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Abstract

In the first part of this work, l-functionals on coquasitriangular Hopf alge-
bras are studied. First, a formula from [KS1] relating the l-functionals on
Cq[SL(N + 1,C)] to Lusztig’s quantum root vectors in Uq(sl(N + 1,C)) is gen-
eralized to the other classical matrix Lie groups. It allows to substitute the
root vectors in the Poincaré-Birkhoff-Witt basis by l-functionals. Then one has
explicit formulas for the commutation relations and the coproduct of the basis
elements. Afterwards, the Hopf algebra generated by the l-functionals on the
quantum double Cq[G] ⊲⊳ Cq[G] is shown to be isomorphic to Cq[G]op ⊲⊳ Uq(g)
for all semisimple G. This was conjectured by T. Hodges in [Ho]. As an algebra,
Cq[G]op ⊲⊳ Uq(g) can be embedded into Uq(g ⊕ g), see [Ho]. Here it is proven
that there is no bialgebra structure on Uq(g⊕ g), for which this embedding be-
comes a homomorphism of bialgebras. In particular, it is not an isomorphism.
The second part deals with the theory of covariant differential calculi on quan-
tum homogeneous spaces, and with their relation to A. Connes’ non-commutative
geometry. A Dirac operator on quantized irreducible flag manifolds is defined.
This yields a Hilbert space realization of the covariant differential calculi con-
structed by I. Heckenberger and S. Kolb in [HK1]. All differentials df = i[D, f ]
are bounded operators. In the simplest case of Podleś’ standard quantum sphere
one obtains the spectral triple found by L. Da̧browski and A. Sitarz [DS1].
In a short third part we prove that in contrast to their C∗-completions, the co-
ordinate algebras of the non-standard Podleś spheres depend on the additional
deformation parameter. This was posed as an open problem in [HMS].
The results of the first two parts of this work are published in [Kr1, Kr2].
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1.4 On the non-standard Podleś spheres . . . . . . . . . . . . . . . . 7

1.5 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Quantum groups 9

2.1 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Lie groups and algebraic groups . . . . . . . . . . . . . . . 10

2.2 Quantum groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Hopf algebra Uq(g) . . . . . . . . . . . . . . . . . . . 10

2.2.2 The Hopf algebra Cq[G] . . . . . . . . . . . . . . . . . . . 13

2.3 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 On the quantum Iwasawa decomposition 17

3.1 L-functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Coquasitriangular Hopf algebras . . . . . . . . . . . . . . 17

3.1.2 L-functionals and FRT-duals . . . . . . . . . . . . . . . . 18

3.2 L-functionals on Cq[G] . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 L-functionals on Cq[G] . . . . . . . . . . . . . . . . . . . . 18

3.2.2 L-functionals and quantum root vectors . . . . . . . . . . 19

3.3 L-functionals on Cq[G] ⊲⊳ Cq[G] . . . . . . . . . . . . . . . . . . . 24

3.3.1 L-functionals on the quantum double A ⊲⊳ A . . . . . . . 24

3.3.2 Casimir operators in U(A ⊲⊳ A) . . . . . . . . . . . . . . . 25

3.3.3 The quantum Iwasawa decomposition . . . . . . . . . . . 27

3.3.4 On the quantum codouble Uq(g) ◮◭ Uq(g) . . . . . . . . . 29

3.4 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . 30

5



4 Dirac operators on quantum flag manifolds 31
4.1 Quantum flag manifolds . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Flag manifolds . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Quantum flag manifolds . . . . . . . . . . . . . . . . . . . 32
4.1.3 Quantum homogeneous vector bundles . . . . . . . . . . . 33

4.2 Covariant differential calculi . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Covariant differential calculi . . . . . . . . . . . . . . . . . 34
4.2.2 Differential calculi on quantum flag manifolds . . . . . . . 35
4.2.3 Hilbert space representations . . . . . . . . . . . . . . . . 36

4.3 Dirac operators on quantum flag manifolds . . . . . . . . . . . . 36
4.3.1 Lifting the quantum tangent spaces to Uq(g0) . . . . . . . 36
4.3.2 Quantum γ-matrices . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 The Dirac operator . . . . . . . . . . . . . . . . . . . . . . 38
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Chapter 1

Overview

The aim of this chapter is to explain and motivate the results of the present
work. Its sections correspond to the following chapters of the work. As in any
of them, the last section contains some bibliographical notes.

1.1 Quantum groups

Let {·, ·} be a Poisson bracket on the coordinate algebra C[G] of an affine al-
gebraic group G over C. Then G is said to be a Poisson algebraic group, pro-
vided that its group multiplication is a Poisson map with respect to the canon-
ical Poisson bracket {f1 ⊗ f2, g1 ⊗ g2} := f1g1 ⊗ {f2, g2} + {f1, g1} ⊗ f2g2 on
C[G×G] := C[G] ⊗ C[G]. Analogously one defines Poisson-Lie groups.
A quantization of a Poisson algebraic group is a (~-adic) Hopf algebra structure
on the vector space C[G][[~]] of formal power series in an indeterminate ~ with
coefficients in C[G], whose product ·~ and coproduct ∆~ satisfy [Dr2]

f ·~ g = fg +
~

2
{f, g} +O(~2), ∆~(f) = ∆(f) +O(~2) ∀f, g ∈ C[G].

Here ∆ is the coproduct of the standard Hopf algebra structure on C[G],

∆ : C[G] → C[G×G], ∆(f)(x, y) := f(xy), x, y ∈ G.

Any Poisson algebraic group admits a quantization [EK]. In the main examples
one even has ∆~ = ∆, and the formal power series q := e~ can be specialized
to a fixed complex number. This yields a family of Hopf algebras Cq[G], q ∈ C.
They coincide as a coalgebra with C[G], but their product is essentially given
by ·~. In a sense, the space G is quantized without touching its group structure.
Hence one speaks of Cq[G] as of a ’coordinate algebra of a quantum group’,
although the latter remains a purely imaginary object.
Many geometric concepts can be generalized to quantum groups. For example,
the notion of a G-variety is extended by that of a Cq[G]-comodule algebra.
These are consequently called ’coordinate algebras of quantum spaces’.
Historically, quantum groups were discovered first as a sort of symmetry of
certain anisotropic completely integrable quantum systems. Later they found an
application as a source of very effective knot invariants. Many authors speculate
that using quantum spaces as models of space-time could also help dealing with
some fundamental problems of quantum field theory. The last point is mentioned
in the subtitle of this thesis, because one of the few common features of its
different parts is that the investigated structures all arose from this motivation.
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2 1. OVERVIEW

1.2 On the quantum Iwasawa decomposition

1.2.1 Poisson group duality and quantum group duality

To any connected and simply connected Poisson-Lie group G0 one can associate
a connected and simply connected Poisson-Lie group G∗

0 of the same dimen-
sion, whose group structure corresponds to the Poisson structure of G0 and vice
versa. This follows from the infinitesimal description of Poisson-Lie groups in
terms of Lie bialgebras, see [LW]. One calls G∗

0 the dual of G0, and (G∗
0)

∗ = G0.
Both G0 and G∗

0 can be embedded into a Poisson-Lie group G, such that the
multiplication in G defines a diffeomorphism ζ : G0 ×G∗

0 → G. One calls G the
double of G0 and (G,G0, G

∗
0) a Manin triple of Poisson-Lie groups.

