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Abstract

Recently, Bchm and Stefan constructed duplicial (paracyclic) objects from dis-
tributive laws between (co)monads. Here we define the category of factorisations
of a distributive law, show that it acts on this construction, and give some ex-
plicit examples.
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1. Introduction

Distributive laws between monads were originally defined by Beck in [Bec69]
and correspond to monad structures on the composite of the two monads. They
have found many applications in mathematics as well as computer science; see
e.g. [Bur09, [Chelll, ([Lod08, Tur96l, VWG]

Recently, distributive laws have been used by Béhm and Stefan [BS08| [BS12]
to construct new examples of duplicial objects [DK85], and hence cyclic homol-

ogy theories. The paradigmatic example of such a theory is the cyclic homology
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HC(A) of an associative algebra A [Con85l [Tsy83]. It was observed by Kuster-
mans, Murphy, and Tuset [KMT03] that the functor HC can be twisted by
automorphisms of A. The aim of the present paper is to extend this procedure
to any duplicial object defined by a distributive law.

Given a distributive law x we define in Section the category F(x) of
its factorisations. The main technical results are the definition of a monoidal
structure on F(x) (Lemma and Proposition [3.3)), a characterisation of the
comonoids in F(x) (Proposition [3.5]), and the definition of actions of F(x) on
the category of admissible data (septuples in [BS08|) which turns the latter into
an F(x)-bimodule category (Theorem and Corollary .

The remainder of the paper is devoted to examples. We begin by considering
factorisations of distributive laws on Eilenberg-Moore categories, interpreting
these as flat connections (Section . In particular, we present the twisting
of cyclic homology in this framework (Section . We then describe examples
arising from Hopf algebras (Section . The final examples are concerned
with BD-laws, braidings (Section , and quantum doubles of Hopf algebras
(Section [L.F)).

Throughout this paper, A, B,C... are categories, A, B,C,... are functors,
and greek letters are used to denote natural transformations. We use o to denote

composition of morphisms and vertical composition of natural transformations.
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The composition of functors and the horizontal composition of natural trans-
formations will be denoted simply by concatenation. The identity morphism,
functor and natural transformation is denoted by id. However, we denote the

horizontal composition aid48 by aAS.

2. Preliminaries

In this section, we recall basic definitions and results that are needed later.

2.1. (Co)monads

Let A be a category.
Definition 2.1. A comonad on A is a triple C = (C, A, ¢) where C' is an endo-
functor on A, and A: C — CC and ¢: C' —> id 4 are natural transformations

such that
CAoA=ACoA, eCoA=idec=CeoA,

that is, the two diagrams

c—2.cco c—2.cc

AJ/ iCA Al \ lCe

CC —— CCC cC——=C
AC eC

commute.

In other words, a comonad is a comonoid (or coalgebra) in the monoidal
category [A,A] of endofunctors on A (with composition as tensor product).

Dually, a monad on a category C is a monoid (algebra) in [C,C].
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2.2. Module categories

Next, we recall the notion of a module category (also known as an M-
category) over a monoidal category (M, ®, 1), see e.g. [Bén67]. For the purpose
of this paper, all monoidal categories and their module categories are strict, and

by abuse of notation we will write M to refer to the whole triple (M, ®, 1).

Definition 2.2. A left module category for M is a pair (C,>) where C is a

category and >: M xC — C is a functor such that we have functorial identities
1>P=P and X>(Y>P)=(XQY)>P
for all objects X,Y in M and P in C. We call > the left action of M on C.

Dually, one defines a right module category (D,<1). A bimodule category
is a triple (C,>, <1) where (C,>) and (C, <) are right respectively left module
categories and the actions commute, i.e. for all objects X,Y in M and P in C

we have

X>(P<Y)=(Xp>P)Y,
again functorially in X,Y and P. We immediately have the following.

Lemma 2.3. Let (C,r>) and (D, <) be left respectively right module categories.

