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Abstract. Principal G-spaces have a natural noncommutative geometry analogue
in the concept of principal extensions of algebras (Galois-type extensions that are
equivariantly projective). One way of constructing such extensions is to form fibre
products of finitely many smash products. This leads to the notion of piecewise
trivial comodule algebras. We prove that such a comodule algebra P is principal
if the defining smash products can be assembled into parts of a flabby sheaf whose
space of global sections is P .

1. Overview and results

Comodule algebras of Hopf algebras provide a natural noncommutative geometry
generalisation of spaces equipped with group actions. Less evidently, principal exten-
sions [5] appear to be a proper analogue of principal fibre bundles in this context (see
the next section for precise definitions).

The classical concept of local triviality of G-spaces can be adapted to the setting of
comodule algebras through the concept of piecewise triviality studied in this paper.
The basic idea goes back to [8, 7, 10, 12, 17]. Our aim here is to clarify the interplay
between piecewise triviality and principality. The first main result we prove is the
following:

Theorem 1. Let H be a Hopf algebra with bijective antipode and P be a flabby sheaf
of H-comodule algebras over a topological space with a finite open covering {Ui} for
which P(Ui) is principal. Then P(U) is principal for any open set U .

This means in particular that quantum principal fibre bundles in the sense of Pflaum
[17] give rise to principal extensions as long as the involved sheaves are flabby. On the
other hand, the underlying topological space plays for flabby sheaves only a secondary
role, the main point is that the global sections of P form a comodule algebra which
should be considered as being glued of the pieces Pi := P(Ui). If we consider for
example a compact Hausdorff space X which is obtained by glueing together two
closed subsets X1, X2 ⊂ X along their intersection X1 ∩X2, then the corresponding
algebras of continous complex-valued functions form a pull-back

C(X)

xxrrrrrr
&&LLLLLL

C(X1)

&&LLLLLL
C(X2)

xxrrrrrr

C(X12)

and this can be encoded in a flabby sheaf over the auxiliary three-point space {0, 1}2 \
{(0, 0)} equipped with the topology generated by the two open sets U1 := {(1, 0), (1, 1)}
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and U2 := {(0, 1), (1, 1)}. When we replace the algebras by arbitrary ones and pass
from two to N pieces we obtain essentially the notion of a covering of an algebra from
[8, 9]:

Definition 1. Let Γ be the topological space {0, 1}N \{(0, . . . , 0} whose topology is
generated by the subsets Ui := {(z1, . . . , zN) ∈ Γ | zi 6= 0}. A family of algebra epimor-
phisms πi : P → Pi, i = 1, . . . , N , is called a covering of P , if there exists a flabby
sheaf P of algebras over Γ such that P = P(Γ), Pi = P(Ui) and the epimorphisms πi

are the corresponding restriction maps.

In complete analogy we define coverings of comodule algebras etc. As we will explain
in Section 3.3 (see Lemma 3 therein) the above means more concretely that a covering

is defined by ideals J1, . . . , JN ⊂ P ,
⋂N

i=1 Ji = {0} that generate a distributive lattice
with respect to addition and intersection of ideals.

If P is now an H-comodule algebra with coaction ∆P : P → P ⊗ H thought of
as a substitute of a space with a group action, then the subalgebra P coH := {p ∈
P |∆P (p) = p ⊗ 1} plays the role of the quotient space. Hence smash products
P = B#H of an H-module algebra B by H are natural analogues of trivial principal
fibre bundles. Combining this with the above idea of covering of algebras yields the
following concept of a comodule algebra glued by trivial pieces:

Definition 2. An H-comodule algebra P is called piecewise trivial if there exist co-
module algebra epimorphisms πi : P → Pi, i = 1, . . . , N , such that:

(1) The restrictions πi|P coH : P coH → P coH
i form a covering.

(2) There are isomorphisms of H-comodule algebras Pi ' P coH
i #H.

Since a smash product is principal, a piecewise trivial comodule algebra is principal
by Theorem 1, provided that the Pi form a covering of P . However, the distributiv-
ity condition in the notion of covering is sometimes not easy to verify for concrete
examples. It is automatic for N = 2 and in the context of C∗-algebras where the in-
tersection of (closed) ideals is equal to their product. In fact, we are mostly interested
in P for which P coH is a C∗-algebra which simplifies condition (1) in Definition 2.

