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Abstract 
The concept of function is a central idea in mathematics. Functions have many facets, which often 
cause problems to students. On the one hand the nature of functional dependencies has various 
aspects: the mapping aspect, the aspect of change, and the object aspect. On the other hand there are 
various representations for functions. Each representation emphasizes different aspects of the 
functional dependency. To establish subconcepts like injectivity within the function concept some 
representations are more suitable than others. One needs to integrate these subconcepts in the 
concept of function by transferring them to other representations.  
We present an interactive learning environment for the conceptualization of the notions of “function”, 
“injectivity”, “surjectivity”, and “bijection”, using a three-stage approach basing on different 
representations and linking them dynamically. 
The learning environment “Squiggle-M” allows the integration of the mentioned subconcepts in the 
concept of function. “Squiggle-M” is a mathematical exploration tool offering a bundle of 
experimentation laboratories. Different representation forms of functions are implemented using an 
interactive geometry software. The environment also presents a collection of open study questions 
that can be answered within the laboratories by making use of different representation forms. The 
individual learning process of the student is reflected by the software’s feedback module based on an 
intelligent (semi-)automated assessment system. 

 
1. Motivation and Rationale   
The concept of function is essential in mathematics and mathematics education. It usually causes 
many problems for different reasons: The concept is very complex containing many facets, aspects, 
subconcepts, representations etc. For example Vollrath [17] and similarly Dubinsky & Harel [6] 
describe the following aspects of functional dependencies: 

• The mapping aspect: functions seen as point wise relations, static view of functional 
dependencies 

• The aspect of change: dynamic view of functional dependencies in sense of ‘What effect 
does the change of a value have on the change of another value?’ 

• The object aspect: functions seen as a whole with global characteristics and functions seen 
as algebraic objects 

Furthermore there are several representations for functions, e.g. words, tables, formula, arrow or 
ladder diagrams, graphs etc. Each representation relates to one or more aspect in an eminent way. 
For example tables or ladder diagrams emphasize the mapping aspect whereas graphs relate to the 
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dynamic or object aspect. A teacher has to decide which representation is suitable within a certain 
context. E.g., when talking about ‘monotonicity’ a graph is suitable whereas a (static) ladder 
diagram is not. For the conceptualization of the notion of function representational transfer is 
essential. As mentioned by many authors (e.g. Swan [15], Janvier [11], Kerslake [13]) 
representational transfer is one of the main problems of students. 
The large variety of representations often lead to the development of isolated - sometimes even 
contradictory - mental images of the notion of function. For example Dreyfus & Vinner [4] describe 
that students develop a concept image of the notion function resulting from interaction with 
examples and non-examples. The concept image is the set of all mental images and characteristic 
properties in connection with the term of function. The concept image often contains images like: a 
function needs to be one rule, or a function has to look reasonable, i.e. monotonous and without 
jump discontinuities. This often contradicts the concept definition of function, which is the 
definition one would give for the notion of function. Dreyfus & Vinner [4] showed that students use 
their concept image to decide if a given example is a function or not. Even if students give a correct 
definition for the term of function they do not use it as a basis for their decision about examples and 
non-examples. A typical problem is shown in Figure 1: At the beginning of a study, which is partly 
described in Hoffkamp [10], 10th grade secondary school students of age 15 to 16 were asked to 
write a letter to an imaginary friend where they describe the term of function. Figure 1 shows an 
excerpt of such a letter. 
 

 
Figure 1: Dear ignoramous, a function is a special form of a graph where each x value has exactly 
one assigned y value; therefore a function cannot look like a parabola. [...] But that only ONE x 

value belongs to ONE y value makes the function a function. (student, grade 10, secondary school) 
 

Although the student gives a correct definition for the term of function the subconcepts 
injectivity/bijectivity and uniqueness are confused. Why do students have problems with the 
definition? The concept definition of a function is usually introduced in grade 8 (age 13)– based on 
Dirichlet’s definition – as follows: 
A function is an assignment rule by which each element x of a set is assigned to exactly one element 
y of (another) set. 
This definition is very abstract and general. In grade 8 students usually work on problems like ‘Is 
the following a function or not?’ and it is not obvious for the students why functions ‘need’ to be 
defined like that. The above definition is the result of a long development in mathematics following 
the demand of universality and precision (Fischer & Malle [8]) and the genesis of that notion is 
usually concealed from the students. E.g. Euler’s definition of function contained the subconcept of 
continuity by stating that functions must be ‘drawable by hand in one move’. The need of 
universality led to the omission of this property. Also the aspect of change is not obvious in the 
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Dirichlet definition. While certain aspects and subconcepts are neglected due to generality and 
precision, they need to be (re-)formulated and integrated in the concept of function.   
 