Then C x D is a bimodule category with actions given by
X (PQ)<Y =(X>PQQY)

for all objects X,Y in M, P in C and @ in D.
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2.3. Eilenberg-Moore categories

The comonads we are mostly interested in arise as restrictions of monads to

their Eilenberg-Moore categories in the sense of [Par77l:

Definition 2.4. Let (C,r>) be a left module category for a monoidal category
M, and let B = (B, u,n) be a monoid in M. The Filenberg-Moore category of
B, denoted by CB, is the category whose objects are pairs (X, a), where X is an
object of C and a: B> X — X is a morphism in C such that the diagrams

(B®B)>X=——Br (B X) 2B X 10X 2% g x
M J{a \la
B>X—— =X X

commute. The morphisms f: (X,a) — (X', ') are morphisms f: X — X’

in C such that the diagram

commutes.

Now observe that the monoid B defines a comonad B = (B, A, £)on A=CE

where B is defined on objects and morphisms by

B(X,a) = (B> X,ur>idx), B(f) =idg > f,

and A, € are defined on objects (X, a) by

idBl>(7]l>idx)
_—

B>X=Bp> (1> X) B> (B> X) B> X —""+X

respectively.
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In particular, every category C is in an obvious way a module category over
[C,C]. In this case, our definition of Eilenberg-Moore category of a monad B on

C is the same as the usual definition [ML98| p. 139].

2.4. Distributive laws
Next we define distributive laws. Note that we consider them between
(co)monads and arbitrary endofunctors as is common in the computer science

literature, see e.g. [Tur96].

Definition 2.5. Let T = (T, A, ¢) be a comonad on A and let C be an endo-
functor on A. A distributive law between the comonad T and the endofunctor

C is a transformation x: TC' — CT such that the two diagrams

TC — > o7 A oTT TC X~ CT
Acl TXT \ iCE
eC
¢ —— . TCT C
Tx

commute. We denote this by x: T — C. Analogously, we define a distributive
law x: T —> C between an endofunctor 7" and a comonad C. A comonad
distributive law x: T — C is a transformation x which is a distributive law

between endofunctors and comonads in both ways.

Dually, we can define distributive laws involving monads; distributive laws
from a monad to a comonad are usually called mixed distributive laws.

One application of distributive laws is to lift endofunctors to Eilenberg-
Moore categories: let B be a monad on a category C and 8: B — D be a

distributive law. We define a functor D: C® — C® as follows. On objects we
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define

D(X,a) = (DX,Daofx)

and we define Df = Df on morphisms. The distributive law 6 lifts to give one
0: B —> D where B is the comonad described in Section If D is part of a
comonad D = (D, A, ¢), and 6 is a mixed distributive law B — D, then D is
part of a comonad

D = (D,A,e)

and 0 lifts to a comonad distributive law 0: B — D.

See [Bec69, Bur73] for more details on distributive laws.

2.5. The categories of x-coalgebras

Let T = (T, AT,ET) and C = (C, AC,EC) be comonads on A, and let

x: T — C be a distributive law.

Definition 2.6. A right x-coalgebra is a triple (M, X, p) where X is a category,
M: X — Ais a functor and p: TM — CM is a natural transformation such

that the diagrams

™ 22 v T oM ™
l l e M i
P XM p
CMT>CC’M<—CTM M~<~—CM
ACM Cp e“M

commute. A morphism of right x-coalgebras between (M, X, p) and (M', X', p')
is a pair (¢, F'), where F: X — X’ is a functor and ¢: M — M'F is a natural

transformation such that the diagram

™ - M

CM ——CM'F
Co
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commutes. We define composition of morphisms by

(¢, F')o(p, F) = (¢'Fop,F'F)
and we define identity morphisms by idsx ) = (idar,idy). We denote the
category of right x-coalgebras by R(x).

Dually, we define the category L(x) of left x-coalgebras (N, Y, \).

2.6. The construction of Bohm and Stefan
Finally, we recall the construction of duplicial functors from a comonad

distributive law x: T — C on a category A due to Bohm and Stefan.

Definition 2.7. The category of admissible data over x is the product category

S(x) == R(x) x L(x)-
Admissible data are called admissible septuples in [BS0S].

To every admissible datum (M, X, p, N, Y, ) there is an associated duplicial
functor X — Y defined by

Do(M,X,p,N,Y,\) = NT*** M

which is given objectwise by taking the bar resolution of M with respect to
the comonad T, and then applying the functor N. If ) is an abelian category,
we can apply the duplicial functor to an object X in X resulting in a duplicial
object in ) of which we can take the cyclic homology.

