CYCLIC HOMOLOGY ARISING FROM ADJUNCTIONS

NIELS KOWALZIG, ULRICH KRAHMER, AND PAUL SLEVIN

ABSTRACT. Given a monad and a comonad, one obtains a distributive law between them
from lifts of one through an adjunction for the other. In particular, this yields for any
bialgebroid the Yetter-Drinfel’d distributive law between the comonad given by a module
coalgebra and the monad given by a comodule algebra. It is this self-dual setting that repro-
duces the cyclic homology of associative and of Hopf algebras in the monadic framework
of Bohm and Stefan. In fact, their approach generates two duplicial objects and morphisms
between them which are mutual inverses if and only if the duplicial objects are cyclic. A
2-categorical perspective on the process of twisting coefficients is provided and the role of
the two notions of bimonad studied in the literature is clarified.
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1. INTRODUCTION

1.1. Background and aim. The Dold-Kan correspondence generalises chain complexes
in abelian categories to general simplicial objects, and thus homological algebra to homo-
topical algebra. The classical homology theories defined by an augmented algebra (such
as group, Lie algebra, Hochschild, de Rham and Poisson homology) become expressed as
the homology of suitable comonads T, defined via simplicial objects Cp(IN, M) obtained
from the bar construction (see, e.g., [Wei194]).

Connes’ cyclic homology created a new paradigm of homology theories defined in terms
of mixed complexes [Kas87,|[DK85]]. The homotopical counterparts are cyclic [[Con83]] or
more generally duplicial objects [DK85, IDK8&7|], and Bohm and Stefan [BSO8] showed
how Ct(N, M) becomes duplicial in the presence of a second comonad S compatible in a
suitable sense with N, M and T.

The aim of the present article is to study how the cyclic homology of associative alge-
bras and of Hopf algebras in the original sense of Connes and Moscovici [CMO9§] fits into
this monadic formalism, extending the construction from [KKI11], and to clarify the role
of different notions of bimonad in this generalisation.

1.2. Distributive laws arising from adjunctions. Inspired by [MW 14, |AC12] we begin
by describing the relation of distributive laws between (co)monads and of lifts of one of
them through an adjunction for the other. In particular, we have:

Theorem. Let F - U be an adjunction, B := (B, p,n), B = UF,and T = (T, A, ¢),
T = FU, be the associated (co)monads, and S = (S, AS, &%) and C = (C, A€, ) be
comonads with a lax isomorphism €2: CU — US,

F@U | F@U

If A: FC — SF corresponds under the adjunction to QF o Cn: C — USF, where 7 is the
unit of B, then the following are (mixed) distributive laws:

UA Q

9: BC = UFC USF 2% CUF = CB,

v: TS = FUS 2272 peU —AY. SFU — ST.

See Theorem [2.5] on p. [3] for a more detailed statement. For Eilenberg-Moore adjunc-
tions (B = AP), such lifts S of a given comonad C correspond bijectively to mixed dis-
tributive laws between B and C (a dual statement holds for coKleisli adjunctions A = Br),
¢f- Section 2.4}

Sections 2H4] contain various technical results that we would like to add to the theory
developed in [BSO08], while the final two Sections 5] and [6]discuss examples.

First, we further develop the 2-categorical viewpoint of [BS12], interpreting the com-
parison functor from B to the Eilenberg-Moore category A® of B as a 1-cell in the 2-
category of mixed distributive laws, and the passage from mixed distributive laws between
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B, C to distributive laws between T, S in the case of an Eilenberg-Moore adjunction as the
application of a 2-functor (Sections [2.5]and [2.6).

Secondly, Section [2.7]describes how different lifts S, V of a given functor C are related
by a generalised Galois map I'S:V that will be used in subsequent sections.

1.3. Coefficients. In Section [3] we discuss left and right x-coalgebras N respectively M
that serve as coefficients of cyclic homology.

The structure of right x-coalgebras is easily described in terms of C-coalgebra structures
on UM (Proposition[3.2)). In the example from [KKIT] associated to a Hopf algebroid H,
these are simply right H-modules and left H-comodules, see Section [5.6] below.

The structure of left y-coalgebras is more intricate. In the Hopf algebroid example,
we present a construction from Yetter-Drinfel’d modules, but we do not have an analogue
of Proposition [3.2] which characterises left x-coalgebras in general. The Yetter-Drinfel’d
condition is necessary for the well-definedness of the left y-coalgebra structure, but not for
that of the resulting duplicial object, see again Section[5.6

The remainder of Section [3| explains the structure of entwined y-coalgebras, which
in the Hopf algebroid case are given by Hopf modules; these are homologically trivial
(Proposition [4.3]) and can be also interpreted as 1-cells to respectively from the trivial
distributive law (Propositions [3.4]and [3.5). One reason for discussing them is to point out
that general y-coalgebras can not be reinterpreted as 1-cells.

1.4. Duplicial objects. Section[d|recalls the construction of duplicial objects. We empha-
size the self-duality of the situation by defining in fact two duplicial objects C1(N, M) and
CgP(N, M), arising from bar resolutions using T respectively S. There is a canonical pair
of morphisms of duplicial objects between these which are mutual inverses if and only if
the two objects are cyclic (Proposition 4.4).

Furthermore, we describe in Section [4.6] the process of twisting a pair of coefficients
M, N by what we called a factorisation in [KS14]]. This is motivated by the example of
the twisted cyclic homology of an associative algebra [KMTO03] and constitutes our main
application of the 2-categorical language.

1.5. Hopf monads. One of our motivations in this project is to understand how various
notions of bimonads studied in the literature lead to examples of the above theory that
generalise known ones arising from bialgebras and bialgebroids.

All give rise to distributive laws, but it seems to us that opmodule adjunctions over
opmonoidal adjunctions as studied recently by Aguiar and Chase [AC12] are the underpin-
ning of the cyclic homology theories from noncommutative geometry: such adjunctions
are associated to opmonoidal adjunctions

so here H and £ are monoidal categories, E is a strong monoidal functor and H is an
opmonoidal functor, see Section In the key example, H is the category H-Mod of
modules over a bialgebroid H and £ is the category of bimodules over the base algebra
A of H. In the special case of the cyclic homology of an associative algebra A, we have
‘H = £ and H = E = id, so this adjunction is irrelevant. Now the actual opmodule adjunc-
tions defining cyclic homology are formed by an H-module category B and an £-module
category A. In the example, one can pick any H-module coalgebra C' and any H-comodule
algebra B, take B to be the category B-Mod of B-modules, A be the category A-Mod of
A-modules, and the pair of comonads S, C is given by C® 4 —. To obtain the cyclic homol-
ogy of an associative algebra one takes B to be the category of A-bimodules (or rather right
A¢€-modules). Another very natural example is given by a quantum homogeneous space
[MS99]], where A = k is commutative, H is a Hopf algebra, B is a left coideal subalgebra
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and C' := A/AB™ where B is the kernel of the counit of H restricted to B. So here the
distributive law arises from the fact that B admits a C-Galois extension to a Hopf algebra
H; following, e.g., [MMO2] we call (B, C) a Doi-Koppinen datum.