The classical picture we have in mind is the following: Consider a principal fibre
bundle X over a compact Hausdorff space M with compact structure group G. Then
we can use as Hopf algebra only the regular (polynomial) functions on G in a purely
algebraic way. But we can study principal extensions of C(M) by this Hopf algebra,
and these consist of functions on X which are continous along the base space but
polynomial along the fibres, see [3] for a detailed discussion. These algebras are
not C∗-algebras unless G is finite (with the discrete topology), and similarly our
noncommutative extensions of C∗-algebras will typically not be C∗. Hence it is an
interesting observation that conversely the principality of P implies in such cases the
covering property for the Pi, that is, we have:

Theorem 2. Let H be a Hopf algebra with bijective antipode and P be an H-comodule
algebra which is piecewise trivial with respect to πi : P → Pi. Then the following are
equivalent:

(1) P is principal.
(2) The {Pi}i form a covering of P .

The functions continous along the base and polynomial along the fibre on a principal
fibre bundle with compact structure group have an analogue in the noncommutative
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case: Let H̄ be the C∗-algebra of a compact quantum group in the sense of Woronowicz
[16, 24] and H the dense Hopf ∗-subalgebra spanned by the matrix coefficients of
the irreducible unitary corepresentations. Let furthermore P̄ be a unital H̄-algebra
(i.e. there is an injective C∗-algebraic coaction of H̄ on P̄ , see e.g. [1]). Then the
subalgebra P ⊂ P̄ of elements which are mapped by the coaction to P̄ ⊗H (algebraic
tensor product) form an H-comodule algebra.

Definition 3. We call P the H-comodule algebra associated to the H̄-algebra P̄ .

If H̄ = C(U(1)), that is, if P̄ is a U(1)-C∗-algebra, and if the U(1)-action is principal
in the sense of Ellwood [13], then P is principal [14]. We remark that the operation
P̄ 7→ P commutes with taking fibre products.

The structure of the rest of this paper is as follows: In Section 2 we recall the
needed background on principal extensions. Section 3 contains the proofs of the
above theorems and some auxiliary observations. The final section is devoted to a
class of examples that illustrate the theory.

2. Background

Throughout, we work over a field k and all considered algebras, coalgebras etc. are
over k. An unadorned ⊗ denotes the tensor product of k-vector spaces.

2.1. Principal extensions. Let (H, ∆, ε, S) be a Hopf algebra with bijective an-
tipode. We denote by AlgH the category of (right) H-comodule algebras P , that is,
(unital associative) algebras which are simultaneously right H-comodules whose coac-
tion ∆P : P → P ⊗H is an algebra map. In the sequel, we will freely use Sweedler’s
notation for coproducts and coactions and write e.g. p(0) ⊗ p(1) for ∆P (p), p ∈ P . For

P ∈ AlgH , we call

P coH := {p ∈ P |∆P (p) = p⊗ 1}
the subalgebra of H-invariant elements in P . Furthermore, we introduce as well a left
coaction P ∆ : P → H ⊗ P given by p 7→ S−1(p(1))⊗ p(0).

Definition 4. Let H be a Hopf algebra with bijective antipode. Then the algebra
extension B := P coH ⊂ P is said to be Galois if

can : P ⊗B P → P ⊗H, p⊗ q 7→ pq(0) ⊗ q(1)

is bijective and principal if in addition P is equivariantly projective as left B-module.

By equivariant projectivity we here mean the existence of an H-colinear B-linear
splitting s of the multiplication map µ : B ⊗ P → P . This splitting can always be
chosen to be unital, s(1) = 1 ⊗ 1, see [5, 6]. The map can is called the canonical
map attached to the extension. In particular, a smash product B#H of an H-module
algebra B by H is always principal.

2.2. Strong connections. If P ∈ AlgH is a Hopf-Galois extension, then the inverse
of the canonical map defines a monomorphism H → P ⊗B P , h 7→ can−1(1 ⊗ h). It
turns out that lifts of this map to P ⊗ P which are both right and left H-colinear
yield an equivalent approach to principality [5]:
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Definition 5. Let H be a Hopf algebra with bijective antipode. Then a strong con-
nection on P ∈ AlgH is a linear map ` : H → P ⊗ P satisfying

(idP ⊗∆P ) ◦ ` = (`⊗ idH) ◦∆, (P ∆⊗ idP ) ◦ ` = (idH ⊗ `) ◦∆

c̃an ◦ `(h) = 1⊗ h, `(1) = 1⊗ 1,

where c̃an : P ⊗ P → P ⊗H is the canonical lift of can to P ⊗ P .