This construction, which unifies and generalises the definition of the cyclic

homology of associative algebras and Hopf algebras, is detailed in [BS08, [BS12].
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3. Theory

3.1. The category of factorisations F(x)
Throughout this section, let T = (T, AT,sT) and C = (C, Ac,ec) be
comonads on a category A, and let xy: T — C be a distributive law. The

main definition of the present paper is the following:

Definition 3.1. A factorisation of x is a triple (2, 0,7) where ¥ is an endo-
functor on A, and 0: T — ¥ and 7: ¥ — C are distributive laws satisfying

the Yang-Bazter condition; that is, the hexagon

o _STCX50T
— T~
TC -~ cyrT
\
" UTCS —~CTE " 7
X
commutes. A morphism «: (3,0,v) — (X', 0’,7) of factorisations is a natural

transformation «: ¥ — ¥ which is compatible with T" and C' in the sense that

the diagrams

T L 73y e 2 ye
Ul la’ Wl J{v’
T v X'T (&> <o (>4
commute. There are identity morphisms id(s 5,y = ids, and composition of

morphisms is given by the vertical composite. This defines the category of

factorisations which we denote by F(x).

Similarly, we define factorisations of a monad or mixed distributive law.



3.2. The monoidal structure

We define a functor
®: F(x) x F(x) — F(x)
as follows. On objects we define
(3,0,7)® (X, 0',79) = (ZX, 30" o o¥,vX 0 Tv')

and for two morphisms «, 8 we define a ® 8 to be a3, the horizontal composite

w0 of the natural transformations.
Lemma 3.2. The assignment ® is a well-defined functor.

Proof. Firstly, ® is well-defined on objects if Yo' o oX’ and vX/ o X7/ satisfy the

Yang-Baxter condition. Consider the following diagram

wYTC 22X ssror

xTYC C¥'T /
ox'C ~S'T
=T {c:’ \
T2Y'C S1TCY S SCTY cxy'T
X \ /
TYy TSSO ocC% YT ONTSY CXo
T~y 4:

TCYY —— CTYY!
XXX

The left square commutes by naturality of o and the right square commutes by
naturality of 4. The inner hexagons commute by the Yang-Baxter conditions.
Therefore, the outer hexagon commutes, so the required condition is satisfied.

Secondly, let

a: (8,0,v) — (T, k,v) and B: (X, 0, — (I, K, V)

10



be morphisms in F(x). Consider the diagram

ey Lo prsy 8 ppp

aZ'i lnzl \LKF'

7Y ——TTY ——TTT’

aTY! rrp
Yo’ i lf‘a' \L T'x’

YT ——TYT ——TT'T
’ AT

ax'T
105 The bottom-left square commutes by naturality of «, the top-right square com-
mutes by naturality of k, and the two remaining inner squares commute since o
and B are compatible with T". Therefore, the outer square commutes and a®f is
compatible with T'. A similar argument shows that o ® 3 is compatible with C.
It is clear that ® respects composition of morphisms and identity morphisms.

o Therefore, ® is well-defined on morphisms. O
Let 1 denote the trivial factorisation (id 4, idr,id¢).
Proposition 3.3. The triple (F(x),®,1) is a strict monoidal category.
Proof. 1t is clear that T ®1 = 1® 7T = T for all factorisations 7. Consider the
products of factorisations
(B0, ® (X,0",7) ® (X", 0", 7")
— (2:2:/7 EO_/ o 0_21772/ o E’Y,) ® (E”,O-//,'y”)
_ (22/2//, EEIO_// o EO_/E// o 0_2[2/[7 72/2// o 27/2[/ o 22/7”)
and
(Z,0,7) @ ((X,0",7) ® (X",0",7"))
— (270_7 ,7) ® (2/2//’ /0_// o 0”2”,'7/2” o El’y”)

— (EE/E”, Z /O_I/ o 20_/2// o UE/E//,’YZ/E// o E'}/E” o EE/'Y//).

11
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These are equal so ® is an associative tensor product (observe that all equalities

are functorial). O

Remark 3.4. If we ignore set theoretic issues, we can define a 2-category
dist := Cmd(Cmd(CAT?)°P)

where CAT is the 2-category of categories, functors and natural transformations,
Cmd denotes taking the 2-category of comonads, and op denotes reversal of 1-
cells. The O-cells of this 2-category are comonad distributive laws x and we

have

F(x) = dist(x, x)

which is a strict monoidal category. This gives another proof of Proposition 3.3

See [Str72l BLSTI] for the definition of Cmd.