Bimonads in the sense of Mesablishvili and Wisbauer also provide examples of the
theory considered. There is no monoidal structure required on the categories involved, but
instead we have B = C, see Section [] At the end of the paper we give an example of
such a bimonad which is not related to bialgebroids and noncommutative geometry, but
indicates potential applications of cyclic homology in computer science.

Acknowledgements. N. K. acknowledges support by UniNA and Compagnia di San Paolo
in the framework of the program STAR 2013, U. K. by the EPSRC grant EP/J012718/1
and the Polish Government Grant 2012/06/M/ST1/00169, and P. S. by an EPSRC Doctoral
Training Award. We would like to thank Gabriella Bohm, Steve Lack, Tom Leinster, and
Danny Stevenson for helpful suggestions and discussions.

2. DISTRIBUTIVE LAWS

2.1. Distributive laws. We assume the reader is familiar with (co)monads and their (co)al-
gebras (see, e.g., [ML98]), but we briefly recall the notions of (co)lax morphisms and dis-
tributive laws, see, e.g., [Le104] for more background.

Definition 2.1. Let B = (B, x",7®) and A = (A, u*,7*) be monads on categories C
respectively D, and let : C — D be a functor. A natural transformation o: AY — ¥B is
called a lax morphism of monads if the two diagrams

A

AAY A7 AxB 7B, ¥BB w2 AR

A B o
b RN

AY B B

o

commute. We denote this by o: AY — ¥B.

Analogously, one defines colax morphisms o: XA — BY, where ¥: D — C and A, B
are as before, and (co)lax morphism of comonads.

Definition 2.2. A distributive law x: AB — BA between monads A, B is a natural trans-
formation x: AB — BA which is both a lax and a colax morphism of monads.

Analogously, one defines distributive laws between comonads and mixed distributive
law [|Bur73|] between monads and comonads.

2.2. The 2-categories Dist and Mix. Since this will simplify the presentation of some
results, we turn comonad and mixed distributive laws into the 0-cells of 2-categories Dist
respectively Mix. This closely follows Street [Str72], see also [KS14]:

Definition 2.3. We denote by Dist the 2-category whose

(1) 0O-cells are quadruples (B, x, T,S) where x: TS — ST is a comonad distributive
law on a category B,

(2) 1-cells (B, x,T,S) — (D, ,G,C) are triples (X, 0,v), where : B — Dis a
functor, o: GX — XT is a lax morphism of comonads and v: £¥S — CX is a
colax morphism of comonads satisfying the Yang-Baxter equation, i.e.,

x
oS ZTS I EST *TA
GXS — - cxT
Gy GCE T CGE Co

commutes, and



CYCLIC HOMOLOGY ARISING FROM ADJUNCTIONS 5

(3) 2-cells (X, 0,v) = (X',0',4’) are natural transformations «: ¥ — ¥’ for which
the diagrams

Gy % oy ns —25- 58
Ul J/o'/ 'Y\L i’)’/

commute.

In the sequel, we will denote 1-cells diagrammatically as:

In a similar way, we define the 2-category Mix of mixed distributive laws.

2.3. Distributive laws arising from adjunctions. The topic of this paper is distributive
laws that are compatible in a specific way with an adjunction for one of the involved
comonads: let B = (B, i, n) be a monad on a category .A. Suppose

AL B

U

is an adjunction for B, that is, B = UF, and let T := (T, A, &) with T := FU be the
induced comonad on 5.

Definition 2.4. If S: B — B and C: A — A are endofunctors for which the diagram
B8
of |

commutes up to a natural isomorphism 2: CU — US, then we call C an extension of S
and S a lift of C through the adjunction.

In general, any natural transformation 2: CU — US uniquely determines a mate
A: FC — SF that corresponds to

Cn QF

C

under the adjunction [LeiO4]]. The following theorem constructs a canonical pair of dis-
tributive laws from this mate of €2:

Theorem 2.5. Suppose that S, C, and §) are as in Definition[2.4] Then:

(1) The natural transformation

CUF USF

0: BC = UFC 22~ UsF 2L CUF = CB
is a lax endomorphism of the monad B.
(2) The natural transformation
v: TS = FUS X225 peu AV SFU = ST

is a lax endomorphism of the comonad T.
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(3) The lax morphism 0 is unique such that the following diagram commutes:

ouU

UFCU CUFU
UFQ\L iCUe
UFUS US CU
UeS o1

(4) The lax morphism x is unique such that the following diagram commutes:

Us 2 cu 2" curu
nUS\L \LQFU
UFUS USFU

(5) If C is part of a comonad C = (C, A% %) and S is part of a comonad S =
(S, AS,€5) and 2 is a lax morphism of comonads, then 0 is a mixed distributive
law and x is a comonad distributive law.

Proof. To prove (1), observe that the unit compatibility condition for # is commutativity
of the diagram

UFC YA, USF

C—— CUF
Cn

This diagram commutes if and only if the same diagram post-composed with QF com-
mutes, which is exactly the fact that QF o Cn corresponds to A under the adjunction. The
multiplication compatibility condition is given by commutativity of

BBC - BC — > CB
Bel Tcﬂ
BCB — CBB
which can be written as the outside of the diagram
UFUFC 2 ype —Y4 - usyp — 2 F . cuF
UFUAl
UFUSF USeF CUeF
UFQ_lF\L
UFCUF GAUR USFUFQTFU)FCUFUF

which will commute if both inner squares commute. The right-hand square commutes
by naturality of 2. The left-hand square is obtained by applying U to the outside of the
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diagram
FUFC —"°. pc —2 . SF
FUAi
eSF

FUSF —— FUSF SeF
FQlFi fOF

FCUF SFUF

AUF

which commutes: the upper shape commutes by naturality of e, the left-hand triangle
clearly commutes, and the right-hand triangle commutes since both morphisms are mapped
to €2 by the adjunction.