Thus a strong connection gives rise to a commutative diagram

H
` //

��

P ⊗ Pgcan
xxrrrrrrrrrr

��
P ⊗H P ⊗B Pcan

oo

h
` //

��

h〈1〉 ⊗ h〈2〉

gcan
yyrrrrrrrrrr

��
1⊗ h h〈1〉 ⊗ h〈2〉

can
oo

where we use the Sweedler-type notation h 7→ h〈1〉 ⊗ h〈2〉 for `.
It follows from the defining properties of strong connections that P is equivariantly

projective with splitting

(1) s : p 7→ p(0)(p(1))
〈1〉 ⊗ (p(1))

〈2〉 ∈ B ⊗ P.

Furthermore, the map

P ⊗H → P ⊗B P, p⊗ h 7→ ph〈1〉 ⊗ h〈2〉

is an inverse of the canonical map can. Conversely, it was shown in [5, 6] that any
principal extension admits a strong connection. That is, one has:

Theorem 3. Let H be a Hopf algebra with bijective antipode. Then for P ∈ AlgH ,
the following are equivalent:

(1) P is principal.
(2) P admits a strong connection.

3. Proofs

3.1. On epimorphisms of principal extensions. We first prove some remarks
about quotients of principal extensions:

Lemma 1. Let π : P → Q be an epimorphism in AlgH and assume that P is
principal. Then:

(1) The induced map πcoH : P coH → QcoH is an algebra epimorphism.
(2) One has ker π = ker πcoHP = Pker πcoH .
(3) Q is principal.
(4) π is split as a unital morphism of H-comodules.

Proof. (1): It is obvious that π(P coH) ⊂ QcoH . Suppose conversely that q ∈ QcoH

and let p ∈ π−1(q) be any preimage. Since π is colinear, we have q(0)⊗ q(1) = π(p(0))⊗
p(1). Using furthermore that π is an algebra map and that p(0)(p(1))

〈1〉 ⊗ (p(1))
〈2〉 ∈

P coH ⊗ P (see equation (1)), we get

QcoH ⊗ P 3 q ⊗ 1 = qπ(1〈1〉)⊗ 1〈2〉 = q(0)π((q(1))
〈1〉)⊗ (q(1))

〈2〉

= π(p(0)(p(1))
〈1〉)⊗ (p(1))

〈2〉 ∈ π(P coH)⊗ P.
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(2): We prove ker π = ker πcoHP , the other equality is proven similarly. One inclusion
is obvious. For the other, assume π(p) = 0. Then by equation (1)

0 = π(p)(0)π((π(p)(1))
〈1〉)⊗ (π(p)(1))

〈2〉 = πcoH(p(0)(p(1))
〈1〉)⊗ (p(1))

〈2〉.

Thus p(0)(p(1))
〈1〉⊗ (p(1))

〈2〉 ∈ ker(πcoH ⊗ id) = (ker πcoH)⊗P . The claim follows since

p = p(0)(p(1))
〈1〉(p(1))

〈2〉 by the properties of `.
(3): The map (π ⊗ π) ◦ ` induced by a strong connection ` of P is readily seen to

be a strong connection on Q.
(4): Choose any k-linear unital split σ of the induced map P coH → QcoH . Then

q 7→ σ(q(0)π((q(1))
〈1〉))(q(1))

〈2〉 splits π. 2

The following is a statement about the space of all quotients of a given principal
extension that we will need below.

Lemma 2. Let P ∈ AlgH be principal and B := P coH . Denote by ΩB the lattice of
all ideals in B (with +,∩ as operations) and by ΩP the lattice of all ideals in P which
are simultaneously subcomodules. Then the map

ΩP → ΩB, J 7→ J ∩B

is a monomorphism of lattices.