The standard example of such a Manin triple is given by the Iwasawa decom-
position of a complex semi-simple Lie group G into its compact real form G0

and an exponential Lie group G∗
0 (i.e. one whose exponential map is a diffeo-

morphism). If we treat G as an algebraic group, then G0 and a finite covering
of G∗

0 are real algebraic subgroups. Complexifying these yields a Manin triple
(G × G,G,G∗) of Poisson algebraic groups [DP]. Now G,G∗ are only locally
the duals of each other, but this will play no essential role in the following.
Both G and G∗ lead to quantum groups as described in the previous section.
Mostly, Cq[G

∗] is denoted by Uq(g) and considered as a quantization of the uni-
versal enveloping algebra U(g) of g := Lie(G). This is as a Lie algebra indeed
isomorphic to a Poisson algebra of functions on G∗ [GW]. The coproduct of
Cq[G

∗] can also be considered as a quantization of the classical coproduct of
U(g), but one should be aware that it differs rather crucially from the latter.
We adopt the symbol Uq(g) to be compatible with the literature.
The Hopf algebra Uq(g) is defined in terms of generators and relations similar
to those given by J. P. Serre for U(g). All finite-dimensional representations
of G can be deformed to representations of Uq(g). The Hopf algebra Cq[G]
can be derived from Uq(g) in analogy with the Peter-Weyl theorem as the Hopf
subalgebra of the Hopf dual Uq(g)◦ spanned by the matrix coefficients of these
representations. Thus there exists by definition a dual pairing between Cq[G]
and Uq(g). This reflects the duality of G and G∗.
Although the dual pairing of Cq[G] and Uq(g) is non-degenerate, no one is the
full Hopf dual of the other. This raises the problem of formulating a duality
theory of quantum groups that extends the duality of Poisson groups.
The first solution of this problem was known in advance: In [Wo1] S. L. Woronow-
icz proposed to generalize the classical Pontrjagin duality of locally compact
abelian groups in the language of suitably defined Hopf C∗-algebras. It turned
out later that quantum groups provide non-trivial examples for this concept.
Together with P. Podleś, he also showed that the Iwasawa decomposition ad-
mits a straightforward generalization to the quantum setting, see [PW1].
The topic of Chapter 3 is a different approach to quantum group duality and
the quantum Iwasawa decomposition relying on the notion of (co)quasitriangu-
larity. In this formulation, the results apply to a wider class of Hopf algebras,
and one avoids the technicalities entering in the C∗-algebraic theory. On the
other hand, the duality is here not an operation inside of one single category,
that is, the roles of Cq[G] and Uq(g) are no longer completely symmetric. We
refer to [VD] for another purely algebraic duality theory avoiding this effect.
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1.2.2 L-functionals on Cq[G]

The above mentioned link between quantum groups, statistical mechanics and
knot theory is closely related to the fact that the representations of Uq(g) used
to define Cq[G] form a braided tensor category CG. This means that for V,W ∈
CG there exists an isomorphism RV W : V ⊗ W → W ⊗ V satisfying certain
conditions. An equivalent fact is that there exists a bilinear form r on Cq[G],
such that (Cq[G], r) is a coquasitriangular Hopf algebra, see the main text for
details. This bilinear form can be used to associate to f ∈ Cq[G] two linear
functionals on Cq[G] called l-functionals:

l+(f) := r(·, f), l−(f) := r(S(f), ·).

Here S is the antipode of Cq[G]. The maps f 7→ l±(f) are coalgebra homomor-
phisms and algebra antihomomorphisms into the dual Hopf algebra Cq[G]◦.
It turns out that the Hopf algebra generated by the set of all l-functionals can
be identified with Uq(g). Then one has

l+(cλ−µ,ν) = X+(cλ−µ,ν)Kµ, l−(cλ−µ,ν) = X−(cλ−µ,ν)K−ν . (1.1)

Here cλ−µ,ν is a matrix coefficient of (the deformation of) the irreducible repre-
sentation V (λ) with highest weight λ, and −µ, ν are weights labeling the dual
bases in V (λ), V (λ)∗ with respect to which the matrix coefficients are taken.
The elements Kλ ∈ Uq(g) are the generators of a subalgebra Uq(h) generalizing
the Cartan subalgebra of g, and X±(cλ−µ,ν) lie in subalgebras Uq(n±) which are
analogues of the standard maximal nilpotent subalgebras of g. Hence the above
formula describes the decomposition of l±(cλ−µ,ν) into components in Uq(h) and
Uq(n±). It is proven in [Jo] under the assumption that µ = ν and in the gen-
eral case in Proposition 13 below. In [Mö] the notion of coquasitriangularity is
suppressed and the relation is part of the definition of l±(f).
The first main result of Chapter 3 is a formula relating certain l-functionals
to Lusztig’s quantum root vectors [Lu]. These are elements Eβk

, F−βk
∈ Uq(g),

where {±βk} are the roots of g. They are mainly used to generalize the Poincaré-
Birkhoff-Witt theorem to Uq(g): The monomials KλF

i1
−β1

· · ·F in

−βn
Ej1

β1
· · ·Ejn

βn

form a vector space basis of Uq(g). Unfortunately, there is no direct access
to their algebraic properties. Their commutation relations are known in gen-
eral only modulo terms of lower degree with respect to some filtration [KS2],
Theorem 3.2.3. For the coproduct there are only a formal expression ([KS2],
Proposition 3.2.1) and for special cases some explicit calculations [Xi].
The root vectors depend on a reduced expression for the longest element of the
Weyl group of g. We will give for all classical matrix Lie groups one expression,
for which the root vectors appear (with one exception in case of the symplectic
groups) in (1.1) as X±(f), where f are certain matrix coefficients of the defining
representation of G (Theorem 1). For G = SL(N+1,C) this was stated already
in [KS1]. One can modify the Poincaré-Birkhoff-Witt basis substituting the root
vectors by the corresponding l-functionals. Then one has explicit formulas for
the commutation relations and the coproduct of the basis elements.
One sees in particular that the coproduct of Eβk

and F−βk
is essentially given

by classical matrix multiplication. This underlines the difference between the
coalgebras Uq(g) and U(g), since the elements of g ⊂ U(g) are primitive, that
is, satisfy ∆(X) = 1 ⊗X +X ⊗ 1.
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1.2.3 L-functionals on Cq[G] ⊲⊳ Cq[G]

Let A and B be two Hopf algebras and 〈·, ·〉 be a skew-pairing of A and B, that
is, a dual pairing of the opposite Hopf algebra Aop with B. Let A ⊲⊳ B denote
the corresponding quantum double of A and B. This is a Hopf algebra which
equals A⊗B as a coalgebra, but whose product is given by

(f ⊗ g)(f ′ ⊗ g′) := (ff ′
(2) ⊗ g(2)g

′) 〈S(f ′
(1)), g(1)〉〈f

′
(3), g(3)〉.

Here ∆(f) = f(1) ⊗ f(2) is Sweedler’s notation for the coproduct in a coalgebra.
For example, if (A, r) is a coquasitriangular Hopf algebra, then r is a skew-
pairing, and A ⊲⊳ A is again coquasitriangular with respect to the bilinear form

r̂(f ⊗ g, f ′ ⊗ g′) := r(S(f ′
(1)g

′
(1)), f)r(g, f ′

(2)g
′
(2)).

Let U(A) and U(A ⊲⊳ A) be the Hopf algebras generated by the l-functionals
on A and A ⊲⊳ A. As suggested in [Ho], we call them the FRT-duals of A and
A ⊲⊳ A, respectively. There it was shown (the finite-dimensional case goes back
to [RS], see also [Ma1]) that there exists an injective algebra homomorphism

ι : U(A ⊲⊳ A) → U(A) ⊗ U(A)

and a surjective Hopf algebra homomorphism

ζ : Aop ⊲⊳ U(A) → U(A ⊲⊳ A).