The proof for part (2) is similar to that of part (1). For part (3), observe that the counit
condition for y amounts to the commutativity of the diagram:

FUS P20 peu

| |

S<——SFU
Se

If we precompose this with FQQ~! and then apply U, we get the left-hand square of the
diagram

UAU Q7FU

UFCU ——— USFU —— CUFU
UFQJ/ \LUSE i CUe
UFUS UsS Cu
UeS o1

The right-hand square commutes by naturality of Q~!, so the outer square commutes too,
which is exactly the condition in part (3). Suppose that € is another lax morphism which
makes the diagram commute. Consider the diagram:

0’

UFC CUF
UFCnl UFy
UFCUF our CUFUF
UFQF\L CU&F
UFUSF = USF —— CUF

The rightmost shape commutes by one of the triangle identities for the adjunction, the
bottom square commutes by hypothesis, and the upper square commutes by naturality of
6'. Therefore, the outer diagram commutes which says exactly that

0 =Q 'FoU(ESFoFQF o FCn) = Q 'Fo UA = 4.

For part (4), the displayed diagram commutes for similar reasons to the diagram in
part (3). Let x’ be another lax morphism such that the diagram commutes. Going round
the diagram clockwise shows that y and x’ are mapped to the same morphism under the
adjunction, so x = x’.
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For part (5), we will show that # is a mixed distributive law, and remark that the proof
that y is a comonad distributive law is similar. Consider the following diagram:

UF
UFe© UeSF
eCUF
UFC CUF USF
0 QF

The left hand triangle, which is the counit compatibility condition for 6, will commute if
the right-hand and outer triangle commute. The right-hand triangle commutes because 2
is lax by hypothesis. The outer triangle is just U applied to the diagram

| TepL o
A
|

SFE

This commutes since the mate of a lax morphism is always colax [Lei04, p180]. By a
similar argument, 6 is compatible with the comultiplication. (]

Definition 2.6. A comonad distributive law x as in Theorem [2.5]is said to arise from the
adjunction ¥ - U.

Example 2.7. A trivial example which will nevertheless play a role below is the case where
C=B,S=T,and 2 = id. In this case, x and 6 are given by

TT = FUFU 2% FU 2% FUFU = TT,

BB = UFUF 2% UF -4 UFUF = BB.

2.4. The Eilenberg-Moore and the coKleisli cases. Functors do not necessarily lift re-
spectively extend through an adjunction (for example, the functor on Set which assigns the
empty set to each set does not lift to k-Mod), and if they do, they may not do so uniquely.
Theorem [2.5] says only that once a lift respectively extension is chosen, there is a unique
compatible pair of lax endomorphisms ¢ and .

One extremal situation in which specifying a lax endomorphism 6: CB — BC uniquely
determines a lift S of C is when B is the Eilenberg-Moore category A®. In this case, S
is defined on objects (X, a) by S(X,a) = (CX,Ca o 0X). Using Theorem (with
Q = id), one recovers 0, see, e.g., [App65} Joh73].

Dually, one can take A to be the coKleisli category By in which case a lax endomor-
phism x yields an extension C of a functor S. This means that every comonad distributive
law and every mixed distributive law arises from an adjunction.

2.5. The comparison functor is a 1-cell. Let F — U be an adjunction and let S be the lift
of a comonad C through the adjunction via 2 as in Section[2.3] Suppose we have a 1-cell

(Z,0,7)

S
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in the 2-category Mix. Let us denote with tildes the lifts of A, D, and % to the Eilenberg-
Moore category D* outlined in Section This gives rise to a 1-cell
s Z, T
i(i,&ﬁ)
DA
D, - A
i
in Dist, where ¥ is defined on objects by

YX = (EUX AYUX 295 SBUX = SUFUX 2VeX EUX)

and on morphisms by ¥f = SUf. The lax morphism & is defined by

ASUX 295

and the colax morphism 7 is defined by

YBUX = XUTX

2Usx 22 X vcux 225 prux

In the case that A = D, B = A, C =D, ¢ = 0 and (%, 0,7) = (id, id, id) is the trivial
1-cell, we get that 3 is the comparison functor B — A® = D*.

2.6. Interpretation as a 2-functor. Consider the case that B = AB T =B,S = C, and
X = 6. Since any 2-cell a: ¥ — Y lifts to a natural transformation & : ¥ — 3/, we can
encode the above construction as the action of a 2-functor:

Proposition 2.8. The assignment

C 4B ¢ 4p B (2,0,7) (5,6,9)

% @ ~—x
™
q
g
-
91
o
oY)
<
Q
o}

is a 2-functor i: Mix — Dist.

Analogously, we obtain a 2-functor j: Dist — Mix by taking extensions to coKleisli
categories. It is those distributive laws in the image of the 2-functor 7 that are the main
object of study in this paper.

2.7. The Galois map. Theorem [2.3] yields comonad distributive laws from lifts through
an adjunction, and different lifts produce different distributive laws. Here we describe how
these are related in terms of suitable generalisations of the Galois map from the theory of
Hopf algebras.

Definition 2.9. If S, V: B — B are lifts of C: A — A through F - U with isomorphisms
Q: CU — USand &: CU — UV, we define a natural isomorphism

V. B(F—,S—) - B(F—,V-)
of functors A°? x B — Set on components by the composition

B(FX,SY) —= A(X,USY) —= A(X,UVY) —= B(FX, VY),

where the middle map is induced by @y o Q;lz USY — UVY and the outer ones are
induced by the adjunction F — U. We call I'>:V the Galois map of the pair (S, V).

The following properties are easy consequences of the definition:
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Proposition 2.10. Let S and V be two lifts of an endofunctor C through an adjunction
F — U. Then:
(1) The inverse of TSV is given by
(2) The Galois map TSV maps a morphism f: FX — SY to

Vs,

F(®yo03t) VY

FX — FUFX —> FUSY ——— 5% FUVY 5= VY.

(3) If X5 and XV denote the lax morphisms determined by the two lifts, then
V(%) = x".

So, in the applications of Theorem all distributive laws obtained from different lifts
of a given comonad through an adjunction are obtained from each other by application of
the appropriate Galois map.

The Galois map also relates different lifts of B itself: recall the trivial Example
of Theorem [2.5] where C = B and S = T, and let V be any other lift of B through
the adjunction. By taking X to be UY for an object Y of B, one obtains a Galois map
'™V B(T—,T—) — B(T—,V—) that we can evaluate on id: TY — TY, which pro-
duces a natural transformation T — V that we denote by slight abuse of notation by I'">V
as well.

