NORTH-HOLLAND

On a Maximum Principle for Inverse Monotone Matrices

C. Türke and M. Weber

Technical University of Dresden
Department of Mathematics
Institute of Analysis
Mommsenstraße 13
01062 Dresden, Germany

Submitted by Miroslav Fiedler

Abstract

Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ be a given vector with positive coordinates. A matrix A is said to satisfy the γ-maximum principle ($\gamma \mathrm{MP}$) if $A x=y, y \geq 0$ imply $x \geq 0$ and $$
\max _{1 \leq i \leq n} \gamma_{i} x_{i}=\max _{i \in N^{+}(y)} \gamma_{i} x_{i}
$$ where $N^{+}(y)$ is the set of indices such that y is positive. For an invertible matrix A with positive inverse the $\gamma \mathrm{MP}$ is characterized geometrically by means of the behavior under A^{-1} of convex boundary parts of the simplex generated in \mathbb{R}_{+}^{n} by permissible multiples of the unit coordinate vectors. Some sufficient conditions and applications to M-matrices are given.

1. A MAXIMUM PRINCIPLE AND A WEIGHTED MAXIMUM PRINCIPLE

Many problems in different branches of mathematics lead or can be reduced to the solution of an equation

$$
A u=f
$$

where A is an invertible (n, n) matrix and f a given vector. Of interest then are qualitative properties of the solution u, such as its positivity, or the question at which of its components the solution u attains its maximal value. Of course, such properties of the solution depend on the matrix A as well as on the right hand side f of the equation. The matrix A in such a case is said to satisfy a maximum principle. Many papers deal with maximum principles for matrices; we refer only e.g. to [1, 3-5], where many applications are included.

In this paper, which is influenced by the theoretical parts of [5], a certain weighted maximum principle is introduced and studied. Under some natural assumptions a geometrical necessary and sufficient condition and some sufficient conditions for a matrix to satisfy the maximum principle are proved.

For matrices several maximum principles have been studied. The one under consideration in [5] is sometimes called the maximum principle for inverse column entries (see [6]).

We will use the following notation: Let n be a natural number such that $n \geq 1$. For an (n, n) matrix $A=\left(a_{i j}\right)$ and a vector $x \in \mathbb{R}^{n}$ we write $A \geq 0$ if $a_{i j} \geq 0$ for all $i, j=1,2, \ldots, n$, and $x \geq 0$ or $x \in \mathbb{R}_{+}^{n}$ if $x_{i} \geq 0$ for all $i=1,2, \ldots, n$, respectively.

If $x_{i}>0$ for all $i=1,2, \ldots, n$, i.e. $x \in \operatorname{Int} \mathbb{R}_{+}^{n}$ we write $x \gg 0$. Let N denote the set $\{1,2, \ldots, n\}$. For $f \in \mathbb{R}_{+}^{n}$ we need the following subsets of N

$$
\begin{aligned}
N^{+}(f) & =\left\{j \in N: f_{j}>0\right\} \\
N^{0}(f) & =\left\{j \in N: f_{j}=0\right\}
\end{aligned}
$$

Definition 1 (SEe [4]). A matrix A is said to satisfy the maximum principle (briefly, MP) if $A u=f, f \geq 0$ imply the conditions
(a) $u \geq 0$ and
(b) $\max _{k \in N} u_{k}=\max _{k \in N^{+}(f)} u_{k}$.

In [4] and [5] necessary and sufficient conditions are proved, mainly for invertible matrices with a positive inverse. In particular, simple conditions can be formulated for the class of M-matrices. An M-matrix is an invertible matrix A satisfying the conditions $A^{-1} \geq 0$ and $a_{i j} \leq 0$ for all $i, j=$ $1,2, \ldots, n, i \neq j$ (see $[2,6]$).

In order to define another maximum principle we fix some vector $\gamma=$ $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right), \gamma \gg 0$.