Here the skew-pairing of Aop and U(A) used to define Aop ⊲⊳ U(A) is the re-
striction of the canonical pairing of A and A◦.
In Section 3.3 we continue the investigation of these maps for A = Cq[G]. We
prove that ζ is then an isomorphism (Theorem 2). We furthermore show that
there exists no bialgebra structure on U(A) ⊗ U(A) = Uq(g ⊕ g), such that ι
becomes a bialgebra homomorphism (Theorem 3). In particular, ι is not an
isomorphism (Corollary 1). But its image contains at least 1 ⊗ C,C ⊗ 1 for
all quantum Casimir operators C of Uq(g) (Proposition 16). These are central
elements defined in the FRT-dual of any coquasitriangular Hopf algebra.
For real q, Cq[G] and Cq[G] ⊲⊳ Cq[G] become Hopf ∗-algebras Cq[G0] and
Cq[G0] ⊲⊳ Cq[G0] deforming the algebras of all complex-valued polynomials
on the real algebraic groups G0 and G, respectively. The quantum double
Cq[G] ⊲⊳ Cq[G] appeared first in this setting in the deformation of the action
of SL(2,C) on Minkowski space [CSSW, PW1]. The map ζ is then a dual and
purely algebraic version of the quantum Iwasawa decomposition from [PW1].
For arbitrary q, Cq[G] ⊲⊳ Cq[G] defines a new quantum group deformation of
G×G related to the Manin triple (G×G,G,G∗).
Several authors proposed definitions of a quantized universal enveloping algebra
corresponding to Cq[G] ⊲⊳ Cq[G], in particular, of a quantized Lorentz algebra.
One idea was to dualize the structure of Cq[G] ⊲⊳ Cq[G] in form of a quantum
codouble Uq(g) ◮◭ Uq(g) [Ma1]. But ι would be a Hopf algebra homomorphism
into such a quantum codouble. Hence it can not be well-defined by Theorem 3.
The quantum double Cq[G]op ⊲⊳ Uq(g) provides a rigorously defined alternative.
For the example of the q-Lorentz algebra the two factors can be interpreted
as subalgebras of infinitesimal rotations and boosts, see e.g. [Bl]. The identi-
fication with U(Cq[G] ⊲⊳ Cq[G]) can be considered as a second example for a
general philosophy to use FRT-duals as quantized enveloping algebras of quan-
tum groups. As in case of Uq(g) one can think of it of course also as a definition
of a quantum group dual to that given by Cq[G] ⊲⊳ Cq[G].
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1.3 Dirac operators on quantum flag manifolds

1.3.1 Flag manifolds and their quantizations

Let G be as before, but we assume it now to be simply connected and simple.
Let P be a parabolic subgroup, that is, a closed subgroup containing a Borel
subgroup B+ (a maximal solvable subgroup of G). Then the homogeneous space
M := G/P is called a (generalized) flag manifold.
Classically, a flag in CN+1 is a sequence V1 ⊂ . . . ⊂ Vk of linear subspaces. The
action of SL(N + 1,C) on CN+1 induces one on the set of all flags of a fixed
length with fixed dimVi. This set becomes in this way a flag manifold in the
above sense, and all flag manifolds associated to SL(N + 1,C) are of this form.
For general G, the flag manifolds exhaust the compact homogeneous Kähler
manifolds [Wa2]. In particular, they are compact symplectic and spinC mani-
folds. When treated algebraically, they provide the basic examples of projective
varieties. They also appear naturally in Yang-Mills theory, see [At, Ma3].
One can choose a compact real form G0 of G such that G∗

0 ⊂ B+. Hence M is
by the Iwasawa decomposition as a real variety or as a smooth manifold equal
to G0/L0 with L0 := G0 ∩ P . The latter is the compact real form of the Levi
factor L of P (its maximal reductive subgroup). In other words, M is as a real
variety a real form of G/L which is affine with coordinate ring [HK5]

C[G/L] = {f ∈ C[G] | f(xy) = f(x)∀x ∈ G, y ∈ L}. (1.2)

Equipping this algebra with the involution induced on C[G] by G0 one obtains
a ∗-algebra C[M ] describing M . There exist analogues Cq[M ] of this ∗-algebra
inside of Cq[G0]. Like C[M ] they are left coideals and hence define quantum
spaces which are called quantum flag manifolds. They can be understood as
quantizations of M with respect to some Poisson bracket.
The simplest example of a flag manifold is CP 1 = S2. The corresponding
quantum flag manifold is Podleś’ standard quantum sphere [Po]. Hence quantum
flag manifolds are generalizations of this prototype of a quantum space.
We will have to assume that the considered flag manifolds are irreducible in the
sense that p := Lie(P ) acts irreducibly on TePM = g/p. This will be used at
several places and entered in a crucial way in [HK1] on which Chapter 4 is based.
The irreducible flag manifolds are exactly the irreducible compact Hermitian
symmetric spaces and cover in particular the complex Grassmannians and the
complexified spheres. A complete list will be given in 4.1.1.3 below.

1.3.2 Covariant differential calculi

Covariant differential calculi are an attempt to generalize the notion of differen-
tial 1-forms to quantum spaces [Wo2]. In general, a (first order) differential cal-
culus over an algebra B is a pair of a B-bimodule Γ and a linear map d : B → Γ
satisfying the Leibniz rule d(fg) = f(dg) + (df)g, f, g ∈ B. Additionally, one
requires that Γ is spanned (over C) by the elements fdg with f, g ∈ B.
If A is a Hopf algebra and B is an A-comodule algebra (for example the coor-
dinate algebra of a quantum space), then (Γ, d) is called covariant, if Γ is an
A-comodule whose coaction is compatible with the bimodule structure and the
map d in the sense that (fdg)(1) ⊗ (fdg)(2) = f(1)g(1) ⊗ f(2)d(g(2)) ∈ A⊗ Γ for
all f, g ∈ B. Here we extended Sweedler’s notation to coactions.
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1.3.3 Differential calculi on quantum flag manifolds

On a given A-comodule algebra B there exist in general many covariant differen-
tial calculi. In particular, there is still no recipe known that singles out a ’best’
one over Cq[G] itself. On quantized irreducible flag manifolds the situation looks
better: As proven by I. Heckenberger and S. Kolb, these admit exactly two non-
isomorphic irreducible covariant differential calculi (Γ±, d±) of finite dimension
dimΓ± := dimC Γ±/Cq[M ]+Γ± [HK1]. Here Cq[M ]+ := Cq[M ] ∩ ker ε with ε
being the counit of Cq[G0], and a calculus is called irreducible if it possesses
no non-trivial quotient. The elements of Γ± are analogues of holomorphic and
antiholomorphic 1-forms, respectively. The direct sum (Γ, d) of Γ+ and Γ− is a
∗-calculus, that is, there exists an involution on Γ such that (fdg)∗ = d(g∗)f∗.
The aim of Chapter 4 is to show that these calculi are to some extent also
compatible with the ideas of A. Connes’ non-commutative geometry.

1.3.4 Dirac operators on quantum flag manifolds

Non-commutative geometry is a collection of various generalizations of geomet-
ric concepts to non-commutative algebras [Co1]. Although the basic idea is
similar to that of quantum group theory, the used techniques are rather distinct
and in fact both theories were developed mainly independently of each other.
The main objects studied in non-commutative geometry are spectral triples. A
spectral triple consists basically of a ∗-algebra B of bounded operators on a
Hilbert space H together with a self-adjoint operator D, such that the com-
mutators [D, f ], f ∈ B, are all bounded. Any compact spin manifold defines
a spectral triple in which B is the algebra of complex-valued smooth functions
on the manifold that act as multiplication operators on the Hilbert space of
square-integrable spinor fields; D is the Dirac operator. A basic question of
non-commutative geometry is, to what extent classical geometry can be gener-
alized to spectral triples over possibly non-commutative algebras.
A spectral triple (B,H,D) defines in particular a differential ∗-calculus over
B with df := i[D, f ] and Γ := spanC{fdg | f, g ∈ B}. For the spectral triple
associated to a compact spin manifold, the operator df acts by Clifford multi-
plication of a spinor field with the differential of f , see e.g. [Fr], p. 69.
It is hence a manifest question, whether a given covariant differential calculus
on a quantum space can be realized by a spectral triple over a Hilbert space
representation of its coordinate algebra. For the standard examples of differ-
ential ∗-calculi over Cq[SU(2)] this turned out to be only possible if one drops
the condition that df is a bounded operator [Sch2]. Hence the known spectral
triples over Cq[SU(2)] [Co4, CP1, Go] seem to be unrelated to these calculi.
This problem does not occur for quantized irreducible flag manifolds. As we will
show in Chapter 4, there exists a spectral triple over Cq[M ] such that the as-
sociated differential calculus is isomorphic to the ∗-calculus (Γ, d) (Theorem 4).
The key to its construction is that spin geometry on flag manifolds can be for-
mulated entirely in terms of representation theory. This allows to generalize the
appearing structures to the quantum case.
For the standard Podleś sphere, L. Da̧browski and A. Sitarz derived in [DS1] a
spectral triple by starting with an ansatz and implementing the axioms of (real)
spectral triples with help of MAPLE. A uniqueness result proven in [DS1] shows
that specializing our construction one obtains exactly this triple.
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1.3.5 Outlook

