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Abstract

Recently, Böhm and Ştefan constructed duplicial (paracyclic) objects from dis-

tributive laws between (co)monads. Here we define the category of factorisations

of a distributive law, show that it acts on this construction, and give some ex-

plicit examples.
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1. Introduction

Distributive laws between monads were originally defined by Beck in [Bec69]

and correspond to monad structures on the composite of the two monads. They

have found many applications in mathematics as well as computer science; see

e.g. [Bur09, Che11, Lod08, Tur96, VW06].5

Recently, distributive laws have been used by Böhm and Ştefan [BŞ08, BŞ12]

to construct new examples of duplicial objects [DK85], and hence cyclic homol-

ogy theories. The paradigmatic example of such a theory is the cyclic homology
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HCpAq of an associative algebra A [Con85, Tsy83]. It was observed by Kuster-

mans, Murphy, and Tuset [KMT03] that the functor HC can be twisted by10

automorphisms of A. The aim of the present paper is to extend this procedure

to any duplicial object defined by a distributive law.

Given a distributive law χ we define in Section 3.1 the category Fpχq of

its factorisations. The main technical results are the definition of a monoidal

structure on Fpχq (Lemma 3.2 and Proposition 3.3), a characterisation of the15

comonoids in Fpχq (Proposition 3.5), and the definition of actions of Fpχq on

the category of admissible data (septuples in [BŞ08]) which turns the latter into

an Fpχq-bimodule category (Theorem 3.8 and Corollary 3.9).

The remainder of the paper is devoted to examples. We begin by considering

factorisations of distributive laws on Eilenberg-Moore categories, interpreting20

these as flat connections (Section 4.1). In particular, we present the twisting

of cyclic homology in this framework (Section 4.2). We then describe examples

arising from Hopf algebras (Section 4.3). The final examples are concerned

with BD-laws, braidings (Section 4.4), and quantum doubles of Hopf algebras

(Section 4.5).25

Throughout this paper, A,B, C . . . are categories, A,B,C, . . . are functors,

and greek letters are used to denote natural transformations. We use ˝ to denote

composition of morphisms and vertical composition of natural transformations.
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The composition of functors and the horizontal composition of natural trans-

formations will be denoted simply by concatenation. The identity morphism,30

functor and natural transformation is denoted by id. However, we denote the

horizontal composition α idAβ by αAβ.

2. Preliminaries

In this section, we recall basic definitions and results that are needed later.

2.1. (Co)monads35

Let A be a category.

Definition 2.1. A comonad on A is a triple C “ pC,∆, εq where C is an endo-

functor on A, and ∆: C ÝÑ CC and ε : C ÝÑ idA are natural transformations

such that

C∆ ˝∆ “ ∆C ˝∆, εC ˝∆ “ idC “ Cε ˝∆,

that is, the two diagrams

C
∆ //

∆

��

CC

C∆

��
CC

∆C
// CCC

C
∆ //

∆

��

CC

Cε

��
CC

εC
// C

commute.

In other words, a comonad is a comonoid (or coalgebra) in the monoidal

category rA,As of endofunctors on A (with composition as tensor product).

Dually, a monad on a category C is a monoid (algebra) in rC, Cs.40
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2.2. Module categories

Next, we recall the notion of a module category (also known as an M-

category) over a monoidal category pM,b,1q, see e.g. [Bén67]. For the purpose

of this paper, all monoidal categories and their module categories are strict, and

by abuse of notation we will write M to refer to the whole triple pM,b,1q.45

Definition 2.2. A left module category for M is a pair pC,�q where C is a

category and � : MˆC ÝÑ C is a functor such that we have functorial identities

1 � P “ P and X � pY � P q “ pX b Y q� P.

for all objects X,Y in M and P in C. We call � the left action of M on C.

Dually, one defines a right module category pD,�q. A bimodule category

is a triple pC,�,�q where pC,�q and pC,�q are right respectively left module

categories and the actions commute, i.e. for all objects X,Y in M and P in C

we have50

X � pP � Y q “ pX � P q� Y,

again functorially in X,Y and P . We immediately have the following.

Lemma 2.3. Let pC,�q and pD,�q be left respectively right module categories.

