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ABSTRACT 

Let y = (a,. . ,m) be a given vector with positive coordinates. A matrix 
A is said to satisfy the y-maximum principle (yMP) if AZ = y, y 2 0 imply 
x > 0 and 

max yixi = 
l<i<n 

max yizi, 
iEN+ 

where N+(y) is the set of indices such that y is positive. For an invertible matrix 
A with positive inverse the 7MP is characterized geometrically by means of the 
behavior under A- ’ of convex boundary parts of the simplex generated in W; by 
permissible multiples of the unit coordinate vectors. Some sufficient conditions 
and applications to M-matrices are given. 

1. A MAXIMUM PRINCIPLE AND A WEIGHTED 
MAXIMUM PRINCIPLE 

Many problems in different branches of mathematics lead or can be 
reduced to the solution of an equation 

Au = f, 
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where A is an invertible (n, n) matrix and f a given vector. Of interest 
then are qualitative properties of the solution u, such as its positivity, or 
the question at which of its components the solution u attains its maximal 
value. Of course, such properties of the solution depend on the matrix 
A as well as on the right hand side f of the equation. The matrix A in 
such a case is said to satisfy a maximum principle. Many papers deal with 
maximum principles for matrices; we refer only e.g. to [ 1, 3-51, where many 
applications are included. 

In this paper, which is influenced by the theoretical parts of [5], a cer- 
tain weighted maximum principle is introduced and studied. Under some 
natural assumptions a geometrical necessary and sufficient condition and 
some sufficient conditions for a matrix to satisfy the maximum principle 
are proved. 

For matrices several maximum principles have been studied. The one 
under consideration in [5] is sometimes called the maximum principle for 
inverse column entries (see [S]). 

We will use the following notation: Let n be a natural number such 
that n 2 1. For an (n, n) matrix A = (aij) and a vector 2 E Rn we write 
A~Oifaij>Oforalli,j=1,2,...,n,anda:LOorz~Rn+ifzi2Ofor 
alli=l,2,... , 12, respectively. 

If xi > 0 for all i = 1,2,. . . , n, i.e. z E Int IQ_ we write x >> 0. Let 
N denote the set {1,2,. . . , n}. For f E lR7 we need the following subsets 
of N 

N+(f) = {j E N : fj > o}, 
No(f) = {j E N : fj = 0). 

DEFINITION 1 (SEE [4]). A matrix A is said to satisfy the morcimum 
ptinciple (briefly, MP) if Au = f, f > 0 imply the conditions 

(a) u 2 0 and 

(b) maxkeN u/c = maxkeN+ uk- 

In [4] and [5] necessary and sufficient conditions are proved, mainly for 
invertible matrices with a positive inverse. In particular, simple conditions 
can be formulated for the class of M-matrices. An M-matrix is an invertible 
matrix A satisfying the conditions A-’ 2 0 and oij 5 0 for all i, j = 
1,2,. . .) n, i # j (see [2, 61). 

In order to define another maximum principle we fix some vector y = 
(Y1,72,... ,m), Y l+ 0. 

DEFINITION 2. A matrix A is said to satisfy the weighted maximum 
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principle with respect to y (briefly, y-maximum principle or yMP) if Au = 
f, f 2 0 imply the conditions 

(a) u>_Oand 

(b) maxk EN ‘YkUk = m=k EN+(f) ‘-fkuk. 

Let A be an invertible matrix and y >> 0. Then A satisfies the y- 
maximum principle if and only if the matrix AI’-l satisfies the maximum 
principle, where F-l denotes the diagonal matrix diag(l/yi,l/yn,. . .,1/m), 
i.e., the inverse to the matrix F = diag(yi,ys,. . . , m). 

