
CYCLIC VS MIXED HOMOLOGY

ULRICH KRÄHMER AND DYLAN MADDEN

Abstract. The spectral theory of the Karoubi operator due to
Cuntz and Quillen is extended to general mixed (duchain) com-
plexes, that is, chain complexes which are simultaneously cochain
complexes. Connes’ coboundary map B can be viewed as a per-
turbation of the noncommutative De Rham differential by a poly-
nomial in the Karoubi operator. The homological impact of such
perturbations is expressed in terms of two short exact sequences.
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1. Mixed complexes

Inspired by Connes’ work on cyclic homology [2,3], Dwyer and Kan
[7, 8] initiated the study of general chain complexes which simultane-
ously are cochain complexes:

U.K. thanks Gabriella Böhm, Niels Kowalzig and Tomasz Maszczyk for discus-
sions, and IMPAN Warsaw and the Wigner Institute Budapest for hospitality.
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Definition 1. A mixed complex of R-modules is a triple (Ω, b, d) where
(Ω, b) and (Ω, d) are a chain respectively a cochain complex:

. . .
b // Ω2

b //

d
oo Ω1

b //

d
oo Ω0

0 //

d
oo 0

0
oo , d2 = b2 = 0.

The mixed homology HM(Ω) is the homology of (T(Ω), b+ d), where

Tn(Ω) :=
⊕
i≥0

Ω̂n−2i, Ω̂i := Ωi/im ξ, ξ := bd+ db.

Dwyer and Kan used the term duchain rather than mixed complex,
but the latter (introduced by Kassel [11]) is now the standard termi-
nology, although it is mostly associated with the special case ξ = 0.

The motivating examples are the noncommutative differential forms
over an associative algebra with the De Rham differential d and the
Hochschild boundary map b, see Example 5 below and [14, Section 2.6]
for a detailed account. However, mixed complexes appear in a wide
range of contexts, e.g. Poisson manifolds [1, 12], Lie-Rinehart algebras
(Lie algebroids) [10], and Hopf algebras [4, 5].

2. The spectral decomposition

Our aim here is to revisit the construction of cyclic homology from
the perspective of general mixed complexes. To this end, we view Ω
as a k[x]-module, where k is the centre of R and x acts by ξ. Thus Ω
defines a sheaf of mixed complexes over the affine line k; this generalises
the spectral decomposition of Ω considered by Cuntz and Quillen [6].

The localisation S−1Ω := k[x, x−1] ⊗k[x] Ω is contractible as a chain
and cochain complex, for if ξ is invertible, then we have

b(ξ−1d) + (ξ−1d)b = id, d(ξ−1b) + (ξ−1b)d = id.

Thus the only stalk of Ω supporting (co)homology is Ω̂ = Ω/im ξ at x =
0. A particularly well-behaved class of mixed complexes is therefore
formed by those which are globally contractible to Ω̂:

Definition 2. We call (Ω, b, d) a (co)homological skyscraper if

Ω→ Ω̂ = Ω/im ξ

is a quasiisomorphism of (co)chain complexes.

This holds for example when Ω = ker ξ ⊕ im ξ so that im ξ ∼= S−1Ω,
and in particular when k is a field and ξ is diagonalisable over k.
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Example 1. For an example of a non-skyscraper, define

Ωn :=

{
R⊕R n = 0, 1,
0 n > 1,

d : Ω0 → Ω1, (r, s) 7→ (r, s),
b : Ω1 → Ω0, (u, v) 7→ (0, u).

The homology of Ω is R in both degrees and so is that of Ω̂, but while
the map induced on homology by the quotient Ω→ Ω̂ is the identity in
degree 0 it vanishes in degree 1, so Ω is not a homological skyscraper.

