that makes (.) 

S1: Thirty. 

S2: More than thirty. (moves P to the point P(6|6)) 

S1: Six times six, thirty-six. It gets larger. (starts to write) 

S2: Yes, until six times, thirty-six it gets larger (moves P to the approx. 

coordinates P(5.2|7.1)) Now we have seven times five that’s thirty. So, up 

to point six six  

S1: Up to the middle, isn’t it? [..] Perhaps we can say, that it that it up to the 

middle of the line?- 
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S2: No. Because now we have seven times five, that’s thirty-five. It decreases  

again. 

 

As above most of the students conjectured at first that the maximum is taken in 

point P(6|6) with a maximum area of 36. Note that the maximum area of 37.5 is 

taken in point P(5|7.5), thus at the midpoint of the line segment BC. In the 

discussion above the students gather some values by changing the y-value for P in 

ones from five to seven and taking approximate values for the x-value to compute 

the area of the rectangle.  Although the maximum could lie in between the chosen 

points they do not refine the steps on the y-axis. This shows that they are not 

aware of an implicit concept of the intermediate value theorem - one of the 

important theorems about continuous functions. Connected to this is the idea of 

approximation. After moving to point P(6|6) and computing an area of 36, S2 

moves P to the approximate coordinates P(5.2|7.1) and computes five times seven 

equals 35 (in the beginning S2 even miscalculates “seven times five that’s 

thirty”), which is lower than 36. In fact taking the ‘exact’ values 5.2 times 7.1 

leads to the value 36.92 which is larger than 36. More precise values are needed to 

get closer to the maximum. Approximation means adding decimal places and 

therefore real numbers need to be seen as decimal numbers. Of course real 

numbers can also be seen as complete ordered field or as being geometrically 

represented as number line. But in this case (for the concept of approximation) the 

representation of real numbers as decimal numbers is the best choice. The 

‘misapprehension’ of the students above is again a good chance for a productive 

continuation of the lesson when dealing with the idea of real numbers and 

continuity. To deal with real numbers and related concepts one has to establish 

suitable ideas about real numbers. Moreover in certain situations adequate 

representations and ideas need to be activated.  

 

A third example in the context of continuity shows, that working with the applets 

enabled some students to describe continuity in their own terms. The following 

excerpt is part of a discussion of the problem ‘Explain by using the graph, which 

values appear once, twice or never.’ The students are working with applet two 

(figure 5, left). The discussion starts with the statement that all values below zero 

and above 37.5 are never reached.  
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S2: Well, or below zero. Larger than 37.5 or below zero (.) smaller than zero. 

(writing on the worksheet) The values larger than (   ) 

S1: Mhm. (moving P) Well, the value 25 is never reached either. 

S2: Of course it is. 

S1: Mmh. Look. (moves P) Not here. (the area value 25.1 appears as a 

decimal fraction on the monitor) Yes, twenty-five one- hmm well, ok, I- 

S2: It will be reached once eventually. 

S1: (trying to reach the exact decimal fraction 25.0 by moving P, reaches 

25.085) Here (pointing to graph?) the value 25 appears also.  

[..] 

S2: Each value is actually reached. (moving P) It is always possible to move  

the point a tiny bit. 

 

S1 states that the “ value 25 is never reached” while moving P. Obviously his 

statement is based on the observation that he was not able to obtain the decimal 

fraction 25.0 beneath the applet. When moving P the student S1 observes the 

change of the data and not the change of the corresponding point in the area 

graph. But the data is not appropriate to reflect continuity, because there are at 

most four digits visible after the decimal point. Finite decimal fractions only allow 

a discrete view of the situation, whereas a graph allows a geometric approach as 

continuous movement towards certain values.  It is likely that S1 looks at the 

graph, when saying “Here the value 25 appears also”. In the end S2 expresses his 

notion of continuity based on the experience with the dynamic visualization 

within the graph by “It is always possible to move the point a tiny bit”. Variation 

within the situation allowed the student to really experience continuity. Moreover 

the student found his own terms to describe continuity based on the dynamic 

visualization (‘move the point a tiny bit’). This intuition could serve as an 

intuitive basis for an infinitesimal approach to calculus (see also Tall 1996, p. 

308/309). 

4.2.2 Metavariation and predicative thinking 

The level of metavariation is especially difficult to understand in a functional-

dynamic way in this activity. The metafunction, i.e. the function assigning the 
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triangle ABC to the area graph, is two-dimensional depending on the points B and 

C. Moreover it is difficult to simulate the change of the area mentally within a 

given situation because there are two underlying functional dependencies: the 

dependency between the coordinates of P (which is a linear function) and the 

dependency between the x-coordinate of P and the area F(x) (which is quadratic). 

Metavariation is easier to understand when finding a predicative description of the 

situation. A predicative description considers the structure and invariants. It does 

not care so much on dynamics, but on static structures and the embedded complex 

relationships. It aims at the properties and their interrelations (Schwank 1999). 

