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Abstrat

In the desription of eonomi models by Arrow and Hahn the exis-

tene of a market equilibrium is proved under the assumption of on-

tinuity of the exess demand funtion in this model. This assumption

is replaed by the w-disontinuity whih yields to an extension of the

lass of mathematial models to eonomies of suh kind. There are

studied some properties of w-disontinuous mappings, and based on

them, for a new eonomi model the existene of a ertain equilibrium

is proved.
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1 Introdution

The lassial miroeonomi models have their origins mainly in the work of

L. Walras [17℄, (1954), a wider disussion of them is presented by K. J. Arrow
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and G. Debreu [3℄, (1954) and also by K. J. Arrow and F. H. Hahn [4℄, (1971)

(we make use of the last one). An extended desription of the lassial model

an also be found in textbooks on miroeonomis, for example, H. Varian

[16℄, (1990), D. M. Kreps [12℄, (1990) or W. Niholson [15℄, (1992). For a

stritly funtional-analyti approah we refer to the book of C. D. Aliprantis,

D. J. Brown and O. Burkinshaw [2℄, (1990).

One of the basi assumptions in mathematial modelling of the standard eo-

nomi model is the ontinuity of the exess demand funtion involved. There

are reasons to maintain that the neessity of this assumption is aused by

the methods provided by mathematis. First of all the �xed points theorems

of Brouwer and Kakutani have to be mentioned, sine both require the on-

tinuity of the maps. They are the main tools for establishing the existene of

an equilibrium. However, the neessity of the assumption of ontinuity has

also some eonomi motivation: in a neolassial exhange eonomy due to

the strit onvexity and strit monotony of the preferenes of all onsumers

the exess demand funtion is ontinuous (see [2℄, Th.1.4.4). In fat this is

a di�erent assumption about the behavior of onsumers. The paper o�ers a

possibility to substitute the ontinuity of the exess demand funtion by the

w-disontinuity of this funtion and therefore to deal, in some extend, with

unstable eonomies. We will examine the properties of w-disontinuous map-

pings and �nally, under some additional onditions, we prove the existene

of a generalized equilibrium. The sheme of the proof is traditional, however

it is worth to mention that the Walras' Law is not supposed in this type

of eonomy. Another assumption is needed (Assumption 3') instead. The

proposal on the Walras' Law follows from the hypothesis that all onsumers

and all produers (or households and �rms) at in a maximal rational way by

taking into onsideration their budget onstraints. But the maximal rational

way is possible only when eah onsumer and eah produer is thoroughly

familiar with the prie system of all the goods. In the real situation even on

the sale of one small state (for example, Latvia), this is not possible.

2 w-disontinuous mappings and their proper-

ties

A lass of mappings between metri spaes whih are moderately disontin-

uous is de�ned as follows. Let (X, d) and (Y, ̺) be two metri spaes and ω
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a positive number.

De�nition 1 Let f : domf −→ Y , where domf ⊆ X. Let x0 ∈ domf and

w > 0. A positive number δ is alled an ω-tolerane of the map f at the

point x0, if any point x ∈ domf whih satis�es the ondition d(x, x0) < δ

satis�es also the inequality ̺(f(x), f(x0)) < ω.

Denote the set of all ω-toleranes of f at x0 by T (f, x0, ω). A number δ > 0
belongs to T (f, x0, ω) if

x ∈ dom(f) ∩B(x0; δ) =⇒ f(x) ∈ B(f(x0);ω),

where B(x; r) denotes the open ball in a metri spae entered at the point

x with radius r.

One has immediately the following properties of ω-toleranes1 where, in what

follows, ω, ωi(i ∈ {1, . . . , k}, k ∈ N) are supposed to be positive numbers and

intersetions of domains are assumed to be nonempty.

(i) ω1 < ω implies T (f, x0, ω1) ⊂ T (f, x0, ω)

(ii) 0 < δ1 < δ and δ ∈ T (f, x0, ω) imply δ1 ∈ T (f, x0, ω),

(iii) Let f1, . . . , fk be a �nite number of mappings and let x0 belong to

k
⋂

i=1

domfi.

If δi ∈ T (fi, x0, ωi) i = 1, . . . , k, then

δ := min
1≤i≤k

δi ∈ T (fi, x0, ω1 + · · ·+ ωk) i = 1, . . . , k.

(iv) Let Y be a real normed spae with the norm ‖ · ‖Y . Consider for

fi : X −→ Y, i = 1, . . . , k and α1, . . . , αk ∈ R the linear ombination

g = α1f1 + · · ·+ αkfk. Let x0 belong to

k
⋂

i=1

domfi. Then

δi ∈ T (fi, x0, ωi), i = 1, . . . , k imply min
1≤i≤k

δi ∈ T (g, x0,

k
∑

i=1

|αi|ωi).

1

We adapt some ideas whih are used in [13℄ for ontinuous funtions.
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(v) Let be Y = R. For f : X −→ R de�ne the funtions |f |(x) = |f(x)|, f+(x) =
max{f(x), 0} and

2 f−(x) = max{−f(x), 0}. Let x0 belong to domf .

Then

T (f, x0, ω) ⊂ T (g, x0, ω),

where g stands for |f |, f+, f−.

(vi) For the mappings fi : domfi −→ R, domfi ⊂ X, i = 1, 2 de�ne the

funtions f1 ∨ f2 = max{f1, f2} and f1 ∧ f2 = min{f1, f2} pointwise on

domf1 ∩ domf2. Let x0 belong to domf1 ∩ domf2. Then

δi ∈ T (fi, x0, ωi), i = 1, 2 imply min{δ1, δ2} ∈ T (g, x0, ω1 + ω2),

where g = f1 ∨ f2 or g = f1 ∧ f2.

