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1. Introduction

In the last decade, many contributions have enhanced the under-
standing of how quantum groups and their homogeneous spaces can be
studied in terms of spectral triples, see e.g. [2, 4, 7, 8, 10, 15, 21, 22,
23, 25, 29] and the references therein. But still some basic questions
remain untouched, e.g. in how far spectral triples generate the funda-
mental Hochschild cohomology class of the underlying algebra. This is
what we investigate here for the standard Podleś quantum sphere [24].

Let us explain in more detail what we have in mind: the coordi-
nate ring A = O(S2

q) was shown in [16] to satisfy Poincaré duality in
Hochschild (co)homology (as introduced in [28]), so we have for any
A-bimoduleM and all i ≥ 0 an isomorphism of H0(A,A)-modules

(1) H i(A,M) ' Hdim(A)−i(A, ω ⊗AM),

where ω = Hdim(A)(A,A ⊗ Aop). Here dim(A) is the dimension of A
in the sense of [1], the ring structure on H0(A,A) and the H0(A,A)-
module structure on H i(A,M) is given by the cup product while that
on Hj(A, ω⊗AM) is given by the cap product [1, Section XI.6]. Recall
that the ring H0(A,A) is by definition just the centre of A.

In the concrete case of the standard Podleś sphere the centre con-
sist just of the scalars, and we have dim(A) = 2 and ω ' σA, the
bimodule obtained from A by deforming the canonical left A-action
to a . b := σ(a)b for a specific automorphism σ ∈ Aut(A), see [16].
Hence there is a class in H2(A, σA) that corresponds under (1) to
1 ∈ H0(A,A) and this is what we call the fundamental Hochschild
homology class. For the coordinate ring of a smooth affine algebraic
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variety, this class corresponds under the algebraic Hochschild-Kostant-
Rosenberg theorem to a section of the top degree Kähler differential
forms, see e.g. [17, Section 3], so one should think of it as of a noncom-
mutative generalisation of a volume form.

The connection to spectral triples arises from the residue formula [5,
Theorem IV.2.γ.8] for the Hochschild cohomology class of the Chern
character of the Fredholm module underlying the spectral triple. For
a suitable spectral triple of spectral dimension 2 (see [ibid.]), it defines
a functional ϕ : A⊗3 → C which, when viewed as a functional on the
standard Hochschild chain complex [20, Section 1.1.3], descends to a
functional on H2(A,A). For the algebra A of smooth complex-valued
functions on a compact smooth 2-dimensional spin manifold, this func-
tional corresponds under the analytic Hochschild-Kostant-Rosenberg
theorem [5, Proposition III.2.α.1] to the de Rham current given by
integrating a top degree differential form on the manifold.

Combining this with what has been said above about the fundamen-
tal Hochschild homology class motivates asking whether Connes’ for-
mula or a variation thereof defines a nontrivial functional onH2(A, σA),
and this is what we show here:

Theorem 1. Let q ∈ (0, 1), (A,H, D, γ) be the Uq(su(2))-equivariant
even spectral triple over the standard Podleś quantum sphere construc-
ted by Dąbrowski and Sitarz [10], K be the standard group-like generator
of Uq(su(2)), and a0, a1, a2 ∈ A. Then we have

(1) γa0[D, a1][D, a2]K−2|D|−z is for Re z > 2 of trace class and
tr(γa0[D, a1][D, a2]K

−2|D|−z) has a meromorphic continuation
to {z ∈ C |Re z > 1} with a pole at z = 2 of order at most 1.

(2) The functional on A⊗3 given by the residue

ϕ(a0, a1, a2) := Res
z=2

tr(γa0[D, a1][D, a2]K
−2|D|−z)

descends to a nontrivial functional on H2(A, σA).

We refer to the cohomology class of ϕ in (H2(A, σA))∗ ' H2(A, (σA)∗)
as to the fundamental Hochschild cohomology class of A.