Example 2. Consider the De Rham complex (Ω, d) of a compact Rie-
mannian manifold, and let b be the adjoint of d with respect to the
Riemannian volume form. Then ξ is the Laplace operator and the
spectral decomposition of this elliptic (essentially) self-adiont operator
yields Ω = kerξ ⊕ imξ, so Ω is a skyscraper and is contractible to kerξ,
the space of harmonic forms. The results of this paper can therefore
also be viewed as an abstraction of the Hodge theorem.

3. Statement of the main results

The noncommutative differential forms over an algebra are not a sky-
scraper with respect to the De Rham differential d, but they are with
respect to the coboundary map B that defines cyclic homology (cf. Sec-
tion 4 below). Our goal is to compare cyclic and mixed homology, and
we will do so for more general deformations of d by polynomials in ξ:

Definition 3. Given any mixed complex (Ω, b, d) and a sequence of
polynomials cn ∈ k[x], we define a new coboundary map

Bn := cndn

and a new spectral parameter

υn := bn+1Bn +Bn−1bn.

We denote the mixed homology of (Ω, b, B) by HC(Ω).

The new spectral parameter turns Ω into a k[x, y]-module, y acting

by υ, that is, a sheaf over the affine plane, and we denote by (Ω̃, b̃, B̃)
the stalk at x = y = 0:

Definition 4. We abbreviate

Ω̃n := Ωn/(im ξn + im υn), HS(Ω) := HC(Ω̃),

HB(Ω) := (ker B̃ ∩ im b̃)/(im (b̃+ B̃) ∩ im b̃) ⊂ HS(Ω),

where we view b̃, B̃ as maps on T(Ω̃).

With these notations introduced, we can state our main result:
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Theorem 1. If all cn ∈ k[x] are invertible in k[[x]] and (Ω, b, B) is a
homological skyscraper, then there are canonical short exact sequences

(1) 0→ HBn(Ω)→ HMn(Ω)→ HSn(Ω)/HBn(Ω)→ 0,

(2) 0→ HCn(Ω)→ HSn(Ω)→ HCn−1(im ξ)→ 0.

The maps in (2) are induced by the embedding im ξ → Ω and the
quotient Ω→ Ω̃, those in (1) will be described in Section 10.

Thus if the two short exact sequences split, then choosing a split for
both yields an isomorphism

HMn(Ω) ∼= HCn(Ω)⊕ HCn−1(im ξ).

Examples 7 and 8 at the end of the paper illustrate the nontriviality
of Theorem 1 by exhibiting mixed complexes for which HC(im ξ) 6= 0
respectively HB(Ω) 6= 0.

A key step in the proof is the following computation that relates the
two spectral parameters; as we will explain below, this extends a result
of Cuntz and Quillen.

Proposition 1. We have

(3) υn = ξncn − dn−1bnfn = bn+1dnfn + ξncn−1,

where fn := cn − cn−1, and

(4) (υn − ξncn)(υn − ξncn−1) = 0.

4. Cyclic homology

The result and the notation used are motivated by the definition of
cyclic homology:

Definition 5. If

cn =
n∑
i=0

(1− x)i =
1− (1− x)n+1

x
=

n∑
i=0

(
n+ 1
i+ 1

)
xi,

we call Bn = dn
∑n

i=0(id−ξn)i the Connes coboundary map and HC(Ω)
the cyclic homology of Ω, and we say Ω is a cyclic complex if υ = 0.

Theorem 1 relates, in particular, the mixed homology of a cyclic
complex to its cyclic homology, as long as the constant coefficients
n + 1 of cn are invertible in the ground ring k. If υ = 0, we in fact
obtain an isomorphism HCn(im ξ) =

⊕
i≥0 ker ξn−2i ∩ im ξn−2i:
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Corollary 1. If (Ω, b, d) is a cyclic complex of Q-vector spaces, then
there are (noncanonical) isomorphisms of vector spaces

HMn(Ω) ∼= HCn(Ω)⊕
⊕
i≥0

ker ξn−1−2i ∩ im ξn−1−2i.