It should be pointed out that the motivation for inventing spectral triples was
not to define differential calculi, but to generalize some strong results from ge-
ometry such as index theorems. There are additional conditions for spectral
triples needed to obtain them in the non-commutative setting, and it has not to
be expected that they are satisfied by our spectral triples on quantum flag man-
ifolds. This was already observed for the case of the Podleś sphere in [DS1, NT].
In particular, Connes’ dimension theory based on the summability properties
of the eigenvalues of D, and consequently the machinery of the local index for-
mula [CM] computing the Chern character of a spectral triple [Co1] can not
be applied directly. The latter should assign to a spectral triple (B,H,D) a
cocycle in the cyclic cohomology HC∗(B) of B. This is a cohomology theory
for algebras derived from Hochschild cohomology. It substitutes the de Rham
homology of a manifold in non-commutative geometry. It is known from several
examples (including Cq[G]) that the Hochschild and cyclic cohomology of an
algebra obtained by quantizing a Poisson manifold is usually the homology of
some space parametrizing the leaves of the symplectic foliation of that Poisson
manifold, see [FT]. In particular, their Hochschild dimension is then smaller
than that of the Poisson manifold. Hence some degeneracy of the Chern charac-
ter of a spectral triple on quantum spaces is quite natural. On the other hand,
the example SUq(2) showed that the ’dimension spectrum’ of a spectral triple
can reflect the dimension of the unquantized space, see [Co4].
In [KMT] a modified version of cyclic cohomology was proposed and shown to
be closely related to the theory of covariant differential calculi. It was recently
proven in [SW2] that for the spectral triple on the Podleś sphere some variations
in the local index formula produce a well-defined cocycle in this ’twisted’ cyclic
cohomology of Cq[S

2]. But beyond this example there are no general results in
this direction. Furthermore, the integrality aspect of Connes’ theory seems to
get lost completely. That is, even if a ’twisted’ Chern character or local index
formula exists, it perhaps does not compute an index of an operator.
Some elaboration of these topics could be a next step towards a better un-
derstanding of the interplay of non-commutative geometry and the theory of
quantum groups, and we hope that the spectral triples derived in Chapter 4
will provide natural examples to test new developments in this area.

1.4 On the non-standard Podleś spheres

The last chapter contains a short remark concerning the generic Podleś spheres.
Like the standard one that appears in Chapter 4 as the simplest example of
a quantum flag manifold, these are quantum spaces described by a family of
coideal subalgebras Bqρ, ρ ∈ C ∪ {∞}, of Cq[SL(2,C)]. For ρ ∈ R the algebras
are ∗-subalgebras of Cq[SU(2)] deforming C[S2]. The parameter ρ plays the
role of a radius. For ρ = ∞ one obtains the standard sphere Cq[S

2].
It was shown in [HMS] that the C∗-closure of these ∗-algebras does not depend
on ρ, but it was conjectured that this is not the case for Bqρ. Here we give an
elementary proof of this conjecture (Theorem 5).
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1.5 Bibliographical notes

For background on algebraic groups we refer to [Hu2, Sp], for Poisson geometry
and quantization to [Va1, We]. Poisson groups were introduced by V. G. Drin-
feld in [Dr1]. The duality theory and the correspondence to Manin triples was
mainly developed in [LW]. For the algebraic Manin triple (G × G,G,G∗) and
the interpretation of Uq(g) as a quantum group coordinate algebra see [DP].
Some pioneering papers on quantum groups and quantum spaces were [Dr2,
FRT, Ji, KR, Ma2, Po, PW1, Wo1, Wo2]. For the mentioned applications of
quantum groups see [CP2, Ka].
For introductions into non-commutative geometry see [Co1, FGV] and the re-
view articles [Co2, Co3, Va2]. For the local index formula consult [CM, Hi].
More references will be given at the ends of each chapter.



Chapter 2

Quantum groups

In this chapter we fix notations and conventions, and also recall some frequently
used results from Lie theory and quantum group theory.

2.1 Lie groups

2.1.1 Lie algebras

2.1.1.1 Roots and weights. Throughout this work, g denotes a complex
semi-simple Lie algebra. We refer e.g. to [Hu1, Kn] for the appearing notions
and results from the theory of semi-simple Lie algebras and Lie groups.
We fix a Cartan subalgebra h of g and a set {α1, . . . , αN} of simple roots in the
root system Φ associated to g and h. Let Φ = Φ+ ∪ Φ− be the corresponding
decomposition of Φ into positive and negative roots, Q :=

⊕

i Zαi be the root
lattice, {gβ}β∈Φ be the root spaces, and set n± :=

⊕

β∈Φ± gβ and b± := h ⊕
n±. Both the Killing form of g and the bilinear form induced by it on h∗ will
be denoted by 〈·, ·〉. Thus the entries of the Cartan matrix of g are aij :=
d−1

i 〈αi, αj〉 with di := 1
2 〈αi, αi〉. We denote by {ω1, . . . , ωN} the fundamental

weights satisfying 〈ωi, αj〉 = δijdi and by P :=
⊕

i Zωi and P+ :=
⊕

i N0ωi the
sets of integral and dominant integral weights. For λ, µ ∈ P we write λ < µ if
µ − λ is a sum of positive roots. The representation of g with highest weight
λ ∈ P+ and its carrier space are denoted by (ρλ, V (λ)).

2.1.1.2 Weyl group. Let ri : αj 7→ αj − aijαi be the standard generators of
the Weyl group W of g. For a given reduced expression ri1 · · · rin

of its longest
element w0 let βk := ri1 · · · rik−1

αik
be the corresponding ordering of Φ+.

2.1.1.3 Compact real form and Iwasawa decomposition. We choose
a Chevalley basis {Hk, Eβ , F−β}k=1,...,N,β∈Φ+ of g and abbreviate Ek := Eαk

,
Fk := F−αk

. Then g0 := spanR {iHk, Eβ − F−β , i(Eβ + F−β)} is a compact
real form of g. Let gR be g treated as a real Lie algebra and gR = g0 ⊕ a ⊕ n+

be the Iwasawa decomposition ([Kn], Proposition 6.43). Recall that this is
a decomposition as a real vector space into three real Lie subalgebras. The
restriction of the Killing form of g to g0 or to a ⊕ n+ is real-valued. Hence
the non-degenerate bilinear form on gR given by its imaginary part defines an
isomorphism of real vector spaces g∗0 = a⊕n+. For example, if g = sl(N +1,C),
then g0 = su(N + 1), a consists of all diagonal elements with real entries, and
n+ of the upper triangular elements with vanishing diagonal entries.

9
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2.1.1.4 Universal enveloping algebra. We consider the universal enveloping
algebra U(g) of g in the usual way as a Hopf algebra. There exists a Hopf ∗-
structure ∗ : U(g) → U(g) such that ∗ ◦ S extends the Cartan involution θ of
g corresponding to g0. Here S is the antipode of U(g). We denote the Hopf
∗-algebra (U(g), ∗) with slight abuse of notation by U(g0).

2.1.2 Lie groups and algebraic groups

2.1.2.1 G,G0, G
∗
0 and Iwasawa decomposition. Let G be a connected Lie

group with Lie algebra g, and letG0, G
∗
0 be the (real) subgroups ofG correspond-

ing to g0 and g∗0. Then the group multiplication of G defines a diffeomorphism
(of real manifolds) G0 ×G∗

0 → G called the Iwasawa decomposition of G. The
group G∗

0 is diffeomorphic to g∗0 via its exponential map. In particular, G is con-
tractible to G0, and in the example G = SL(N + 1,C), the group G∗

0 consists
of all complex upper triangular matrices with real positive diagonal entries.

2.1.2.2 Group weights. Let L be the character group of a maximal torus of
G with Lie algebra h. By passing to differentials we consider L as a sublattice
of P. Then |P/L| is the order of the fundamental group π1(G) = π1(G0). In
particular, L = P iff G is simply connected. The set L+ := L∩P+ contains the
highest weights of those representations of g which lift to representations of G.