3.3. (Co)monads as (co)monoids in F(x)

By definition, a pair of morphisms
A: (B,0,7) — (5,0,7)®(2,0,7), &:(8,07) —1

is a pair of natural transformations A: ¥ — ¥¥ and €: ¥ — 1 that are
compatible with the distributive laws o and . This gives us the following

characterisation of comonoids in F(x).

Proposition 3.5. A factorisation (X,0,7) is a comonoid in F(x) if and only

if X is part of a comonad and o, are distributive laws of comonads.

12



Dually, a factorisation (3, o, ) is a monoid in F(x) if and only if X is part of

a monad and o, are mixed distributive laws between monads and comonads.

s Corollary 3.6. Let x:idyq — id g be the trivial distributive law given by the
identity. Then (T,A,€) is a comonad on A if and only if (T,idp,idr) is a
comonoid in F(x), and (B, u,n) is a monad on A if and only if (B,idp,idg) is

a monoid in F(x).

3.4. Module categories for F(x)

We define a functor >: F(x) x R(x) — R(x) as follows. On objects we
define
(E,0.7)> (M, X, p) = (EM,X,yM o EpooM)

1w and on morphisms we define a > (g, F') to be the pair (ayp, F').
Proposition 3.7. The assignment > is a well-defined functor.

Proof. Consider the diagram

TsM —AEM pryay oM perar 2 ryom — M rosv
oM io’TM oCM xXZM
STM STTM — > YTCM CTSM

sAT M XTp
YxM CoM
S sorm M oxrm
XCp CXp
SCM NCCM cxCM
SAC M ~CM
yCM CyM
csM cosM
ACSM

13
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The top-left and bottom rectangles commute by the distributive law axioms,
the middle-left rectangle commutes because (M, X, p) is a right x-coalgebra, the
top-right diagram commutes by the Yang-Baxter condition, and the remaining
squares commute by naturality of o, y. Therefore, the outer rectangle commutes.

Consider the triangle

TSM —2M ST M i som Mo oxm

2eTM M
eTsM LM

XM

The middle triangle commutes because (M, X, p) is a right x-coalgebra, and the
other two inner triangles commute by the distributive law axioms. Therefore,
the outer triangle commutes. This shows that > is well-defined on objects.

Let (p,F): (M, X,p) — (M',X',p) and a: (£,0,7) — (¥',0",7) be
morphisms of right y-coalgebras and factorisations, respectively. Consider the
diagram

sy T s T ryvrp
JM\L oM’ J/U'M/F

STM 2T s 25 svrar p

Epl J{E'p J/ 'p'F

YCM ——=YCM ——=Y'CM'F
aCM S Cp

The top-left square commutes since « is compatible with 7', the top-right square
commutes by naturality of o, the bottom-left square commutes by naturality
of a, and the bottom-right square commutes since (¢, F') is a right x-coalgebra
morphism. Thus the outer square commutes, which shows that o> (¢, F) is a

right y-coalgebra morphism.

14



It is clear that > respects identities and composition of morphisms (because
us the vertical and horizontal compositions of natural transformations are compat-

ible with each other), so > is well-defined on morphisms. O
Dually, we also define a functor
< L(x) x F) — L{x)-

Theorem 3.8. The category R(x) is a strict left module category for F(x),
with left action given by the functor t>. Furthermore, the category L(x) is a

strict right module category for F(x), with right action given by the functor <.

Proof. We will prove only the first statement, as the second follows by a similar
argument. It is clear that 1 acts as the identity. Let (%, 0,7), (X',0’,7') be two
factorisations and let (M, X, p) be a right y-coalgebra. We have

(B,0,7)® (X, 0",9)) > (M, X, p)
= (I, 380" 00X, 4X 0 By) > (M, X, p)

= (SX'M, X, X' M o Sy M oS5 po So'M o 0¥’ M)

and
(Z,0,7) > (X, 0",7) > (M, X, p))
= (%,0,7) > (EM,X,yM o XpooM)
= (XXM, X, 7YX’ M oYXy Mo X% poXo’Moa¥ M)
150 These are functorially equal, so > is a left action of F(x). O

Corollary 3.9. The category S(x) is a strict bimodule category for F(x).