Adapting [MW 10| Definition 1.3], we define:

Definition 2.11. We say that F is V-Galois if

TV, T - FU % FUFU = FUT -2 FUv =Y

\Y
is an isomorphism.
The following proposition provides the connection to Hopf algebra theory:

Proposition 2.12. If F is V-Galois and 0: BB — BB is the lax morphism arising from
the lift V of B, then the natural transformation

8 BBB "~ BB

3: BB —"" BBB
is an isomorphism.
Proof. If F is V-Galois, then UT'TVF is an isomorphism

FnUF UF®F UeVF

UTF = UFUF _ v UFUFUF = UFUTF —— UFUVF —— UVF.

Let now x: TV — VT be the lax morphism corresponding to 6 as in Theorem In-
serting eV = (Ve) o x and Uy o UF® = ®FU 0 U and B = UF, the isomorphism
becomes

BnB PFUF UVeF

UTF = BB—— BBB —— BBB = BUFUF —— UVFUF —— UVF

Finally, we have by construction UeF = p, and using the naturality of ® this gives UVeF o
®FUF = ®F o BUeF. Hence composing the above isomorphism with ®~1F gives 3. [

It is this associated map [ that is used to distinguish Hopf algebras amongst bialgebras,
see Section [l below.

3. COEFFICIENTS

3.1. Coalgebras over distributive laws. Let T = (T, AT eT) and S = (S, AS,£5) be
comonads on a category 3, and let x: TS — ST be a distributive law. We now discuss x-
coalgebras, which serve as coefficients in the homological constructions in the next section.
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Definition 3.1. A right x-coalgebra is a triple (M, ), p), where M: ) — B is a functor
and p: TM — SM is a natural transformation such that the diagrams

™ 220 v — 2o TSM ™

pi \LxM Ey ip

SM SSM STM M= SM
ASM Sp SM

commute. Dually, we define left x-coalgebras (N, Z, \).
The following characterises right x-coalgebras in the setting of Theorem [2.3]

Proposition 3.2. In the situation of Theorem[2.5] let M: Y — B be a functor.

(1) Right x-coalgebra structures p on M correspond to C-coalgebra structures V on
the functor UM: Y — A.

(2) Let S and V be two lifts of the functor C through the adjunction, and let x> and xV
denote the comonad distributive laws determined by the lifts S and V respectively.
Then the Galois map TSV maps right x5-coalgebra structures p® on M bijectively
to right xV -coalgebra structures p¥ on M.

Proof. For part (1), right x-coalgebra structures p: FUM — SM are mapped under the
adjunction to V: UM — USM =~ CUM. Part (2) follows immediately since the Galois
map is the composition of the adjunction isomorphisms and ® o Q1. U

3.2. Entwined y-coalgebras. In the remainder of this section, we discuss a class of coef-
ficients that lead to contractible simplicial objects, see Proposition .5 below. In the Hopf
algebroid setting, these are the Hopf (or entwined) modules as studied in [AC12, [ BM9S].
First, we recall:

Definition 3.3. A T-coalgebra is a triple (M, Y, V), where M: )V — B is a functor and
V: M — TM is a natural transformation such that the diagrams

M— > TM M— > TM
vl iATM \ \LETM
T™™ —> TTM M

TV

commute.

Dually, one defines T-opcoalgebras (N, Z, V) where V: N — NT, as well as algebras
and opalgebras involving monads. Note that T-coalgebras can be equivalently viewed as
1-cells from respectively to the trivial distributive law:

Proposition 3.4. Given an S-coalgebra (M,), V") and a T-opcoalgebra (N, Z,V7T),
there is a pair of 1-cells

y sid- y S X T
I y 1 B
l(M, <T™, v¥) \L(N, v, Ne¥)
S B T id Z id
e id

and all 1-cells id — x respectively x — id are of this form.
Furthermore, these 1-cells can also be viewed as x-coalgebras:

Proposition 3.5. Let x: TS — ST be a comonad distributive law. Then:
(1) Any S-coalgebra (M, Y, V®) defines a right x-coalgebra (M, Y, eTV5).
(2) Any T-opcoalgebra (N, Z,V'T) defines a left x-coalgebra (N, Z,V7TeS).
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Definition 3.6. If a y-coalgebra arises from an (op)coalgebra as in Proposition then
we call the y-coalgebra entwined.

Note, however, that there is no obvious way to associate a 1-cell in Dist to an arbitrary
right or left y-coalgebra.

3.3. Entwined algebras. Finally, we describe how entwined y-coalgebras are in some
sense lifts of entwined algebras; throughout, : BC — CB is a mixed distributive law
between a monad B and a comonad C on a category A.

Definition 3.7. Let M: ) — A be a functor which has a B-algebra structure 5: BM — M
and a C-coalgebra structure V: M — CM. We say that the quadruple (M, Y, 3, V) is an
entwined algebra with respect to @ if the diagram

BMLMLCM

BV\L TCB 3.1
BCM — = CBM
Y

commutes.

Dually we define an entwined opalgebra structure on a functor N: A — Z for a dis-
tributive law CB — BC.

The following proposition explains the relation between entwined algebras and en-
twined right y-coalgebras for distributive laws x arising from an adjunction:

Proposition 3.8. In the situation of Theorem let M: Y — B be a functor and let
V: M — SM be a natural transformation.

(1) If V is an S-coalgebra structure, then the structure morphisms

UV, UsM -2 cuM

BUM = UFUM 2% UM, UM

turn UM into an entwined algebra with respect to 0.
(2) If B = AB, then the converse of (1) holds.

Proof. For part (1), the morphism BUM — UM is the B-algebra structure on M given
by the comparison functor, and the morphism UM — CUM is the C-coalgebra structure
given by Proposition[3.2] The commutativity of (3.1)) follows by applying the functor U to
the Yang-Baxter condition for the 1-cell (M, e™™, VS) of Proposition For part (2),
condition means exactly that the C-coalgebra structure defines a morphism in A%,
and hence lifts to an S-coalgebra structure. U

Dually, entwined opalgebra structures on a B-opalgebra (N, Z, w) are related to left
x-coalgebras if the codomain Z of N is a category with coequalisers. First, we define a
functor Ng: A® — Z that takes a B-algebra morphism f: (X,a) — (Y,3) to Ng(f)
defined using coequalisers:

NBX ———= NX — %% Nu(X,a)
Na
NBfl Nfl Ng(f)
wy V

Thus Ng generalises the functor — ®p N defined by a left module IV over a ring B on the
category of right B-modules.
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Suppose that @ is invertible, and that N admits the structure of an entwined 6~ *-opalgebra,
with coalgebra structure V: N — CN. There are two commutative diagrams:

NBX X NX NBX No NX
vgxl VBXl
NCBX Vx NCBX Vx
Nexll N0X1J/
NBCX ————= NCX NBCX ——> NCBX > NCX

Hence, using coequalisers, V extends to a natural transformation V: Ng — NBC, and in
fact it gives Ny the structure of a C-opcoalgebra. Since #~1: CB — BC is a comonad
distributive law on AZ, Proposition gives us the following:

Proposition 3.9. The triple (Ng, Z,Ve) is an entwined left 0~ -coalgebra.