The formulas from Proposition 1 reduce in this case to

(5) Tn = (id− bn+1dn)κnn, κn+1 = Tn(id− dn−1bn),

(6) (Tn − κn+1
n )(Tn − κnn) = 0,

where

(7) κn := id− ξn, Tn := id− υn
are the Karoubi operators of the two mixed complexes (Ω, b, d) and
(Ω, b, B), respectively. This generalises [6, Proposition 3.1] to arbitrary
mixed complexes and in particular to all cyclic ones (Cuntz and Quillen
only considered the example of noncommutative differential forms).

5. Quasiisomorphisms

Before beginning the proofs of the main results, we remark that what
one should call a quasiisomorphism (or weak equivalence) of mixed
complexes is a subtle question that depends on one’s aims (see e.g. [14,
Section 2.5.14] and [8] for two different choices). We will, however, only
encounter the simple case that is covered by the following proposition
which is a straightforward generalisation of [14, Corollary 2.2.3]:

Proposition 2. A morphism ϕ : (Ω, b, d) → (Ω′, b′, d′) of mixed com-
plexes with bd+db = b′d′+d′b′ = 0 induces an isomorphism on homology
if and only if it induces an isomorphism on mixed homology.

Example 3. Observe that the analogue of the proposition for coho-
mological quasiisomorphisms fails: consider for example the two mixed
complexes

Ωn :=

{
C n = 0,
0 n > 0,

Ω′n := C,

with bn = dn = b′n = 0 and

d′n :=

{
0 n = 2k,
id n = 2k + 1,

k ∈ N.

We have

Hn(Ω) = Ωn
∼= Hn(Ω′),
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so the map

ϕn :=

{
id n = 0,
0 n > 0

is a quasiisomorphism of cochain complexes:

. . .
0 // 0

0 //

0
oo

0
��

0
0 //

0
oo

0
��

0
0 //

0
oo

0
��

0
0 //

0
oo

0
��

C
0 //

0
oo

id
��

0
0

oo

. . .
0 // C

0 //

0
oo C

0 //

id
oo C

0 //

0
oo C

0 //

id
oo C

0 //

0
oo 0

0
oo

However, one obtains by direct inspection

HMn(Ω′) ∼= C, HMn(Ω) ∼=
{

C n = 2k,
0 n = 2k + 1,

k ∈ N.

Remark 1. The moral is that, although the rôles of d and b are en-
tirely symmetric in Ω, this symmetry is broken in the definition of
mixed homology, as the action of d is somewhat artificially cut off on
Ω̂n ⊂ Tn(Ω). This changes when one considers the Z2-graded periodic
homology theories; however, then there are two variants:

Tper,Π
s (Ω) :=

∏
j∈N

Ω̂s+2j, Tper,⊕
s (Ω) :=

⊕
j∈N

Ω̂s+2j, s ∈ Z2.

Proposition 2 holds in the same way for HMper,Π, but it is cohomo-
logical quasiisomorphisms rather than homological ones that induce
isomorphisms in HMper,⊕.

6. The proof of Proposition 1

From now on, let (Ω, b, d) be a mixed complex and assume cn ∈ k[x]
satisfy the conditions in Theorem 1. We now develop the theory that
leads to its proof. The steps are illustrated using the example of cyclic
homology, and the first one is the proof of Proposition 1 in which we
relate the maps ξ and υ:

Proof of Proposition 1. The first equation is obtained by straightfor-
ward computation:

υn = bn+1Bn +Bn−1bn = bn+1cndn + cn−1dn−1bn

= bn+1dncn + dn−1bncn−1 = (ξn − dn−1bn)cn + dn−1bncn−1

= bn+1dncn + (ξn − bn+1dn)cn−1.

Thus the first factor in (4) equals −dn−1bnfn+1 and the second one
bn+1dnfn, so their product equals 0 as bnbn+1 = 0. �
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Remark 2. If one perturbs not just dn to Bn = cndn but also bn to
Dn := anbn for some polynomials an ∈ k[x], then one has

Bn−1Dn +Dn+1Bn = ξnan+1cn − dn−1bnfn = bn+1dnfn + ξnancn−1

with fn = an+1cn − ancn−1. That is, one obtains υ but for d perturbed
by the polynomials an+1cn and in this sense it is sufficient to focus on
deformations of d alone.

