
ON PIECEWISE TRIVIAL HOPF-GALOIS EXTENSIONS
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Abstract. We discuss a noncommutative generalisation of compact principal
bundles that can be trivialised relative to the finite covering by closed sets. In
this setting we present bundle reconstruction and reduction.

1. Definitions

This note is an announcement of some results obtained in collaboration with
P.M. Hajac and R. Matthes. They are concerned with a noncommutative gener-
alisation of compact principal bundles that can be trivialised relative to the finite
covering by closed sets. More details and proofs will be published in [11].

1.1. Quantum principal bundles. The bundles themselves become replaced by
extensions of noncommutative algebras B ⊂ P governed by (co)actions of Hopf
algebras on P :

Definition 1. Let H be a Hopf algebra. An H-Galois extension is an algebra
extension B ⊂ P , where P is an H-comodule algebra with coaction ρ : P → P ⊗H,
B = PH-inv := {a ∈ P | ρ(a) = a ⊗ 1} is the subalgebra of H-invariants, and the
canonical map

(1) can : P ⊗B P → P ⊗H, a⊗ a′ 7→ (a⊗ 1)ρ(a′)

is bijective, where the unadorned ⊗ is the tensor product over the ground field k.

From the geometric point of view P and B play the roles of the total and the base
space of the bundle, respectively, and H replaces the structure group. The Galois
condition (1) corresponds classically to the freeness of the action of the structure
group on the total space. For more explanation see e.g. [3, 13].

When developing the theory of these objects, the additional technical conditions
of faithful flatness of P as B-module and bijectivity of the antipode in H turns out to
be necessary in order to avoid certain pathologies [13]. A Hopf-Galois extension with
this property will be referred to as a principal H-extension (a quantum principal
bundle). A morphism of such extensions with fixed B and H is an H-colinear and
left B-linear algebra morphism of the total spaces.

1.2. Coverings of quantum spaces. Local triviality of fibre bundles is a crucial
ingredient throughout their theory and for example allows one to develop gauge
theory in local coordinates. However, the concept of locality based upon open
neighborhoods does not directly generalise to noncommutative geometry. On the
other hand, closed subsets are naturally generalised by ideals (formed classically by
the functions vanishing on the set), so several authors suggested to start instead
with closed coverings [4, 5, 6]. The precise definition we will work with is the
following:
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Definition 2. Let Ω be a finite set and {Ii}i∈Ω be a family of ideals of an algebra
B. Let πi : B → Bi := B/Ii, πi

j : Bi → Bij := B/(Ii + Ij) be the quotient maps,
and define the homomorphism

(2) π : B → Bc :=
{

(bi)i∈Ω ∈
∏

i∈ΩBi | πi
j(bi) = πj

i (bj)
}

, b 7−→ (πi(b))i∈Ω.

Then the {Ii}i∈Ω are said to form a weak covering if π is injective, that is, if⋂
i∈Ω Ii = {0}. If π is an isomorphism, then the weak covering is called a covering

or is said to be complete.

Thus if B is, say, the commutative C∗-algebra C(M) of continous functions on
a compact Hausdorff space M , then coverings of B by closed ideals correspond
bijectively to coverings of M by closed subsets.

An integral domain does not possess any finite weak covering which corresponds
geometrically to the fact that an infinite irreducible topological space admits by very
definition no finite closed covering. Similarly, a C∗-algebra has no finite covering by
closed ideals if it is primitive, that is, admits a faithful irreducible representation,
since this implies that it is prime, that is, every two nonzero closed ideals have
nontrivial intersection. (In fact Dixmier proved also the converse for separable
algebras). Concerning the completeness property we remark that weak coverings
consisting of closed ideals in a C∗-algebra or only of two ideals are always coverings
(the first statement follows since I ∩ J = IJ for closed ideals in a C∗-algebra). See
[5] for an example of a covering that is not complete.

1.3. Glueing quantum spaces. The operation of gluing of algebras is defined
as a fibre product: Given families {Bi}i∈Ω and {Bij}i,j∈Ω of algebras and algebra
epimorphisms πi

j : Bi → Bij such that Bii = Bi, πi
i = idBi and Bij = Bji one can

define an algebra Bc as in eq. (2). This is then called the gluing of the Bi’s along
the πi

j ’s, and the kernels Ii of the canonical maps πi : Bc → Bi define a covering of
Bc [5].