Let us now recall in more detail the historical context of the result.
The pioneering papers on the noncommutative geometry of the Podleś
sphere were [21], where Masuda, Nakagami and Watanabe computed
HH•(A) = H•(A,A), HC•(A) and the K-theory of the C∗-completion
of A, and [10], where Dąbrowski and Sitarz found the spectral triple
that we use here. Schmüdgen and the second author then gave a residue
formula for a cyclic cocycle [25] that looks like the one from Theorem 1,
only that K−2 is replaced by K2. However, Hadfield later computed
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the Hochschild and cyclic homology of A with coefficients in σA and
deduced that the cocycle from [25] is trivial as a Hochschild cocycle
[12]. Finally, the first author has recently used the cup and cap prod-
ucts between the Hochschild (co)homology groups Hn(A, σA) [18] to
produce the surprisingly simple formula

(2) ϕ̃(a0, a1, a2) = ε(a0)E(a1)F (a2)

for a nontrivial Hochschild 2-cocycle on A. Here ε is the counit of the
quantum SU(2)-group B := O(SUq(2)) in which A is embedded as a
subalgebra. The symbols E and F refer to the standard twisted prim-
itive generators of Uq(su(2)), and for X ∈ Uq(su(2)), a ∈ O(SUq(2))
we write X(a) for the pairing of X with a (cf. [14], Proposition 4.22).
What Theorem 1 achieves is to express a scalar multiple of the coho-
mology class of this cocycle in terms of the spectral triple by means of
a residue formula.

The crucial result is Proposition 1 in Section 3.4 from which it follows
that

τµ(a) :=

Res
z=2|µ|

tr (aK2µ|D|−z)

Res
z=2|µ|

tr (K2µ|D|−z)

defines for all µ ∈ R a twisted trace on A that we can compute explic-
itly. In terms of the functionals

∫
[1]

and
∫
[x0]

defined in [18], the traces
τµ are given by:

µ σ τµ

< 0 any
∫
[1]

= ε

0 id
∫
[1]

+ ln q
2(q−1−q) ln(q−1−q)

∫
[x0]

> 0 A 7→ A, B 7→ q2µB
∫
[1]
− 1−q−2µ

q(1−q−2(µ+1))

∫
[x0]

Here σ is the involved twisting automorphism and A, B are certain
generators of A (in the notation of [18], A = −q−1x0). From this fact
it will be deduced in the final section that the multilinear functional
defined in Theorem 1 is up to normalisation indeed cohomologous to
the Hochschild cocycle (2) constructed in [18].

The remainder of the paper is divided into two sections: Section 2
contains background material taken mainly from [10, 25]. The subse-
quent section discusses the meromorphic continuation of the zeta func-
tions tr (aK2µ|D|−z), a ∈ A, and how one can compute their residues
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by replacing certain algebra elements of A by simpler operators. The
proof of Theorem 1 fills the final Subsection 3.5 of the paper.

We would like to thank Adam Rennie and Roger Senior for valu-
able comments on an earlier draft of this paper, the referee for their
comments and suggestions, and Viktor Levandovskyy for his expla-
nations of some of its functionalities of the computer algebra system
SINGULAR:PLURAL [11] which is very capable in carrying out com-
putations with algebras like the Podleś sphere, see [19] for a quick
demonstration. This work was partially supported by the EPSRC fel-
lowship EP/E/043267/1, the Polish Government Grant N201 1770 33,
the Marie Curie PIRSES-GA-2008-230836 network, and the Mexican
Government Grant PROMEP/103.5/09/4106, UMSNH-PTC-259.

2. Background

2.1. The algebras O(S2
q), O(SUq(2)), Uq(su(2)). We retain all

notations and conventions used in [25]. In particular, we fix a defor-
mation parameter q ∈ (0, 1), and let A = O(S2

q) be the *-algebra (over
C) with generators A = A∗, B and B∗ and defining relations

BA = q2AB, AB∗ = q2B∗A, B∗B = A−A2, BB∗ = q2A− q4A2.

We consider A as a subalgebra of the quantised coordinate ring B =
O(SUq(2)) which is the *-algebra generated by a, b, c = −q−1b∗, d = a∗

satisfying the relations given e.g. in [14, Section 4.1]. Note that it
follows from the defining relations that the monomials

{AnBm, AnB∗m |n,m ≥ 0}
form a vector space basis of A.