Indeed, if A satisfies the yMP, then Au = f, f > 0 imply (a) and (b) 
of Definition 2. Since the equation Au = f can obviously be written as 
(Ar-l)(h) = f, th en I’ > 0 and u > 0 yield Fu > 0, and (b) means 
exactly mZQeN[Fu]k = maxkeN+(f)[rU]k, where [I& denotes the kth 
component of the vector Fu. Conversely, if the equation (Al?-‘)w = f is 
considered with f 2 0, then (AIY1)(I’u) = f, where u = I’-%. Since 
f > 0, by conditions (a) and (b) We get rU 2 0 and maxk eN[IU]k = 
maxk EN+ (fj [F’&, which means Y 2 0 and (b) from Definition 1, where uk 
is replaced by Wk. 

2. SOME GEOMETRIC PRELIMINARIES 

Let A = (c_~ij):~ = 1 be an invertible (n, n) matrix, A-l = (q)rj = 1, 
andletp=(Pi,... ,&)with&#Oforj=l,...,nbeafixedvector. We 
denote by oi the jth row of the matrix A-‘, by ei the ith unit vector of R*, 
by E the hyperplane through the endpoints of the vectors ei, and by Ep the 
hyperplane through the endpoints of the vectors Pie’, /3ze2, . . . , /&en. The 
hyperplane generated by the points A-lPle’ = PI&, . . . , A-l&e” = &an 
is denoted by EA-I~. Finally S, So, and Tp denote the intersection of l.lXT 
with E, ED, and EA-10, respectively. The representations 

s:= zEW;:&=l 
( i=l I 

and 

s, := 
i 

X,lR$C z:l$Xi=l I 
are obvious. 

Due to the linear independence of the vectors &(j = 1,. . .,n), the hy- 
perplane EA-10 never contains the origin. For simplicity, further on, we 
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will consider only the case where the set Tp is bounded. That means we as- 
sume that the hyperplane EA-la cuts the ith coordinate axis at a nonzero 
distance c+ for any i = 1,2,. . . , n. Therefore, only 

To= n 1 y~Rn+:x--y~=l 
i=i ci 

where Q = ci(p, A) # 0, are considered. This, of course, restricts the set of 
all possible componentwise nonzero vectors p. For a given invertible matrix 
A we describe now this set exactly. Let f be the linear functional on Rn 
with the property 

EA-I~ = {y E IF : f(y) = 1). 

Obviously one has f&d) = 1, i.e., f(,uj) = l/& (/$ # 0) for j = 1,. . . , n. 

LEMMA. For the hyperplane EA-IP to intersect any coordinate axis 
at a unique point it is necessary and sufficient that 

Pj = 
1 

klalj + . . . + k&j ’ 
j=l,...,n, 

for some numbers Ici # 0, i = 1, . . . , n. 

Proof. If EA-I~ intersects each coordinate axis, then for some q # 0, 
i = l,..., n, there must hold ciei E EA-10 for which f(ciei) = 1 or 
f(ei) # 0 can be written. From A-lA = I the representation ei = 
Cy= i a& follows for all i = 1, . . . , n such that 

f(ei) = f 2 ajid ( ) j=l 
= 2 ajif(4 = j$laji+ # 0. 

j=l 3 

Introducing the numbers lci = CT= r ojil/@j, i = 1, . . . , n, the last equal- 
ity means 

AT(; ,..., ,)‘= (ICI ,..., k,)? 

or equivalently 

(i ,..., $ = (A-l)T(kl ,..., k,>? 
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Therefore, &(krcrij + ... + ,&a,) = 1 for all j = 1,. . . , n. The equality 
f(ciei) = 1 ’ pl’ im ies now ci = l/f(ei) = l/ki for the point at the ith 
coordinate axis, where the latter is intersected by the hyperplane EA-10. 

??

The hyperplane EA-I~ intersects each positive half axis if and only if 
all numbers Ici, i = 1, . . . , n, are positive. Hence the following holds. 

COROLLARY. The hyperplane EA-I~ has an intersection with each of 
the positive half axes if and only if 

Pj = 
1 

halj + . . . + kn(Y,j 

for all j = 1,. . . , n with ICI,. . . , k, > 0. If, in addition to the above 
conditions, A-l > 0, then in this case all &‘s are positive too. 