(vii) Let (Z, dZ) be a metri spae, f : X −→ Y, g : Y −→ Z and imf ⊂
dom g. De�ne (g ◦ f)(x) = g (f(x)) , x ∈ domf . Let x0 belong to

domf . If σ ∈ T (g, f(x0), ω) then

T (f, x0, σ) ⊂ T (g ◦ f, x0, ω).

We establish only the properties (iv) - (vii), sine (i) and (ii) are obvious and

(iii) immediately follows from (i) and (ii).

(iv). If δi ∈ T (fi, x0, ωi) and δ = min{δ1, . . . , δk} then aording to (ii) for

eah i = 1, . . . , k one has δ ∈ T (fi, x0, ωi). If x ∈ X and d(x, x0) < δ then

‖ g(x)− g(x0) ‖Y=‖
k
∑

i=1

αifi(x)−
k
∑

i=1

αif(x0) ‖Y=‖
k
∑

i=1

αi (fi(x)− fi(x0)) ‖Y≤
k
∑

i=1

|αi| ‖fi(x)− fi(x0)‖Y ≤
k
∑

i=1

|αi|ωi.

(1)

(v). The property (v) for |f | follows from the inequality

∣

∣|a| − |b|
∣

∣ ≤ |a− b|
for real numbers a, b. The proof of the other parts of (v) makes use of the

relations f+ = 1
2
(f + |f |) and f− = 1

2
(f − |f |).

(vi). For the proof use the relations f1 ∨ f2 = 1
2
(f1 + f2 + |f1 − f2|) and

f1 ∧ f2 = 1
2
(f1 + f2 − |f1 − f2|). If δ = min{δ1, δ2} then by (iv) and (v)

2

It is su�ient for f to belong to a normed vetor lattie of funtions de�ned on X ,

where |f | is the modul of the element f .
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δ ∈ T (f1 ± f2, x0, ω1 + ω2) ⊂ T (|f1 − f2|, x0, ω1 + ω2), and so δ ∈ T (f1 ∨
f2, x0, ω1 + ω2) and δ ∈ T (f1 ∧ f2, x0, ω1 + ω2).

(vii). If δ ∈ T (f, x0, σ) and x ∈ domf satis�es d(x, x0) < δ then ̺(f(x), f(x0)) <
σ and, sine σ ∈ T (g, f(x0), ω), one has dZ

(

g(f(x)), g(f(x0))
)

< ω, i. e.

δ ∈ T (g ◦ f, x0, ω).

Corollary 1 For f, g and α 6= 0 one has

T (f, x0,
ε
2
+ w1) ∩ T (g, x0,

ε
2
+ w2) ⊂ T (f + g, x0, ε+ w1 + w2) and

T (f, x0,
ε
|α| + w) ⊂ T (αf, x0, ε+ |α|w).

De�nition 2 A mapping f : X → Y is said to be w-disontinuous at the

point x0 ∈ X if for every ε > 0 there exists an ε + w-tolerane of f at the

point x0.

The w-disontinuity of a mapping f at x0 means that T (f, x0, ε + w) 6= ∅
for ∀ε > 0, i. e. for eah ε > 0 there exists δ > 0 suh that whenever x ∈ X

and d(x, x0) < δ then ̺(f(x), f(x0)) < ε+w. Of ourse, the onstant w may

not be the best possible (smallest) one. Very often, espeially in eonomi

appliations, there is known only a rough upper estimation for the "jump".

A mapping f is alled w-disontinuous in X if it is w-disontinuous at all

points of X .

The notion of w-disontinuous maps is not new. It is already found in [14℄

as the onept of osillation or in [6℄ as ontinuity defet. The notion of

w-disontinuity (former w-ontinuity) was introdued by the �rst author in

[5℄.

Example 1 The usual Dirihlet funtion on R and also the generalized

Dirihlet funtion f : Rn → {0, 1}, de�ned for all x = (x1, x2, ..., xn) ∈ Rn
by

f(x) =

{

1, if all omponents xi ∈ Q

0, if there exists i0 suh that xi0 ∈ R \Q ,

are 1-disontinuous (and onsequently, due to (i), for any ω ≥ 1 also ω-

disontinuous) funtions.

Example 2 The number w in the de�nition 2 may dramatially depend on

the value of the funtion at the point x0. The funtions

f0(x) = sign(x) =







1, if x > 0
0, if x = 0

−1, if x < 0
,
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and

f1(x) =

{

f0(x), if x 6= 0
1, if x = 0

, f2(x) =

{

f0(x), if x 6= 0
2, if x = 0

oinide in any neighborhood of 0 but f0, f1 are 2- and f2 is 3-disontinuous
at 0.

Proposition 1 If f is ontinuous at the point x0 and g is w-disontinuous

at the point f(x0) then g ◦ f is w-disontinuous at x0.

Proof. Indeed, T (f, x0, ε) 6= ∅ and T (g, f(x0), ε+w) 6= ∅ for any ε > 0. If σ ∈
T (g, f(x0), ε+w) then by view of (vii) eah δ ∈ T (f, x0, σ) belongs to T (g ◦
f, x0, ε+w). That means x ∈ domf and d(x, x0) < δ imply ̺(f(x), f(x0)) <
σ and the latter in turn yields dZ

(

g(f(x)), g(f(x0))
)

< ε+ w.

If, onversely, f is w-disontinuous at x0 and g ontinuous at f(x0) then the

set T (f, x0, σ) is not empty only for su�iently large positive σ ∈ T (g, f(x0), ε).
Consider for example T (f, 0, σ), σ ∈ T (g, 0, 1

2
) with f(x) = sign(x), g(x) = x

and σ = 1
4
. In order to apply the property (vii) to the mapping g ◦ f the

number σ has to satisfy, for example, σ > w. This, in general, leads to an

additional restritive ondition on the funtion g.

If X , Y , V are real normed vetor spaes the following properties of w-

disontinuous mappings are established by adapting the methods for ontin-

uous mappings.