2.1.2.3 G as an algebraic group. We denote by the same letter G the unique
affine algebraic group over C whose associated Lie group is G. Recall that
the group structure turns its coordinate algebra C[G] (the algebra of regular
functions on G) into a Hopf algebra. As a G-bimodule it is the span of the
matrix coefficients of the irreducible finite-dimensional representations of G,
C[G] =

⊕

λ∈L+ V (λ)∗⊗V (λ) (Peter-Weyl theorem). The evaluation of a matrix
coefficient on an element of g continues to a non-degenerate dual pairing of the
Hopf algebras C[G] and U(g). In particular, the Hopf ∗-structure of U(g0)
induces one on C[G]. We denote the resulting Hopf ∗-algebra by C[G0]. Its
involution is dual to the real structure on G whose set of real points is G0.

2.2 Quantum groups

2.2.1 The Hopf algebra Uq(g)

2.2.1.1 Algebras, coalgebras, Hopf algebras. In this work, all algebras
are assumed to be associative, unital algebras over the ground field C. The
multiplication map of an algebra is denoted by m. The coproduct, counit and
antipode of a Hopf algebra are denoted by ∆, ε and S, respectively.
We use Sweedler’s notation ∆(X) = X(1) ⊗ X(2) for the coproduct in a coal-
gebra or more generally for the coaction of a coalgebra on a comodule. If A
is a (co)algebra, then we denote by A(c)op the (co)opposite (co)algebra with
(co)product f ·op g := gf and ∆cop(X) := X(2) ⊗X(1), respectively.
For an algebra A, we denote by A◦ the dual coalgebra, that is, the set of all
linear functionals on A whose kernel contains an ideal of finite codimension.
This is a coalgebra with coproduct given by dualizing the multiplication map of
A [Ab], Section 2.3. If A is a Hopf algebra, then A◦ is a Hopf algebra as well.
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2.2.1.2 The algebra Uq(g). Let q ∈ C \ {0} be not a root of unity, fix ~ ∈ C

with q = e~ and define qz := e~z for z ∈ C. Set qi := qdi and for n, k ∈ N0

[

n
k

]

q

:=
[n]q!

[k]q![n− k]q!
, [n]q! :=

n
∏

k=1

[k]q, [k]q :=
qk − q−k

q − q−1
.

Let Uq(h) := spanC{Kλ, λ ∈ L |K0 = 1,KλKµ = Kλ+µ} be the group algebra
of L and Uq(g) be the quotient of Uq(h)[E1, . . . , EN , F1, . . . , FN ] by the relations

KλEi = q〈λ,αi〉EiKλ, KλFi = q−〈λ,αi〉FiKλ,

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

, Ki := Kαi

and the quantum Serre relations

1−aij
∑

k=0

(−1)k

[

1 − aij

k

]

qi

E
1−aij−k
i EjE

k
i = 0, i 6= j,

1−aij
∑

k=0

(−1)k

[

1 − aij

k

]

qi

F
1−aij−k
i FjF

k
i = 0, i 6= j.

2.2.1.3 Hopf algebra structure. There is a unique Hopf algebra structure
on Uq(g), such that ∆, ε, S are given on the generators by

∆(Kλ) = Kλ ⊗Kλ, ε(Kλ) = 1, S(Kλ) = K−λ,

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1 ⊗ Fi,

ε(Ei) = ε(Fi) = 0, S(Ei) = −K−1
i Ei, S(Fi) = −FiKi.

We call the Hopf algebra Uq(g) the quantized universal enveloping algebra cor-
responding to g and q.

2.2.1.4 Relation with [Jo, KS1]. Note that the above definition which
we learned from [HLT] depends not only on g, but also on L, that is, on the
choice of G. In the most common definition of Uq(g) one considers only the
Hopf subalgebra generated by K±1

i , Ei, Fi. This contains only Kλ with λ ∈ Q,
the minimal choice for L. However, at some depth of the theory this becomes
insufficient. In [Jo] and [KS1] this leads to the definition of two Hopf algebras
denoted there by Ǔ and U ext

q (g), respectively. Both are special cases of Uq(g)

as defined here and are obtained by taking G to be simply connected (Ǔ) or
to be one of the classical matrix Lie groups (U ext

q (g)). In particular, for G =

SL(N + 1,C) our Uq(sl(N + 1,C)) is equal to Ǔ and to U ext
q (sl(N + 1,C)) from

[Jo] and [KS1] and obtained by adding K±ωN
to the generators K±1

i , Ei, Fi

(with ωN = − 1
N+1

∑N
k=1 kαk).

2.2.1.5 Compact real form. For q ∈ R the Hopf ∗-structure of U(g0) can be
generalized to one on Uq(g). Its involution ∗ is given on the generators by

K∗
λ = Kλ, E∗

i = KiFi, F ∗
i = EiK

−1
i .

Hence it coincides essentially with κ′ from [Jo], 3.3.3 with the only difference
that κ′ is continued to a linear map while ∗ is conjugate linear. We denote
(Uq(g), ∗) by Uq(g0). We call θ := ∗ ◦ S the Cartan involution of Uq(g0).



12 2. QUANTUM GROUPS

2.2.1.6 Triangular decomposition. Let Uq(n±) ⊂ Uq(g) be the subalgebras
generated by the Ei and Fi, respectively, and set Uq(b±) := Uq(h)Uq(n±). Then
Uq(h)⊗Uq(n−)⊗Uq(n+) → Uq(g), K⊗F ⊗E 7→ KFE defines an isomorphism
of vector spaces called the triangular decomposition of Uq(g).

2.2.1.7 Q-grading. There is a Q-grading on Uq(g) given by

Uq(g) =
⊕

λ∈Q

Uλ
q (g), Uλ

q (g) := {X ∈ Uq(g) |KµXK
−1
µ = q〈λ,µ〉X ∀µ ∈ L}.

We will need below the following description of the coproduct of elements of the
vector spaces Uλ

q (n±) := Uλ
q (g) ∩ Uq(n±) ([Ja], Lemma 4.12):

Proposition 1 For X± ∈ U±λ
q (n±), λ > 0, there are X±

1i ∈ U
±(λ−µi)
q (n±),

X±
2i ∈ U±µi

q (n±), 0 < µi < λ, such that

∆(X+) = X+ ⊗ 1 +
∑

i

X+
1iKµi

⊗X+
2i +Kλ ⊗X+,

∆(X−) = X− ⊗K−λ +
∑

i

X−
1i ⊗X−

2iKµi−λ + 1 ⊗X−.

2.2.1.8 Poincaré-Birkhoff-Witt theorem. There are algebra automor-
phisms T1, . . . , TN of Uq(g) that generate an action of the braid group associated
to g on Uq(g) [Lu]. This can be used to generalize the Poincaré-Birkhoff-Witt
theorem to Uq(g): One defines the quantum root vectors

Eβk
:= Ti1 · · · Tik−1

(Eik
), F−βk

:= Ti1 · · · Tik−1
(Fik

),

where ri1 · · · rin
is a reduced expression of w0. These elements depend on the

choice of ri1 · · · rin
. But independently of the choice one has:

Proposition 2 (PBW theorem) The monomials

KλFiEj := KλF
i1
−β1

· · ·F in

−βn
Ej1

β1
· · ·Ejn

βn
, λ ∈ L, i, j ∈ N

n
0 .

form a vector space basis of Uq(g).

2.2.1.9 Commutation relations of Eβk
, F−βk

. We have

Proposition 3 For i < j there are xijk, yijk ∈ C, such that

Eβi
Eβj

− q〈βi,βj〉Eβj
Eβi

=
∑

k∈N
j−i−1

0

xijkE
k1

βi+1
· · ·E

kj−i−1

βj−1
, (2.1)

F−βi
F−βj

− q−〈βi,βj〉F−βj
F−βi

=
∑

k∈N
j−i−1

0

yijkF
k1

−βi+1
· · ·F

kj−i−1

−βj−1
. (2.2)

If βi + βj 6=
∑j−1

l=1 klβi+l, then xijk = yijk = 0.

The relations (2.1), (2.2) are proven in [KS2], Theorem 3.2.3. Conjugating them
with Kλ the additional remark follows from the PBW theorem.