For the Hopf *-algebra U = Uq(su(2)), we use generators K, K−1, E
and F with involution K∗ = K, E∗ = F , defining relations

KE = qEK, KF = q−1FK, EF − FE =
K2 −K−2

q − q−1
,

coproduct

∆(K) = K⊗K, ∆(E) = E⊗K+K−1⊗E, ∆(F ) = F⊗K+K−1⊗F,
and counit ε(1−K) = ε(E) = ε(F ) = 0.

There is a left U -action on A satisfying f . (ab) = (f(1) . a)(f(2) . b)
and f . 1 = ε(f)1 for f ∈ U and a, b ∈ A, that is, A is a left U -
module algebra. Here and in what follows, we use Sweedler’s notation
∆(f) = f(1) ⊗ f(2). On the re-parametrised generators

(3) x−1 = (1 + q−2)1/2B, x0 = 1− (1 + q2)A, x1 = −(1 + q2)1/2B∗,
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this action is given by

K . xi = qixi, E . xi = (q + q−1)xi+1, F . xi = (q + q−1)xi−1,

where it is understood that x2 = x−2 = 0.

2.2. The spectral triple. Our calculations involve the spectral triple
constructed by Dąbrowski and Sitarz in [10]. For the reader’s conve-
nience and to fix notation, we recall its definition.

First of all, the *-algebra A becomes represented by bounded oper-
ators on a Hilbert space H := H− ⊕H+ with orthonormal basis

vlk,± ∈ H±, l = 1
2
, 3
2
, . . . , k = −l,−l + 1, . . . , l,

where the generators x−1, x0, x1 act by

(4) xiv
l
k,± = α−i (l, k)±v

l−1
k+i,± + α0

i (l, k)±v
l
k+i,± + α+

i (l, k)±v
l+1
k+i,±.

Here ανi (l, k)± ∈ R are coefficients that can be found e.g. in [9], where
similar conventions are used. We will only need the formulas for
αν0(l, k)± which are given by

α−0 (l, k)± =
qk±1/2[2]q[l−k]

1/2
q [l+k]

1/2
q [l−1/2]

1/2
q [l+1/2]

1/2
q

[2l−1]
1/2
q [2l]q[2l+1]

1/2
q

,(5)

α0
0(l, k)± = [2l]−1q

(
[l−k+1]q[l+k]q − q2[l−k]q[l+k+1]q

)
β±(l),(6)

α+
0 (l, k)± = α−0 (l + 1, k)±(7)

with

(8) [n]q :=
qn − q−n

q − q−1

and

β±(l) =
±q∓1 + (q− q−1)([1/2]q [3/2]q − [l]q[l+1]q)

q[2l + 2]q
.(9)

We now define

Dom(D) := spanC{vlk,± | l = 1
2
, 3
2
, . . . , k = −l,−l + 1, . . . , l}

and on this domain an essentially self-adjoint operator D by

Dvlk,± = [l + 1/2]qv
l
k,∓.

In the sequel all operators we consider will be defined on this domain,
leave it invariant, and be closable. By slight abuse of notation we will
not distinguish between an operator defined on Dom(D) and its closure.

The vlk,± are eigenvectors of |D|:

|D|vlk,± = [l + 1/2]qv
l
k,±.
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Furthermore, the spectral triple is even with grading γ given by

γvlk,± = ±vlk,±.

2.3. U-equivariance. The spectral triple is U -equivariant in the sense
of [26]: on Dom(D) there is an action of U given by

(10) Kvlk,± = qkvlk,±, Evlk,± = αlkv
l
k+1,±, Fvlk,± = αlk−1v

l
k−1,±,

where αlk := ([l − k]q[l + k + 1]q)
1/2, and we have on Dom(D)

fa = (f(1) . a)f(2), fD = Df, fγ = γf

for all f ∈ U , a ∈ A.

3. Results

3.1. A family of q-zeta functions. Quantum group analogues of
zeta functions were studied by several authors, in particular by Ueno
and Nishizawa [27] and Cherednik [3]. The ones we will consider here
are given on a suitable domain by

(11) ζT (z) := tr(T |D|−z)

for some possibly unbounded operator T on H. The most important
case we need is T = LβKδ for β, δ ∈ R, where

Lvlk,± = qlvlk,±

and thus
LβKδvlk,± = qβl+δkvlk,±.