2. Aims and main ideas 
The aim of the presented work is the introduction and integration of the subconcepts uniqueness, 
totality, injectivitiy, surjectivity and bijectivity by using interactive learning activities for 
visualization and experimentation. 
The introduction of these subconcepts is usually done by using finite arrow diagrams, which seems 
to be the most suitable representation form for this purpose. But of course these diagrams do not 
represent ‘common’ real functions. To integrate the above subconcepts in the concept of function 
one has to recover them in other representation forms and connect them to other subconcepts. For 
example the subconcept of monotonicity is strongly connected to the subconcept injectivity as 
monotonous functions are injective. But finite arrow diagrams are neither suitable for depicting 
continuous functions nor for representing monotonicity. Finite arrow diagrams can be extended to 
ladder diagrams [9]. This implies in a sense the introduction of continuity although one still depicts 
a finite number of assignments. By dynamizing ladder diagrams the subconcepts injectivity and 
monotonicity can be explored locally. But only by using graphs their global connection is best seen. 
Therefore one core idea of the learning environment is the visualization of the connection between 
arrow diagrams and graphs.  
 
2.1 The role of visualizations in mathematics and mathematics education 
The idea of interactive visualization is central for this work. Visualizations play an important role in 
mathematics or like stated in Fischer & Malle [8]: 
To some extend mathematics takes place in an interaction between representation, interpretation 
and operation. 
Therefore the physical representation or visualization of abstractions is an essential property of 
mathematics or as Kaput [12] says: 
The fundamental premise is that the root phenomena of mathematics learning and application are 
concerned with representation and symbolization because these are at the heart of the content of 
mathematics and are simultaneously at the heart of the cognitions associated with mathematical 
activity. (p. 22) 
Mathematicians often do not carry out abstractions only in their mind but search for visual 
representations like symbols on a sheet of paper or diagrams etc. Visualization allows extended 
elaboration by focussing on certain aspects and abstracting from other aspects. Furthermore they 
facilitate visual communication. While language is linear, complex issues need to be brought in a 
succession to be described and explained verbally. This often neglects some important 
dependencies of the subject matter. In contrast visualizations allow the presentation of complex 
issues as a whole side by side. For example different aspects of functions can be explored and 
observed together in their relationship to each other. We use the epistemological and heuristic 
aspects of visualizations and representations in a special designed learning environment.   
 
2.2 Automated and semi automated assessment 
In common learning environments the teacher is not able to support and analyze the whole learning 
process of each student. Especially at the university level the number of students is very large. 
Hence, the teacher cannot give individual feedback to each of them. As a consequence, assessment 
is usually done classically by weekly homework and central tests. Often the students just get the 
results of their work without any deeper comment. A personalized feedback given by a tutor or the 
teacher can only occur in individual meetings. But the students need to know about their individual 
solution process – successful or faulty – just in time.  
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Analyzing mistakes and learning how to avoid or resolve them should be as well integral part of the 
learning content as developing correct solution strategies. This is particularly essential for students 
whose aim is to become teachers at school. 
To enable an individual analysis of a learning process in lectures with many students, new concepts 
for teaching are necessary. In the project SAiL-M (Semi-automated Analysis of individual Learning 
processes in Mathematics, founded by the German Federal Ministry for Education and Research, 
BMBF) learning environments and adapted software tools for student oriented and activating 
lessons in mathematics are developed (Bescherer et al. [1]). First prototypes of computer-aided 
learning tools with integrated intelligent automated and semi-automated assessment are 
implemented for different mathematical topics like algebra of sets, congruencies and line 
reflections, basic geometric proofs, or proofs based on complete induction. The tools give 
automated feedback on standard solutions and standard mistakes and detect non-standard answers 
given by the students. Hence the teacher is disburdened from the correction of standard solutions. 
She or he can concentrate on unusual strategies and errors that cannot be detected by the automated 
assessment system or that need a deeper discussion in the lecture. The tools are used in beginner 
courses for teacher students at the university level. 
 