Example 4. In the case of cyclic homology (cf. Section 4), we obtain

cn =
1− yn+1

1− y
, fn = yn, y := 1− x.

Inserting this into the formulas in Proposition 1 yields the formulas
(5)-(7) from Section 4.

7. The quasiisomorphism Ω→ Ω̄

As part of the assumptions of Theorem 1, (Ω, b, B) is a homological
skyscraper, so (im υ, b) has trivial homology. We now use this to relate
the mixed homology of Ω to that of the quotients

Ω̄ := Ω/im υ, Ω̃ := Ω/(im ξ + im υ).

In the sequel, d̄, b̄, ξ̄ and b̃, d̃, ξ̃ refer to the structure maps in Ω̄ respec-
tively Ω̃.

Lemma 1. (im ξ ∩ im υ, b) has trivial homology.

Proof. If x ∈ (im υ ∩ im ξ)n and bnx = 0, then as (im υ, b) has no
homology, there is y ∈ Ωn+1 with x = bn+1υn+1y. By Proposition 1,
this equals bn+1ξn+1cny, so x ∈ b(im υ ∩ im ξ)n+1. �

Lemma 2. The canonical quotient Ω̂ → Ω̃ is a quasiisomorphism of
chain complexes. In particular, the quotient (Ω, b, d) → (Ω̄, b̄, d̄) in-
duces isomorphisms HM(Ω) ∼= HM(Ω̄).

Proof. We need to show that the kernel

im υ/(im ξ ∩ im υ)

has trivial homology. However, this follows from the fact that im υ
and im ξ∩ im υ have trivial homology (im υ has trivial homology by the
assumption that (Ω, b, B) is a homological skyscraper, and im ξ ∩ im υ
has trivial homology by Lemma 1). The second claim now follows from
Proposition 2. �
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Example 5. If Ω is a cyclic complex and HC defines its cyclic homology
as in Definition 5, then υ = 0 and Ω = Ω̄, so the above lemma becomes
trivial. However, consider an associative algebra A and the A-bimodule
Aσ which is A as a left A-module but whose right action is given by
x / y := xσ(y) for some algebra endomorphism σ. The boundary map
b in the mixed complex formed by the noncommutative differential
forms over A can be “twisted” by σ so that it computes the Hochschild
homology of A with coefficients in Aσ. Explicitly, we have

Ωn := A⊗k (A/k)⊗kn

where k is embedded into A as scalar multiples of the unit element, bn
is induced by the map

a0 ⊗k a1 ⊗k · · · ⊗k an 7→ a0σ(a1)⊗k a2 ⊗k · · · ⊗k an
− a0 ⊗k a1a2 ⊗k · · · ⊗k an + . . .

+ (−1)n−1a0 ⊗k a1 ⊗k · · · ⊗k an−1an

+ (−1)nana0 ⊗k a1 ⊗k · · · ⊗k an−1

and dn is induced by

dn(ω) := 1⊗k ω.
In this case, HC(Ω) is the twisted cyclic homology of A that was first
considered by Kustermans, Murphy and Tuset [13]. To generalise the
theory of Cuntz and Quillen (which concerns the case where σ = id)
to this setting was one of our original aims, motivated in particular
by Shapiro’s extension [15] of Karoubi’s noncommutative De Rham
theory.

8. The quasiisomorphism ker ξ̄2 → Ω̄

From now on, we will study the mixed complex Ω̄ in further detail.

Lemma 3. We have

(8) Ω̄ = ker ξ̄2 ⊕ im ξ̄2.