Definition 2. A matrix A is said to satisfy the weighted maximum
principle with respect to γ (briefly, γ-maximum principle or $\gamma \mathrm{MP}$) if $A u=$ $f, f \geq 0$ imply the conditions
(a) $u \geq 0$ and
(b) $\max _{k \in N} \gamma_{k} u_{k}=\max _{k \in N^{+}(f)} \gamma_{k} u_{k}$.

Let A be an invertible matrix and $\gamma \gg 0$. Then A satisfies the γ maximum principle if and only if the matrix $A \Gamma^{-1}$ satisfies the maximum principle, where Γ^{-1} denotes the diagonal matrix $\operatorname{diag}\left(1 / \gamma_{1}, 1 / \gamma_{2}, \ldots, 1 / \gamma_{n}\right)$, i.e., the inverse to the matrix $\Gamma=\operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$.

Indeed, if A satisfies the $\gamma \mathrm{MP}$, then $A u=f, f \geq 0$ imply (a) and (b) of Definition 2. Since the equation $A u=f$ can obviously be written as $\left(A \Gamma^{-1}\right)(\Gamma u)=f$, then $\Gamma \geq 0$ and $u \geq 0$ yield $\Gamma u \geq 0$, and (b) means exactly $\max _{k \in N}[\Gamma u]_{k}=\max _{k \in N^{+}(f)}[\Gamma u]_{k}$, where $[\Gamma u]_{k}$ denotes the k th component of the vector Γu. Conversely, if the equation $\left(A \Gamma^{-1}\right) v=f$ is considered with $f \geq 0$, then $\left(A \Gamma^{-1}\right)(\Gamma u)=f$, where $u=\Gamma^{-1} v$. Since $f \geq 0$, by conditions (a) and (b) we get $\Gamma u \geq 0$ and $\max _{k \in N}[\Gamma u]_{k}=$ $\max _{k \in N^{+}(f)}[\Gamma u]_{k}$, which means $v \geq 0$ and (b) from Definition 1, where u_{k} is replaced by v_{k}.

2. SOME GEOMETRIC PRELIMINARIES

Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be an invertible (n, n) matrix, $A^{-1}=\left(\alpha_{i j}\right)_{i, j=1}^{n}$, and let $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with $\beta_{j} \neq 0$ for $j=1, \ldots, n$ be a fixed vector. We denote by α^{j} the j th row of the matrix A^{-1}, by e^{i} the i th unit vector of \mathbb{R}^{n}, by E the hyperplane through the endpoints of the vectors e^{i}, and by E_{β} the hyperplane through the endpoints of the vectors $\beta_{1} e^{1}, \beta_{2} e^{2}, \ldots, \beta_{n} e^{n}$. The hyperplane generated by the points $A^{-1} \beta_{1} e^{1}=\beta_{1} \alpha^{1}, \ldots, A^{-1} \beta_{n} e^{n}=\beta_{n} \alpha^{n}$ is denoted by $E_{A^{-1} \beta}$. Finally S, S_{β}, and T_{β} denote the intersection of \mathbb{R}_{+}^{n} with E, E_{β}, and $E_{A^{-1} \beta}$, respectively. The representations

$$
S:=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}
$$

and

$$
S_{\beta}:=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} \frac{1}{\beta_{i}} x_{i}=1\right\}
$$

are obvious.
Due to the linear independence of the vectors $\alpha^{j}(j=1, \ldots, n)$, the hyperplane $E_{A^{-1} \beta}$ never contains the origin. For simplicity, further on, we
will consider only the case where the set T_{β} is bounded. That means we assume that the hyperplane $E_{A^{-1} \beta}$ cuts the i th coordinate axis at a nonzero distance c_{i} for any $i=1,2, \ldots, n$. Therefore, only

$$
T_{\beta}=\left\{y \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} \frac{1}{c_{i}} y_{i}=1\right\}
$$

where $c_{i}=c_{i}(\beta, A) \neq 0$, are considered. This, of course, restricts the set of all possible componentwise nonzero vectors β. For a given invertible matrix A we describe now this set exactly. Let f be the linear functional on \mathbb{R}^{n} with the property