2.2.1.10 Uq(g) is an integral domain. There is a filtration of Uq(g) for which
the terms on the right hand side of (2.1), (2.2) are of lower degree than those
on the left hand side. This was used in [DK1], Corollary 1.8 to prove:

Proposition 4 The algebra Uq(g) is an integral domain.
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2.2.1.11 Adjoint action and Rosso form. We abbreviate by X • Y the
(left) adjoint action ad(X)Y := X(1)Y S(X(2)) of X ∈ Uq(g) on Y ∈ Uq(g). We
denote by F(Uq(g)) := {X ∈ Uq(g) | dimUq(g) •X <∞} the locally finite part
of Uq(g). One has ([Jo], 7.1.3):

Proposition 5 Kλ ∈ F(Uq(g)) ⇔ λ ∈ −2L+.

We denote by ϕ the dual pairing of Uq(b−) and Uq(b+)cop as defined in [Jo], 3.1.7
and by 〈·, ·〉 the quantum Killing form (or Rosso form) on Uq(g) as defined in
[Jo], 3.3.3. It has the following properties ([Jo], 3.3.3, 7.2.4):

Proposition 6 For all X,Y, Z ∈ Uq(g) one has 〈Z •X,Y 〉 = 〈X,S(Z) • Y 〉. If
X ∈ Uλ

q (g), Y ∈ Uµ
q (g) with λ 6= −µ, then 〈X,Y 〉 = 0. The restriction of 〈·, ·〉

to Uλ
q (g) × U−λ

q (g) is non-degenerate. If q ∈ (1,∞), then for all X,Y ∈ Uq(g0)

one has 〈X∗, Y 〉 = 〈Y ∗, X〉 and 〈X∗, X〉 > 0 if X 6= 0.

2.2.1.12 Representation theory. The classical theory of highest weight rep-
resentations carries over almost literally to Uq(g), see [KS1], Chapter 7 or [CP2],
Section 10.1. In particular, for every λ ∈ P+ there exists a finite-dimensional
irreducible Uq(g)-module V (λ) which is generated by a highest weight vector.
Let CG be the category of all finite direct sums of V (λ) with λ ∈ L+. For
V ∈ CG we denote by Vλ := {v ∈ V |Kµv = q〈λ,µ〉v ∀µ ∈ L} the set of vectors
of weight λ ∈ P. Then the multiplicities dim Vλ are the same as those in the
corresponding representation of g. The category CG is closed under the forma-
tion of duals and tensor products, where for V,W ∈ CG the module structures
on V ∗ and V ⊗W are given by

(Xv)(w) := v(S(X)w), X ∈ Uq(g), v ∈ V ∗, w ∈ V,

X(v ⊗ w) := X(1)v ⊗X(2)w, X ∈ Uq(g), v ∈ V,w ∈ W.

The irreducible components of V ⊗ W are the same as in the classical case.
There are isomorphisms RV W : V ⊗W →W ⊗ V which turn CG into a braided
tensor category. For q ∈ R there exists a Hermitian inner product (·, ·)λ on
V (λ) such that (Xv,w)λ = (v,X∗w)λ for all X ∈ Uq(g0), v, w ∈ V .

2.2.2 The Hopf algebra Cq[G]

2.2.2.1 The Hopf algebra Cq[G]. Let Cq[G] be the restricted Hopf dual
Uq(g)◦CG

of Uq(g), that is, the Hopf subalgebra of the full Hopf dual Uq(g)◦

spanned by the matrix coefficients cv,w : Uq(g) → C, cv,w(X) := v(Xw) with
v ∈ V ∗, w ∈ V, V ∈ CG. Its Hopf algebra structure is given by

cv,wcv′,w′ = cv′⊗v,w⊗w′ , ε(cv,w) = v(w),

∆(cv,w) =
∑

i

cv,wi
⊗ cvi,w, S(cv,w) = cw,v,

where {vi}, {wi} are dual bases in V ∗, V . Note that S2 6= id, since in the iden-
tification V ∗∗ = V the automorphism S2 of Uq(g) is hidden. If v ∈ V (λ)∗−µ, w ∈

V (λ)ν , then cv,w is denoted by cλ−µ,ν as well. We fix dual bases {vλ
i }, {w

λ
i }

in V (λ)∗, V (λ) with wλ
i ∈ V (λ)µi

and set cλij := cvλ
i

,wλ
j
. We call Cq[G] the

coordinate algebra of the standard quantum group Gq associated to G and q.
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2.2.2.2 Peter-Weyl decomposition. The evaluation 〈X, cv,w〉 := cv,w(X)
is a non-degenerate dual pairing of Hopf algebras. It turns Cq[G] into a Uq(g)-
bimodule with left and right action given by

X ⊲ f := 〈X, f(2)〉f(1), f ⊳ X := 〈X, f(1)〉f(2), X ∈ Uq(g), f ∈ Cq[G].

The structure of this bimodule is given by the classical Peter-Weyl decomposi-
tion. That is, the cλij form a vector space basis of Cq[G].

2.2.2.3 Compact real form. If q ∈ R, there is a unique Hopf ∗-structure on
Cq[G] such that the pairing with Uq(g) becomes a pairing of Hopf ∗-algebras
with Uq(g0). We denote this Hopf ∗-algebra by Cq[G0]. We can choose the
matrix coefficients cλij in such a way that they are unitary, (cλij)

∗ = S(cλji).

2.2.2.4 Cq[G] is an integral domain. We will see in the next chapter that
Cq[G]op is as an algebra isomorphic to a subalgebra of Uq(g ⊕ g). By Proposi-
tion 4 we therefore have:

Proposition 7 The algebra Cq[G] is an integral domain.

2.2.2.5 Haar functional. Let h be the Haar functional on Cq[G]. It is defined
by h(cλij) := δλ0 and can be characterized by the following properties:

Proposition 8 The functional h is the unique linear functional on Cq[G] such
that h(1) = 1 and h(f(1))f(2) = h(f(2))f(1) = h(f) for all f ∈ Cq[G].

For real q we define 〈f, g〉h := h(fg∗), f, g ∈ Cq[G0]. Then we have

Proposition 9 The sesquilinear form 〈·, ·〉h is a Hermitian inner product on
Cq[G0]. For all X ∈ Uq(g0), f, g ∈ Cq[G0] we have 〈f ⊳ X, g〉h = 〈f, g ⊳ X∗〉h.

That is, 〈·, ·〉h is the direct sum of the (·, ·)λ on the right Uq(g0)-module Cq[G0].

2.2.2.6 Relation with [Jo, KS1]. If G is simply connected, then Cq[G] coin-
cides with Rq[G] from [Jo]. Originally it was defined only for the classical matrix
Lie groups in terms of generators and relations [FRT]. The generators were the
matrix coefficients of the vector representation of Uq(g) (the one in which G is
defined as a matrix Lie group) with respect to some basis. For the relations
we refer to [KS1], Chapter 9. There the resulting Hopf algebras are denoted by
O(Gq). If q is not a root of unity, then O(Gq) is isomorphic to Cq[G] as intro-
duced above for all G except G = SO(2N + 1), where O(Gq2 ) = Cq[G]. This
is a consequence of the Peter-Weyl theorem for O(Gq) ([KS1], Theorem 11.22).
The latter is stated in [KS1] under the assumption that q is transcendental, but
according to Remark 3 on p. 415 of [KS1] and Corollaries 4.15 and 5.22 from
[LR] the result holds also for q not a root of unity.