Then C ˆD is a bimodule category with actions given by

X � pP,Qq� Y “ pX � P,Q� Y q

for all objects X,Y in M, P in C and Q in D.
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2.3. Eilenberg-Moore categories

The comonads we are mostly interested in arise as restrictions of monads to

their Eilenberg-Moore categories in the sense of [Par77]:55

Definition 2.4. Let pC,�q be a left module category for a monoidal category

M, and let B “ pB,µ, ηq be a monoid in M. The Eilenberg-Moore category of

B, denoted by CB, is the category whose objects are pairs pX,αq, where X is an

object of C and α : B �X ÝÑ X is a morphism in C such that the diagrams

pB bBq�X

µ�idX ((

B � pB �Xq
idB�α // B �X

α

��
B �X

α
// X

1 �X
η�idX // B �X

α

��
X

commute. The morphisms f : pX,αq ÝÑ pX 1, α1q are morphisms f : X ÝÑ X 1

in C such that the diagram

B �X

α

��

idB�f // B �X 1

α1

��
X

f
// X 1

commutes.

Now observe that the monoid B defines a comonad B̃ “ pB̃, ∆̃, ε̃q on A “ CB

where B̃ is defined on objects and morphisms by

B̃pX,αq “ pB �X,µ� idXq, B̃pfq “ idB � f,

and ∆̃, ε̃ are defined on objects pX,αq by

B �X “ B � p1 �Xq
idB�pη�idXq // B � pB �Xq B �X

α // X

respectively.
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In particular, every category C is in an obvious way a module category over

rC, Cs. In this case, our definition of Eilenberg-Moore category of a monad B on

C is the same as the usual definition [ML98, p. 139].60

2.4. Distributive laws

Next we define distributive laws. Note that we consider them between

(co)monads and arbitrary endofunctors as is common in the computer science

literature, see e.g. [Tur96].

Definition 2.5. Let T “ pT,∆, εq be a comonad on A and let C be an endo-

functor on A. A distributive law between the comonad T and the endofunctor

C is a transformation χ : TC ÝÑ CT such that the two diagrams

TC

∆C

��

χ // CT
C∆ // CTT

TTC
Tχ

// TCT

χT

OO TC
χ //

εC ""

CT

Cε

��
C

commute. We denote this by χ : T ÝÑ C. Analogously, we define a distributive65

law χ : T ÝÑ C between an endofunctor T and a comonad C. A comonad

distributive law χ : T ÝÑ C is a transformation χ which is a distributive law

between endofunctors and comonads in both ways.

Dually, we can define distributive laws involving monads; distributive laws

from a monad to a comonad are usually called mixed distributive laws.70

One application of distributive laws is to lift endofunctors to Eilenberg-

Moore categories: let B be a monad on a category C and θ : B ÝÑ D be a

distributive law. We define a functor D̃ : CB ÝÑ CB as follows. On objects we
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define

D̃pX,αq “ pDX,Dα ˝ θXq

and we define D̃f “ Df on morphisms. The distributive law θ lifts to give one

θ : B̃ ÝÑ D̃ where B̃ is the comonad described in Section 2.3. If D is part of a

comonad D “ pD,∆, εq, and θ is a mixed distributive law B ÝÑ D, then D̃ is

part of a comonad

D̃ “ pD̃,∆, εq

and θ lifts to a comonad distributive law θ : B̃ ÝÑ D̃.

See [Bec69, Bur73] for more details on distributive laws.

2.5. The categories of χ-coalgebras

Let T “
`

T,∆T , εT
˘

and C “
`

C,∆C , εC
˘

be comonads on A, and let

χ : T ÝÑ C be a distributive law.75

Definition 2.6. A right χ-coalgebra is a triple pM,X , ρq where X is a category,

M : X ÝÑ A is a functor and ρ : TM ÝÑ CM is a natural transformation such

that the diagrams

TM
∆TM //

ρ

��

TTM
Tρ // TCM

χM

��
CM

∆CM

// CCM CTM
Cρ
oo

TM
εTM

||
ρ

��
M CM

εCM

oo

commute. A morphism of right χ-coalgebras between pM,X , ρq and pM 1,X 1, ρ1q

is a pair pϕ, F q, where F : X ÝÑ X 1 is a functor and ϕ : M ÝÑM 1F is a natural

transformation such that the diagram

TM
Tϕ //

ρ

��

TM 1F

ρ1F

��
CM

Cϕ
// CM 1F
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commutes. We define composition of morphisms by

pϕ1, F 1q ˝ pϕ, F q “ pϕ1F ˝ ϕ, F 1F q

and we define identity morphisms by idpM,X ,ρq “ pidM , idX q. We denote the

category of right χ-coalgebras by Rpχq.

Dually, we define the category Lpχq of left χ-coalgebras pN,Y, λq.