Proposition 2 Let be fi : X → Y, αi ∈ R, i = 1, . . . , k and g = α1f1 +
· · ·+ αkfk. Suppose wi > 0 and that fi is wi- disontinuous on the set X for

eah i = 1, . . . , k. Then g = α1f1 + · · · + αkfk is a |α1|w1 + · · · + |αk|wk-

disontinuous mapping.

Proof. The statement is an immediate onsequene of the next property,

whih an be obtained from (iv): If ε > 0 and σ =
ε

1 +
∑k

i=1 |αi|
, then

δi ∈ T (fi, x0, σ+wi), i = 1, . . . , k implies min
1≤i≤k

δi ∈ T (g, x0, ε+
k

∑

i=1

|αi|wi).

Indeed, let be ε, σ and δi as above and put δ = min{δ1, . . . , δk}. Then

aording to (ii) one has δ ∈ T (fi, x0, σ +wi) for eah i = 1, . . . , k. If x ∈ X
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and d(x, x0) < δ then by slightly altering the estimation (1) one gets

‖ g(x)− g(x0) ‖Y=‖
k
∑

i=1

αi (fi(x)− fi(x0)) ‖Y≤
k
∑

i=1

|αi| ‖fi(x)− fi(x0)‖Y ≤
k
∑

i=1

|αi|(σ + wi) < σ(1 +
k
∑

i=1

|αi|) +
k
∑

i=1

|αi|wi = ε+
k
∑

i=1

|αi|wi.

From the De�nition 2, whih makes sense also for w = 0, immediately follows

that the 0-disontinuous mappings are exatly the ontinuous ones.

Corollary 2 Suppose that f, g : X → Y , f is w′
- disontinuous and g is w′′

-

disontinuous. Then f + g and f − g are w′ + w′′
- disontinuous mappings.

In partiular, if one of the mappings, f. e. g, is ontinuous, then f ± g are

w′
- disontinuous.

Corollary 3 If f : X → Y is w- disontinuous and c is a onstant then c · f
is a |c|w- disontinuous mapping.

Proposition 3 Let f : domf −→ R and g : dom g −→ R be w′
-, w′′

-disontinuous

funtions, respetively. Then the funtions f ∧ g and f ∨ g are w′ + w′′
-

disontinuous on domf ∩ dom g.

Proof. If δ1 ∈ T (f, x0, ω1) and δ2 ∈ T (g, x0, ωi) then by means of (vi)

min{δ1, δ2} ∈ T (f ∨ g, x0, ω1 + ω2). The ase of f ∧ g is proved in the

same way.

Corollary 4 If f is w- disontinuous and g is ontinuous then f ∨ g is w-

disontinuous.

In order to onsider the produt of mappings we need the notation of the

produt in a normed spae.

De�nition 3 ([11℄) Let X, Y, Z be real normed vetor spaes. A mapping

π : X × Y → Z is alled a produt if it satis�es the following onditions:

for all a, b ∈ X, u, v ∈ Y and λ ∈ R one has

1. π((a+ b, v)) = π((a, v)) + π((b, v))

2. π((a, u+ v)) = π((a, u)) + π((a, v))
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3. π((λa, u)) = λπ((a, u)) = π((a, λu))

4. ‖π((a, u))‖Z ≤ ‖a‖X‖u‖Y .
A simple example is given by X = Y = Rn, Z = R and π((x, y)) = 〈x, y〉 �
the salar produt in Rn

, i.e. 〈x, y〉 =
n
∑

i=1

xi yi.

Let V,X, Y, Z be real normed vetor spaes and let π : X × Y → Z be a

produt. The produt of the mappings f : domf ⊆ V → X and g : dom g ⊆
V → Y is understood pointwise, i.e.

(f · g)(v) = π
(

f(v), g(v)
)

, ∀v ∈ domf ∩ dom g,

where domf, dom g ⊆ V .

Proposition 4 Suppose that f : domf → X is w′
-disontinuous and g : dom g →

Y is w′′
-disontinuous on domf∩dom g. Then f ·g is a (w′w′′+w′‖g(x0)‖Y +

w′′‖f(x0)‖X)-disontinuous mapping at every point x0 ∈ domf ∩ dom g.

Proof. We hoose x0 ∈ V and put p = w′ + w′′ + ‖f(x0)‖X + ‖g(x0)‖Y . For
any ε > 0 the quadrati funtion

y(t) = t2 + pt− ε (2)

possesses the positive root ε′ = 1
2
(
√

p2 + 4ε−p). Denote by δ = min{δ1, δ2},
where δ1 is an ε′ + w′

-tolerane of f and δ2 an ε′ + w′′
- tolerane of g both

at the point x0. Then x ∈ V and ‖ x− x0 ‖V< δ imply

‖π
(

(f(x), g(x))
)

− π
(

(f(x0), g(x0))
)

‖Z =

= ‖π
(

(f(x), g(x))
)

− π
(

(f(x0), g(x))
)

+ π
(

(f(x0), g(x))
)

− π
(

(f(x0), g(x0))
)

‖Z ≤
≤ ‖π

(

(f(x), g(x))
)

− π
(

(f(x0), g(x))
)

‖Z + ‖π
(

(f(x0), g(x))
)

− π
(

(f(x0), g(x0))
)

‖Z =

= ‖π
(

(f(x)− f(x0), g(x))
)

‖Z + ‖π
(

(f(x0), g(x)− g(x0))
)

‖Z ≤
≤ ‖π

(

(f(x)− f(x0), g(x)− g(x0))
)

‖Z + ‖π
(

(f(x)− f(x0), g(x0))
)

‖Z+
‖π

(

(f(x0), g(x)− g(x0))
)

‖Z ≤
≤ ‖f(x)− f(x0)‖X ‖g(x)− g(x0)‖Y + ‖f(x)− f(x0)‖X ‖g(x0)‖Y+
‖f(x0)‖X ‖g(x)− g(x0)‖Y <

< (ε′ + w′)(ε′ + w′′) + (ε′ + w′)‖g(x0)‖Y + (ε′ + w′′)‖f(x0)‖X) =
= (ε′)2 + ε′(w′ + w′′ + ‖g(x0)‖Y + ‖f(x0)‖X) + w′w′′ + w′‖g(x0)‖Y + w′′‖f(x0)‖X .
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Sine ε′ is a root of the equation (2) one has

ε = (ε′)2 + pε′, i. e. (ε′)2 + ε′(w′ + w′′ + ‖g(x0)‖Y + ‖f(x0)‖X) = ε,

and so

‖π((f(x), g(x)))−π((f(x0), g(x0)))‖Z < ε+w′w′′+w′‖g(x0)‖Y +w′′‖f(x0)‖X .