2.3 Bibliographical notes

Most of the material on Lie theory is described in any textbook on the subject.
Besides the mentioned references, see also [He1, Wa1] for the Iwasawa decom-
position. For the Hopf algebra U(g) and the Hopf ∗-algebra U(g0) see [KS1],
Sections 1.2.6 and 1.2.7. For the general theory of Hopf algebras we refer to
[Ab, Mo, Sw].
The relation between group weights and π1(G) is proven for example in [Kn],
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Corollary 5.108. The description of G as an algebraic group and a proof of the
algebraic Peter-Weyl theorem is given in [Ta1], Section 15.8. For dual pairings
of Hopf algebras see [KS1], Sections 1.2.5 and 1.2.7.
Some textbooks on quantum groups are [CP2, Ja, Jo, Ka, KS1, KS2, Lu, Ma1].
To the authors knowledge the refined definition of Uq(g) used here appears first
in [Ta2]. For the Hopf ∗-algebra Uq(g0) see [KS1], Section 6.1.7. The quan-
tum root vectors and the PBW theorem for Uq(g) are due to G. Lusztig [Lu].
For braided tensor categories see [Ka] or [CP2] (where they are called quasiten-
sor categories). The braiding of CG is described in [CP2, HLT]. For the Hopf
∗-algebra Cq[G0] and the Haar functional see [KS1].
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Chapter 3

On the quantum Iwasawa

decomposition

After recalling the definitions of universal r-forms and l-functionals in the first
section, we study in the second the structure of the l-functionals on Cq[G] and
their relation to quantum root vectors. In the third section we turn to the
l-functionals on the quantum double Cq[G] ⊲⊳ Cq[G]. The main result is that
the Hopf algebra generated by them is isomorphic to Cq[G]op ⊲⊳ Uq(g) as was
conjectured in [Ho]. We also show that the quantum codouble Uq(g) ◮◭ Uq(g)
studied e.g. in [Ma1] is not well-defined in the purely algebraic context.

3.1 L-functionals

3.1.1 Coquasitriangular Hopf algebras

3.1.1.1 Definition. A Hopf algebra A is called coquasitriangular if there exist
two bilinear forms r, r̄ on A such that for all f, g, h ∈ A one has

r(f(1), g(1))r̄(f(2), g(2)) = r̄(f(1), g(1))r(f(2), g(2)) = ε(f)ε(g),

gf = r(f(1), g(1))f(2)g(2)r̄(f(3), g(3)),

r(fg, h) = r(f, h(1))r(g, h(2)), r(f, gh) = r(f(1), h)r(f(2), g).

In the sequel, we will frequently use the standard shorthand notation for for-
mulas of this type, see [KS1]. For example, the above would be written as

rr̄ = r̄r = ε⊗ ε, m21 = rmr̄,

r ◦ (m⊗ id) = r13r23, r ◦ (id ⊗m) = r13r12.

One calls r a universal r-form of A and r̄ its inverse. If A is a Hopf ∗-algebra,
then r is called real (inverse real), if r(f∗, g∗) = r(g, f) (r(f∗, g∗) = r(f, g)).

3.1.1.2 Properties of r. Let (A, r) be a coquasitriangular Hopf algebra. Then
the universal r-form satisfies ([KS1], Proposition 10.2)

r(1, f) = r(f, 1) = ε(f), r̄(f, g) = r(S(f), g), r(f, g) = r(S(f), S(g))

and the quantum Yang-Baxter equation r12r13r23 = r23r13r12. The bilinear
form r̄21(f, g) := r̄(g, f) is a universal r-form as well.

17
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3.1.1.3 Inverse of the antipode. Define two linear functionals f, f̄ on A by

f(f) := r(f(1), S(f(2))), f̄(f) := r(S2(f(1)), f(2)).

Then ff̄ = f̄f = ε and one has ([KS1], Proposition 10.3):

Proposition 10 For all k ∈ Z one has Sk+2(f) = f̄(f(1))S
k(f(2))f(f(3)).

3.1.2 L-functionals and FRT-duals

3.1.2.1 L-functionals. Let (A, r) be a coquasitriangular Hopf algebra. Then
any f ∈ A defines two linear functionals

l+(f) := r(·, f), l−(f) := r̄(f, ·), f ∈ A

on A. These are called the l-functionals on A.

3.1.2.2 FRT-duals. The properties of r imply that l± : Aop → A◦, f 7→ l±(f)
are Hopf algebra homomorphisms. Hence the subalgebra U(A) of A◦ generated
by all l-functionals is a Hopf algebra. It follows from the quantum Yang-Baxter
equation that

U(A) = span{l+(f)l−(g) | f, g ∈ A} = span{l−(f)l+(g) | f, g ∈ A}. (3.1)

Following [Ho] we call U(A) the FRT-dual of A.

3.2 L-functionals on Cq[G]

3.2.1 L-functionals on Cq[G]

3.2.1.1 Coquasitriangularity of Cq[G]. Let U be a Hopf algebra and C a
braided tensor category of finite-dimensional U -modules which is closed under
the formation of duals. Then A := U◦

C is coquasitriangular with a universal r-
form given by r(cv,w, cv′,w′) := (v′⊗v)◦RV W (w⊗w′), where v ∈ V ∗, w ∈ V, v′ ∈
W ∗, w′ ∈W and RV W is the braiding. In particular, Cq[G] is coquasitriangular.
It follows from the explicit form of the braiding that r is real if q ∈ R.

3.2.1.2 Identification of U(Cq[G]) with Uq(g). The braiding of CG is con-
structed in such a way that the l-functionals on Cq[G] can be identified with
elements of Uq(g). That is, there is a Hopf algebra embedding of U(Cq[G]) into
Uq(g). Then we have

r(f, g) = ϕ(l−(f), l+(g)). (3.2)

The embedding is in fact surjective [Jo], 9.2.12. We therefore have:

Proposition 11 The Hopf algebras U(Cq[G]) and Uq(g) are isomorphic.

The characterization (3.2) of r implies (see [Ho]):

Proposition 12 One has cv,w ∈ ker l± ⇔ v(Uq(b∓)w) = 0.

In what follows, we will not distinguish between U(Cq[G]) and Uq(g) any more.

3.2.1.3 Structure of l-functionals. We will now generalize the description
of the triangular decomposition of l±(cλ−µ,ν) given in [Jo], 9.2.11. Recently the
author became aware of the review article [Mö]. There the notion of coquasitri-
angularity is suppressed and the statement is part of the definition of l±(cλ−µ,ν)
(see Equations 3.8 and 3.9 therein).
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Proposition 13 For cλ−µ,ν ∈ Cq[G] there are X±(cλ−µ,ν) ∈ Uν−µ
q (n±) with

l+(cλ−µ,ν) = X+(cλ−µ,ν)Kµ, l−(cλ−µ,ν) = X−(cλ−µ,ν)K−ν .

Proof. We treat only l+, the other case is analogous. Let cλ−µ,ν = cv,w be given.
Fix dual bases {vi}, {wi} with wi ∈ V (λ)νi

and w ∈ {wi}. Let w′ ∈ V (λ)λ.
Since l+ is a coalgebra homomorphism, we then have

∆(l+(cv,w′)) =
∑

i

l+(cv,wi
) ⊗ l+(cvi,w′). (3.3)

It is known that the claim holds for ν = λ [Jo], 9.2.11, so

l+(cv,w′) = X+(cv,w′)Kµ, l+(cvi,w′) = X+(cvi,w′)Kνi
. (3.4)

By the first equality and Proposition 1 we also have

∆(l+(cv,w′)) = l+(cv,w′)⊗Kµ +
∑

j

X1jKξj+µ ⊗X2jKµ +Kλ ⊗ l
+(cv,w′) (3.5)

with X1j ∈ U
ξj
q (n+), X2j ∈ U

λ−µ−ξj
q (n+), 0 < ξj < λ− µ. If one compares the

Uq(h)-parts of the terms in (3.3) and (3.5) in the second tensor component, one
gets by the second equality in (3.4) and the PBW theorem

∑

k

l+(cv,wik
) ⊗ l+(cvik

,w′) =
∑

l

X1jl
Kξjl

+µ ⊗X2jl
Kµ

where the indices ik and jl are those with νik
= ξjl

+ µ = ν.
We claim that the elements l+(cvi,w′) are linearly independent. Indeed, assume
that there are xi ∈ C with

∑

i xil
+(cvi,w′) = l+(cP

i xivi,w′) = 0. Since w′ is a
highest weight vector, Proposition 12 implies

∑

n xivi = 0. Hence xi = 0 for all
i, because {vi} is a basis. It follows that all l+(cv,wik

) and in particular l+(cv,w)
are linear combinations of X1jl

Kµ. 2

3.2.2 L-functionals and quantum root vectors

3.2.2.1 On the coproduct of Eβk
, F−βk

. The Lusztig automorphisms Ti are
algebra, but not coalgebra homomorphisms. So it is not possible to derive the
coproduct of the quantum root vectors Eβk

, F−βk
directly from their definition.