2.6. The construction of Böhm and Ştefan

Finally, we recall the construction of duplicial functors from a comonad80

distributive law χ : T ÝÑ C on a category A due to Böhm and Ştefan.

Definition 2.7. The category of admissible data over χ is the product category

Spχq :“ Rpχq ˆ Lpχq.

Admissible data are called admissible septuples in [BŞ08].

To every admissible datum pM,X , ρ,N,Y, λq there is an associated duplicial

functor X ÝÑ Y defined by

D‚pM,X , ρ,N,Y, λq “ NT ‚`1M

which is given objectwise by taking the bar resolution of M with respect to

the comonad T, and then applying the functor N . If Y is an abelian category,

we can apply the duplicial functor to an object X in X resulting in a duplicial85

object in Y of which we can take the cyclic homology.

This construction, which unifies and generalises the definition of the cyclic

homology of associative algebras and Hopf algebras, is detailed in [BŞ08, BŞ12].
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3. Theory

3.1. The category of factorisations Fpχq90

Throughout this section, let T “
`

T,∆T , εT
˘

and C “
`

C,∆C , εC
˘

be

comonads on a category A, and let χ : T ÝÑ C be a distributive law. The

main definition of the present paper is the following:

Definition 3.1. A factorisation of χ is a triple pΣ, σ, γq where Σ is an endo-

functor on A, and σ : T ÝÑ Σ and γ : Σ ÝÑ C are distributive laws satisfying

the Yang-Baxter condition; that is, the hexagon

ΣTC
Σχ // ΣCT γT

**
TΣC

σC 44

Tγ
**

CΣT

TCΣ
χΣ
// CTΣ Cσ

44

commutes. A morphism α : pΣ, σ, γq ÝÑ pΣ1, σ1, γ1q of factorisations is a natural

transformation α : Σ ÝÑ Σ1 which is compatible with T and C in the sense that

the diagrams

TΣ
Tα //

σ

��

TΣ1

σ1

��
ΣT

αT
// Σ1T

ΣC

γ

��

αC // Σ1C

γ1

��
CΣ

Cα
// CΣ1

commute. There are identity morphisms idpΣ,σ,γq “ idΣ, and composition of

morphisms is given by the vertical composite. This defines the category of95

factorisations which we denote by Fpχq.

Similarly, we define factorisations of a monad or mixed distributive law.
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3.2. The monoidal structure

We define a functor

b : Fpχq ˆ Fpχq ÝÑ Fpχq

as follows. On objects we define

pΣ, σ, γq b pΣ1, σ1, γ1q “ pΣΣ1,Σσ1 ˝ σΣ1, γΣ1 ˝ Σγ1q

and for two morphisms α, β we define αb β to be αβ, the horizontal composite

of the natural transformations.100

Lemma 3.2. The assignment b is a well-defined functor.

Proof. Firstly, b is well-defined on objects if Σσ1 ˝σΣ1 and γΣ1 ˝Σγ1 satisfy the

Yang-Baxter condition. Consider the following diagram

ΣΣ1TC
ΣΣ1χ // ΣΣ1CT

Σγ1T

))
ΣTΣ1C

Σσ1C 55

ΣTγ1
))

ΣCΣ1T
γΣ1T

))
TΣΣ1C

TΣγ1
))

σΣ1C 55

ΣTCΣ1
ΣχΣ1

// ΣCTΣ1
ΣCσ1

55

γTΣ1
))

CΣΣ1T

TΣCΣ1
σCΣ1

55

TγΣ1
))

CΣTΣ1
CΣσ1

55

TCΣΣ1
χΣΣ1

// CTΣΣ1
CσΣ1

55

The left square commutes by naturality of σ and the right square commutes by

naturality of γ. The inner hexagons commute by the Yang-Baxter conditions.

Therefore, the outer hexagon commutes, so the required condition is satisfied.

Secondly, let

α : pΣ, σ, γq ÝÑ pΓ, κ, νq and β : pΣ1, σ1, γ1q ÝÑ pΓ1, κ1, ν1q
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be morphisms in Fpχq. Consider the diagram

TΣΣ1
TαΣ1 //

σΣ1

��

TΓ1Σ1

κΣ1

��

TΓβ // TΓΓ1

κΓ1

��
ΣTΣ1

Σσ1

��

αTΣ1
// ΓTΣ1

Γσ1

��

ΓTβ
// ΓTΓ1

Γκ1

��
ΣΣ1T

αΣ1T

// ΓΣ1T
ΓβT

// ΓΓ1T

The bottom-left square commutes by naturality of α, the top-right square com-105

mutes by naturality of κ, and the two remaining inner squares commute since α

and β are compatible with T . Therefore, the outer square commutes and αbβ is

compatible with T . A similar argument shows that αbβ is compatible with C.