Proof. One obviously has B∩(J∩J ′) = (B∩J)∩(B∩J ′) and (B∩J)+(B∩J ′) ⊂
B∩(J+J ′), where J, J ′ ∈ ΩP . But if conversely p ∈ J, q ∈ J ′, p+q ∈ B, then applying
s from (1) to p + q yields

(p+q)⊗1 = p(0)(p(1))
〈1〉⊗ (p(1))

〈2〉+q(0)(q(1))
〈1〉⊗ (q(1))

〈2〉 ∈ (B∩J)⊗P +(B∩J ′)⊗P,

because s is unital B-linear and J, J ′ are ideals and subcomodules. Applying any
unital linear functional P → k to the second tensor component implies p + q ∈
(B ∩ J) + (B ∩ J ′). The injectivity of the map is part (2) in Lemma 1. 2

Note that the morphism is not surjective in general. A counterexample is given by
the algebra P with generators u, u−1, v, v−1 having relations

uu−1 = u−1u = vv−1 = v−1v = 1, uv = qvu

for some q ∈ k\{1}. This is a smash product of the Laurent polynomials B = k[u, u−1]
by the Hopf algebra H = k[v, v−1] of Laurent polynomials (with ∆(v) = v⊗v), where
the action of H on B is given by v . u = qu. Hence it is a principal H-extension
of B. However, if I ⊂ B is the two-sided ideal generated by u − 1, then the right
ideal IP = (u − 1)P ⊂ P is not two-sided. Hence the map can not be surjective by
Lemma 1, (2).

3.2. On sheaves of principal extensions. The following is the main technical
result in this article:

Proposition 1. Consider a pull-back diagram in AlgH

P

}}zz
zz

z
!!DD

DD
D

P1

π1 !!CC
CC

C
P2

π2}}{{
{{

{

P12
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with P1, P2 principal and π1, π2 surjective. Then P is principal.

Proof. Recall that P can be constructed explicitly as

{(p, q) ∈ P1 ⊕ P2 |π1(p) = π2(q)}.
Let `i, i = 1, 2, be strong connections on Pi which we distinguish in Sweedler notation
by writing `i(h) = h〈1〉i⊗h〈2〉i . Let furthermore σi be unital H-colinear splittings of πi

as in Lemma 1 (4). For shortness, we denote by p 7→ p̄ both the compositions σ2 ◦ π1

and σ1 ◦ π2. Now it is straightforward to verify that the following defines a strong
connection on P :

`(h) = (h〈1〉1 , 0)⊗ (h〈2〉1 , 0) + (h〈1〉1 , 0)⊗ (0, h〈2〉1)

+(0, h〈1〉1)⊗ (h〈2〉1 , 0) + (0, h〈1〉1)⊗ (0, h〈2〉1)

+(0, h〈1〉2)⊗ (0, h〈2〉2) + (0, h〈1〉2)⊗ (h〈2〉2 , 0)

−(0, (h(1))〈1〉1 (h(1))〈2〉1(h(2))
〈1〉2)⊗ (0, (h(2))

〈2〉2)

−(0, (h(1))〈1〉1 (h(1))〈2〉1(h(2))
〈1〉2)⊗ ((h(2))〈2〉2 , 0).

2

As an immediate consequence, we obtain Theorem 1: Indeed, the above proposition
shows inductively that P(U1∪ . . .∪Ui) is principal for all i, so the global sections P of
P are principal (i = N) and hence P(U) is principal for any open set U by Lemma 1.

3.3. Piecewise triviality. We now restrict to sheaves over the space Γ from Defini-
tion 1. The idea is that this is a universal space for hosting gluing data:

Lemma 3. There is a one-to-one correspondence between:

(1) Flabby sheaves P over Γ with values in AlgH .
(2) Families πi : P → Pi, i = 1, . . . , N of epimorphisms in AlgH whose ker-

nels Ji := ker πi generate a distributive lattice and have trivial intersection⋂N
i=1 Ji = {0}.

Proof. For the implication (1) ⇒ (2), let P be a flabby sheaf over Γ, let U ′, U ′′ ⊂
U ⊂ Γ be open subsets, and πU,U ′ : P(U) → P(U ′) be the restriction maps of
the sheaf. Our aim is to show that the map U 7→ ker πΓ,U which assigns ideals in
P to open subsets of Γ is a morphism of lattices, that is, it transforms union and
intersection of open subsets to intersection and sum of ideals. We first prove that
ker πU,U ′∪U ′′ = ker πU,U ′ ∩ ker πU,U ′′ . Indeed, P(U ′ ∪ U ′′) is the pull-back of P(U ′) and
P(U ′′), P(U ′ ∪ U ′′) ' {(p, q) ∈ P(U ′) ⊕ P(U ′′) |πU ′,U ′∩U ′′(p) = πU ′′,U ′∩U ′′(q)}, so the
claim follows from the commutativity of

P(U)

��

����
��

��
��

��
��

��

��?
??