$$
E_{A^{-1} \beta}=\left\{y \in \mathbb{R}^{n}: f(y)=1\right\}
$$

Obviously one has $f\left(\beta_{j} \alpha^{j}\right)=1$, i.e., $f\left(\alpha^{j}\right)=1 / \beta_{j}\left(\beta_{j} \neq 0\right)$ for $j=1, \ldots, n$.
LEMMA. For the hyperplane $E_{A^{-1} \beta}$ to intersect any coordinate axis at a unique point it is necessary and sufficient that

$$
\beta_{j}=\frac{1}{k_{1} \alpha_{1 j}+\cdots+k_{n} \alpha_{n j}}, \quad j=1, \ldots, n
$$

for some numbers $k_{i} \neq 0, i=1, \ldots, n$.

Proof. If $E_{A^{-1 \beta}}$ intersects each coordinate axis, then for some $c_{i} \neq 0$, $i=1, \ldots, n$, there must hold $c_{i} e^{i} \in E_{A^{-1} \beta}$ for which $f\left(c_{i} e^{i}\right)=1$ or $f\left(e^{i}\right) \neq 0$ can be written. From $A^{-1} A=I$ the representation $e^{i}=$ $\sum_{j=1}^{n} a_{j i} \alpha^{j}$ follows for all $i=1, \ldots, n$ such that

$$
f\left(e^{i}\right)=f\left(\sum_{j=1}^{n} a_{j i} \alpha^{j}\right)=\sum_{j=1}^{n} a_{j i} f\left(\alpha^{j}\right)=\sum_{j=1}^{n} a_{j i} \frac{1}{\beta_{j}} \neq 0
$$

Introducing the numbers $k_{i}=\sum_{j=1}^{n} a_{j i} 1 / \beta_{j}, i=1, \ldots, n$, the last equality means

$$
A^{T}\left(\frac{1}{\beta_{1}}, \ldots, \frac{1}{\beta_{n}}\right)^{T}=\left(k_{1}, \ldots, k_{n}\right)^{T}
$$

or equivalently

$$
\left(\frac{1}{\beta_{1}}, \ldots, \frac{1}{\beta_{n}}\right)^{T}=\left(A^{-1}\right)^{T}\left(k_{1}, \ldots, k_{n}\right)^{T}
$$

Therefore, $\beta_{j}\left(k_{1} \alpha_{1 j}+\cdots+k_{n} \alpha_{n j}\right)=1$ for all $j=1, \ldots, n$. The equality $f\left(c_{i} e^{i}\right)=1$ implies now $c_{i}=1 / f\left(e^{i}\right)=1 / k_{i}$ for the point at the i th coordinate axis, where the latter is intersected by the hyperplane $E_{A^{-1} \beta}$.

The hyperplane $E_{A^{-1} \beta}$ intersects each positive half axis if and only if all numbers $k_{i}, i=1, \ldots, n$, are positive. Hence the following holds.

Corollaky. The hyperplane $E_{A^{-1} \beta}$ has an intersection with each of the positive half axes if and only if

$$
\beta_{j}=\frac{1}{k_{1} \alpha_{1 j}+\cdots+k_{n} \alpha_{n j}}
$$

for all $j=1, \ldots, n$ with $k_{1}, \ldots, k_{n}>0$. If, in addition to the above conditions, $A^{-1} \geq 0$, then in this case all β_{j} 's are positive too.

A vector $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with $\beta_{j} \neq 0$ and satisfying the condition of the lemma for all $j=1, \ldots, n$ will be called permissible. Let $p(A)$ denote the collection of all permissible vectors for a given matrix A. Note that for an invertible matrix A the set $p(A)$ is not empty.