It is clear that b respects composition of morphisms and identity morphisms.

Therefore, b is well-defined on morphisms.110

Let 1 denote the trivial factorisation pidA, idT , idCq.

Proposition 3.3. The triple pFpχq,b,1q is a strict monoidal category.

Proof. It is clear that T b 1 “ 1b T “ T for all factorisations T . Consider the

products of factorisations

ppΣ, σ, γq b pΣ1, σ1, γ1qq b pΣ2, σ2, γ2q

“ pΣΣ1,Σσ1 ˝ σΣ1, γΣ1 ˝ Σγ1q b pΣ2, σ2, γ2q

“ pΣΣ1Σ2,ΣΣ1σ2 ˝ Σσ1Σ2 ˝ σΣ1Σ2, γΣ1Σ2 ˝ Σγ1Σ2 ˝ ΣΣ1γ2q

and

pΣ, σ, γq b ppΣ1, σ1, γ1q b pΣ2, σ2, γ2qq

“ pΣ, σ, γq b pΣ1Σ2,Σ1σ2 ˝ σ1Σ2, γ1Σ2 ˝ Σ1γ2q

“ pΣΣ1Σ2,ΣΣ1σ2 ˝ Σσ1Σ2 ˝ σΣ1Σ2, γΣ1Σ2 ˝ Σγ1Σ2 ˝ ΣΣ1γ2q.
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These are equal so b is an associative tensor product (observe that all equalities

are functorial).

Remark 3.4. If we ignore set theoretic issues, we can define a 2-category

dist :“ CmdpCmdpCATop
qopq

where CAT is the 2-category of categories, functors and natural transformations,

Cmd denotes taking the 2-category of comonads, and op denotes reversal of 1-

cells. The 0-cells of this 2-category are comonad distributive laws χ and we

have

Fpχq “ distpχ, χq

which is a strict monoidal category. This gives another proof of Proposition 3.3.115

See [Str72, BLS11] for the definition of Cmd.

3.3. (Co)monads as (co)monoids in Fpχq

By definition, a pair of morphisms

∆: pΣ, σ, γq ÝÑ pΣ, σ, γq b pΣ, σ, γq, ε : pΣ, σ, γq ÝÑ 1

is a pair of natural transformations ∆: Σ ÝÑ ΣΣ and ε : Σ ÝÑ 1 that are

compatible with the distributive laws σ and γ. This gives us the following

characterisation of comonoids in Fpχq.120

Proposition 3.5. A factorisation pΣ, σ, γq is a comonoid in Fpχq if and only

if Σ is part of a comonad and σ, γ are distributive laws of comonads.
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Dually, a factorisation pΣ, σ, γq is a monoid in Fpχq if and only if Σ is part of

a monad and σ, γ are mixed distributive laws between monads and comonads.

Corollary 3.6. Let χ : idA ÝÑ idA be the trivial distributive law given by the125

identity. Then pT,∆, εq is a comonad on A if and only if pT, idT , idT q is a

comonoid in Fpχq, and pB,µ, ηq is a monad on A if and only if pB, idB , idBq is

a monoid in Fpχq.

3.4. Module categories for Fpχq

We define a functor � : Fpχq ˆ Rpχq ÝÑ Rpχq as follows. On objects we

define

pΣ, σ, γq� pM,X , ρq “ pΣM,X , γM ˝ Σρ ˝ σMq

and on morphisms we define α� pϕ, F q to be the pair pαϕ, F q.130

Proposition 3.7. The assignment � is a well-defined functor.

Proof. Consider the diagram

TΣM

σM

��

∆T ΣM // TTΣM
TσM // TΣTM

σTM

��

TΣρ // TΣCM

σCM

��

TγM // TCΣM

χΣM

��
ΣTM

Σρ

��

Σ∆TM

// ΣTTM
ΣTρ

// ΣTCM

ΣχM

��

CTΣM

CσM

��
ΣCTM

γTM //

ΣCρ

��

CΣTM

CΣρ

��
ΣCM

γCM

��

Σ∆CM

// ΣCCM
γCM

// CΣCM

CγM

��
CΣM

∆CΣM

// CCΣM
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The top-left and bottom rectangles commute by the distributive law axioms,

the middle-left rectangle commutes because pM,X , ρq is a right χ-coalgebra, the

top-right diagram commutes by the Yang-Baxter condition, and the remaining

squares commute by naturality of σ, γ. Therefore, the outer rectangle commutes.135

Consider the triangle

TΣM

εT ΣM ))

σM // ΣTM
ΣεTM

$$

Σρ // ΣCM
ΣεCM

zz

γM // CΣM

εCΣMtt
ΣM

The middle triangle commutes because pM,X , ρq is a right χ-coalgebra, and the

other two inner triangles commute by the distributive law axioms. Therefore,

the outer triangle commutes. This shows that � is well-defined on objects.