??
??

??
??

??
?

P(U ′ ∪ U ′′)

wwooooooo
''OOOOOOO

P(U ′)

''OOOOOOO
P(U ′′)

wwooooooo

P(U ′ ∩ U ′′)
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Similarly, ker πU,U ′∩U ′′ = ker πU,U ′ + ker πU,U ′′ : There is an obvious inclusion ⊃. For
the inverse, pick p ∈ ker πU,U ′∩U ′′ . Then both p1 := (πU,U ′(p), 0) and p2 := (0, πU,U ′′(p))
belong to P(U ′∪U ′′) ⊂ P(U ′)⊕P(U ′′), and p1 +p2 = πU,U ′∪U ′′(p). Take any preimage
p′ ∈ P(U) of p1 which exists by flabbiness. Then p′ ∈ ker πU,U ′′ and p− p′ ∈ ker πU,U ′

which implies the claim.
Now (2) follows since the lattice of open subsets of any topological space is dis-

tributive. The property
⋂N

i=1 Ji = {0} follows from the sheaf condition.
(2) ⇒ (1): Given conversely P, Pi, πi, define Ji := ker πi. By definition of the topol-

ogy of Γ, any open subset U ⊂ Γ is a finite union of finite intersections Ui1 ∩ . . . Uip of
some of the Ui. Let JU be the intersection of the sums of the corresponding Ji’s and
P(U) := P/JU . This defines a flabby sheaf, where the sheaf property follows from the
distributivity of the ideals (cf. e.g. [19], Theorem 18 on p. 280). 2

Hence Definition 1 from the introduction is indeed a reasonable notion of covering
of algebras along the lines of [8, 9] and reduces in the commutative case to finite closed
coverings of topological spaces.

As explained in the introduction, this notion of covering directly leads to the con-
cept of local triviality of Hopf algebra extensions formalised in Definition 2, and as
remarked after this definition, Theorem 1 implies (2) ⇒ (1) in Theorem 2.

It remains to prove the converse direction (1) ⇒ (2):

Proposition 2. Let πi : P → Pi be epimorphisms in AlgH and assume that P is
principal. Then the πi define a covering of P if and only if the restrictions πi|B : B →
Bi to B := P coH , Bi := P coH

i form a covering.

Proof. Lemma 2 implies that the sublattice of ΩP generated by the Ji := ker πi is
isomorphic to the sublattice of ΩB generated by the Ji ∩B = ker πi|B. 2

4. Examples

In this last section we recall from [11, 14, 2, 15] the construction of examples for
the above concepts that illustrate possible areas of applications.

4.1. The noncommutative join construction. If G is a compact group, then the
join G∗G becomes a G-principal fibre bundle over the unreduced suspension ΣG of G,
see e.g. [4], Proposition VII.8.8 or [3]. For example, one can obtain the Hopf fibrations
S7 → S4 and S3 → S2 in this way using G = SU(2) and G = U(1), respectively.
Recall that G ∗ G is obtained from [0, 1] × G × G by shrinking to a point one factor
G at 0 ∈ [0, 1] and the other factor G at 1. Alternatively, one can shrink G × G at
0 to the diagonal. This is the picture we will generalise below. Our aim in this first
part of Section 4 is to describe a noncommutative analogue of this construction that
nicely fits into our general concepts and will be studied in greater detail in [11].

To this end, let H be the Hopf algebra underlying a compact quantum group H̄
(see [24] or Chapter 11 of [16] for details). We define

P1 := {f ∈ C([0, 1], H̄)⊗H | f(0) ∈ ∆(H)},
P2 := {f ∈ C([0, 1], H̄)⊗H | f(1) ∈ C⊗H}

which will play the roles of the two trivial pieces of the principal extension. Here we
identify elements of C([0, 1], H̄)⊗H with functions [0, 1] → H̄ ⊗H. The Pi become
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H-comodule algebras by applying the coproduct of H to H, ∆Pi
= idC([0,1],H̄) ⊗ ∆,

and the subalgebras of H-invariants can be identified with

B1 := {f ∈ C([0, 1], H̄) | f(0) ∈ C},
B2 := {f ∈ C([0, 1], H̄) | f(0) ∈ C}.