Note that here the maps πi are not necessarily surjective. That is, the data
Bi, Bij , π

i
j which define the gluing Bc do not in general coincide with the data of

the resulting covering (i.e. we usually have Bi 6' Bc/Ii, etc.). However, here is a
sufficient criterion for surjectivity of the πi [5]:

Proposition 1. Given gluing data Bi, Bij , π
i
j as above, the morphisms πi : Bc →

Bi are epimorphisms, provided that the following conditions are satisfied:
1. πi

j(ker πi
k) = πj

i (ker πj
k) for all i, j, k ∈ Ω.

2. The isomorphisms θij
k : Bi/(ker πi

j + ker πi
k) → Bij/πi

j(ker πi
k), [bi] 7→ [πi

j(bi)]
satisfy (θij

k )−1 ◦ θji
k = (θik

j )−1 ◦ θki
j ◦ (θkj

i )−1 ◦ θjk
i .

3. For all i ∈ Ω, β ⊂ Ω\{i} and k ∈ Ω\β, k 6= i, we have
⋂

j∈β(ker πi
j+kerπi

k) =
(
⋂

j∈β ker πi
j) + kerπi

k.

In fact conditions 1. and 2. are necessary, and 3. is automatic in the setting of
C∗-algebras. Thus the conditions are optimal in the applications we have in mind.

1.4. A sheaf-theoretic picture. In classical topology the idea of covering and
gluing is intrinsically connected with the concept of sheaves. Although our coverings
are analogues of closed coverings, the above can indeed be viewed alternatively as
follows: Define

(3) X := Ω× Ω, Ui := {(i, j), (j, i) | j ∈ Ω} ⊂ X, i ∈ Ω



ON PIECEWISE TRIVIAL HOPF-GALOIS EXTENSIONS 3

and consider X with the topology generated by the Ui. That is, the open sets
are the unions of finite intersections of the Ui. We have Ui ∩ Uj = {(i, j), (j, i)},
and these are pairwise disjoint. The data of a gluing as described above are now
encoded in the sheaf F of rings on X with F (Ui) := Bi, F (Ui ∩ Uj) := Bij (the
sheaf property determines F (U) for any other open set). In particular, F (X) = Bc.
This sheaf is of combinatorial rather than of geometric nature, but it can be used
to streamline some formulations. For example, the problem solved by Proposition 1
can be restated as the question whether F is a flasque (flabby) sheaf.

In addition, these considerations show that the approach of [4, 5, 6] is compatible
with the one of [12]. Therein, quantum spaces are introduced as topological spaces
equipped with a sheaf of noncommutative rings, and the above simply tells that an
algebra equipped with a covering defines a quantum space in this sense.

1.5. Piecewise triviality. Tensor products P = B ⊗ H are obvious candidates
for the notion of trivial quantum principal bundles. But one can also allow for
more noncommutativity and work with crossed products B oH whenever B can be
equipped with the structure of an H-module algebra. This is needed for example
to cover examples like the Heegaard-type quantum 3-spheres [1, 9].

Furthermore, if π : X → M is a fibre bundle say with M,X compact Hausdorff,
and I ⊂ C(M) is the ideal of functions vanishing on a closed subset A ⊂ M , then
π−1(A) ⊂ X corresponds to the ideal generated by I in the algebra C(X).

Hence the following definition extends the classical notion of triviality over a
closed covering to principal extensions. To point out that we are not working with
open coverings, we speak of piecewise rather than of local triviality.

Definition 3. A principal H-extension B ⊂ P is piecewise trivial if there exists
a cover {Ii}i∈Ω of B, an H-module algebra structure on each Bi = B/Ii, and
isomorphisms of principal H-extensions χi : Pi → Bi o H, where Pi := P/Ji and
Ji := PIiP is the ideal generated in P by Ii.

It is not difficult to prove that a classical locally trivial principal fibre bundle
over a compact Hausdorff space is piecewise trivial. However, the converse is not
true as a counterexample due to P.F. Baum shows (see [2]).

In the noncommutative geometry piecewise triviality is an equivariant version of
fibre products. Principal extensions obtained by gluing trivial extensions such as
the Heegaard-type quantum 3-spheres [1, 8, 9] provide nice examples that will be
studied in detail in [11]. On the other hand, B might not admit a covering at all
which happens if it is an integral domain, or a simple algebra or a primitive C∗-
algebra. In particular this applies to the standard quantum Hopf fibration based
on the compact quantum group SUq(2) viewed as a principal extension over the
standard Podleś quantum sphere S2

q .
We point out that Definition 3 is a slight refinement of the one given e.g. in [6]

where it was part of the assumptions that the covering of the total space algebra
is indeed a covering. However, this somehow unnatural requirement can in fact be
deduced in some cases and in particular when B is a C∗-algebra:

Proposition 2. Let B ⊂ P be a piecewise trivial principal H-extension over a
C∗-algebra B with {Ii}i∈Ω as in Definition 3. Then Ji = IiP , and {Ji}i∈Ω is a
covering of P . In particular, Definition 3 is then equivalent to the one used in [6].