Let pϕ, F q : pM,X , ρq ÝÑ pM 1,X 1, ρ1q and α : pΣ, σ, γq ÝÑ pΣ1, σ1, γ1q be

morphisms of right χ-coalgebras and factorisations, respectively. Consider the

diagram

TΣM

σM

��

TαM // TΣ1M

σM 1

��

TΣ1ϕ // TΣ1M 1F

σ1M 1F

��
ΣTM

Σρ

��

αTM // Σ1TM

Σ1ρ

��

Σ1Tϕ // Σ1TM 1F

Σ1ρ1F

��
ΣCM

αCM
// Σ1CM

Σ1Cϕ

// Σ1CM 1F

The top-left square commutes since α is compatible with T , the top-right square

commutes by naturality of σ, the bottom-left square commutes by naturality140

of α, and the bottom-right square commutes since pϕ, F q is a right χ-coalgebra

morphism. Thus the outer square commutes, which shows that α � pϕ, F q is a

right χ-coalgebra morphism.
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It is clear that � respects identities and composition of morphisms (because

the vertical and horizontal compositions of natural transformations are compat-145

ible with each other), so � is well-defined on morphisms.

Dually, we also define a functor

� : Lpχq ˆ Fpχq ÝÑ Lpχq.

Theorem 3.8. The category Rpχq is a strict left module category for Fpχq,

with left action given by the functor �. Furthermore, the category Lpχq is a

strict right module category for Fpχq, with right action given by the functor �.

Proof. We will prove only the first statement, as the second follows by a similar

argument. It is clear that 1 acts as the identity. Let pΣ, σ, γq, pΣ1, σ1, γ1q be two

factorisations and let pM,X , ρq be a right χ-coalgebra. We have

ppΣ, σ, γq b pΣ1, σ1, γ1qq� pM,X , ρq

“ pΣΣ1,Σσ1 ˝ σΣ1, γΣ1 ˝ Σγ1q� pM,X , ρq

“ pΣΣ1M,X , γΣ1M ˝ Σγ1M ˝ ΣΣ1ρ ˝ Σσ1M ˝ σΣ1Mq

and

pΣ, σ, γq� ppΣ1, σ1, γ1q� pM,X , ρqq

“ pΣ, σ, γq� pΣM,X , γM ˝ Σρ ˝ σMq

“ pΣΣ1M,X , γΣ1M ˝ Σγ1M ˝ ΣΣ1ρ ˝ Σσ1M ˝ σΣ1Mq

These are functorially equal, so � is a left action of Fpχq.150

Corollary 3.9. The category Spχq is a strict bimodule category for Fpχq.

Proof. This follows immediately by applying Lemma 2.3 to Theorem 3.8.
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4. Examples

4.1. Flat connections

Let B “ pB,µ, ηq be a monad on a category C. The forgetful functor

U : CB ÝÑ C has a left adjoint F defined by

F pX,αq “ pBX,µXq, F pfq “ Bf.

The unit of this adjunction is given by η and the counit is ε̃pX,αq “ α. Let155

B̃ denote the functor FU and let ∆̃ denote the natural transformation Fη U .

The adjunction gives rise to a comonad B̃ “ pB̃, ∆̃, ε̃q, which is the same as the

comonad discussed in Section 2.3.

Let Σ: CB ÝÑ CB be an endofunctor. For every object pX,αq in CB there

are natural isomorphisms

CBpB̃ΣpX,αq,ΣB̃pX,αqq – CpUΣpX,αq, UΣB̃pX,αqq

given by the adjunction, so there is a one-to-one correspondence between natural

transformations σ : B̃Σ ÝÑ ΣB̃ and natural transformations ∇ : UΣ ÝÑ UΣB̃.

In fact, σ is a distributive law if and only if the diagrams

UΣ
∇ //

∇
��

UΣB̃

∇B̃
��

UΣB̃
UΣ∆̃

// UΣB̃B̃

UΣ
∇ // UΣB̃

UΣε̃

��
UΣ

commute.