4. DUPLICIAL OBJECTS

4.1. The bar and opbar resolutions. Let T = (T, A, ) be a comonad on a category B,
and let M: ) — B be a functor.

Definition 4.1. The bar resolution of M is the simplicial functor B(T,M): ) — B defined
by
B(T»M)n = Tn+1M, d; = TiET”*iM7 8j = TjAT”*jM,

where the face and degeneracy maps above are given in degree n. The opbar resolution
of M, denoted B°P(T, M), is the simplicial functor obtained by taking the opsimplicial
simplicial functor of B(T, M). Explicitly:

B°P(T, M),, = T" "M, d; = T "eT'M, sj =T 7AT/M.

Given any functor N: B — Z, we compose it with the above simplicial functors to
obtain new simplicial functors that we denote by

Cr(N,M) := NB(T, M), C”(N,M) := NB°?(T, M).
4.2. Duplicial objects. Duplicial objects were defined by Dwyer and Kan [DKS835] as a

mild generalisation of Connes’ cyclic objects [Con83]:

Definition 4.2. A duplicial object is a simplicial object (C, d;, s;) together with additional
morphisms ¢: C,, — C, satisfying

dit = tdifla 1 <Z<TL7 tSj,h 1<]<n7
' dn, =0, j
A duplicial object is cyclic if T := t"*+! = id.

Equivalently, a duplicial object is a simplicial object which has in each degree an extra
degeneracy s_1: Cy, — Cy,+1. This corresponds to ¢ via

S_1:=1tsp, t=dp+15-1.

This turns a duplicial object also into a cosimplicial object, and hence a duplicial object C'
in an additive category carries a boundary and a coboundary map



14 NIELS KOWALZIG, ULRICH KRAHMER, AND PAUL SLEVIN

Dwyer and Kan called such chain and cochain complexes duchain complexes and showed
that the normalised chain complex functor yields an equivalence between duplicial ob-
jects and duchain complexes in an abelian category, thus extending the classical Dold-Kan
correspondence between simplicial objects and chain complexes.

If f,, € Z[x]is givenby 1 — 2 f,(x) = (1 — 2)"*! and B := sf,,(bs), then one has

B?=0, bB+Bb=id-T,

and in this way cyclic objects give rise to mixed complexes (C,b, B) in the sense of
[Kas87]| that can be used to define cyclic homology.

4.3. The Bohm-Stefan construction. Let (5B, x, T, S) be a 0-cell in Dist, and let (M, ), p)
and (N, Z, \) be right and left x-coalgebras respectively. By abuse of notation, we let x"
denote both natural transformations TS — ST™ and TS™ — S™T obtained by repeated
application of y (up to horizontal composition of identities), where x° = id. We further-
more define natural transformations

tr: Cp(N,M),, — Cp(N,M),,, t5: CP(N,M),, — C(N, M),

by the diagrams
NT"SM — XM NST"M NTS"M — XM NgTM
NT"pT i)\T"M )\S”MT \LNS"/J
NTAHIM oo NTHIM NS™HIM e NSPHIM
t’flr tfl

Theorem 4.3. The simplicial functors Ct(N, M) and CP (N, M) become duplicial func-
tors with duplicial operators given by t" respectively t°.

Proof. The first operator being duplicial is exactly the case considered in [BS08]], and the

second follows from a slight modification of their proof. O

4.4. Cyeclicity. For each n > 0, we define a morphism R,, : NT"*1M — NS"*+!M in the
following way. For each 0 < ¢ < n, let r; ,, denote the morphism

NSiIT i

NSiTr+1—iN 0 L P NGITn—igM o X

M NsiJrlTnfiM.
Then set
R, :=rppno---070p.

Similarly, we can define a morphism L,,: NS**!M — NT”*!M whose definition in-
volves the left x-coalgebra structure A on N.

Proposition 4.4. The above construction defines two morphisms
Cr(N,M) —> CPP(N, M) , CP (N, M) —2> Cp(N, M)

of duplicial functors. Furthermore, L o R = id if and only if Cp(N,M) is cyclic, and
Ro L =id if and only if C3” (N, M) is cyclic.

Proof. This is verified by straightforward computation. However, it is convenient to use
a diagrammatic calculus as, e.g., in [BSO8]l, in which natural transformations NVM —
NWM are visualised as string diagrams, where V and W are words in S, T. For example
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tT will be represented by the diagram
N T T T T M

N T T T T M

Crossing of strings represents the distributive law y and the bosonic propagators repre-
sent the y-coalgebra structures A: NS — NT respectively p: TM — SM.
As a demonstration, the relation RtT = tSR for n = 2 becomes

N T T T M N T T T M

N S S S M N S S5 S5 M

which reflects the naturality of A, p, and x. Analogously, the identities Rd; = d;R and
Rs; = s; R follow from the commutative diagrams in Definition[3.1} which are represented
diagrammatically by

T M T M
H J M
respectively
T M T M
S S M 5 85 M
Similarly, L is a morphism of duplicial objects, and one has (L o R),, = (t%)"*! and
(Ro L), = (t5)n*1. d

4.5. The case of entwined coalgebras. As we had announced above, entwined coalgebras
lead to trivial simplicial objects:
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Proposition 4.5. Let x: TS — ST be a comonad distributive law on a category B, and let
(M, Y, p) and (N, Z, X) be left and right x-coalgebras respectively. Suppose also that Z is
an abelian category. If either of (N, Z, \), (M, Y, p) is entwined, then the chain complexes
associated to both Ct(N, M) and Cg” (N, M) are contractible.

Proof. If (N, Z, \) is entwined, there is a T-opcoalgebra structure V: N — NT on N.
The morphisms VT"M: NT"*!M — NT"*+2M provide a contracting homotopy for the
complex associated to C(N, M), and the morphisms

1

NTSTH-lM M

n+1

LHM) NS +HITM u NS?+2)M

NS M

provide a contracting homotopy for the complex associated to CZP (N, M). The other case
is similar. u

4.6. Twisting by 1-cells. In this section, we show how factorisations of distributive laws
as considered in [KS14] give rise to morphisms between duplicial functors of the form
considered above. To this end, fix a 1-cell in the 2-category Dist:

T

X
B
i(Eyaﬁ)

D

S

c ¢

Lemma 4.6. Let (M, ), p) be a right x-coalgebra. Then (XM, Y,yM o Xp o oM) is a
right T-coalgebra.