Proof. That all cn are invertible in k[[x]] means their constant coeffi-
cients are invertible in k. Hence also cn−1cn has an invertible constant
coefficient εn ∈ k. Let δn, γn ∈ k be its linear and quadratic coefficient,

cn−1cn = εn + δnx+ γnx
2 + . . .

and define

p̄n := ε−2
n (εn − δnξ̄)c̄n−1c̄n = 1 +

(
γn
εn
− δ2

n

ε2
n

)
ξ̄2 + . . . ,
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where c̄n : Ω̄n → Ω̄n is the map obtained by inserting ξ̄ into cn.

Since υ induces the trivial map on Ω̄ = Ω/im υ, Proposition 1 implies

(9) ξ̄2c̄n−1c̄n = 0,

so we get

im p̄n ⊂ im c̄n−1c̄n ⊂ ker ξ̄2, im ξ̄2 ⊂ ker c̄n−1c̄n ⊂ ker p̄n.

Conversely, p̄n acts by definition as the identity on ker ξ̄2, so we also

have ker ξ̄2 ⊂ im p̄n, and on ker p̄n we have 1 = ξ̄2
(
δ2n
ε2n
− γn

εn

)
+ . . ., so

ker p̄n ⊂ im ξ̄2. It follows that ker ξ̄2 = im p̄n and im ξ̄2 = ker p̄n, and
also that p̄2

n = p̄n, so Ω/im υ = im p̄n ⊕ ker p̄n. �

Lemma 4. The inclusion ker ξ̄2 → Ω̄ induces isomorphisms

HM(Ω̄) ∼= HM(ker ξ̄2), HC(Ω̄) ∼= HC(ker ξ̄2).

Proof. As ξ̄ is a morphism of mixed complexes, (8) is a decomposition
of mixed complexes. Since we have

ker ξ̄ ⊂ ker ξ̄2, im ξ̄2 ⊂ im ξ̄,

we conclude

Ω̃ = Ω/(im υ + im ξ) ∼= Ω̄/im ξ̄ ∼= ker ξ̄2/im ξ̄,

so the first isomorphism is obvious. Equation (8) also implies that ξ̄2

and hence ξ̄ is invertible on im ξ̄2, so im ξ̄2 is contractible as explained
in Section 2, which means the inclusion is a quasiisomorphism with
respect to b̄. Hence the second isomorphism follows from Proposition 2.

�

For later use, we record here another elementary consequence of
Lemma 3:

Corollary 2. We have im ξ̄ ∩ ker ξ̄2 = im ξ̄ ∩ ker ξ̄.

Proof. Given y = ξ̄(x) ∈ ker ξ̄2, decompose x as x = v + w with
v ∈ ker ξ̄2 and w ∈ im ξ̄2. Then ξ̄2(y) = 0 means ξ̄3(v) + ξ̄3(w) = 0;
so ξ̄2(v) = 0 yields ξ̄3(w) = 0. However, ξ̄ is injective on im ξ2 as
already remarked in the previous proof, so w = 0, hence x = v, so
ξ̄(y) = ξ̄2(x) = ξ̄2(v) = 0. �

Remark 3. All the above computations are abstractions of those made
by Cuntz and Quillen for the noncommutative differential forms over an
associative algebra [6]. Informally speaking, the message of Lemma 4
can be stated as follows: the “best” mixed complexes are those where
ξ = 0, as one can compute HM(Ω) straight from Ω using a spectral
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sequence. The second best case is Ω = ker ξ ⊕ im ξ; as mentioned
after Definition 2 this means ξ vanishes in a strong homotopical sense.
Lemma 4 tells us that in general ξ2 vanishes in this homotopical sense,
so ξ is homotopically infinitesimal.

9. The second exact sequence

We now will derive the second of the two short exact sequences in
Theorem 1.

First, we need the following computation:

Lemma 5. On ker ξ̄2, we have b̄ξ̄ = d̄ξ̄ = 0, B̄n := c̄nd̄n = βnd̄n, where
βn ∈ k is the constant coefficient of cn, and we have

ξ̄n = (1− βn−1

βn
)d̄n−1b̄n = (1− βn

βn−1

)b̄n+1d̄n.