Now let A be an invertible matrix with $A^{-1} \geq 0$, and let $\beta \in p(A)$. Then $T_{\beta} \subset \mathbb{R}_{\vdash}^{n}$ and $\beta \gg 0$. We consider two kinds of decomposition of T_{β} into subsets. The first one defines for all $i=1, \ldots, n$ the sets

$$
T_{\beta}^{(i)}=\left\{y \in T_{\beta}: y_{i} \geq y_{k}, k=1, \ldots, n\right\}
$$

For the second one we fix an arbitrary vector $\gamma \gg 0$ and define

$$
\tau_{\beta \gamma}^{(i)}=\left\{y \in T_{\beta}: \gamma_{i} y_{i} \geq \gamma_{k} y_{k}, k=1, \ldots, n\right\}
$$

3. A NECESSARY AND SUFFICIENT CONDITION

Let A be a given invertible matrix such that $A^{-1} \geq 0$. Let $\beta \in p(A)$ and $\beta \gg 0$ hold. If x_{1}, \ldots, x_{n} are n vectors, then $\operatorname{co}\left\{x_{1}, \ldots, x_{n}\right\}$ denotes their convex hull.

Definition 3. The pair $\left(A^{-1}, T_{\beta}\right)$ is said to satisfy the condition G if

$$
A^{-1}\left(\operatorname{co}\left\{\beta_{i} e^{i}: i \in N^{\prime}\right\}\right) \subset \bigcup_{i \in N^{\prime}} T_{\beta}^{(i)}
$$

for any nonvoid subset $N^{\prime} \subset N=\{1, \ldots, n\}$.
Let A and β be the same as before.
DEfinition 4. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \gg 0$ be fixed. The pair $\left(A^{-1}, T_{\beta}\right)$ is said to satisfy the weighted condition γG if

$$
A^{-1}\left(\operatorname{co}\left\{\beta_{i} e^{i}: i \in N^{\prime}\right\}\right) \subset \bigcup_{i \in N^{\prime}} \tau_{\beta \gamma}^{(i)}
$$

for any nonvoid subset $N^{\prime} \subset N$.
Now we are able to use the geometric condition γG for the characterization of the analytic maximum principle with respect to γ.

TheOrem 1. Let A be an invertible (n, n) matrix with $A^{-1} \geq 0$, and let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \gg 0$ be a fixed vector. Then the matrix A satisfies the weighted maximum principle with respect to γ if and only if there exists $a \widehat{\beta} \in p(A), \widehat{\beta} \gg 0$ such that the pair $\left(A^{-1}, T_{\widehat{\beta}}\right)$ satisfies the weighted condition γG.

Proof. For the necessity we take an arbitrary $\beta \in p(A), \beta \gg 0$, and show that for $\left(A^{-1}, T_{\beta}\right)$ the condition γG holds. If $N^{\prime}=\left\{i_{1}, \ldots, i_{l}\right\}, l<n$ (the case $l=n$ is trivial), then any element $x \in \operatorname{co}\left\{\beta_{i_{k}} e^{i_{k}}: k=1, \ldots, l\right\}$ can be represented as $x=\mu_{i_{1}} \beta_{i_{1}} e^{i_{1}}+\cdots+\mu_{i_{l}} \beta_{i_{l}} e^{i_{l}}$ with $\mu_{i_{k}} \geq 0$, $\mu_{i_{1}}+\cdots+\mu_{i_{i}}=1$. One has now

$$
A^{-1} x=\mu_{i_{1}} \beta_{i_{1}} A^{-1} e^{i_{1}}+\cdots+\mu_{i_{l}} \beta_{i_{l}} A^{-1} e^{i_{l}}
$$

or by using that $A^{-1} e^{j}$ is the j th row of the matrix A^{-1},

$$
A^{-1} x=\mu_{i_{1}} \beta_{i_{1}} \alpha^{i_{1}}+\cdots+\mu_{i_{l}} \beta_{i_{l}} \alpha^{i_{l}}
$$