Proof. This follows immediately by applying Lemma 2.3 to Theorem 3.8 O

15
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4. Examples

4.1. Flat connections
Let B = (B,u,n) be a monad on a category C. The forgetful functor
U:C® — C has a left adjoint F' defined by

F(X7a):(BXa,UfX)7 F(f):Bf

The unit of this adjunction is given by 7 and the counit is £ x ) = a. Let
B denote the functor FU and let A denote the natural transformation FnU.
The adjunction gives rise to a comonad B = (B, A, €), which is the same as the
comonad discussed in Section 2.3

Let ¥: C® — CB be an endofunctor. For every object (X, a) in C® there

are natural isomorphisms
CB(BX(X,a),2B(X,a)) = C(UX(X,a),USB(X, a))

given by the adjunction, so there is a one-to-one correspondence between natural
transformations o: BY, — B and natural transformations V: UYL — UXB.

In fact, o is a distributive law if and only if the diagrams

Uy —Y S USB Uy —~Y -~ ULB
vi J{vé \ lUZ}é
USB——=UYBB Us

UXA

commute.

Definition 4.1. We say that the natural transformation o is a connection if
€ is compatible with o, i.e. the second diagram above commutes for the corre-

sponding natural transformation V. We say that a connection o is flat if A is

16
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compatible with o, i.e. ¢ is a distributive law, or equivalently, both diagrams

above commute.

The terminology is motivated by the special case discussed in detail in the

following section.

4.2. (A, A)-bimodules
Let k be a commutative ring and let A be a unital associative algebra over
k. Let C = A-Mod be the category of left A-modules. The functor B = — ®
A: C — C, together with the natural transformations
pn: M@ AR A— M Q1 A nv: M — M@, A
mRabr— m ab m—mQ1
defines a monad B on C which lifts to a comonad B on CB. The latter is isomor-
phic to the category of (A, A)-bimodules (with symmetric action of k).
The functor D = AQ;—: C —> C, together with the natural transformations
AMA®kM—>A®kA®kM E]wiA@kM—)M
a@m+—a®1R®m a®m—> am

defines a comonad D on C. There is a mixed distributive law 6: B — D given

by rebracketing on components
Orp: (AR M) ®p A — AR, (M ®r A)

so this lifts to a comonad distributive law 6: B — D.
Let N be an (A, A)-bimodule and X: C® — C® be the functor defined by
(M) =M ®a N. We have that D = DY so the identity idy,5: ¥ — D is a

distributive law.

17
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In this case, the components of a natural transformation V: UY — UXB

are given by a left A-linear map
VM: M@AN—>(M®;€A)®AN;M®]€N
The corresponding natural transformation o: B— Y is given by

o (MAN)QrA— (MK A) @4 N=ME,N

(M®an)®br— Vi(m®an)b.

The natural transformation V defines a connection if and only if each V,
splits the quotient map M ®, N — M ®4 N. Taking M = A yields an
A-linear splitting of the action A ®, N — N, so N is k-relative projective.
Conversely, given a splitting n — n(_1) ® n() of the action, we obtain Vj; as
Vu(m®an) = mn—1y ® n)-

Thus we have:

Proposition 4.2. The functor ¥ admits a connection o if and only if N is

k-relative projective as a left A-module.
Composing V4 with the noncommutative De Rham differential
d: A—>Qh’k7 a—1®a—-—a®1

gives the notion of connection in noncommutative geometry [Con94, III.3.5].
If N is not just k-relative projective but k-relative free, i.e. N ~ A®y V as
left A-modules, for some k-module V', then the assignment V;(m®a (a®v)) =

ma ® (1 ®v) defines a flat connection. Thus we have:

18
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Proposition 4.3. The triple (£,0,ids.5) is a factorisation of 6.

In particular, let o: A — A be an algebra map and N = A,, the (A, A)-
bimodule which is A as a left A-module with right action of a € A given by
right multiplication by o(a). Then we have (M) = M ®4 Ay = M,. Since A,
is free as a left A-module we get a factorisation (X, o,idy5) by Proposition

where 0: B —> ¥ is the flat connection defined on components by

om: Mo @y A— (M@ Ay

m®ar— mo(a).