Proof. This is proved for the case that y = 7 in [KS14]], but the same proof applies to this
slightly more general situation. t

Dually, left 7-coalgebras (N, Z, p) define left y-coalgebras (NX, Z,No o AX o Nv).
The following diagram illustrates the situation:

X
M,
S,B T (M,p) -y
l@m_
a D 2
(NX) € -G

The dotted arrows represent the induced x-coalgebras from Lemma4.6
Hence Theorem[.3|and Lemma[4.6]yield duplicial structures on the simplicial functors

Cr(NX, M), Cg’(NX,M), Cg(N,ZM), CZF(N,EM),

and from Proposition 4.4 we obtain morphisms

Cr(NZ, M) —55 CP (NS, M), CoP (NS, M) —5 (NS, M),
Cg (N, SM) —“ C2P (N, £M), CoP (N, IM) —2> Cg (N, SM)

of duplicial objects which determine the cyclicity of each functor.
Additionally, repeated application of o: GX — XT and v: XS — CX yields two
duplicial morphisms

Ce(N, EM) — Cp(NZ, M), CP (N, M) —= CP(N, TM).

Note that for arbitrary functors M and N these are simplicial morphisms which become
duplicial morphisms if M and N have coalgebra structures.
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5. HOPF MONADS AND HOPF ALGEBROIDS

5.1. Opmodule adjunctions. One example of Theorem [2.3]is provided by an opmonoidal
adjunction between monoidal categories:
Definition 5.1. An adjunction

H

(&@5,15)3(7{,@%1%)
E

between monoidal categories is opmonoidal if both H and E are opmonoidal functors.

Some authors call these comonoidal adjunctions or bimonads. Thus by definition, there
are natural transformations

EH(X@gY)HHX@)’HHK WE(K@HL)HEK@)gEL,
and U is in fact an isomorphism, see [ACI12| BLV11, McCO02, MW 14| Moe02] for more
information. It follows that
H(le) @y — EH(1¢) ®s —

form a compatible pair of comonads as in Theorem [2.5] whose comonad structures are
induced by the natural coalgebra (comonoid) structures on 1¢.
However, the examples we are more interested in arise from opmodule adjunctions

F

(A ®a4) L (B,®s)

U

over £ = H, ¢f. [ACI2, Definition 4.1.1]. Here B is an H-module category with
action ®p: H x B — B, whereas A is an £-module category with action® 4: £ x A — A,
and there are natural transformations

0:F(Y®4Z) »HY @FZ, Q:U(L®sM)—>EL®4UM

with €2 being an isomorphism (see [AC12, Proposition 4.1.2]).
Now any coalgebra C' in H defines a compatible pair of comonads

S=C®—, C=EC®a-

on B respectively A. It is such an instance of Theorem that provides the monadic
generalisation of the setting from [KKI1], see Section[5.6]

5.2. Bialgebroids and Hopf algebroids. Opmonoidal adjunctions can be seen as categor-
ical generalisations of bialgebras and more generally (left) bialgebroids. We briefly recall
the definitions but refer to [Boh09, [KK11]] for further details and references.

Definition 5.2. If F is a k-algebra, then an E-ring is a k-algebramap n : £ — H.

In particular, when £ = A® := A ® A°P is the enveloping algebra of a k-algebra A,
then H carries two A-bimodule structures given by

av>hab:=n(a®xbh, arhab:=hnba).

Definition 5.3. A bialgebroid is an A°-ring n : A° — H for which , H, is a coalgebra in
(A°-Mod, ®4, A) whose coproduct A: H — H, ®4 , H satisfies

a»A(h) = A(h) «a, A(gh) = A(g)A(h),
and whose counit e: H — A defines a unital H-action on A given by h(a) := e(a » h).

Finally, by a Hopf algebroid we mean left rather than full Hopf algebroid, so there is in
general no antipode [KR13|:
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Definition 5.4 ([SchO0]). A Hopf algebroid is a bialgebroid with bijective Galois map
B:vH®por Hi — Ho®a oH, g®ace h— A(g)h.
As usual, we abbreviate
A(R) =: h(1) ®a h2), BHh®a1) =:hy @aco h_. (5.1)
5.3. The opmonoidal adjunction. Every F-ring H defines a forgetful functor
E: H-Mod — E-Mod

with left adjoint H = H ®p —. In the sequel, we abbreviate H := H-Mod and & :=
E-Mod. If H is a bialgebroid, then 7 is monoidal with tensor product K ®4; L of two left
H-modules K and L given by the tensor product K ® 4 L of the underlying A-bimodules
whose H-module structure is given by

hk®yl) = h(l)(k) Xa h(g)(l).

So by definition, we have E(K ® L) = EK ® 4 EL. The opmonoidal structure = on H
is defined by the map [BLV 11} IACI12]

HX®4Y) = H®u (X®4Y) > HX @y HY = (H @ X) @4 (H @ Y),
h®ae (x®@aY) = (ha) ®ac ) @a (h(2) ®ac y).

Schauenburg proved that this establishes a bijective correspondence between bialge-
broid structures on H and monoidal structures on H-Mod [Sch98, Theorem 5.1]:

Theorem 5.5. The following data are equivalent for an A°-ring n: A® — H.:

(1) A bialgebroid structure on H.
(2) A monoidal structure (®, 1) on H-Mod such that the adjunction

(A®-Mod, ®4, A) C (H-Mod, ®,1)
induced by 1 is opmonoidal.

Consequently, we obtain an opmonoidal monad
EH = ,H, ®4c —

on & = A°-Mod. This takes the unit object A to the cocentre H ® 4c A of the A-bimodule
»H., and the comonad H(1¢) ®¢ — is given by

(H®4e A) ®4 —,

where the A-bimodule structure on the cocentre is given by the actions >, < on H.
The lift to H = H-Mod takes a left H-module L to (H ® a4 A) ® 4 L with action

g(h®ac 1) ®al) = (g(1)h ®ac 1) ®a g(2)1,
and the distributive law resulting from Theorem [2.3]is given by
X: g ®ac (h®ae 1) ®al) = (91)h ®ac 1) ®a (9(2) ®ac 1).
That is, it is the map induced by the Yetter-Drinfel’d braiding
H ®a.H > H:®a.H, g®ah—ga)h®agq)-

For A = k, that is, when H is a Hopf algebra, and also trivially when H = A°,
the monad and the comonad on A°-Mod coincide and are also a bimonad in the sense
of Mesablishvili and Wisbauer, cf. Section [f] An example where the two are different is
the Weyl algebra, or more generally, the universal enveloping algebra of a Lie-Rinehart
algebra [Hue98]. In these examples, A is commutative but not central in H in general, so
yH. ® 4o — is different from H, ® 4 —.
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5.4. Doi-Koppinen data. The instance of Theorem [2.5| that we are most interested in is
an opmodule adjunction associated to the following structure:

Definition 5.6. A Doi-Koppinen datum is a triple (H, C, B) of an H-module coalgebra C'
and an H-comodule algebra B over a bialgebroid H.