Corollary 5 If f : V → X is w-disontinuous and g : V → Y is ontinuous

then f · g is a ‖g(x0)‖Y w- disontinuous mapping at every point x0 ∈ V .

For the division we reonile with simpli�ed situation, where (X, d) is again
a metri spae.

Proposition 5 Let the funtion f : X → R be w-disontinuous at the point

x0 and f(x0) 6= 0. If there exists a neighborhood U of x0 and a number

α0 > 0 suh that |f(x)| ≥ α0 for all x ∈ U then the funtion

1

f
is

w

α0|f(x0)|
-

disontinuous at x0.

Proof. For ε > 0 put ε′ = ε α0|f(x0)|. By the w-disontinuity of f there

exists δ > 0 suh that x ∈ U and d(x, x0) < δ implies |f(x)−f(x0)| < ε′+w.

Then

∣

∣

∣

∣

1

f(x)
− 1

f(x0)

∣

∣

∣

∣

=
|f(x0)− f(x)|
|f(x)f(x0)|

<
ε′ + w

|f(x)||f(x0)|
≤

≤ ε′ + w

α0|f(x0)|
=

ε α0|f(x0)|+ w

α0|f(x0)|
= ε+

w

α0|f(x0)|
.

As a speial ase we get

Corollary 6 If f : X → [1,+∞[ is w-disontinuous then

1

f
is a

w

f(x0)
-

disontinuous mapping for every point x0 ∈ X.

If the domain of de�nition for a ontinuous mapping is ompat, then its

range is also ompat and, in partiular, bounded. The boundedness of the

most funtions used in eonomi models seems to be indispenable in studying

suh models. The boundedness of the range is guaranteed for w-disontinuous

mappings as well, however, ompatness may not hold.
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Example 3 De�ne f : [0; 1] → [0; 1] as

f(x) =

{

1
2
, if x ∈ {0, 1}

x, if x ∈ (0, 1).

The funtion f is

1
2
-disontinuous and its range (0, 1) is bounded, but not

ompat.

Further on we need some notations introdued by the following de�nitions.

Let (X, d) and (Y, ̺) be two metri spaes and w a positive number.

De�nition 4 A mapping f : domf −→ Y, domf ⊆ X is said to be uni-

formly w-disontinuous if for every ε > 0 there is δ > 0 suh that for ev-

ery two points x, y ∈ domf the inequality d(x, y) < δ implies ̺(f(x), f(y)) <
ε+ w.

De�nition 5 Let A be a subset of X, domf ⊆ A and f : domf −→ Y . A

mapping g : A → Y is said to be a µ- approximation (µ > 0) of the map f

on domf if

̺(f(x), g(x)) ≤ µ ∀x ∈ domf.

The following theorems are proved in [5℄.

Theorem 1 If A is a ompat subset of a normed vetor spae X and

f : A −→ Y is w-disontinuous, then f is uniformly 2w-disontinuous.

Now let X and Y be a real normed vetor spaes.

Theorem 2 Suppose that X is a normed vetor spae, A ⊂ X is ompat,

f : A −→ Y is uniformly w-disontinuous and w′
is an arbitrary number

w′ > w. Then there exists a ontinuous w′
-approximation f for f in A suh

that f(x) ∈ conv(f(A)), x ∈ A, where conv(f(A)) denotes the onvex hull of

the set f(A).

Now we are able to prove the next theorem.

Theorem 3 Suppose that A ⊂ X is ompat and let f : A −→ X be w-

disontinuous. Then f(A) is bounded.
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Proof. Aording to Theorem 1 the mapping f is uniformly 2w-disontinuous,
and by Theorem 2 for every w′ > w there exists a ontinuous 2w′

-approximation

f of the mapping f on the set A. Sine A is ompat and f is ontinuous the

set f(A) is ompat and, onsequently, bounded. Therefore, for some r > 0
and x0 ∈ f(A) one has f(A) ⊂ B(x0; r). Beause f is a 2w′

-approximation

of f on A there holds the inequality

d(f(x), f(x)) ≤ 2w′, ∀x ∈ A.

It follows that f(A) ⊂ B(x0; r + 2w′), i. e. f(A) is bounded.

The following essential result is proved by O.Zaytsev in [18℄ and an be on-

sidered as a generalization of the Bohl-Brouwer-Shauder �xed point theorem

(see [9℄) for w-disontinuous mappings.

Theorem 4 Let K be a nonempty, ompat and onvex subset in a normed

vetor spae X. For every w-disontinuous mapping f : K −→ K (w > 0)
there exists a point x∗ ∈ K suh that ‖ x∗ − f(x∗) ‖≤ w.

3 Market equilibrium of the standard eonomi

model

We give the desription of a simple eonomi model E onsidered by Arrow

and Hahn in [4℄.

Let there be n (n ∈ N) di�erent goods (ommodities) on the market: servies

and wares, and a �nite number of eonomi agents: households and �rms,

where eah household an be onsidered as a �rm, and, vie versa, eah �rm

an be onsidered as a hosehold.