We remarked that M. Pflaum defines in [12] quantum spaces as topological spaces
equipped with a sheaf of rings, and we pointed out that this approach to quantum
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spaces is compatible with the one through coverings of algebras. Consequently,
Pflaum introduces quantum principal bundles not globally as algebra extensions,
but as sheaves over the same topological space. Proposition 2 now provides com-
patibility also of the notions of quantum principal bundles:

Corollary 1. A piecewise trivial principal H-extension over a C∗-algebra is a
quantum principal bundle in the sense of [12].

2. Applications

In this section we shortly describe two quantum analogues of classical geometric
constructions whose generalisation involves the concept of piecewise triviality.

2.1. Transition functions and bundle reconstruction. As discussed in length
in [4, 6, 12, 14], the machinery of transition functions can be developed more or
less straightforwardly in the setting of quantum principal bundles: If B ⊂ P is a
piecewise trivial principal H-extension with respect to the covering {Ii}i∈Ω of B,
then one has a family of linear maps

(4) τij : H → Bij , i, j ∈ Ω,

that are classically dual to the transition functions of the bundle and satisfy

(h(1) . πi
j(bi))τij(h(2)) = τij(h(1))(h(2) . πi

j(bi)),

τij(1) = 1, τji(h) = h(1) . τij(Sh(2))), τij(hg) = τij(h(1))(h(2) . τij(g)),(5)

πij
k (τij(h)) = πik

j (τik(h(1)))π
kj
i (τkj(h(2))),

where h, g ∈ H, bi ∈ Bi, i, j, k ∈ Ω. Here h(1) ⊗ h(2) is Sweedler’s shorthand
notation for the coproduct ∆(h), h ∈ H, and S is the antipode of H, and πij

k is the
canonical projection Bij → Bijk = B/(Ii + Ij + Ik). Now we have:

Proposition 3. Let {Ii}i∈Ω be a covering of B and assume that all Bi’s are H-
module algebras such that ker πi

j is an H-submodule of Bi. Then

(6) P̃ = {(bi ⊗ hi)i∈Ω ∈
∏
i∈Ω

Bi o H |πi
j(bi)τij(hi(1))⊗ hi(2) = πj

i (bj)⊗ hj}

is an H-comodule algebra with PH-inv ' B if τij : H → Bij satisfy the above
properties. If τij arise from a piecewise trivial principal H-extension P , then P̃ is
isomorphic to P via

(7) χ : P 3 a 7→ (χi(ai))i∈Ω ∈ P̃ ,

where χi : Pi → Bi o H is as in Definition 3 and ai is the image of a in Pi.

2.2. Reductions of piecewise trivial quantum principal bundles. The fol-
lowing defines the quantum replacement for a reduction of the structure group of
a principal bundle.

Definition 4. Let B ⊂ P be a principal H-extension and K ⊂ H be a Hopf ideal.
Then a K-reduction of P is a principal H/K-extension P/J over B for some ideal
J ⊂ P which is an H/K-subcomodule.
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K plays the role of the ideal of functions vanishing on the subgroup to which we
reduce and J that of the ideal of functions vanishing on the reduced bundle.

A trivial extension P = B ⊗H can obviously be reduced to any quotient H/K
of H, but in general the question of reducibility is unclear. However, for principal
extensions which are piecewise tensor products we can prove the following:

Proposition 4. Let B ⊂ P be a principal H-extension over a C∗-algebra B which
is piecewise isomorphic to Bi⊗H over some covering {Ii}i∈Ω of B, and let K be a
Hopf ideal in H. Denote by H/K-invH the invariants of the natural left coaction of
H/K on H. Write for brevity D+ = H/K-invH ∩ ker ε, where ε denotes the counit
in H. Then the ideal

(8) J = Pχ−1((1Bi ⊗D+)i∈Ω)

with χ : P → P̃ as in eq. (7) defines a piecewise trivial K-reduction of P , provided
that the transition functions τij : H → Bij, i, j ∈ Ω, vanish on K.

However, this result does not extend to arbitrary piecewise trivial principal ex-
tensions which are trivialised to crossed products (cf. [7]).
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