Definition 4.1. We say that the natural transformation σ is a connection if160

ε̃ is compatible with σ, i.e. the second diagram above commutes for the corre-

sponding natural transformation ∇. We say that a connection σ is flat if ∆̃ is
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compatible with σ, i.e. σ is a distributive law, or equivalently, both diagrams

above commute.

The terminology is motivated by the special case discussed in detail in the165

following section.

4.2. pA,Aq-bimodules

Let k be a commutative ring and let A be a unital associative algebra over

k. Let C “ A-Mod be the category of left A-modules. The functor B “ ´ bk

A : C ÝÑ C, together with the natural transformations

µM : M bk Abk A ÝÑM bk A ηM : M ÝÑM bk A

mb ab b ÞÝÑ mb ab m ÞÝÑ mb 1

defines a monad B on C which lifts to a comonad B̃ on CB. The latter is isomor-

phic to the category of pA,Aq-bimodules (with symmetric action of k).

The functor D “ Abk´ : C ÝÑ C, together with the natural transformations

∆M : AbkM ÝÑ Abk AbkM εM : AbkM ÝÑM

abm ÞÝÑ ab 1bm abm ÞÝÑ am

defines a comonad D on C. There is a mixed distributive law θ : B ÝÑ D given

by rebracketing on components

θM : pAbkMq bk A ÝÑ Abk pM bk Aq

so this lifts to a comonad distributive law θ : B̃ ÝÑ D̃.170

Let N be an pA,Aq-bimodule and Σ: CB ÝÑ CB be the functor defined by

ΣpMq “M bA N . We have that ΣD̃ “ D̃Σ so the identity idΣD̃ : Σ ÝÑ D is a

distributive law.

17



In this case, the components of a natural transformation ∇ : UΣ ÝÑ UΣB̃

are given by a left A-linear map

∇M : M bA N ÝÑ pM bk Aq bA N –M bk N

The corresponding natural transformation σ : B̃ ÝÑ Σ is given by

σM : pM bA Nq bk A ÝÑ pM bk Aq bA N –M bk N

pmbA nq b b ÞÝÑ ∇M pmbA nqb.

The natural transformation ∇ defines a connection if and only if each ∇M

splits the quotient map M bk N ÝÑ M bA N . Taking M “ A yields an175

A-linear splitting of the action A bk N ÝÑ N , so N is k-relative projective.

Conversely, given a splitting n ÞÑ np´1q b np0q of the action, we obtain ∇M as

∇M pmbA nq “ mnp´1q b np0q.

Thus we have:

Proposition 4.2. The functor Σ admits a connection σ if and only if N is180

k-relative projective as a left A-module.

Composing ∇A with the noncommutative De Rham differential

d : A ÝÑ Ω1
A,k, a ÞÝÑ 1b a´ ab 1

gives the notion of connection in noncommutative geometry [Con94, III.3.5].

If N is not just k-relative projective but k-relative free, i.e. N – Abk V as

left A-modules, for some k-module V , then the assignment ∇M pmbA pabvqq “

mab p1b vq defines a flat connection. Thus we have:185
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Proposition 4.3. The triple pΣ, σ, idΣD̃q is a factorisation of θ.

In particular, let σ : A ÝÑ A be an algebra map and N “ Aσ, the pA,Aq-

bimodule which is A as a left A-module with right action of a P A given by

right multiplication by σpaq. Then we have ΣpMq “M bAAσ –Mσ. Since Aσ

is free as a left A-module we get a factorisation pΣ, σ, idΣD̃q by Proposition 4.3,

where σ : B̃ ÝÑ Σ is the flat connection defined on components by

σM : Mσ bk A ÝÑ pM bk Aqσ

mb a ÞÝÑ mb σpaq.

Note that we use σ to denote both the algebra map and the flat connection.

From the general theory developed in Section 3 we obtain therefore an action

of the group of endomorphisms of A on the category of admissible data for

θ. In particular, we can act on the standard cyclic object associated to A190

[Con85, Tsy83], which corresponds to the following admissible datum.

Consider A as a functor A : t˚u ÝÑ CB from the one-morphism category

to the category of pA,Aq-bimodules. Since B̃A “ D̃A “ A bk A we have a

natural transformation ρ “ idAbkA : B̃A ÝÑ D̃A. The triple pA, t˚u, ρq is a

right θ-coalgebra.195

Considering pA,Aq-bimodules as either left or right Ae :“ AbkA
op-modules,

we view the zeroth Hochschild homology as a functor H “ ´ bAe A : CB ÝÑ

k-Mod. We define a natural transformation λ : HD̃ ÝÑ HB̃ by

λM : pAbkMq bAe A ÝÑ pM bk Aq bAe A –M

pabmq bAe b ÞÝÑ mba
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The pair pH, k-Mod, λq is a left θ-coalgebra, and the duplicial k-module associ-

ated to the admissible datum pA, t˚u, ρ,H, k-Mod, λq is indeed the cyclic object

defining the cyclic homology HCpAq.