Let xhi be the quantity of good i whih is needed to the household h. If

xhi < 0 then |xhi| denotes the quantity of good i whih is supplied by the

household h. If xhi ≥ 0 then xhi is the (real) demand of good i by h, inluding

the zero demand. The summation over all households will be indiated by

xi =
∑

h

xhi and is the total demand of good i, i = 1, . . . , n.

The quantity of good i that is supplied by the �rm f will be denoted by

yfi. Again, if yfi < 0 then |yfi| is the demand (input) of good i by f . If

yfi ≥ 0 then yfi is the supplied quantity (output) of i by f , where the zero

13



supply again is inluded. The summation over all �rms will be indiated by

yi =
∑

f

yfi and is the supply of good i, i = 1, . . . , n.

The initially available amount (or resoures) of good i in all households will

be denoted by xi. Note that xi must be non-negative.

A market equilibrium, whih is one of the most important harateristis

of any eonomy (see e.g. [2℄, [4℄, [7℄, [10℄), desribes (in our situation) the

eonomi situation that the total demand of eah good in the eonomy is

satis�ed by its total supply. This fat is obviously expressed by saying that

the di�erene between the total demand of eah good and its total supply

is less than or equal to zero. The total supply of good i is understood as

the sum of the supply of the good i and the quantity of i whih is already

available, i. e. the total supply of the good i equals to yi + xi. The exess

demand of good i is then de�ned as xi − yi − xi, i = 1, ..., n.
If eonomi agents at the market are faed with a system of pries, i.e. with

a prie vetor p = (p1, . . . , pn), where pi is the prie of one unit of good i,

then the quantities xhi, yfi and also xi, yi, xi depend on p. Now we denote

the exess demand of the good i by zi(p), i.e.

zi(p) = xi(p)−
(

yi(p) + xi(p)
)

.

If pries are involved then an equilibrium prie (a prie system at whih an

equilibrium is reahed) lears the market.

Further on we frequently make use of the natural order in Rn
introdued by

the one

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n},

i. e., for two vetors x = (x1, . . . , xn), y = (y1, . . . , yn) and write x ≤ y i�

xi ≤ yi for all i = 1, . . . , n, we write x < y i� x ≤ y and xi0 < yi0 for at least

one index i0. The zero vetor (0, . . . , 0) ∈ Rn
is denoted by 0. The norm we

will use in the spae Rn
is de�ned as

‖x‖ =
n

∑

i=1

|xi|, x = (x1, ..., xn) ∈ Rn.

This norm is equivalent to the Eulidean norm whih is introdued by means

of the salar produt 〈x, y〉 =
n
∑

i=1

xi yi. Note that in eonomi publiations

the salar produt of two vetors x, y ∈ Rn
is usually written as x y.

14



For the standard eonomi model the following four assumptions

3

have to be

met.

Assumption 1. Let p = (p1, ..., pn) be n-dimensional prie vetor with

the pries pi for one unit the good i as omponents, i = 1, 2, ..., n. For any p

let the exess demand for i be haraterized by a unique number zi(p) and
so the unique vetor z(p) = (z1(p), . . . , zn(p)) - the exess demand funtion

with exess demand funtions for i as omponents (i = 1, 2, ..., n) - is well
de�ned.

Assumption 2. z(p) = z(λp), ∀p > 0 and λ > 0.

Assumption 2 asserts that z is a homogeneous vetor-funtion of degree zero.

Eonomially this means that the value of the exess demand funtion does

not depend on the prie system if the latter is hanged for all the goods

simultaneously by the same portion.

From the Assumption 2 it follows that pries an be normalized (see [4℄,p.20)

or [7℄,p.10). If for some prie p one has z(p) = 0 then z(λp) = 0 for all pries

of the ray {λp : λ > 0}. Therefore, further on we onsider only pries from

the n− 1-dimensional simplex of Rn

∆n = {p = (p1, p2, ..., pn) | pi ≥ 0 and

n
∑

i=1

pi = 1}.

We rule out the situations when all the pries are zero or some of them are

negative. Note that ∆n is a ompat and onvex set in the spae Rn
equipped

with one of its (equivalent) norms.

Assumption 3 or Walras' Law. p z(p) = 0, ∀p ∈ ∆n.

Walras' Law an be regarded as an attempt to have a model su�iently truly

re�eting rationally motivated ativities of eonomi agents. Aording to

Walras' Law all the �rms and all the households both spend their �nanial

resoures ompletely ([7℄).

Assumption 4. The exess demand funtion z is ontinuous on its domain

of de�nition ∆n.

It means that a small hange of a prie system will imply only a small hange

in the exess demand. As a onsequene from ontinuity of z, the standard

3

the Assumptions (F), (H), (W) and (C) in [4℄
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model an be used only for the desription of eonomies with ontinuous

exess demand funtions. Sometimes they are alled stable eonomies.

In eonomies suh pries are important at whih the exess demand for eah

good is nonpositive, i.e. the total supply of eah good satis�es at least its

total demand.

De�nition 6 A prie p∗ ∈ ∆n is alled an equilibrium (prie) if z(p∗) ≤ 0.

If p∗ is an equilibrium prie then

n
∑

i=1

zi(p
∗) ≤ 0.

For the standard model of an eonomy with a �nite number of goods and

agents suh pries always exist as is proved in the following theorem.

Theorem 5 ([4℄) If an eonomy E with a �nite number of goods and agents

satis�es the assumptions 1�4, then there exists an equilibrium in E .

We remark that in the ase of a neolassial exhange eonomy E (see e.g.[2℄)

eah agent has his exess demand vetor zh(p), whih is uniquely de�ned

by means of the unique maximal element of his preferenes in the budget

set for the prie p and his initial endowment. Then the exess demand

funtion of the eonomy E is de�ned as the vetor z(p) =
∑

h

zh(p). It satis�es

also Assumptions 2,3,4 and, in addition, also some other onditions (see

[2℄,Th.1.4.6).

This allows to prove the existene of a prie p∗ even suh that z(p∗) = 0.