This means that C'is a coalgebra in the monoidal category H-Mod. Dually, the category
H-Comod of left H-comodules is also monoidal, and this defines the notion of a comodule
algebra. Explicitly, B is an A-ring np: A — B together with a coassociative coaction

0: B— H,®a B, b~ b_1)®abq),
which is counital and an algebra map,

n(e(b-1)))boy = b, (bd)(—1) ® (bd)(0) = b(—1)d(~1) ® b0)d(0)-

Similarly, as in the definition of a bialgebroid itself, for this condition to be well-defined
one must also require

b—1) ®a byns(a) = a»b_1) ®a b).
The key example that reproduces [KK11] is the following:

5.5. The opmodule adjunction. For any Doi-Koppinen datum (H, C, B), the H-coaction
6 on B turns the Eilenberg-Moore adjunction A-Mod ~ B-Mod for the monad B :=

B ®4 — into an opmodule adjunction for the opmonoidal adjunction £ = H defined
in Section[5.3] The #-module category structure of B-Mod is given by the left B-action

b(l ®A m) = b(,l)l @A b(o)m,

where b € B, [ € L (an H-module), and m € M (a B-module).

Hence, as explained in Section C defines a compatible pair of comonads C' ®4 —
on B-Mod and A-Mod. The distributive law resulting from Theorem generalises the
Yetter-Drinfel’d braiding, as it is given for a B-module M by

X:BRA(C®AM) — C®a(BRaM),
b®a (c®am) w b1c®a (boy ®am).

5.6. The main example. If H is a bialgebroid, then C' := H is a module coalgebra with
left action given by multiplication and coalgebra structure given by that of H. If H is a
Hopf algebroid, then B := H°P is a comodule algebra with unit map np(a) := n(1 ®; a)
and coaction

0: H® - H, ®4 ,H°?, b+ b_®ab,.

In the sequel we write B as — @ 400 H rather than H°P ® 4 — to work with H only. Then
the distributive law becomes

X: (H®aM)®ar H — H®a (M Qao» H),
(c®Am)®aop b — b_c®a (M40 by),
forb,ce H.
Proposition completely characterises the right x-coalgebras: in this example, they
are given by right H-modules and left H-comodules M with right x-coalgebra structure
p: m®A0p h— h,m(_l) ®A m(o)th.

Recall furthermore that there is no analogue of Proposition [3.2]for left x-coalgebras. How-
ever, the specific example of a Hopf algebroid might provide some indication towards such
a result. Indeed, here one can carry out an analogous construction of left y-coalgebras
associated to (left-left) Yetter-Drinfel’d modules:
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Definition 5.7. A Yetter-Drinfel’d module over H is a left H-comodule and left H-module
N such that for all h € H,n € N, one has

(hn) (1) ®a (hn)(o) = hy@yn-1)h- ®a hi(2)n()-
Each such Yetter-Drinfel’d module defines a left y-coalgebra
N:= —®pyg N: H°®-Mod — k-Mod
whose y-coalgebra structure is given by
A (h®ax) @ n— (zn—1)+hy ®ace hon_1)_) g n(0)-

The resulting duplicial object Ct(N, M) is the one studied in [KK11L KowI3].
Identifying (— ® 400 H) ® g N =~ — ® 400 NN, the x-coalgebra structure becomes

A (h®a x) ®un— xn_1)1hy Qaov honi_1)_n(.

Using this identification, we give explicit expressions of the operators L,, and R,, as well
as ¢ that appeared in Sections and first of all, observe that the right H-module
structure on SM := H, ®4 M is given by

(h®am)g:=g-h®amgs,
whereas the right H-module structure on TM := M ® 400 H, is given by
(M ®g0p h)g := M ®g0p hg.
The cyclic operator from Section [4.3]then results as
tT(m ® gov B @p0p - - - @ p0p h"™ ® gop 1)
= mo)h} ®aor K3 @aop =+ @00 I}
®aop (n(—1)h™ - Rl m(_1))+ ®aer (n_1yh™ - Rt m(_1))-n(o),

and for the operators L and R from Section[4.4]one obtains with the help of the properties
[Sch00. Prop. 3.7] of the translation map (3.1)):

Ly: (M ®a--®@ah" T @4m)@pn—
(mn_1)+ b @acr hLh% ®a0p -+ @aor W™ (1)) @u 1oy,
along with
Ry : (m®aor bt @00 -+ @00 A" @p00 1) @ 1 >
(M(—n—1) ®a M(_py {1y ®a M(_ps1yhigyhiy @a -
®a m(—1yhipyhin_1) (1) ®a M) @t iy y1)hin) - hiigyn-

Compare these maps with those obtained in [KK11, Lemma 4.10]. Hence, one has:

(Ly o Ry) (M ®aor h' @ gor -+ @ 400 h" @ p0r 1) @p ) =
() (1)) * =+ o)) (~1) £ P m1) 4 @ o M) =) B
® Aov h )= (=)= (— n+1)+h(2 h 4 ®aop -
®a4cr h(l)— whipy ey - (Mg h(2)”><—1)—(h%n+1) i)
= m(O)((h( 2y hiyyn) (- 1)m(71))+ ® 400 h%1)+ @A0p -
®acr hiy @acr hify_ -+ h%1)7 ((hé) e h?z)n)(_l)m(_l))f(hé) -+ hi5yn) (o)
Finally, if M ® 40» IV is a stable anti Yetter-Drinfel’d module [BSOS], that is, if

M) (N(-1)M(=1))+ ®acr (N(-1)1(-1))-1(0) = M B A0 1



CYCLIC HOMOLOGY ARISING FROM ADJUNCTIONS 21

holds for all n € N, m € M, we conclude by

(Lp o Rp)(m ® a0 h' @uov -+ ® a0 h" @ gov 1)
e iy @@ My B Byl -y
= m®Aop hl ®Aop L ®Aop h" ®Aop n.