If the equation $A u=x$ is considered with such an x that $\mu_{i_{k}}>0, k=$ $1, \ldots, l$, then for $f=x$ one has $f \geq 0$ and $N^{+}(f)=N^{\prime}$. By assumption A satisfies $\gamma \mathrm{MP}$, that is,
(a) $A^{-1} f \geq 0$ and
(b) $\max _{k \in N} \gamma_{k}\left(\mu_{i_{1}} \beta_{i_{1}} \alpha_{i_{1}, k}+\cdots+\mu_{i_{l}} \beta_{i_{l}} \alpha_{i_{l}, k}\right)=\max _{k \in N^{+}(f)} \gamma_{k}\left(\mu_{i_{1}}\right.$ $\left.\beta_{i_{1}} \alpha_{i_{1}, k}+\cdots+\mu_{i_{l}} \beta_{i_{l}} \alpha_{i_{l}, k}\right)$.

Clearly, $f \in S_{\beta}$ and $A^{-1}\left(S_{\beta}\right) \subset T_{\beta}$. In order to prove that γG holds, it suffices to investigate into which subsets of T_{β} the convex combinations of
the vertices of S_{β} are mapped by A^{-1}. If $i_{m} \in N^{+}(f)$ such that $\gamma_{i_{m}} u_{i_{m}} \geq$ $\gamma_{k} u_{k}, k=1, \ldots, n$, then

$$
u \in \tau_{\beta \gamma}^{\left(i_{m}\right)} \subset \bigcup_{i \in N^{\prime}} \tau_{\beta \gamma}^{(i)}
$$

where u_{k} is the k th component of the vector $u=A^{-1} f$. This shows that $A^{-1}\left(\cos \left\{\beta_{i} e^{i}: i \in N^{\prime}\right\}\right) \subset \bigcup_{i \in N^{\prime}} \tau_{\beta \gamma}^{(i)}$ for any $N^{\prime} \subset N$.

For the sufficiency, we argue as follows. Let for some $\widehat{\beta} \in p(A)$ the pair ($A^{-1}, T_{\widehat{\beta}}$) satisfy the condition γG. For some $f \geq 0$ consider the equation $A u=f$, where, without loss of generality,
$N \neq N^{+}(f)=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$, i.e., $l<n$
may be assumed. $u \geq 0$ follows immediately because of $A^{-1} \geq 0$. The condition γG implies

$$
A^{-1}\left(\operatorname{co}\left\{\widehat{\beta}_{i} e^{i}: i \in N^{\prime}\right\}\right) \subset \bigcup_{i \in N^{+}(f)} \tau_{\widehat{\beta}_{\gamma}}^{(i)}
$$

i.e., if for some element $x=\mu_{i_{1}} \widehat{\beta}_{i_{1}} e^{i_{1}}+\cdots+\mu_{i_{1}} \widehat{\beta}_{i_{l}} e^{i_{l}}$ with $\mu_{i_{k}}>0$ and $\sum_{k=1}^{l} \mu_{i_{k}}=1$ the vector $A^{-1} x$ is denoted by $v=\left(v_{1}, \ldots, v_{n}\right)$, then v belongs to at least one of the sets $\tau_{\widehat{\beta}_{\gamma}}^{(i)}, i \in\left\{i_{1}, \ldots, i_{k}\right\}$. That means at least one of the inequalities

$$
\begin{equation*}
\gamma_{i_{j}} v_{i_{j}} \geq \max _{1 \leq k \leq n} \gamma_{k} v_{k}, \quad j=1, \ldots, l \tag{1}
\end{equation*}
$$

holds, and that statement will not be influenced if all these inequalities (1) are multiplied by one and the same positive number α.