The resulting zeta functions differ slightly from those considered in
[3, 27], and also from the one occurring in [25]. Yet the main argument
leading to a meromorphic continuation of the functions to the whole
complex plane given in [27] can be applied in all these cases:

Lemma 1. For all β, δ ∈ R, the function

ζLβKδ(z) = 2
∞∑

l= 1
2
, 3
2
,...

l∑
k=−l

qβl+δk

[l + 1/2]zq
, Re z > −β + |δ|,

admits a meromorphic continuation to the complex plane given by

ζLβKδ(z) = 2q
β
2 (q−

δ
2 + q

δ
2 )(1− q2)z

∞∑
j=0

(
z+j−1
j

)
q2j

(1− qβ−δ+2j+z)(1− qβ+δ+2j+z)
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and its residue at z = −β + |δ| is given by

Res
z=−β+|δ|

ζLβKδ(z) =


2q
β−|δ|

2 (1−q2)
|δ|−β

(q|δ|−1) ln(q)
, δ 6= 0,

4q
β
2 ln(q−1−q)

(1−q2)β(ln q)2 , δ = 0.

Proof. The crucial step is to use the binomial series

(12) (1− q2(n+1))−z =
∞∑
j=0

(
z + j − 1

j

)
q2(n+1)j

which holds for all z ∈ C.
First, let δ = 0. By summing over k, replacing l = n + 1

2
, inserting

(12), and interchanging the order of the summations in the absolutely
convergent series, we obtain for Re z > −β

ζLβ(z) = 4(q−1 − q)z
∞∑
n=0

(n+ 1)qβ(n+
1
2
)q(n+1)z(1− q2(n+1))−z

= 4q−
β
2 (q−1 − q)z

∞∑
j=0

∞∑
n=0

(n+ 1)

(
z + j − 1

j

)
q(β+2j+z)(n+1).

Using the identity
∞∑
n=0

(n+ 1)tn =
d

dt

∞∑
n=0

tn =
1

(1− t)2
,

we can write the above sum as

ζLβ(z) = 4q−
β
2 (q−1 − q)z

∞∑
j=0

(
z + j − 1

j

)
qβ+2j+z

(1− qβ+2j+z)2
,

and the right hand side is a meromorphic function with isolated poles
of second order only at the lines Re z = −β,−β − 2,−β − 4, . . .

If δ 6= 0, the sum over k yields
n+ 1

2∑
k=−(n+ 1

2
)

qδk =
q−δ(n+1) − qδ(n+1)

q−
δ
2 − q δ2

.

Similar to the above, we get for Re z > −β + |δ|

ζLβKδ(z) =

2q−
β
2

(q−1− q)z

q−
δ
2 − q δ2

∞∑
j=0

∞∑
n=0

(
z+j−1

j

)
(q(β−δ+2j+z)(n+1)− q(β+δ+2j+z)(n+1)).
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The summation over n gives
∞∑
n=0

q(β−δ+2j+z)(n+1)− q(β+δ+2j+z)(n+1) =
(q−δ − qδ)qβ+2j+z

(1− qβ−δ+2j+z)(1− qβ+δ+2j+z)
.

Inserting the last equation into the previous one yields the second for-
mula of Lemma 1 which defines a meromorphic function on the whole
complex plane.

When computing the residues at the pole z = −β + |δ|, we can
ignore the sum over j > 0 which is holomorphic in a neighbourhood of
−β + |δ|. Thus

Res
z=−β+|δ|

ζLβKδ(z) = Res
z=−β+|δ|

2q
β
2 (1− q2)z(q− δ2 + q

δ
2 )

(1− qβ−δ+z)(1− qβ+δ+z)

which can be computed straightforwardly to yield the result. �

3.2. A holomorphicity remark. Next we need to point out that
ζTLβKδ(z) is holomorphic for Re z > −β + |δ| whenever T is bounded.
Let us first introduce some notation that we will use throughout the
rest of the paper in order to simplify statements and proofs:

Definition 1. We say that a set of complex numbers

{νl,k | l ∈ 1
2
N, k = −l, . . . l}

is of order less than or equal to qα, α ∈ R, if there exists C ∈ (0,∞)
such that |νl,k| ≤ Cqαl for all k, l. In this case we write

νl,k - qαl.