Proof. Multiplying the second expression for υ = 0 in (3) in Proposi-
tion 1 on the left by bn and using ξ̄2 = 0 gives

b̄nξ̄c̄n−1 = βn−1b̄nξ̄ = 0,

so b̄ξ̄ = 0 as all βn are invertible. Similarly, one obtains d̄ξ̄ = 0. The
fact that B̄n = βndn is an immediate consequence, and the formulas
for ξ̄n are obtained by direct computation:

ξ̄n = d̄n−1b̄n + b̄n+1d̄n = d̄n−1b̄n + β−1
n b̄n+1B̄n

= d̄n−1b̄n − β−1
n B̄n−1b̄n = (1− βn−1

βn
)d̄n−1b̄n

and similarly ξ̄n = (1− βn
βn−1

)b̄n+1d̄n. �

Additionally, we will utilise the following general statement (recall

Ω̂ = Ω/im ξ):

Lemma 6. If (Ω, b, d) is a mixed complex with ξ2 = υ = 0, there are
short exact sequences

0 // HCn(Ω) // HCn(Ω̂) //
⊕

i≥0 im ξn−1−2i
// 0

Proof. The short exact sequence

0 // (im ξ, b, B) // (Ω, b, B) // (Ω̂, b̂, B̂) // 0
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of mixed complexes induces short exact sequences of the total com-
plexes

(10) 0 // T(im ξ) // T(Ω) // T(Ω̂) // 0

whose differential is b + B (recall that υ = bB + Bb = 0 so that
Tn(Ω) = Ωn ⊕ Ωn−2 . . . here). However, by Lemma 5, b + B vanishes
on im ξ, so T(im ξ) is its own homology. Furthermore, the inclusion
im ξ → Ω induces the trivial map on homology, as Lemma 5 implies

(ξnxn, ξn−2xn−2, . . .)

= (b+B)((1− βn
βn−1

)dnxn, (1−
βn−2

βn−3

)dn−2xn−2, . . .),

so indeed, the homology class of an element in T(im ξ) becomes trivial
in HC(Ω). Therefore, the long exact homology sequence induced by
(10) splits up into the short exact sequences stated in the lemma. �

Proof of Theorem 1 (2). We apply Lemma 6 to ker ξ̄2 ⊂ Ω̄. This yields
short exact sequences
(11)

0 // HCn(ker ξ̄2) // HCn(ker ξ̄2/I) //
⊕

i≥0 In−1−2i
// 0

where we abbreviate

I := im ξ̄ ∩ ker ξ̄2 = im ξ̄ ∩ ker ξ̄,

the second equality having been proved in Corollary 3.

Note that in view of the decomposition Ω̄ = ker ξ̄2 ⊕ im ξ̄2 we have

ker ξ̄2/I ∼= Ω̄/im ξ̄ ∼= Ω̃ = Ω/(imξ + imυ).

In other words, we have a commutative diagram

ker ξ̄2 //
� _

��

ker ξ̄2/I ∼= Ω̄/im ξ̄

∼=
��

Ω̄ = Ω/im υ // Ω̃ = Ω/(im υ + im ξ),

where the horizontal maps are the canonical projections, the left verti-
cal map is the inclusion, and the right vertical map is an isomorphism
induced by this inclusion.

By Lemma 4, the left vertical arrow induces an isomorphism on HC,

HC(ker ξ̄2) ∼= HC(Ω̄) = HC(Ω).
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Similarly, the right vertical isomorphism yields an isomorphism

HC(ker ξ̄2/I) ∼= HS(Ω) = HC(Ω̂).

These isomorphisms are compatible with the horizontal quotient maps
in the diagram. In other words, the injectivity of the embedding
HC(ker ξ̄2) → HC(ker ξ̄2/I) established in (11) transfers to injectivity

of the map HC(Ω)→ HC(Ω̂) induced by the quotient Ω→ Ω̂.