A vector p = (PI,... ,,&) with & # 0 and satisfying the condition of 
thelemmaforallj=l,... , n will be called permissible. Let p(A) denote 
the collection of all permissible vectors for a given matrix A. Note that for 
an invertible matrix A the set p(A) is not empty. 

Now let A be an invertible matrix with A-’ 2 0, and let ,B E p(A). 
Then Tp C IR"+ and /3 > 0. We consider two kinds of decomposition of To 
into subsets. The first one defines for all i = 1, . . . , n the sets 

‘$’ = {y E To : yi > yk, k = 1, . . . , n}. 

For the second one we fix an arbitrary vector y >> 0 and define 

T;$ ={YET~: "liYi > Yk!-/k, k = 1,. . . , n}. 

3. A NECESSARY AND SUFFICIENT CONDITION 

Let A be a given invertible matrix such that A-’ 2 0. Let ,8 E p(A) 
andp>Ohold. Ifzr,... ,z, are n vectors, then co{zr, . . . ,zn} denotes 
their convex hull. 

DEFINITION 3. The pair (A-l, To) is said to satisfy the condition G if 

A-‘(co{&ei : i E N’}) c U Ti’ 
iEN’ 



52 C. TtiRKE AND M. WEBER 

for any nonvoid subset N’ c N = { 1., . . , n}. 

Let A and 4 be the same as before. 

DEFINITION 4. Lety= (n,... , m) > 0 be fixed. The pair (A-l, To) 
is said to satisfy the weighted condition yG if 

AV1(co{piei : i E N’}) c U -# 
iEN’ 

for any nonvoid subset N’ c N. 

Now we are able to use the geometric condition yG for the charscteri- 
zation of the analytic maximum principle with respect to y. 

THEOREM 1. Let A be an invertible (n, n) matrix with A-’ 2 0, and 
lety= (n,... ,-~,)~0b e a xe vector. Then the matrix A satisfies the E d 
we$hted maximum principle with respect to y if and only if there exists 
a ,3 E p(A), p >> 0 such that the pair (A-‘, Tp) satisfies the weighted 
condition rG. 

Proof. For the necessity we take an arbitrary ,0 E p(A), p >> 0, and 
show that for (A-l, Tp) the condition yG holds. If N’ = {ii,. . . , il}, 1 < n 
(the case 1 = n is trivial), then any element z E co{p,, eik : k = 1, . . . ,I} 
can be represented as x = pil/?il et1 + . . + pi, /3i,ei’ with bui, 2 0, 
pil+ *” + pil = 1. One has now 

A-‘X = ~~l/3ilA-1ei’ + ...+pilPilAmlei’, 

or by using that A-‘ej is the jth row of the matrix A-l, 

If the equation Au = x is considered with such an x that pik > 0, k = 
1 . . , 1, then for f = x one has f 2 0 and N+(f) = N’. By assumption A 
satisfies yMP, that is, 

(a) A-‘f > 0 and 

(b) maxkENYk(llilPil~Yil,k+... + Pil Pit %, k) = m=k E iv+(f) Yk (Pi, 

Pilcri,,k+...f~LilPil(llil,k). 

Clearly, f E So and A-‘(So) C To. In order to prove that yG holds, it 
suffices to investigate into which subsets of To the convex combinations of 
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the vertices of 5’~ are mapped by A-‘. If i, E N+(f) such that yi,,~i, 2 
~k~k, k = 1,. . . , n, then 

where uk is the kth component of the vector u = A-‘f. This shows that 
A-‘(co{&ei :i E IV'}) c lJi,,,~i4 for any N’ c IV. 

For the sufficiency, we argue as follows. Let for some @ E p(A) the pair 
(A-l, TF) satisfy the condition yG. For some f > 0 consider the equation 
Au = f, where, without loss of generality, 

N#N+(f)={ii,iz ,..., il}, i.e.,l<n 
may be assumed. ‘u. > 0 follows immediately because of A-’ 2 0. The 
condition yG implies 

A-‘(co{&ei :i E N'}) c U T$), 
iEN+ ^I 

i.e., if for some element x = pil$ileil + . . . + pi,Bi,ei’ with pir, > 0 and 
Ck=ipir, = 1 th e vector A-lx is denoted by w = (~1,. . . ,vn), then ‘u 
belongs to at least one of the sets r_$‘, i E {ii, . . , ik}. That means at 

7 
least one of the inequalities 

Yij Vi, 2 1 <“k”<” YkVk, j = 1,...,1, (1) _ _n 

holds, and that statement will not be influenced if all these inequalities (1) 
are multiplied by one and the same positive number o. 