4 Eonomi models with disontinuous exess

demand funtions

If z is the exess demand funtion for a neolassial exhange eonomy, then

z is ontinuous on the set

S = {p ∈ ∆n | pi > 0, i = 1, 2, ..., n}

(see [2℄,Th.1.4.4 and Th.1.4.6). A neolassial exhange eonomy (see [2℄)

is haraterized by a �nite set of agents, where eah agent i has a non-zero

initial endowment ωi and his preferene relation �i is ontinuous, stritly

16



monotone and stritly onvex (on Rn
+) or else his preferene relation �i is

ontinuous, stritly monotone and stritly onvex on interior of Rn
+, and

everything in the interior is prefered to anything on the boundary and the

total endowment ω =
∑

i

ωi is stritly positive. If the preferene relation �i

is ontinuous, stritly monotone and stritly onvex then the orresponding

utility funtion and the exess demand funtion are ontinuous on the set S.

We will onsider the situation with a disontinuous exess demand funtion.

It is lear that in this ase the properties of the preferene relations di�er

from them in the neolassial exhange eonomy.

✲

✻
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For example, onsider the preferene relation on R2
+ that is represented by

the utility funtion

4 u(x, y) = max{x, y} and an initial endowment ω =
(2, 2). The utility funtion is ontinuous, but it is not stritly monotone

(for example, (2, 2) > (2, 1) but u(2, 2) = 2 = u(2, 1)) and it is not stritly

onave, it is onvex. The indi�erene urves for the values 1, 2, 3, 4 and

5 are illustrated in Figure 1. Let p = (α, 1 − α) be a �xed prie vetor for

some 0 < α < 1. We maximize the utility funtion u subjet to the budget

onstraint αx+(1−α)y = 2α+2(1−α) = 2. This line goes through the point
(2, 2) and intersets the axis in the points (0, 2

1−α
) and ( 2

α
, 0). From Figure

1 we see that the maximal vetor of u over budget set (the dotted region in

Figure 1) is the point (0, 2
1−α

) if α > 1
2
and ( 2

α
, 0) if α < 1

2
, respetively. If

4

i.e. (x1, y1) � (x2, y2) if and only if u(x1, y1) ≥ u(x2, y2)
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α = 1
2
then

2
1−α

= 2
α
and therefore we have two maximizing vetors. The

exess demand funtion in this ase is

x(p) = x(α, 1− α) =











(0, 2
1−α

), α > 1
2
,

{(0, 4), (4, 0)}, α = 1
2
,

( 2
α
, 0), α < 1

2
.

In the point (1
2
, 1
2
) the exess demand multifuntion is disontinuous.

In [1℄ it is proved that in a neolassial exange eonomy the ondition

pn → p ∈ ∂S with (pn)n∈N ⊂ S implies lim
n→∞

||z(pn)|| = ∞. It is also not our

ase (see Theorem 3). In [1℄ it is shown that a utility funtion u : X → R

(X - topologial spae) representing a ontinuous preferene relation is not

neessarily ontinuous. If we start with an arbitrary hosen disontinuous

utility funtion then we have no mathematial tools for �nding the orre-

sponding demand funtion (in the lassial situation an agent maximizes

the utility funtion with respet to the budget onstraint and uses the La-

grange multiplier method for �nding demand funtion). We note that there

exist preferene relations whih annot be represented by a real-valued fun-

tion, for example, the lexiographi preferene ordering of R
2
(by de�nition

(a, b) � (c, d) if (1) a > c or (2) a = c and b > d) (see [8℄, notes to hapt.4).

The above situation inspires one to onsider models without expliitly given

preferene relations. In whih ases is the exess demand funtion disontin-

uous? Consider some good i and a �xed prie system p. In the ase that this

good is, e.g. an aeroplane or a power station, its demand xi(p) is naturally
an integer. A funtion like xi(p) =

[

30000
1+α

]

, where [x] denotes the integer part
of x, provides an example.

Obviously, if the good is a piee-good (table, shoes, �ower and other) then

the demand for this good is an integer. Similarly, the supply of piee-goods

is an integer. Therefore the demand and supply funtions for piee-goods are

disontinuous and onsequently exess demand funtion too.

What an be said about the existene of an equilibrium in an eonomy

if the exess demand funtion is not ontinuous, for example, if it is w-

disontinuous? We will analyse some model of an eonomy with w-disontinuous

exess demand funtions.

For the eonomies under onsideration we keep the two �rst assumptions

from the standard model and hange the two last as follows.
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Assumption 4'. The exess demand funtion z is w-disontinuous on its

domain of de�nition ∆n.

The w-disontinuity of the exess demand funtion makes our model available

to desribe some properties of an unstable eonomi as well.

It is quite natural that for every prie vetor p ∈ ∆n there exist at least one

good i with the prie pi > 0 and suh that the demand for them is satis�ed,

i. e. zi(p) ≤ 0.
If for some eonomy E with the exess demand vetor z(p), p ∈ ∆n there

holds the Walras' Law, i. e. p z(p) = 0 for any p ∈ ∆n, then for eah p ∈ ∆n

the inequality

γp =
∑

zi(p)≤0

pi > 0

is satis�ed. Indeed, if for some p = (p1, . . . , pn) ∈ ∆n there would be

∑

zi(p)≤0

pi = 0, then

∑

zi(p)≤0

pi +
∑

zi(p)>0

pi =
n

∑

i=1

pi = 1

would imply the existene of an index i0 suh that pi0 > 0 and zi0(p) > 0.

This yields p z(p) =
n
∑

i=1

pizi(p) ≥ pi0zi0(p) > 0, a ontradition to Walras'

Law.

Our next assumption requires the existene of a uniform lower bound for the

sums

∑

zi(p)≤0

pi, for all p ∈ ∆n.

Assumption 3'. γ = inf
p∈∆n

γp > 0.