Since the canonical map HC(Ω)→ HC(Ω̂) is injective, the long exact
homology sequence resulting from the short exact sequence

0→ im ξ → Ω→ Ω̂→ 0

splits into the short exact sequences stated in the theorem. �

Example 6. When considering the cyclic homology of a cyclic com-
plex, we have υ = 0, hence ξ̄ = ξ and we obtain

HCn(im ξ) =
⊕
i≥0

In−2i =
⊕
i≥0

ker ξn−2i ∩ im ξn−2i.

10. The first exact sequence

We begin by pointing out that, without loss of generality, we can
work with Ω̃:

Lemma 7. The canonical quotient maps Ω → Ω̃ respectively Ω̂ → Ω̃
induce isomorphisms HM(Ω) ∼= HM(Ω̃) and HC(Ω̂) ∼= HS(Ω).

Proof. By definition we have HM(Ω) = HM(Ω̂) and HC(Ω̂) = HC(Ω̃).

It remains to verify that HM(Ω̂) ∼= HM(Ω̃). To this end, note that by
the assumption that Ω is a homological skyscraper with respect to B,
the quotient map Ω → Ω̄ is a quasiisomorphism of chain complexes,
and in the proof of Lemma 2 we noted that the quotient map Ω̄ → Ω̃
is, also; that is to say, the composition Ω → Ω̃ is a quasiisomorphism
of chain complexes and, since this factors through Ω̂, the two quotient
maps Ω → Ω̂, Ω̂ → Ω̃ are quasiisomorphisms of chain complexes. The
claim now follows from Proposition 2. �

The bulk of the remaining computations needed to prove Theorem 1
are performed in the following lemma:

Lemma 8. The map ϕn : T(Ω̃)→ T(Ω̃) given by

(xn, xn−2, . . .) 7→ (un, un−2, . . .) := (xn, β
−1
n−2xn−2, β

−1
n−2β

−1
n−4xn−4, . . .)
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induces isomorphisms

HM(Ω̃/im b̃) ∼= HC(Ω̃/im b̃), HM(im b̃) ∼= HC(im b̃),

im(HM(Ω̃)→ HM(Ω̃/im b̃)) ∼= im(HS(Ω)→ HC(Ω̃/im b̃)),(12)

ker(HMn(Ω̃)→ HMn(Ω̃/im b̃)) ∼= ker(HCn(Ω̃)→ HCn(Ω̃/im b̃))(13)

Proof. Explicitly, a class in HMn(Ω̃/im b̃) is represented by an element
x = (xn, xn−2, . . .) ∈ Tn(Ω̃) such that there exists y ∈ Tn(Ω̃) with

b̃xn + d̃xn−2 = b̃yn, b̃xn−2 + d̃xn−4 = b̃yn−2, . . .

The element x represents the trivial homology class in HMn(Ω̃/im b̃) if
and only if there are elements z = (zn+1, zn−1, . . .), t ∈ Tn+1(Ω̃) such
that

(14) b̃zn+1 + d̃zn−1 = xn + b̃tn+1, b̃zn−1 + d̃zn−3 = xn−2 + b̃tn−1, . . .

Recall that ξ̃ = 0 means that B̃n = βnd̃n where βn ∈ k is the constant
coefficient of cn. Hence u = ϕn(x) ∈ Tn(Ω̃) satisfies

b̃un + B̃un−2 = b̃vn, b̃un−2 + B̃un−4 = b̃vn−2, . . .

where v = ϕn(y).

Furthermore, (14) implies

b̃wn+1 + B̃wn−1 = un + b̃sn+1, . . .

with w = ϕn+1(z), s = ϕn+1(t). This shows that ϕn induces a well-
defined map on homology which is clearly bijective. The image of
HMn(Ω̃) in HMn(Ω̃/im b̃) consists of those classes that can be repre-
sented as above with y = 0, and then v = 0 means that the image in
HCn(Ω̃/im b̃) is also in the image of HCn(Ω̃). The other isomorphisms
follow in an exactly analogous way. �

Remark 4. For most of the isomorphisms required in Lemma 8, there
is little restriction on the particular isomorphism we use; we could, for
example, take the identity instead of ϕ. However, this causes (12) to
fail.