Since f = filei + ... + filei’, there is a number r > 0 such that 
rf E 5’~ Therefore, 

2; f.= r z 1 [fi = 0 for i E N \ N+(f)] 
2 

on the other hand, rf is also a convex combination of the vertices 
&eik (k = 1,2,. . . , I) of S? i.e., with some Xi, > 0, CL=, Ai, = 1 one has 

rf = Ai1 pi1 eil + . . . + Ail&e”. (2) 
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For the solution u of the equation Au = f with the given f we now get 

u = A-‘f = ;A-‘(rf). 

Denote rf = z and A-l(rf) = w. Then (1) is considered with those w and 
z represented as (2) and with Q = l/r. Therefore, for uk = (l/r)wh at least 
one of the inequalities 

"lij%j 2 m l<kYnYkUkY j = 1,...,1. 
- _ 

holds. hOIn this the eqUdity mm&N+(f) ykuk = maXkEN ykuk immedi- 
ately follows. ??

REMARKS. 

1. As the proof of the necessity indicates, the following statement holds: 
If a matrix A satisfies yMP, then the pair (A-l, To) satisfies the condition 
yGforanypEp(A),p>O. 

2. If y = e+) = (l,... , l), then under the same conditions for the 
matrix A to satisfy the maximum principle, it is necessary that the pair 
(A-l,Tp) meet the condition G for any p E p(A), p > 0 and sufficient 
that (A-‘,Tp) meet G for at least one p E p(A), p > 0. 

COROLLARIES 

1. Let A-’ > 0 and y = ecn) hold. Assume that (A-‘)T has the eigen- - 
value X = 1 and a corresponding eigenvector 2 = (xi,. . . ,z,) > 0. Then 
the vector ,B = (l/xi, . . . , l/zn), p > 0, belongs to p(A) and the matrix A 
satisfies the maximum principle if and only if the pair (A-‘, 5’0) satisfies 
G. 

Indeed, the additional condition about the eigenvalue and the eigenvec- 
tor guarantees the inclusion A-l(So) c SD and p E p(A). The statement 
follows now from the theorem. A further, more specific case is considered 
in: 

2. Let A-l and y be as in corollary 1. Assume now that ecn) is an 
eigenvector of (A-l)T for X = 1. Then A-‘(S) c S, and A satisfies the 
maximum principle if and only if (A-‘, S) satisfies G. 

Let D = diag(di, . . . ,d,) be a diagonal matrix such that dj > 0, j = 
n. Then D is invertible, D-l = diag(l/di, . . l/d,), and D-’ 2 0. 

ii y $ 0 is some vector, then IV+(f) = N+(Df) = i+(D-‘f). 
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LEMMA. Let D be a diagonal 
and let A be some matrix. Then 
principle or neither of them does. 
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matrix with positive diagonal elements, 
both A and DA satisfy the maximum 

Proof. (DA)u = f and f > 0 imply Au = D-l f and D-l 2 0. If now 
A satisfies the maximum principle, then u 2 0, and 

y$y4 = 
iE P?&,, 

uz = max ui 
N+(f) 

follows, i.e., DA satisfies the maximum principle. The opposite direction 
is proved by using the equality N+(Df) = N+(f). ??

Now let A be an invertible matrix such that A-’ = (cQ~) > 0. Let 
D = diag(di,. . . ,d,),wheredj=C~=L=laij,j=l ,..., n. Thendj>Ofor 
all j, and the matrix B = DA is invertible with B-l 2 0. It is easy to see 
that X = 1 and z = eln) are an eigenvalue and a corresponding eigenvector 
for the matrix (B-‘)T, respectively. According to corollary 2 the matrix 
B satisfies the maximum principle if and only if the pair (B-l, S) satisfies 
the condition G. 