Furthermore, P1 ' B1#H, P2 ' B2 ⊗H, where H acts on B1 via the adjoint action,
(a . f)(t) = a(1)f(t)S(a(2)), a ∈ H, f ∈ B1, t ∈ [0, 1], see [11]. Now one can define P
as a glueing of the two pieces along P12 := H̄ ⊗H, that is, as the pull-back

P := {(p, q) ∈ P1 ⊕ P2 |π1(p) = π2(q)}

of the Pi along the evaluation maps

π1 : P1 → P12, f 7→ f(1), π2 : P2 → P12, f 7→ f(0).

As we remarked, a pull-back of two algebras always defines a coveirng, so Theorem 1
implies that P is principal.

4.2. The Heegaard-type quantum 3-sphere. Based on the idea of a Heegaard
splitting of S3 into two solid tori, a nonommutative deformation of S3 was proposed
in [9, 14, 2]. On the level of C∗-algebras, it can be presented as a fibre product C(S3

pqθ)
of two C∗-algebraic crossed products T oθ Z, T o−θ Z of the Toeplitz algebra T by Z.
We denote the isometries generating T in the two algebras by z1, z2. The Z-actions
are implemented by unitaries u1, u2, respectively, in the following way:

u1 .θ z1 = u1z1u
−1
1 := e2πiθz1, u2 .−θ z2 = u2z2u

−1
2 := e−2πiθz2.

The fibre product is taken over C(S1) oθ Z with action u .θ z := e2πiθz, where z is
the generator of C(S1) and u is the unitary giving the Z-action in this algebra. The
corresponding surjections defining the fibre product are

π1 : T oθ Z → C(S1) oθ Z, z1 7→ z, u1 7→ u,

π2 : T o−θ Z → C(S1) oθ Z, z2 7→ u, u2 7→ z.

There is a natural U(1)-action on C(S3
pqθ) corresponding classically to the action in

the Hopf fibration, see [14]. Its restriction to the two crossed products is not the
canonical action of U(1) viewed as the Pontrjagin dual of Z. However, to obtain the
canonical actions one can identify C(S3

pqθ) with a fibre product of the same crossed
products, but formed with respect to the surjections

π̂1 : T oθ Z → C(S1) oθ Z, u1 7→ u, z1 7→ z,

π̂2 : T o−θ Z → C(S1) oθ Z, u2 7→ zu, z2 7→ z−1.

The identification is given by

ϕ(i) : u(i) 7→ u(i), z(i) 7→ z(i)u(i), i = 1, 2

(by this we mean to define three maps ϕ, ϕ1, ϕ2), that is, one has π̂i = ϕ ◦ πi ◦ ϕ−1
i .

As mentioned in the introduction, we can pass from C(S3
pqθ) to the associated

principal extension, and this procedure commutes with taking fibre products. In this
way, we obtain a subalgebra P ⊂ C(S3

pqθ) which is a piecewise trivial CZ-comodule

algebra as studied in this paper. The invariant subalgebra P coH is the C∗-algebra of
the mirror quantum 2-sphere from [15].
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On the other hand, consider two copies of T o−θ Z whose generators we will denote
by u3, z3 and u4, z4, respectively, and C(S1) o−θ Z with generators z′, u′, that is,

u′z′u′−1
:= e−2πiθz′, u3z3u3

−1 := e−2πiθz3, u4z4u4
−1 := e−2πiθz4.

These can be glued using the maps

π̌3 : T o−θ Z → C(S1) o−θ Z, u3 7→ u′, z3 7→ z′,

π̌4 : T o−θ Z → C(S1) o−θ Z, u4 7→ z′u′, z4 7→ z′.

Again, this fibre product is isomorphic to C(S3
pqθ), the identifying maps are now given

by

u1 7→ u−1
3 , z1 7→ z3u3, u2 7→ u4, z2 7→ u−1

4 z4, u 7→ u′−1
, z 7→ z′u′.

However, the U(1)-symmetry resulting from the canonical ones on the pieces is now
different, and the invariant subalgebra P coH is the C∗-algebra of the generic Podleś
quantum 2-sphere from [18], see [6]. Note that it is not possible to obtain the algebraic
Podleśphere in this way by replacing T = P coH

i by the coordinate algebra of a quantum
disc with generator x satisfying x∗x− qxx∗ = 1− q [14].
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Hoża 74, Warszawa, 00-682 Poland

E-mail address: pmh@impan.gov.pl

Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, Warszawa, 00-
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