It seemed to be a specific obstacle of the applet that it strongly suggested a 

functional-dynamic view instead of a structural view, and in this case the 

dynamicity hinders the students from getting deeper insights. 

In fact, the students formulated both views. E.g. one student’s solution to the 

question ‘Give two examples for triangles so that the rectangle with maximum 

area is 15. Describe how you found these triangles.’ was:  

“On the x-axis you need a number that results in 60 when multiplied with n or you 

take an arbitrary point on the x-axis and move the point on the y-axis as long as 

the maximum is 15.” 

Their structural approach is only understandable when watching the recording. It 

is meant, that the x-coordinate of B multiplied with the y-coordinate of C must 

result in 60, because the maximum area is one forth of the rectangle formed by 

completing the triangle ABC to a rectangle. Their second description is a 

functional-dynamic one giving an instruction how to use the applet to find the 

triangle. It does not integrate an object view of the situation. 

Once the students had found an appropriate predicative description it enabled 

them to think reversible in the sense of Piaget (1972). The students were able to 

reverse their mental operations. One pair of students used the following 

predicative description when characterizing the location of the maximum: “The 

maximum is found by reducing the coordinates of P by half and multiplying these 

values.” 

To answer the question of how they found the triangles, so that the maximum of 

the inscribed rectangles is 15, they reversed this operation mentally by saying 

“For example one can [compute] 15 divided by 3 [..] then you get 5 and you take 
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5 times 2 and 3 times 2 and get these values [x-coordinate of B and y-coordinate 

of C]”.  

Please note that operational thinking in the sense of Piaget (1972) is needed to 

answer questions like ‘What happens to properties, functional dependencies or 

relations if …?’ Operational thinking includes composition, association and 

reversion of operations (mentally or supported by visualizations). Therefore it is 

stongly related to functional thinking. 

5 Concluding remarks 

The diversity of phenomena described and analyzed in paragraph 4 show that the 

interactive visualizations do not just lead to the manipulation of some points or 

lines, but really activate the formation of an intuitive access to concepts of 

calculus. 

It emerged that each activity has its own mathematical focus besides the common 

design principles accentuating the dynamic and object view of functions.  

Whereas the activity ‘Area of a triangle’ focused on the distinction between stock 

and change, the focus of the activity ‘Inscribed rectangles’ is on the description of 

continous change or movement with certain characteristics like symmetry, 

maximum etc. 

The results show that the interactive environments together with the given tasks 

asking for verbalisation lead to various approaches to conceptualization processes. 

Verbalization forced the students to negotiate the mathematical meaning. It is 

assumed that these processes contribute to an enrichment of the concept image of 

functions integrating a dynamic view. For activating the processes the students 

used the interactivity and the two levels of variation. For example variation within 

the situation was used to make guesses about the change in area in the learning 

activity ‘Inscribed rectangles’. The students were enabled to gather some values 

and to test some characteristics of the area function, for example, when they were 

asked which values appear twice or if there is a maximum value. In this sense they 

worked mathematically using the applet. Moreover the variation within the 

situation in the applets of ‘Inscribed rectangles’ allowed the students to find an 

intuitive formulation of the idea of continuity. Their idea is strongly related to an 

infinitesimal approach to calculus.  
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Metavariation was used to emphasize certain characteristics of the function which 

are invariant under metavariation. It also forced the students to develop and 

verbalise a qualitative view of the functional dependency. This was especially 

obvious in the discussion about stock and change when the students started to 

drag point C. 

The microethnographical approach of the German interpretative classroom studies 

also allowed the detection of some epistemological obstacles (‘slope in one point’, 

‘continuity’). These  obstacles are valuable hints for further didactical 

considerations and help to sensitize for perception and own didactical action. 

Overcoming such obstacles is an essential part in the conceptualization process 

and can be used productively in lessons. For example, the obstacle ‘slope in one 

point’ was detected using metavariation. The need for the extension of the concept 

of slope was formulated by the student herself. 

The level of metavariation needs special attention. It allows experiences with the 

object aspect of functional dependencies, but is difficult to understand and explain 

in a functional-dynamic way.  

Metavariation relates to the object view of a function and emphasizes global and 

local properties of the dependency. But metavariation also evokes some obstacles 

specific for the applets. Nevertheless in case of the activity ‘Inscribed rectangles’ 

metavariation allowed the students to formulate a predicative description of the 

situation. This led to reversible thinking which is strongly connected with 

functional thinking.  

In the opinion of the author the environments could be of high value when 

continuing the development of routines and further concepts in calculus. For 

example the activity ‘area of a triangle’ could serve as basis of the fundamental 

theorem of calculus. The underlying idea is the idea of supplantation as described 

in paragraph 2.1. The interactive visualization leads to mental simulation and a 

teacher could refer to it. Later on, the situation ‘area of a triangle’ could be 

examined by looking for an analytic description of the function and its derivative. 

Mental simulation allows a dynamic interpretation of the underlying functions.  

Also the level of metavariation can be described analytically, which leads to an 

elaborated image of the fundamental theorem of calculus. 
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