Since by the lemma the matrices A and B satisfy the maximum principle 
simultaneously, we have proved the following. 

THEOREM 2. With the notation above, the following conditions are 
equivalent: 

(i) A satisfies the maximum principle; 

(ii) B satisfies the maximum principle; 

(iii) (B-l, S) satisfies the condition G. 

The equivalence (i)-(iii) was proved by G. Stoyan in [5, p. 1511. 

4. SUFFICIENT CONDITIONS 

For a matrix A to satisfy the maximum principle, sufficient conditions 
are given in [5]. It turns out that some of them can be generalized for the 
case of the T-maximum principle. 

For a given matrix A = (aij) the matrices A(+) and A(-) are defined 
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a.9 follows (see [4]): 

1 

aij if aij > 0 and i # j, 
A(+) = and A(-) = A - A(+). 

0 otherwise 

For a diagonal matrix l? = diag(yr, . . . , m) with yj > 0 for j = 1,. . . , n, 
the matrices (AI?)(+) and (AI’)(-) are then A(+)r and A(-) respectively. 

THEOREM 3. Let A be an invertible (n,n) matrix with A-’ 2 0 and 
A(-) nonsingular. Further, let y = (71, . . . , m) >> 0 and A(-)(l/yr, . . . , 
11~~)~ 2 0. Then A satisfies the y-maximum principle. 

Proof The equation Au = f is equivalent to AI’-lI’u = f. The 
matrix (AI’-‘)(-) is nonsingular, since A(-) is. Moreover, AI’-’ exists and 
is inverse monotone. By assumption 

A(-)(i,...,$)T =A(-)I’-le(n) 20. 

Therefore, using that A(-)I = (AF1)(-), one has (Al?-l)(-)e(“) >_ 0. 
By Theorem 1 from [5], the matrix Al?-’ satisfies the maximum principle. 
From this it immediately follows that A satisfies the y-maximum principle. 

??

The converse statement also holds in a certain sense (see also [5, p. 
1531). 

THEOREM 4. Let A be an invertible matrix. If for some vector y > 0 
the matrix A satisfies the y-maximum principle, then A-’ 2 0 and 

Proof. Indeed, if l? = diag(yr, . . . , m), then the matrix Ar-’ satisfies 
the maximum principle, Al?-1e(n) > 0, and I’A-l = (Al?-l)-l 2 0 [4, 51. 
That is, A( l/y1 , . . . , l/~~)~ 2 0 and A-’ 2 0. ??

5. THE WEIGHTED MAXIMUM PRINCIPLE FOR M-MATRICES 

Let now A be an M-matrix, i.e., there exists A-l 2 0 and the nondi- 
agonal elements of A are nonpositive, i.e., aij < 0, i # j. 
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THEOREM 5. Let A be an M-matrix and y = (p,. . . ,m) B 0. Then 
A satisfies the y-maximum principle if and only if A(l/yl, . . . , l/+~~)~ 2 0. 

Proof. In terms of the matrices l? = diag(yl, . . . , -yn) and B = Al7-l 
one has 

T 

= Been). (3) 

We note that B is also an M-matrix. Therefore, B satisfies the (usual) 
maximum principle if and only if Be cn) > 0 [5]. The proof is complete on 
using the fact that B satisfies MP exactly when A satisfies yMP. ??

EXAMPLE Consider the M-matrices 

Then Ae(“) 2 0 and Been) 21 0, i.e., A satisfies the MP but B does not. 
On the other hand, for y = (&, &, 6)’ and 7 = (+, A, $)’ one has 

A(?, 15, 6)T 2 0 and B(7,14,9) 2 0; therefore, A does not satisfy the 
yMP but B satisfies the 7MP. 

Now it is easy to show that an M-matrix A satisfies the yMP for any 
y > 0 only if A is diagonal with positive diagonal elements. 
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