We indiate some examples whih show that Assumption (3') is independent

on the Walras' Law. In eah of the �gures below the funtions z1 and z2
are onsidered on the intervall [p′, p′′], whih is nothing than the simplex ∆2.

If we represent the vetors p = (p1, p2) ∈ ∆2 as p = (1 − t)p′ + tp′′, where
t ∈ [0, 1], then pi = (1 − t)p′i + tp′′i , whih yields p1 = t and p2 = 1 − t.

For t ∈ (0, 1) the Walras Law p z(p) = p1z1((p1, p2)) + p2z2((p1, p2)) = 0
now redues to the relation z2(p) = − t

1−t
z1(p). For the ases t ∈ {0, 1}

some additional are has to be taken. We suppose that all this is true in the

Figures 2 and 3, where Walras' Law is assumed to be satis�ed. In the other

�gures it is easy to �nd a vetor p ∈ ∆2 (in Figure 4, e.g. the vetor p′),
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where p z(p) 6= 0. In Figures 2 and 5 it is easy to see that Assumption 3' does

not hold. In both ases for any p ∈ ∆2 we alulate

∑

zi(p)≤0

pi = p2 = 1 − t

and so inf
t∈(0,1)

(1 − t) = 0. In Figures 3 and 4 Assumption 3' is satis�ed with

γ = min{t0, 1− t0}.
✻
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Fig.2. Walras'Law does not imply (3'). Fig.3. Walras'Law and (3') hold.
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Fig.4. (3') holds but not Walras'Law. Fig.5. Neither Walras'Law nor (3').
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s
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It seems to be lear that it would be hard to �nd out why an equilibrium

exists in our model. But it will be possible if we an estimate the unsatis�ed

aggregate demand. This leads to the onept of quasi- or k-equilibrium.

De�nition 7 Let k be a positive real. A prie vetor p∗ ∈ ∆n is alled a

k-equilibrium if it satis�es the ondition

∑

zi(p∗)>0

zi(p
∗) ≤ k.

The onstant k ∈ R+ as a numerial value of the maximally possible un-

satis�ed demand for a given prie p∗ ∈ ∆n haraterizes to what state the

eonomy di�ers from the market equilibrium (De�nition 6).

We an prove now the following

Theorem 6 Let E be an eonomy with n goods that satis�es the Assumptions

1,2 and the Assumption 3' with some number γ > 0. Put

w+ = w+(n, γ) =
1

2n

(

−(n + 1) +
√

(n + 1)2 + 8nγ
)

.

If now Assumption 4' is satis�ed with w ∈ [0, w+), then the eonomy E
possesses a k-equilibrium for eah k ≥ nw2 + (n + 1)w

2γ − nw2 − (n + 1)w
.

Proof. For p ∈ ∆n de�ne z+i (p) = max{0, zi(p)}, i = 1, ..., n, z+(p) =
(z+1 (p), . . . , z

+
n (p)),

ν(p) = 〈p+z+(p), e〉 = 1+
∑

zi(p)>0

zi(p) and ti(p) =
p1 + z+i (p)

ν(p)
, i = 1, ..., n,

where e = (1, . . . , 1) denotes the vetor of Rn
with all omponents equal to

1. Note that ‖e‖ = n.

De�ne now a map T : ∆n −→ ∆n by T (p) =
p+ z+(p)

〈p+ z+(p), e〉 . Sine 0 ≤ ti(p) ≤
1 for eah i and

n
∑

i=1

ti(p) =

n
∑

i=1

(pi + z+i (p))

ν(p)
=

1 +
∑

zi(p)>0

zi(p)

ν(p)
= 1
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one has T (p) : ∆n −→ ∆n.

Now the partiular maps whih the map T onsists of, possess the following

properties:

The idendity map id on∆n is ontinuous, by Assumption 4' the map z : ∆ −→
Rn

is w-disontinuous and by Corollary 4 so is z+. By Corollary 2 the

map id + z+ is w-disontinuous, what by Corollary 5 implies the w‖e‖-
disontinuity, i.e. the nw-disontinuity of ν(p) = 〈p + z+(p), e〉. Sine

ν : ∆n −→ [1,∞) the funtion
1

ν
is

nw

ν(p)
-disontinuous as a onsequene of

Corollary 6. Finally, based on Proposition 4, the map T (p) = (p+ z+(p))
1

ν(p)
is w0-disontinuous at a every point p ∈ ∆n, where

w0 = w0(p) =
nw2

ν(p)
+

w

ν(p)
+
nw‖p+ z+(p)‖

ν(p)
=

nw2 + w

ν(p)
+nw < nw2+(n+1)w

(3)

and so, the map T is also nw2 + (n+ 1)w-disontinuous on the set ∆n.

Sine ∆n is a onvex and ompat subset in the normed vetor spae Rn
and

T (p) : ∆n −→ ∆n we onlude by means of Theorem 4 that there exists a

vetor p∗ ∈ ∆n satisfying the inequality

‖T (p∗)− p∗‖ ≤ nw2 + (n + 1)w.

Using the norm in Rn
this yields

‖T (p∗)− p∗‖ =

∥

∥

∥

∥

p∗ + z+(p∗)

ν(p)
− p∗

∥

∥

∥

∥

=
n
∑

i=1

∣

∣

∣

∣

p∗i + z+i (p
∗)

ν(p)
− p∗i

∣

∣

∣

∣

=

=
n
∑

i=1

∣

∣

∣

∣

∣

∣

∣

p∗i + z+i (p
∗)− p∗i − p∗i

∑

zi(p∗)>0

zi(p
∗)

ν(p)

∣

∣

∣

∣

∣

∣

∣

≤ nw2 + (n+ 1)w.