3. The tool concept and methodological strategy 
The formation and understanding of new concepts is optimally driven by an approach that allows 
the students to discover properties, to connect those properties to logical relations, and that 
encourage the students to work with these properties and concepts (cf. Vollrath [16]). To deal with 
all three aspects, we developed a tool concept that includes the following dimensions: 
Different representations serve as a basis for the formation of the concept of function. Relations 
can be pointed out and connected to mental images of already known properties. Furthermore, 
practising the transition between different representations supports the development of functional 
thinking. 
Working experimentally is conducive to the intuitional understanding of concepts. By adapting 
and working on concrete self-constructed examples depicting a special situation, the student gets 
more insights to different properties or concepts. Properties and concepts can be developed and 
defined by different demonstrating examples. Different types of learners can be supported 
individually in their formation and portability of understanding. 
Open questions offer space for individual learning. The student can use the tool on his own 
preferred way.  
Intelligent assessment and self-determination. Intelligent assessment provides feedback that 
accompanies the students’ learning process.. According to the ideas of feedback-on-demand 
(Bescherer & Spannagel [3]), the student decides on her or his own whether she or he needs 
feedback or not. We regard the student as being self-determined learner. Being self-determined is an 
important motivational factor. This feedback assists the self-reflection of the learner. It supports the 
teacher since she or he can concentrate on unusual solutions and mistakes. In our setting a solution 
or a mistake is called unusual when, first, it is rarely produced by students, and, second, the 
software has no implemented recognition algorithm to analyze it. Whenever the software cannot 
give feedback adequately, the system notifies the student and asks him or her to contact the teacher. 
On the other hand the student is informed about his own strategies and mistakes during her or his 
learning process. He or she is advised to deal with sources and correcting of errors. Hence, the 
student advances his or her mathematical competencies on the one hand. And on another level he or 
she develops didactical knowledge about preventing and dealing with mistakes at the same time. 
Adaptivity enables the teacher to adjust the tool easily to the needs of his students and his lecture or 
course. The available sequence of exercises can be selected and sorted. Special notions can be 
chosen according to the used textbook if necessary. Adding new questions and the generation of 
own exercises should be possible. 
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Methodologically we use a three-stage approach for the conceptualization of the notions 
uniqueness, totality, injectivity, surjectivity and bijectivity. 
 

• Stage one: The above subconcepts are introduced via finite arrow diagrams by focusing on 
the mapping aspect of functions. 

• Stage two: Extended ladder diagrams are used as continuous analogues to finite arrow 
diagrams. This allows the integration of the aspects of continuity and change by using 
dynamic visualizations. 

• Stage three: Extended ladder diagrams are dynamically linked to common graphs as a third 
representation. The above subconcepts can be explored in both representations by using the 
dynamic link. This leads to the integration of the object aspect of the notion of functions 
because global properties like monotonicity can be recognized best in the global view of the 
function graph. 

 
This three stage approach is realised in the learning environment Squiggle-M as follows.  
 
4. Technical realisation – The learning environment Squiggle-M  
Squiggle-M is an open learning environment for the formation of the concept of function. It was 
developed for teacher students in the first year at university level in Baden-Württemberg, Germany. 
Squiggle-M is a Java application implemented with the Yacht-M framework [7]. The software offers 
collection of open learning laboratories. Each laboratory consists of one question, problem, or 
challenge and one or more embedded interactive diagrams depicting different representations of 
functions. Those diagrams are based on the dynamic geometry software Cinderella 2.1 [14].  
We distinguish between two different types of laboratories. Assignment laboratories are based on 
finite assignments, which can be defined interactively by the user. Properties of the assignments can 
be discovered. Representation laboratories prepare the transfer between assignment diagrams and 
function graphs. 
The formation of concepts is supported by experimentation questions adapted to some of the 
laboratories. The questions are part of the learning environment, but can be selected and adapted by 
the teacher according to his course. 
Each laboratory includes an adapted automated assessment. Additionally, the student can ask for 
individual feedback from his or her teacher or tutor via e-mail whenever the automated feedback 
does not answer a question the student has. An appropriate e-mail functionality is integrated into the 
software, containing the possibility to add a screenshot of the actually examined situation. 