Observe that in [Kow13] this cyclicity condition was obtained for a different complex
which, however, computes the same homology.

5.7. The antipode as a 1-cell. If A = k, then the four actions », <, », « coincide and H is
a Hopf algebra with antipode S: H — H given by S(h) = e(h4)h_. The aim of this brief
section is to remark that this defines a 1-cell that connects the two instances of Theorem[2.3]
provided by the opmonoidal adjunction and the opmodule adjunction considered above.

Indeed, in this case we have A°-Mod ~ A-Mod = k-Mod, but H°°-Mod # H-Mod
unless H is commutative. However, .S defines a lax morphism o: —®yH id > H®;, — id,
given in components by

O’X}X®kH—>H®kX, x®kh'—>5’(h)®kx

The fact that this is a lax morphism is equivalent to the fact that S is an algebra anti-
homomorphism. Also, the lifted comonads agree and are given by H @ — with comonad
structure given by the coalgebra structure of H; clearly, v = id: idH ®; — — H ®; —id
is a colax morphism. Furthermore, the Yang-Baxter condition is satisfied, so we have that
(id, o, 7y) is a 1-cell in the 2-category of mixed distributive laws. If we apply the 2-functor ¢
to this, we get a 1-cell (3, &, 7) between a comonad distributive law on the category of left
H-modules and one on the category of right H-modules. The identity lifts to the functor
3: H-Mod — Mod-H which sends a left H-module X to the right H-module with right
action given by

x<h:=5h)z.

6. HOPF MONADS A LA MESABLISHVILI-WISBAUER

)

where A: C — C is a functor, (A, p,n) is a monad, (A, A% &%) is a comonad and
0: AA — AA is a mixed distributive law satisfying a list of compatibility conditions.

In particular, ; and A“ are required to be compatible in the sense that there is a com-
mutative diagram

6.1. Bimonads. A bimonad in the sense of [MWII] is a sextuple (A, p, n, A®, 2, 6),

AA "o A A% A
AAAi TAH (6.1)
AAA — S AAA
0A

The other defining conditions rule the compatibility between the unit and the counit with
each other and with j respectively A*, see [MW1I] for the details.

It follows immediately that we also obtain an instance of Theorem[2.5]in this situation:
if we take A = CPB to be the Eilenberg-Moore category of the monad B = (A, i, 1) as
in Section then the mixed distributive law 6 defines a lift V = (V,AV,&V) of the
comonad C = (A, A% %) to A.

Note that in general, neither .4 nor C need to be monoidal, so B is in general not an
opmonoidal monad. Conversely, recall that for the examples of Theorem [2.5] obtained
from opmonoidal monads, B need not equal C.
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6.2. Examples from bialgebras. In the main example of bimonads in the above sense,
we in fact do have B = C and we are in the situation of Section[5.3|for a bialgebra H over
A = k. The commutativity of amounts to the fact that the coproduct is an algebra
map.

This setting provides an instance of Proposition [2.10]since there are two lifts of B = C
from A = k-Mod to B = H-Mod: the canonical lift S = T = FU which takes a left
H-module L to the H-module H ®;, L with H-module structure given by multiplication in
the first tensor component, and the lift V which takes L to H ®;, L with H-action given by
the codiagonal action g(h ® y) = g(1)h ®r g(2)y, that is, the one defining the monoidal
structure on 3. Now the Galois map from Proposition [2.12]is the Galois map

H®y L —->H®; L, g&®ky— ga)®kJ@2)y

used to define left Hopf algebroids (when taking tensor products over A # k resp. A°P),
which for A = k are simply Hopf algebras, and more generally Hopf monads in the sense
of [LMW 15, Theorem 5.8(¢c)].

6.3. An example not from bialgebras. Another example of a bimonad is the nonempty
list monad Lt on Set, which assigns to a set X the set L™ X of all nonempty lists of

elements in X, denoted [z1,...,z,]. The monad multiplication is given by concate-
nation of lists and the unit maps = to []. The comonad comultiplication is given by
Alzy,...,xzn] = [[z1,...,Zn]s- .., [zn]], the counit is e[z1,...,2,] = 1, and the

mixed distributive law
6: LTLt - LTL*
is defined as follows: given a list

[[*xl,l; oo axl,nl]v ey [xm,la oo 71'777,,11,”]]
in L1 X, its image under 0 X is the list with
m
2 ni(m—i+1)
i=1

terms, given by the lexicographic order, that is

[[m1717x2,17x3,1 B ;xm,l]z L) [xl,nlaxQ,la T3,15--- ;xm,l]z

[132,1,953,1 cee ,Im,ﬂ, B [I2,n27x3,1a .- -Im,1]7

.y

[l [mels s [, |-
One verifies straightforwardly:

Proposition 6.1. L™ becomes a bimonad on Set whose Eilenberg-Moore category is

Set"" ~ SemiGp, the category of (nonunital) semigroups.

The second lift V of the comonad L that one obtains from the bimonad structure on
SemiGp is as follows. Given a semigroup X, we have VX = L* X as sets, but the binary
operation is given by

VX xVX - VX
[$17"'7xm][y1a"'7yn] = [x1y17"'7xmylay17"'7yn:|-

Following Proposition [3.2] given a semigroup X, the unit turns the underlying set of
X into an L™ -coalgebra and hence we get a right y-coalgebra structure on X. Explicitly,
px: TX — VX is given by

plet, .. xp] =[T1 Tp,Ta Ty ooy Ty

The image of p is known as the left machine expansion of X [BR84].



CYCLIC HOMOLOGY ARISING FROM ADJUNCTIONS 23

Proposition 6.2. The only 0-entwined algebra is the trivial semigroup .

Proof: An L™ -coalgebra structure 3: T — LLTT is equivalent to T being a forest of at
most countable height (rooted) trees, where each level may have arbitrary cardinality. The
structure map [ sends x to the finite list of predecessors of x. A f#-entwined algebra
is therefore such a forest, which also has the structure of a semigroup such that for all
x,y € T with B(y) = [y,y1,- .-, Yn] We have

6(xy) = [Iy,xylv s TYns Yy Y1y - - ayn]-

Let 7" be a f-entwined algebra. If 7" is non-empty, then there must be a root. We can
multiply this root with itself to generate branches of arbitrary height. Suppose that we
have a branch of height two; that is to say, an element y € T with 3(y) = [y, z] (so, in
particular,  # y). Then S(zy) = [zy,y], but S(zx) = [z, zy, z,y]. This is impossible
since x and y cannot both be the predecessor of xy. U
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