Since $f=f_{i_{1}} e^{i_{1}}+\cdots+f_{i_{l}} e^{i_{l}}$, there is a number $r>0$ such that $r f \in S_{\widehat{\beta}}$. Therefore,

$$
\sum_{i=1}^{n} \frac{1}{\widehat{\beta}_{i}} r f_{i}=1 \quad\left[f_{i}=0 \quad \text { for } i \in N \backslash N^{+}(f)\right]
$$

and

$$
\frac{1}{r}=\sum_{k=1}^{l} \frac{1}{\widehat{\beta}_{i_{k}}} f_{i_{k}}
$$

On the other hand, $r f$ is also a convex combination of the vertices $\widehat{\beta}_{i_{k}} e^{i_{k}}(k=1,2, \ldots, l)$ of $S_{\widehat{\beta}}$, i.e., with some $\lambda_{i_{k}}>0, \sum_{k=1}^{l} \lambda_{i_{k}}=1$ one has

$$
\begin{equation*}
r f=\lambda_{i_{1}} \widehat{\beta}_{i_{1}} e^{i_{1}}+\cdots+\lambda_{i_{l}} \widehat{\beta}_{i_{l}} e^{i_{l}} \tag{2}
\end{equation*}
$$

For the solution u of the equation $A u=f$ with the given f we now get

$$
u=A^{-1} f=\frac{1}{r} A^{-1}(r f)
$$

Denote $r f=x$ and $A^{-1}(r f)=v$. Then (1) is considered with those v and x represented as (2) and with $\alpha=1 / r$. Therefore, for $u_{k}=(1 / r) v_{k}$ at least one of the inequalities

$$
\gamma_{i_{j}} u_{i_{j}} \geq \max _{1 \leq k \leq n} \gamma_{k} u_{k}, \quad j=1, \ldots, l .
$$

holds. From this the equality $\max _{k \in N^{+}(f)} \gamma_{k} u_{k}=\max _{k \in N} \gamma_{k} u_{k}$ immediately follows.

Remarks.

1. As the proof of the necessity indicates, the following statement holds: If a matrix A satisfies $\gamma \mathrm{MP}$, then the pair $\left(A^{-1}, T_{\beta}\right)$ satisfies the condition γG for any $\beta \in p(A), \beta \gg 0$.
2. If $\gamma=e^{(n)}=(1, \ldots, 1)$, then under the same conditions for the matrix A to satisfy the maximum principle, it is necessary that the pair $\left(A^{-1}, T_{\beta}\right)$ meet the condition G for any $\beta \in p(A), \beta \gg 0$ and sufficient that $\left(A^{1}, T_{\beta}\right)$ meet G for at least one $\beta \in p(A), \beta \gg 0$.

Corollaries

1. Let $A^{-1} \geq 0$ and $\gamma=e^{(n)}$ hold. Assume that $\left(A^{-1}\right)^{T}$ has the eigenvalue $\lambda=1$ and a corresponding eigenvector $x=\left(x_{1}, \ldots, x_{n}\right) \gg 0$. Then the vector $\beta-\left(1 / x_{1}, \ldots, 1 / x_{n}\right), \beta \gg 0$, belongs to $p(A)$ and the matrix A satisfies the maximum principle if and only if the pair $\left(A^{-1}, S_{\beta}\right)$ satisfies G.

Indeed, the additional condition about the eigenvalue and the eigenvector guarantees the inclusion $A^{-1}\left(S_{\beta}\right) \subset S_{\beta}$ and $\beta \in p(A)$. The statement follows now from the theorem. A further, more specific case is considered in:
2. Let A^{-1} and γ be as in corollary 1. Assume now that $e^{(n)}$ is an eigenvector of $\left(A^{-1}\right)^{T}$ for $\lambda=1$. Then $A^{-1}(S) \subset S$, and A satisfies the maximum principle if and only if $\left(A^{-1}, S\right)$ satisfies G.

Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ be a diagonal matrix such that $d_{j}>0, j=$ $1, \ldots, n$. Then D is invertible, $D^{-1}=\operatorname{diag}\left(1 / d_{1}, \ldots, 1 / d_{n}\right)$, and $D^{-1} \geq 0$. If $f \geq 0$ is some vector, then $N^{+}(f)=N^{+}(D f)=N^{+}\left(D^{-1} f\right)$.