Sine 1 +
∑

zi(p∗)>0

zi(p
∗) > 0 one has

n
∑

i=1

∣

∣

∣

∣

∣

∣

z+i (p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

≤
(

nw2 + (n + 1)w
)

ν(p∗). (4)
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The left side of inequality (4) an be splitted into the two sums

∑

zi(p∗)≤0

∣

∣

∣

∣

∣

∣

z+i (p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

+
∑

zi(p∗)>0

∣

∣

∣

∣

∣

∣

zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

=

∑

zi(p∗)≤0

p∗i
∑

zi(p∗)>0

zi(p
∗) +

∑

zi(p∗)>0

∣

∣

∣

∣

∣

∣

zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

. (5)

Using the triangle inequality we get the estimation

∣

∣

∣

∣

∣

∣

∑

zi(p∗)>0



zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)





∣

∣

∣

∣

∣

∣

≤
∑

zi(p∗)>0

∣

∣

∣

∣

∣

∣

zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

, (6)

and further the left hand side of (6) alulates as

∣

∣

∣

∣

∣

∣

∑

zi(p∗)>0



zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

zi(p∗)>0

zi(p
∗)



1−
∑

zi(p∗)>0

p∗i





∣

∣

∣

∣

∣

∣

=

∑

zi(p∗)>0

zi(p
∗)



1−
∑

zi(p∗)>0

p∗i



 =
∑

zi(p∗)>0

zi(p
∗)

∑

zi(p∗)≤0

p∗i . (7)

By means of the equalities (5), (7) and the inequalities (4), (6) we obtain

now

2
∑

zi(p∗)>0

zi(p
∗)

∑

zi(p∗)≤0

p∗i ≤
∑

zi(p∗)>0

zi(p
∗)

∑

zi(p∗)≤0

p∗i +
∑

zi(p∗)>0

∣

∣

∣

∣

∣

∣

zi(p
∗)− p∗i

∑

zi(p∗)>0

zi(p
∗)

∣

∣

∣

∣

∣

∣

≤

≤
(

nw2 + (n+ 1)w
)

ν(p∗).

It follows by means of Assumption 3'

2γ
∑

zi(p∗)>0

zi(p
∗) ≤ 2

∑

zi(p∗)>0

zi(p
∗)

∑

zi(p∗)≤0

p∗i ≤
(

nw2 + (n+ 1)w
)

ν(p∗).

Sine ν(p∗) = 1 +
∑

zi(p∗)>0

zi(p
∗) the last inequality yields

∑

zi(p∗)>0

zi(p
∗) ≤ nw2 + (n + 1)w

2γ − nw2 − (n + 1)w
, i. e.

∑

zi(p∗)>0

zi(p
∗) ≤ k,
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where k satis�es k ≥ nw2 + (n + 1)w

2γ − nw2 − (n+ 1)w
.

In order to have the number 2γ−nw2−(n+1)w positive the value of w must

belong to the interval [0, w+), where w+ is the positive root of the equation

w2 +
n+ 1

n
w − 2γ

n
= 0.

Remarks.

1. Let n and γ > 0 be �xed. Then w+ = w+(n, γ) is de�ned as indiated in

the theorem. For w ∈ [0, w+) put

k0(n, w) =
nw2 + (n + 1)w

2γ − nw2 − (n + 1)w
.

The number k0(n, w) is non-negative as was shown above. Note that a

sharper estimation

5

in (3) would yield a smaller value of k0(n, w) and, there-
fore, would give a better result. In view of Theorem 4, however, an estimation

has be obtained independently on p.

2. In Figure 6 for n = 2 there is shown a situation without a lassi equilib-

rium.

✲

✻

p′ = (0, 1) p′′ = (1, 0)
p

Fig.6. No lassial equilibrium, but k-equilibrium exists.
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✻
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✻
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≤ w
≤ w

❝

❝

(1
2
, 1
2
)

s

ss

s

s

s

z1(p)

z2(p)

✰

❲

❨

✻

It is lear that

there is no p ∈ ∆2 whih satis�es the inequality z(p) = (z1(p), z2(p)) ≤ 0. As-

sumptions 1, 2, 4' are obviously ful�lled. Assumption 3' also holds. Indeed,

represent p = (p1, p2) ∈ ∆2 as

p = (1− t)p′ + tp′′, t ∈ [0, 1],

5

Our estimation is based on the rough inequality ν(p) > 1.
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then t ∈ [0, 1
2
] implies z1(p) > 0, z2(p) < 0 and so γp = p2 and t ∈ (1

2
, 1]

implies z1(p) = 0, z2(p) > 0 and so γp = p1. In both ases we get γp ≥ 1
2

whih shows that the Assumption 3' holds with γ = 1
2
. Theorem 6 guarantees

the existene of a k-equilibrium for k ≥ 2w2+3w
1−2w2−3w

if w < −3
4
+

√
17
4
. Note that

Walras' Law is not satis�ed.

3. The number w+(n, γ) is positive for eah n and �xed γ > 0. If one takes
w = 0 then k0(n, γ) = 0 and with k = 0 there is obtained the lassial

ase. Observe that in this ase it is not neessary to use the Walras' Law for

establishing a lassial equilibrium.

4. Note that in the lassial situation it is impossible to arry out any

quantitative analysis. On the ontrary, the inequalities from Theorem 6

w < w+(n, γ) and k ≥ k0(n, w)

give a hane to analyse the behaviour of an eonomy for di�erent numerial

values of the parameters n, w, γ inluded in our model. From

0 ≤ w+(n, γ) =
−(n+ 1) +

√

(n+ 1)2 + 8nγ

2n
<

−(n+ 1) + (n + 1) +
√
8nγ

2n
=

√

2γ

n

it follows that lim
n→∞

w+(n, γ) = +0. Sine k0(n, 0) = 0, the positive number

k an be hoosen arbitrary small. This shows that the larger the number of

goods the better the hane for a lassial equilibrium.

5. It is reasonable to put k0(n, w+(n, γ)) = +∞. If for �xed n and γ the

value w is su�iently lose to w+(n, γ), then k is very large. In suh a ase

the existene of an k-equilibrium seems to be of low eonomi meaning.
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