We refrain from using the notation νk,l = O(qαl) to avoid confusion
about the fact that the second parameter k can take arbitrary values
from {−l, . . . , l}. Note that we have for all β, δ ∈ R and z ∈ C

(13) qβl+δk - q(β−|δ|)l, [l − k]q[l + k]q - q−2l, [βl + δ]−zq - q|β|Re (z) l.

Now one easily observes:

Lemma 2. For all bounded operators T on H and for all β, δ ∈ R, the
function ζTLβKδ(z) is holomorphic on {z ∈ C |Re z > −β + |δ|}.

Proof. Since LβKδ|D|−r is for r ∈ R positive and essentially self-
adjoint, the summability of its eigenvalues verified in Lemma 1 shows
that it is of trace class if r > −β + |δ|. Therefore TLβKδ|D|−z =
T |D|−isLβKδ|D|−r, z = r + is, is a trace class operator.
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If one fixes ε > 0, then the infinite series defining tr(TLβKδ|D|−z)
converges uniformly on {z ∈ C |Re z ≥ ε−β+ |δ|} since the geometric
series ∑

l∈N

q(Re (z)+β−|δ|)l

does so and we have for all bounded sequences tlk,± := 〈vlk,±, T vlk,±〉

tlk,±q
βl+δk

[l + 1/2]zq
- q(Re (z)+β−|δ|)l.

The partial sums of the series are clearly holomorphic functions and,
by the above argument, converge uniformly on compact sets contained
in {z ∈ C |Re z > −β+|δ|}. The result follows now from theWeierstraß
convergence theorem. �

3.3. Approximating the generator A. It is known [22] that the
spectral triple we are considering violates Connes’ regularity condition,
so the standard machinery of zeta functions and generalised pseudo-
differential operators (see e.g. [6, 13]) can not be applied here. However,
for our purposes, it suffices to show that the zeta functions from (11)
have meromorphic continuations to half-planes, and this will be shown
in Proposition 1 in the next section. The key step in the proof will be
to approximate the generator A ∈ A on H by simpler operators, and
this is what we establish here. Similar ideas have been used in [9].

Lemma 3. There exists a bounded linear operator A0 on H such that

(14) A = M + A0L, where M := L2K2.

Proof. We have to prove that A0 := (A−M)L−1 extends to a bounded
operator on H. Inserting (3) and (4) into this definition shows that it
suffices to prove that the coefficients

q−lα±0 (l, k)± and q−l
(

1
1+q2

(1− α0
0(l, k)±)− q2(l+k)

)
are bounded. Applying (13) to (5) gives α±0 (l, k)± - ql. Therefore we
have q−lα±0 (l, k)± - 1 which means that these coefficients are bounded.

Using (13) and 1
1−q4l+4 − 1 - q4l, we get from (9)

β±(l) =
(q−1− q)[l]q[l+1]q

q[2l + 2]q
+ ul =

1− q2l − q2l+2 + q4l+2

1− q4l+4
+ ul = 1 + vl,
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where ul, vl - q2l. Similarly, we have

[l−k+1]q[l+k]q − q2[l−k]q[l+k+1]q
[2l]q

=
1− (1+q2)q2l+2k + (1+q2)q2l

1− q4l

= 1− (1 + q2)q2l+2k + wl,k,

where wl,k - q2l. Multiplying the last two equations and comparing
with (6) gives

α0
0(l, k)± = 1− (1 + q2)q2l+2k + xl,k

with xl,k - q2l. From this, we get

q−l
(

1
1+q2

(1− α0
0(l, k)±)− q2(l+k)

)
= q−lxl,k - ql - 1

which finishes the proof. �

3.4. Twisted traces as residues. We are now ready to prove the
main technical result of the paper which expresses certain twisted traces
of A as residues of zeta-functions:

Proposition 1. The function ζaK2µ(z), a ∈ A, has a meromorphic
continuation to {z ∈ C |Re z > 2|µ| − 1}. Its residues at z = 2|µ| are
given by

a µ Res
z=2|µ|

ζaK2µ(z)

AnBm, AnB∗m, n ≥ 0, m > 0 any 0

An, n > 0 < 0 0

An, n > 0 ≥ 0 −2qµ(q−1−q)2µ
(1−q2(n+µ)) ln q

1 6= 0 −2q|µ|(q−1−q)2|µ|
(1−q2|µ|) ln(q)

1 0 4 ln(q−1−q)
(ln q)2

Proof. Lemma 2 implies that the traces ζaK2µ exist and are holomorphic
on {z ∈ C |Re z > 2|µ|} for all a ∈ A.

Furthermore, B and B∗ act as shift operators in the index k of vlk,±.
Hence the traces tr(AnBmK2µ|D|−z) and tr(AnB∗mK2µ|D|−z) vanish
whenever m > 0, so we can use the trivial analytic continuation here.
Thus it remains to prove the claim for a = An.
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Applying first Lemma 3 and using then the fact that, by Lemma 2,
tr(An−1A0M

mLK2µ|D|−z) is holomorphic on {z ∈ C |Re z > 2|µ|−1},
we obtain for all m ≥ 0, n > 0

Res
z=2|µ|

tr(AnMmK2µ|D|−z) = Res
z=2|µ|

tr(An−1(M + A0L)MmK2µ|D|−z)

= Res
z=2|µ|

tr(An−1Mm+1K2µ|D|−z)

+ Res
z=2|µ|

tr(An−1A0M
mLK2µ|D|−z)

= Res
z=2|µ|

tr(An−1Mm+1K2µ|D|−z).

Recall that M = L2K2. An iterated application of the previous equa-
tion gives

Res
z=2|µ|

tr(AnK2µ|D|−z) = Res
z=2|µ|

tr(MnK2µ|D|−z)

= Res
z=2|µ|

tr(L2nK2(µ+n)|D|−z).

The result now reduces to Lemma 1. �

We remark here that the table in the introduction is obtained by
comparing the values of the twisted traces

∫
[1]

and
∫
[x0]

from [18] on
the basis vectors AnBm and AnB∗m with the residues of the last propo-
sition.

3.5. Proof of Theorem 1. Theorem 1 is an easy consequence of
Proposition 1. As explained e.g. in [25], the operator

γa0[D, a1][D, a2], a0, a1, a2 ∈ A
acts by multiplication with

a0(a1 / E)(a2 / F ) ∈ A
on H+ and by multiplication with

−a0(a1 / F )(a2 / E) ∈ A
on H−. Here / denotes the standard right action of U ⊂ B◦ on B (see
[14, Section 1.3.5]) given by

a / f := f(a(1))a(2)

Note that unlike the left action f . a := a(1)f(a2), this right action
does not leave A ⊂ B invariant, but the products (a1 / E)(a2 / F ) and
(a1 / F )(a2 / E) belong to A again.

By the definition of / we have

ε(a0(a1 / E)(a2 / F )) = ε(a0)E(a1)F (a2)
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and
ε(a0(a1 / F )(a2 / E)) = ε(a0)F (a1)E(a2),

and evaluation on an arbitrary cycle representing the fundamental
Hochschild class in H2(A, σA) (see the proof of the nontriviality of
(2) in [18]) shows that the two functionals on H2(A, σA) induced by
these functionals on A⊗3 coincide up to a factor of −q−2 (see also [19],
where we carry this computation out with the help of the computer
algebra system SINGULAR:PLURAL).

Thus, by Proposition 1, the cocycle

ϕ(a0, a1, a2) := Res
z=2

tr(γa0[D, a1][D, a2]K
−2|D|−z)

= 2(q−q−1)
ln(q)

ε(a0)
(
E(a1)F (a2)− F (a1)E(a2)

)
is cohomologous to 2(q−q−3)

ln(q)
ϕ̃, where ϕ̃ denotes the fundamental cocycle

from (2). This finishes the proof of Theorem 1. �
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