Note that we use ¢ to denote both the algebra map and the flat connection.

From the general theory developed in Section [3|we obtain therefore an action
of the group of endomorphisms of A on the category of admissible data for
f. In particular, we can act on the standard cyclic object associated to A
[Con85l [Tsy83|, which corresponds to the following admissible datum.

Consider A as a functor A: {*} — C® from the one-morphism category
to the category of (A, A)-bimodules. Since BA = DA = A®; A we have a
natural transformation p = idag,4: BA — DA. The triple (4, {*},p) is a
right #-coalgebra.

Considering (A, A)-bimodules as either left or right A° := A®), A°P-modules,
we view the zeroth Hochschild homology as a functor H = — @4 A: C® —

k-Mod. We define a natural transformation A\: HD — HB by

AN (A@kM)®AeA—>(M®kA)®AeAEM

(a®@m) ®ae b —> mba

19
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The pair (H, k-Mod, ) is a left f-coalgebra, and the duplicial k-module associ-
ated to the admissible datum (A, {*}, p, H, k-Mod, ) is indeed the cyclic object
defining the cyclic homology HC(A).

The cyclic homology of the duplicial object associated to the admissible

datum
(an—» idzﬁ) > (Aa {*}apa Ha k'MOdv )‘) = (Adv {*}7po UAvHv k'MOdvA)

is HC?(A), the o-twisted cyclic homology of A. This was first considered
in [KMTO03] and is discussed in Section 5.2 of [KK11] in the context of Hopf
algebroids. Thus the action of the category of factorisations generalises this

twisting procedure.

4.8. Mized factorisations

Let B = (B, u,n) be a monad on a category C and let ¥: C® — C® be a
functor. In this section, we consider a special case of Section 4.1} when the

functor X is a lift of a functor S: C — C, i.e. there is a commutative diagram

Let D be a comonad on C and let §: B — ID be a distributive law. Distributive
laws v: S —> D lift to give distributive laws v: ¥ — D, and if ~ is part of
a factorisation (S,0,7) of §: B — D then we get a factorisation (X, 0,v) of

9: B — D.

20
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We consider three special cases of this construction. The distributive laws
used therein are instances of one defined on the category of right U-modules,

where U is a left Hopf algebroid, which is defined and discussed in [KKS15].

Example 4.4. Suppose that 0: B — B is a monad morphism which is com-
patible with 6; that is 0: B — B is a natural transformation such that the

three diagrams

oD

BB -%°~ BB ide —> B BD -2°~ BD
oo
n

commute. The first two diagrams say that o: B — id¢ is a distributive law.
The triple (id¢, 0,idgp) is a factorisation of §: B — D), so we get a factorisation

(%,0,idy ;) of 0: B — D. Explicitly, ¥: C® — CP is given by
Y(X,a)=(X,a00x), (f) = f.

Observe that the composition of monad morphisms corresponds under this
assignment to the monoidal structure in F(6), so when viewing the monad
morphisms as a monoidal category with composition as tensor product and the

identity idp as unit object, we have:
Proposition 4.5. The assignment 0 — (X, 0,idy, ) is a monoidal functor.
The factorisation given in Proposition [4.3| arises in this way.

Example 4.6. Let k be a commutative ring and let U be a Hopf algebra over

k. We use Sweedler notation to denote the coproduct
A(u) = u(y) X U(2)-
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See [Swe69, Mon93| for more information about Hopf algebras.

Consider the category C = k-Mod. The functor B = —®, U: C —> C is
part of a monad B where the multiplication is given by the multiplication of the
algebra U and the unit is given by the unit of the algebra U. Dually, the functor
D =U®y —: C — C is part of a comonad, whose structure is given by the
comultiplication and counit of the coalgebra U. There is a mixed distributive
law 6: B — D given by

Ox: U@k XU —U®p X®U
U@z Qv —> S(v(2))u®x® V(7).
Let P be any right U-module. This defines a functor P ®; —: C — C. The
maps
ox: PR X QU — PR X QU
PRTOU— pu) T O u(y)

define a distributive law o0: B — P ®; — and the maps

Ix: PROU®L X — U®x PR, X
PRURT — UuRpRT
define a distributive law v: P ®, — — D. The triple (P ®; —,0,7) is a

factorisation of #: B — I, and so this gives a factorisation of §: B — D in

the category C® =~ Mod-U.