 
Figure 2: Squiggle-M. a) Assignment laboratory, b) Representation laboratory 
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 4.1 The assignment laboratory 
The assignment laboratory (Figure 2.a) offers the possibility to create different assignments 
interactively. On different self-created examples the concept of function can be explored. Orange 
and blue points can be dragged into the pre-image and image sets. The orange points can be 
assigned to the blue ones by connecting them with arrows. By using the question mark symbol the 
properties of the defined assignment are proved automatically. The user gets feedback whether the 
assignment defines a function or not. The feedback engine generates informative messages like 
“This is not a function because the assignment disregards the uniqueness/totality.” or “This is a 
injective/surjective/bijective function.”  
The assignment laboratory can be used for further investigations by working on different 
exploration exercises. The student gets a statement like “If the size of the pre-image set A greater 
than the size of the image set B then there exists an injective function from A on B” (see Figure 3). 
She or he has to decide whether this claim is true or false. Therefore, the student has to construct 
several examples or counterexamples using the interactive assignment diagram. Using the camera 
button she or he can log in the actual example. The feedback engine checks the student’s solution in 
three stages: 
1. The validity of all examples respectively counterexamples is tested when they are logged-in by 
the student. The next checks are executed by clicking the question mark icon.  
2. Is the number of entered examples sufficient for a successful learning process?  
3. Is the final answer correct?  

 
Figure 3: Squiggle-M. Assignment laboratory with exploration question 

 
Finally, an assessment laboratory offers the possibility to test her or his knowledge about the 
definition of functions. The test laboratory generates random assignments. The user must decide 
whether or not the given assignment is a function and which properties it has. She or he must reason 
her or his answer by using the definitions. In the case that the assignment is no function the user is 
asked to manipulate the interactive diagram in order to produce an example for a function.  

 
4.2 The representation laboratory 
The connection between ordinary assignment diagrams and well-known function graphs (and their 
corresponding function equations) is a central aspect of the representation laboratory (Figure 2.b). 
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The user enters a function equation and displays either the function graph in a coordinate system or 
a dynamic ladder diagram [9] depicting the assignment defined by the function.  
The user can drag several points onto the x-axis of both representations. The corresponding y-value 
is shown on the y-axis and the point (x,y) is marked on the function graph. All x-values can be 
dragged interactively on the x-axis of both representations while the y-values are updated 
automatically. 
In the representation laboratory the two representations ladder diagram and function graph can 
either be displayed simultaneously side by side, or just one type of representation can be chosen. In 
the latter case, an animated change of representation is possible, pointing out the connection of 
types, which is important for the concept formation. 
The actual version of Squiggle-M uses the representation laboratory just as a visualization tool for 
graphs. To transfer the knowledge in the concepts of injectivity, surjectivity and bijectivity to 
continuous functions, applicable exercises with adapted feedback based on the representation 
laboratory will be developed in a next step. 
 
5. Outlook  
In winter term 2010/2011 the tool Squiggle-M will be used at the Universities of Education 
Weingarten, Ludwigsburg, and Heidelberg for first year arithmetic courses. The software will be 
used for demonstrating and depicting functional properties during the lecture as well as for 
attending student exercises.  
In our educational setting (see Bescherer, Spannagel & Müller [4]) new concepts are first shortly 
introduced in a lecture. Afterwards, the students acquire and deepen these concepts once again by 
working alone or in small groups on a bundle of possible exercises. The students choose on their 
own when, where and which exercises they solve. Some assisted tutorial sessions are offered to the 
students where they can ask questions to a tutor (a more experienced student teacher).  
Also, the learning resources, like books or mathematical software, are chosen by the students. The 
software is given to the students as one possible tool. The included feedback should support the 
learning process in our setting. Only, if the included feedback is not sufficient, the students ask the 
tutor for further advise. This can either be done virtually via the integrated e-mail function or 
personally during the assisted tutorials.  
Therefore, additional exploration exercises will be developed and the feedback capability of the 
laboratories will be extended. After a thoroughly evaluation of the tool in teaching, the concept will 
be carried to other sub-concepts of functions. 
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