The cyclic homology of the duplicial object associated to the admissible

datum

pΣ, σ, idΣD̃q� pA, t˚u, ρ,H, k-Mod, λq “ pAσ, t˚u, ρ ˝ σA, H, k-Mod, λq

is HCσpAq, the σ-twisted cyclic homology of A. This was first considered

in [KMT03] and is discussed in Section 5.2 of [KK11] in the context of Hopf200

algebroids. Thus the action of the category of factorisations generalises this

twisting procedure.

4.3. Mixed factorisations

Let B “ pB,µ, ηq be a monad on a category C and let Σ: CB ÝÑ CB be a

functor. In this section, we consider a special case of Section 4.1: when the

functor Σ is a lift of a functor S : C ÝÑ C, i.e. there is a commutative diagram

CB

U

��

Σ // CB

U

��
C

S
// C

Let D be a comonad on C and let θ : B ÝÑ D be a distributive law. Distributive

laws γ : S ÝÑ D lift to give distributive laws γ : Σ ÝÑ D̃, and if γ is part of205

a factorisation pS, σ, γq of θ : B ÝÑ D then we get a factorisation pΣ, σ, γq of

θ : B̃ ÝÑ D̃.
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We consider three special cases of this construction. The distributive laws

used therein are instances of one defined on the category of right U -modules,

where U is a left Hopf algebroid, which is defined and discussed in [KKS15].210

Example 4.4. Suppose that σ : B ÝÑ B is a monad morphism which is com-

patible with θ; that is σ : B ÝÑ B is a natural transformation such that the

three diagrams

BB

µ

��

σσ // BB

µ

��
B

σ
// B

idC

η
  

η // B

σ

��
B

BD
σD //

θ

��

BD

θ
��

DB
Dσ
// DB

commute. The first two diagrams say that σ : B ÝÑ idC is a distributive law.

The triple pidC , σ, idSDq is a factorisation of θ : B ÝÑ D, so we get a factorisation

pΣ, σ, idΣD̃q of θ : B̃ ÝÑ D̃. Explicitly, Σ: CB ÝÑ CB is given by

ΣpX,αq “ pX,α ˝ σXq, Σpfq “ f.

Observe that the composition of monad morphisms corresponds under this

assignment to the monoidal structure in Fpθq, so when viewing the monad

morphisms as a monoidal category with composition as tensor product and the

identity idB as unit object, we have:

Proposition 4.5. The assignment σ ÞÝÑ pΣ, σ, idΣD̃q is a monoidal functor.215

The factorisation given in Proposition 4.3 arises in this way.

Example 4.6. Let k be a commutative ring and let U be a Hopf algebra over

k. We use Sweedler notation to denote the coproduct

∆puq “ up1q b up2q.
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See [Swe69, Mon93] for more information about Hopf algebras.

Consider the category C “ k-Mod. The functor B “ ´ bk U : C ÝÑ C is

part of a monad B where the multiplication is given by the multiplication of the

algebra U and the unit is given by the unit of the algebra U . Dually, the functor

D “ U bk ´ : C ÝÑ C is part of a comonad, whose structure is given by the

comultiplication and counit of the coalgebra U . There is a mixed distributive

law θ : B ÝÑ D given by

θX : U bk X bk U ÝÑ U bk X bk U

ub xb v ÞÝÑ Spvp2qqub xb vp1q.

Let P be any right U -module. This defines a functor P bk ´ : C ÝÑ C. The

maps

σX : P bk X bk U ÝÑ P bk X bk U

pb xb u ÞÝÑ pup1q b xb up2q

define a distributive law σ : B ÝÑ P bk ´ and the maps

γX : P bk U bk X ÝÑ U bk P bk X

pb ub x ÞÝÑ ub pb x

define a distributive law γ : P bk ´ ÝÑ D. The triple pP bk ´, σ, γq is a

factorisation of θ : B ÝÑ D, and so this gives a factorisation of θ : B̃ ÝÑ D̃ in

the category CB – Mod -U .220

Example 4.7. Let C “ k-Mod where k is a commutative ring, and consider the

functor B “ U bk ´ : C ÝÑ C. Similarly to Example 4.7, this is simultaneously

part of a monad B and a comonad D. There is a mixed distributive law θ : B ÝÑ

D given by

θX : U bk U bk X ÝÑ U bk U bk X

ub v b x ÞÝÑ vSpup2qq b up1q b x
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and a distributive law τ : B ÝÑ B given by

τX : U bk U bk X ÝÑ U bk U bk X

ub v b x ÞÝÑ v b ub x.