Proof of Theorem 1 (1). The short exact sequences of chain complexes

0→ T(im b̃)→ T(Ω̃)→ T(Ω̃/im b̃)→ 0

with respect to b̃+ d̃ and b̃+ B̃ yield long exact sequences

. . . // HMn+1(Ω̃/im b̃)
∂Mn+1// HMn(im b̃) // HMn(Ω̃) // HMn(Ω̃/im b̃)

∂Mn // . . .
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and

. . . // HCn+1(Ω̃/im b̃)
∂Cn+1// HCn(im b̃) // HCn(Ω̃) // HCn(Ω̃/im b̃)

∂Cn // . . .

which split into short exact sequences

0→ HMn(im b̃)/im ∂Mn+1 → HMn(Ω̃)→ ker ∂Mn → 0

and
0→ HCn(im b̃)/im ∂Cn+1 → HCn(Ω̃)→ ker ∂Cn → 0.

The theorem now follows in view of the isomorphisms (of k-modules)

HMn(im b̃)/im ∂Mn+1
∼= HCn(im b̃)/im ∂Cn+1, ker ∂Mn

∼= ker ∂Cn

established in Lemma 8 by inserting the explicit definition of HCn(im b̃)

and of ∂C (which is induced by b̃+ B̃). �

Example 7. For a basic nontrivial example of the main theorem let
k be any commutative ring, q ∈ k, and R be the unital associative
k-algebra generated by x, y satisfying

x2 = y2 = xy + qyx = 0,

so that R is a free k-module with basis {1, x, y, yx}.
We obtain a mixed complex of R-modules with

Ωn :=

{
R/Ryx n = 0,
R n > 0

and bn given by right multiplication by x and dn given by right multi-
plication by y. With cn = qn, that is, Bn given by right multiplication
by qny, we obtain for n > 0 and r ∈ R = Ωn

(bn−1Bn +Bn−1bn)r = r(qnyx+ qn−1xy) = 0,

(bn−1dn + dn−1bn)r = r(yx+ xy) = (1− q)ryx,
and for n = 0

(b1B0)(r +Ryx) = (b1d0)(r +Ryx) = ryx+Ryx = 0.

In particular,
HC1(im ξ) = im ξ1

∼= k/I,

where I � k is the annihiltor of 1− q in k.

We furthermore see

Ω̂n = Ω̃n =

{
R/Ryx n = 0,
R/R(1− q)yx n > 0,

and direct computation yields

HC2(Ω) ∼= k
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with basis given by the class of (0, y + Ryx), while in HC2(Ω̂) and
HM2(Ω) there is an additional generator represented by ((1− q)y, 0),

HC2(Ω̂) ∼= HM2(Ω) ∼= k ⊕ k/I ∼= HC2(Ω)⊕ HC1(im ξ).

Note also that HB2(Ω) = 0 here, so the first isomorphism above is
canonical in this example.

Example 8. Our final example demonstrates that HB(Ω) can be non-
trivial. To see this, consider the mixed complex

Ωn :=

{
C n = 0, 1, 2,
0 n > 2,

with (co)boundary maps

bn :=

{
id n = 1,
0 n 6= 1,

dn :=

{
id n = 1,
0 n 6= 1.

Taking cn := 1 for all n, we obtain

Tn(Ω̃) =

{
C n = 0 or n = 2k + 1,
C⊕ C n = 2k + 2.

Here (0, 1) = b̃(1) ∈ ker B̃ ∩ im b̃ ⊂ T2(Ω̃) generates HB2(Ω) ∼= C, with

im b̃ ∩ im (b̃+ B̃) = 0.
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