Lemma. Let D be a diagonal matrix with positive diagonal elements, and let A be some matrix. Then both A and $D A$ satisfy the maximum principle or neither of them does.

Proof. ($D A) u=f$ and $f \geq 0$ imply $A u=D^{-1} f$ and $D^{-1} \geq 0$. If now A satisfies the maximum principle, then $u \geq 0$, and

$$
\max _{i \in N} u_{i}=\max _{i \in N^{+}\left(D^{-1} f\right)} u_{i}=\max _{N^{+}(f)} u_{i}
$$

follows, i.e., $D A$ satisfies the maximum principle. The opposite direction is proved by using the equality $N^{+}(D f)=N^{+}(f)$.

Now let A be an invertible matrix such that $A^{-1}=\left(\alpha_{i j}\right) \geq 0$. Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, where $d_{j}=\sum_{i=1}^{n} \alpha_{i j}, j=1, \ldots, n$. Then $d_{j}>0$ for all j, and the matrix $B=D A$ is invertible with $B^{-1} \geq 0$. It is easy to see that $\lambda=1$ and $x=e^{(n)}$ are an eigenvalue and a corresponding eigenvector for the matrix $\left(B^{-1}\right)^{T}$, respectively. According to corollary 2 the matrix B satisfies the maximum principle if and only if the pair $\left(B^{-1}, S\right)$ satisfies the condition G.

Since by the lemma the matrices A and B satisfy the maximum principle simultaneously, we have proved the following.

THEOREM 2. With the notation above, the following conditions are equivalent:
(i) A satisfies the maximum principle;
(ii) B satisfies the maximum principle;
(iii) $\left(B^{-1}, S\right)$ satisfies the condition G.

The equivalence (i)-(iii) was proved by G. Stoyan in [5, p. 151].

4. SUFFICIENT CONDITIONS

For a matrix A to satisfy the maximum principle, sufficient conditions are given in [5]. It turns out that some of them can be generalized for the case of the γ-maximum principle.

For a given matrix $A=\left(a_{i j}\right)$ the matrices $A^{(+)}$and $A^{(-)}$are defined
as follows (see [4]):

$$
A^{(+)}=\left\{\begin{array}{ll}
a_{i j} & \text { if } a_{i j}>0 \text { and } i \neq j, \\
0 & \text { otherwise }
\end{array} \text { and } A^{(-)}=A-A^{(+)}\right.
$$

For a diagonal matrix $\Gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ with $\gamma_{j}>0$ for $j=1, \ldots, n$, the matrices $(A \Gamma)^{(+)}$and $(A \Gamma)^{(-)}$are then $A^{(+)} \Gamma$ and $A^{(-)} \Gamma$, respectively.

Theorem 3. Let A be an invertible (n, n) matrix with $A^{-1} \geq 0$ and $A^{(-)}$nonsingular. Further, let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \gg 0$ and $A^{(-)}\left(1 / \gamma_{1}, \ldots\right.$, $\left.1 / \gamma_{n}\right)^{T} \geq 0$. Then A satisfies the γ-maximum principle.

Proof. The equation $A u=f$ is equivalent to $A \Gamma^{-1} \Gamma u=f$. The matrix $\left(A \Gamma^{-1}\right)^{(-)}$is nonsingular, since $A^{(-)}$is. Moreover, $A \Gamma^{-1}$ exists and is inverse monotone. By assumption

$$
A^{(-)}\left(\frac{1}{\gamma_{1}}, \ldots, \frac{1}{\gamma_{n}}\right)^{T}=A^{(-)} \Gamma^{-1} e^{(n)} \geq 0
$$

Therefore, using that $A^{(-)} \Gamma^{-1}=\left(A \Gamma^{-1}\right)^{(-)}$, one has $\left(A \Gamma^{-1}\right)^{(-)} e^{(n)} \geq 0$. By Theorem 1 from [5], the matrix $A \Gamma^{-1}$ satisfies the maximum principle. From this it immediately follows that A satisfies the γ-maximum principle.