If U is commutative (or even just if the antipode S maps into the centre of U),

then pB, τ, θq is a factorisation of θ : B ÝÑ D and so pB̃, τ, θq is a factorisation

of θ : B̃ ÝÑ B̃ in CB – U -Mod.

4.4. Braided distributive laws

Let χ : T ÝÑ C be a comonad distributive law on a category A.225

Definition 4.8. A distributive law τ : T ÝÑ T between the comonad T and

the endofunctor T is braided with respect to χ if the hexagon

TTC
Tχ // TCT χT

**
TTC

τC 44

Tχ
**

CTT

TCT
χT
// CTT Cτ

44

commutes. Dually, we say that a distributive law ϕ : C ÝÑ C between the endo-

functor C and the comonad C is braided with respect to χ if a similar hexagon

commutes.

Clearly, τ is braided if and only if pT, τ, χq is a factorisation of χ, since the

above hexagon is just the Yang-Baxter condition in that case. In the dual case,230

pC,χ, ϕq would be a factorisation of χ.
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Example 4.9. In Example 4.7, the distributive law τ is braided with respect

to θ.

Example 4.10. Let τ : T ÝÑ T be a BD-law. These are defined in [KLV04] and

are exactly those distributive laws which are braided with respect to themselves.235

Thus pT, τ, τq is a factorisation of τ .

Example 4.11. For this example we relax the assumption that monoidal cate-

gories are strict. Let A be a braided monoidal category with tensor product b,

associator morphisms α and braiding morphisms b. Let U “ pU,∆U , εU q and

V “ pV,∆V , εV q be comonoids in A. The comonoids U,V define two comonads

U,V with endofunctors U b ´, V b ´ respectively, and three distributive laws

χ : U ÝÑ V, τ : U ÝÑ U and ϕ : V ÝÑ V defined by

U b pV bXq
α´1

U,V,X // pU b V q bX
bU,V bid // pV b Uq bX

αV,U,X // V b pU bXq

U b pU bXq
α´1

U,U,X // pU b Uq bX
bU,Ubid // pU b Uq bX

αU,U,X // U b pU bXq

V b pV bXq
α´1

V,V,X // pV b V q bX
bV,V bid // pV b V q bX

αV,V,X // V b pV bXq

respectively. The distributive laws τ and ϕ are both braided with respect to χ

so we get two factorisations pU b ´, τ, χq and pV b ´, χ, ϕq of χ. By Proposi-

tion 3.5 these are both comonoids in Fpχq. This example comes from the dual

of Example 1.11 in [BŞ09].240

4.5. Quantum doubles

In our final example, we consider the distributive laws corresponding to

quantum doubles: let B and C be two Hopf algebras over a commutative ring

k and R P C bk B be an invertible 2-cycle, meaning that we have

p∆C bk idBqpRq “ R13R23, pidC bk ∆BqpRq “ R12R13,
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pidC bk S
BqpRq “ R´1, pSC bk idBqpRq “ R´1,

where R´1 refers to the multiplicative inverse in the tensor product algebra

C bk B and subscripts denote components in C bk C bk B respectively C bk

B bk B. We refer to [CP95] for more background information.

The coalgebras B and C define comonads T and C on A “ k-Mod given245

by B bk ´ and C bk ´ with structure maps given by the coproducts and the

counits. The 2-cycle R defines a distributive law χ : T ÝÑ C given by

χX : B bk C bk X ÝÑ C bk B bk X

bb cb x ÞÝÑ Rpcb bqR´1 b x.

In this case, every pB,Copq-bimodule M , that is, a k-module M with two

commuting left actions of B and C, gives rise to a factorisation of χ: let

Σ: A ÝÑ A be the functor M bk ´. We define distributive laws

σX : B bkM bk X ÝÑM bk B bk X, γX : M bk C bk X ÝÑ C bkM bk X,

bbmb x ÞÝÑ R12pmb bb xq, mb cb x ÞÝÑ R12pcbmb xq.

Then a straightforward computation shows that pΣ, σ, γq is a factorisation of χ.
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