Example 4.7. Let C = k-Mod where k is a commutative ring, and consider the
functor B = U ®;, —: C —> C. Similarly to Example [£.7] this is simultaneously
part of a monad B and a comonad ID. There is a mixed distributive law 6: B —
D given by

Ox: U@ Uk X — U®p Uk X

U@V —> vS(up) ®un) @
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and a distributive law 7: B — B given by

Tx  UQprU@p X — U@ U@y X

URKUVRXTr— vRuUQT.

If U is commutative (or even just if the antipode S maps into the centre of U),
then (B, T,0) is a factorisation of §: B — D and so (B, T, 0) is a factorisation

of : B —> B in CB =~ U-Mod.

4.4. Braided distributive laws

Let x: T —> C be a comonad distributive law on a category .A.

Definition 4.8. A distributive law 7: T — T between the comonad T and

the endofunctor T is braided with respect to x if the hexagon

T
o TTC—~TCT

= T~
TTC — = CTT
Ix—rcr = CTT ™ ©7

commutes. Dually, we say that a distributive law ¢: C' — C between the endo-
functor C and the comonad C is braided with respect to x if a similar hexagon

commutes.

Clearly, 7 is braided if and only if (T, 7, x) is a factorisation of x, since the
above hexagon is just the Yang-Baxter condition in that case. In the dual case,

(C, x, p) would be a factorisation of x.
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Example 4.9. In Example the distributive law 7 is braided with respect
to 6.

Example 4.10. Let 7: T — T be a BD-law. These are defined in [KLV04] and
are exactly those distributive laws which are braided with respect to themselves.

Thus (T, 7, 7) is a factorisation of 7.

Example 4.11. For this example we relax the assumption that monoidal cate-
gories are strict. Let A be a braided monoidal category with tensor product ®,
associator morphisms a and braiding morphisms b. Let U = (U, AY,&V) and
Vv =(V, AV, EV) be comonoids in A. The comonoids U, V define two comonads
U,V with endofunctors U ® —, V ® — respectively, and three distributive laws
X:U—V, 7: U— Uand ¢p: V— V defined by

—1
Ay v, X av,u,x

by, v ®id U,
U@(VeX) —SUeV)@X 2 S (Vo)X "L veUeX)

1

YU, x ay,u,
) —(

x 28y eU) e Xx LU

U®U®®X UeU)® U®U®X)

-1 .
Ay v, x by, v ®id
—_—

Ve VeX) —X veV)®X VeV)eX L ve [V eX)

respectively. The distributive laws 7 and ¢ are both braided with respect to x
so we get two factorisations (U ® —, 7, x) and (V ® —, x, ¢) of x. By Proposi-
tion these are both comonoids in F(x). This example comes from the dual
of Example 1.11 in [BS09].

4.5. Quantum doubles
In our final example, we consider the distributive laws corresponding to
quantum doubles: let B and C be two Hopf algebras over a commutative ring

k and R € C'®; B be an invertible 2-cycle, meaning that we have

(AY ®y idp)(R) = Ri3Raz, (ide @k AP)(R) = Ri2Rus,
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(ide @ SBYR) =R7L, (SC®idp)(R) =R!,

where R~! refers to the multiplicative inverse in the tensor product algebra
C ®i B and subscripts denote components in C' ®; C @ B respectively C Qy
B ®y, B. We refer to [CP95] for more background information.

The coalgebras B and C' define comonads T and C on A = k-Mod given
by B ®; — and C ®; — with structure maps given by the coproducts and the
counits. The 2-cycle R defines a distributive law y: T — C given by

Xx: B, C®r X — C®, B, X

bRc®z — R(c®HR ' @

In this case, every (B, C°P)-bimodule M, that is, a k-module M with two
commuting left actions of B and C, gives rise to a factorisation of x: let

¥: A— A be the functor M ®;, —. We define distributive laws

ox  BIM X —>MQQpBwX, v MRQCRQX — CQrMQeX,

b Mz — Ri2(mR bR x), mRcR®r— Ria(c®m x).

Then a straightforward computation shows that (3, 0,) is a factorisation of .
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