The converse statement also holds in a certain sense (see also [5, p. 153]).

Theorem 4. Let A be an invertible matrix. If for some vector $\gamma \gg 0$ the matrix A satisfics the γ-maximum principlc, then $\Lambda^{-1} \geq 0$ and

$$
A\left(\frac{1}{\gamma_{1}}, \ldots, \frac{1}{\gamma_{n}}\right)^{T} \geq 0 .
$$

Proof. Indeed, if $\Gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$, then the matrix $A \Gamma^{-1}$ satisfies the maximum principle, $A \Gamma^{-1} e^{(n)} \geq 0$, and $\Gamma A^{-1}=\left(A \Gamma^{-1}\right)^{-1} \geq 0[4,5]$. That is, $A\left(1 / \gamma_{1}, \ldots, 1 / \gamma_{n}\right)^{T} \geq 0$ and $A^{-1} \geq 0$.

5. THE WEIGHTED MAXIMUM PRINCIPLE FOR M-MATRICES

Let now A be an M-matrix, i.e., there exists $A^{-1} \geq 0$ and the nondiagonal elements of A are nonpositive, i.e., $a_{i j} \leq 0, i \neq j$.

Theorem 5. Let A be an M-matrix and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \gg 0$. Then A satisfies the γ-maximum principle if and only if $A\left(1 / \gamma_{1}, \ldots, 1 / \gamma_{n}\right)^{T} \geq 0$.

Proof. In terms of the matrices $\Gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $B=A \Gamma^{-1}$ one has

$$
\begin{equation*}
A\left(\frac{1}{\gamma_{1}}, \ldots, \frac{1}{\gamma_{n}}\right)^{T}=B e^{(n)} \tag{3}
\end{equation*}
$$

We note that B is also an M-matrix. Therefore, B satisfies the (usual) maximum principle if and only if $B e^{(n)} \geq 0$ [5]. The proof is complete on using the fact that B satisfies MP exactly when A satisfies γ MP.

Example Consider the M-matrices

$$
A=\left(\begin{array}{rrr}
4 & -1 & -1 \\
-1 & 4 & -2 \\
-1 & -1 & 4
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrr}
4 & -1 & -1 \\
-1 & 2 & -2 \\
-1 & -1 & 4
\end{array}\right)
$$

Then $A e^{(n)} \geq 0$ and $B e^{(n)} \nsupseteq 0$, i.e., A satisfies the MP but B does not. On the other hand, for $\gamma=\left(\frac{2}{75}, \frac{1}{15}, \frac{1}{6}\right)^{T}$ and $\bar{\gamma}=\left(\frac{1}{7}, \frac{1}{14}, \frac{1}{9}\right)^{T}$ one has $A\left(\frac{75}{2}, 15,6\right)^{T} \not \geq 0$ and $B(7,14,9) \geq 0$; therefore, A does not satisfy the γ MP but B satisfies the $\bar{\gamma} \mathrm{MP}$.

Now it is easy to show that an M-matrix A satisfies the γ MP for any $\gamma \gg 0$ only if A is diagonal with positive diagonal elements.

REFERENCES

1 P. G. Ciarlet and P. A. Kaviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2:17-31 (1973).

2 J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic, New York, 1970.
3 A. A. Samarskij, Theorie der Differenzenverfahren, Akademische Verlagsgesellschaft, Geest und Portig K.-G., Leipzig, 1984.
4 G. Stoyan, On a maximum principle for matrices and on conservation of monotonicity. With applications to discretization methods, Z. Angew. Math. Mech. 62:375-381 (1982).
5 G. Stoyan, On the maximum principles for monotone matrices, Linear Algebra Appl. 78:147-161 (1986).
6 G. Windisch, M-Matrices in Numerical Analysis, Teubner-Texte Math. 115, Leipzig, 1989.
Received 6 October 1992; final manuscript accepted 17 June 1993