However, it is mentioned in [KS1] on p. 278 that for G = AN := SL(N + 1,C)
there is a choice of ri1ri2 · · · rin

, such that the quantum root vectors appear as
X±(cλ−µ,ν) in Proposition 13. This allows to compute their coproduct explicitly.
Here we generalize this result to the other classical matrix Lie groups BN :=
SO(2N +1,C), CN := Sp(2N,C), DN := SO(2N,C). So we assume for the rest
of this section that G is one of these.

3.2.2.2 Some notation. We denote by l±ij the l-functionals l±(cω1

ij ) associated
to the matrix coefficients of the defining vector representation of G used in
[KS1] as generators of Cq[G]. We also adopt from there the abbreviations j′ :=
2N +2− j for G = BN and j′ := 2N +1− j for G = CN , DN . For X,Y ∈ Uq(g)
we write X ≡ Y iff X and Y do not vanish and are linearly dependent.
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3.2.2.3 A recurrence relation. With these notations, we have for all k with
i < k < j and k 6= i′, j′ ([KS1], Proposition 8.29):

l+ij ≡ [l+ik, l
+
kj ]l

−
kk, l−ji ≡ l+kk[l−jk, l

+
ki]. (3.6)

3.2.2.4 On the conventions in [KS1]. In the sequel we will frequently use
explicit calculations carried out in [KS1]. There a different convention for the
coproduct of the standard generators of Uq(g) is used; the elements denoted
there by Ki, Ei, Fi are K−1

i , Fi, Ei in our notation.
It seems unreasonable to rewrite all needed formulas from [KS1] in our notation,
since the results of this section are not used in the rest of the work. Hence let
us agree for the remainder of this section to use the conventions from [KS1].

3.2.2.5 Choice of ri1ri2 · · · rin
. We will use a special ordering of the positive

roots, in which most if not all terms on the right hand side of (2.1), (2.2) vanish.
To define it, we first arrange the positive roots in the following way as parts of
matrices:

βij ∈ Φ+ i j G
∑j−1

k=i αk
∑N

k=i αk +
∑N

k=j′ αk
1, . . . , N

i+ 1 ≤ j ≤ N + 1
N + 1 < j ≤ 2N + 1 − i

BN

∑j−1
k=i αk

∑N
k=i αk +

∑N−1
k=j′ αk

1, . . . , N
i+ 1 ≤ j ≤ N + 1
N + 1 < j ≤ 2N + 1 − i

CN

∑j−1
k=i αk

∑N−2
k=i αk + αN

∑N
k=i αk

∑N
k=i αk +

∑N−2
k=j′ αk

1, . . . , N − 1

i+ 1 ≤ j ≤ N
j = N + 1
j = N + 2
N + 2 < j ≤ 2N − i

DN

Note that βij = λj − λi with λk given by

λk k G
−αk − · · · − αN

0
k ≤ N
k = N + 1

BN

−αk − · · · − αN−1 − 1/2αN k ≤ N CN

−αk − · · · − αN−2 − 1/2αN−1 − 1/2αN

1/2αN−1 − 1/2αN

k ≤ N − 1
k = N

DN

and λk = −λk′ otherwise.
Now we fix the expression aNaN−1 · · · a1 for the longest word of W , where

ak k −N G

(
∏N

i=k ri)(
∏k

j=N−1 rj) BN , CN

1

(
∏N−2

i=k ri)rN (
∏k

j=N−1 rj)

(
∏N−1

i=k ri)rN (
∏k

j=N rj)

0
odd
even, 6= 0

DN

We denote the induced ordering of Φ+ by ≺. We have:

βij ≺ βkl ⇔ G
k < i or i = k, l < j BN , DN

k < i or i = k, j = N + 1 or
i = k, l < j, j 6= N + 1, l 6= N + 1

CN
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3.2.2.6 L-functionals and quantum root vectors. Comparing (3.6) with
the commutation relations (2.1),(2.2) of the quantum root vectors we prove now:

Theorem 1 If ij appear as indices of a positive root βij , then

l+ij ≡ l+iiEβij
, l−ji ≡ l−iiF−βij

,

except if G = CN and j = i′ > N + 1. In this case, there are xi, yi ∈ C, such
that

l+ii′ ≡ l+ii (Eβii′
+ xiEβii′−1

Ei), l−i′i ≡ (l−)i
i(F−βii′

+ yiF−βii′−1
Fi).

Proof. We consider only l+ij ; l
−
ji is treated analogously. The proof is by induction

over j − i. By the formulas given for l±ij in Section 8.5.2 of [KS1] we have

l±kk = K±λk
, l+j−1j ≡ l+j−1j−1Ef(j−1), f(k) :=

{

k k ≤ N,
k′ − 1 k > N.

(3.7)

Hence the claim holds for j − i = 1. All occurring l+ij except l+N−1N+1 for
G = CN , DN can be calculated from the recurrence relation (3.6). We apply
it with k = j − 1. This is admissible in all cases except G = CN , DN and
j = N + 1. These must be treated separately afterwards.
Inserting (3.7) and the induction hypothesis into (3.6) we get

l+ij ≡ l+ii(Ef(j−1)Eβij−1
− q−g(i,j−1)Eβij−1

Ef(j−1)) (3.8)

with g(i, j) := 〈λj , βij〉 − 〈λi, αf(j)〉. Inserting λk, βij , 〈αi, αj〉 one gets

g(i, j − 1) =

{

2 G = CN , j = i′

−〈αf(j−1), βij−1〉 otherwise
. (3.9)

The calculations are straightforward, but rather lengthy, so we moved them to
an additional paragraph at the end of this section.
We have αf(j−1) ≺ βij−1 for i < j− 1 and j 6= i′ which holds in all cases except
G = CN , j = i′. Since G = DN , j = N + 1 was excluded we furthermore have
αf(j−1) +βij−1 = βij , and there is no other linear combination of roots between
αf(j−1) and βij−1 equal to βij . Hence the exponent in (3.8) is in all considered
cases except G = CN , j = i′ the same as the one which appears on the left hand
side of (2.1). Thus the claim reduces to Proposition 3.
For G = CN , j = i′ we obtain

l+ii′ ≡ l+ii(EiEβii′−1
− q−2Eβii′−1

Ei) ≡ l+ii(Eβii′
+ xiEβii′−1

Ei)

for some xi ∈ C, because 〈αi, βij−1〉 = 0.
It remains to treat the excluded cases l+iN+1 for G = CN , DN . By the explicit

lists of l+ij in [KS1] we have for G = CN , i = N − 1

l+N−1N+1 ≡ l+N−1N−1(ENEN−1 − q−2EN−1EN )

= l+N−1N−1(ENEN−1 − q〈αN−1,αN 〉EN−1EN )

≡ l+N−1N−1EαN−1+αN
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by the same argument as above. For G = DN the lists directly contain

l+N−1N+1 ≡ l+N−1N−1EN ,

so the claim holds in these cases. For i < N − 1 we need a second induction on
i starting with i = N − 1. We again use the recurrence relation (3.6), but now
with k = i+ 1 (which is possible for i < N − 1). By induction we get

l+iN+1 ≡ [l+ii+1, l
+
i+1N+1]l

−
i+1i+1

≡ l+ii (EiEβi+1N+1
− q〈λi+1,αi〉−〈λi,βi+1N+1〉Eβi+1N+1

Ei).

In all cases we have 〈λi+1, αi〉 = 1 and the second term in the exponent vanishes,
since in βi+1N+1 only αj with j > i occur. Since 〈αi, βi+1N+1〉 = −1 and
αi ≻ βi+1N+1, the same argumentation as above yields

l+iN+1 ≡ l+ii (Eβi+1N+1
Ei − q〈αi,βi+1N+1〉EiEβi+1N+1

) ≡ l+iiEβiN+1
.

2

3.2.2.7 Modifying the PBW basis. Now we can substitute Eβij
and F−βij

in the PBW monomials KλFiEj by l+ij and l−ji, respectively. Theorem 1 implies
that we obtain again a vector space basis of Uq(g). That this applies also for
G = CN , j = i′ can be shown for example by noticing that the additional terms
are of lower degree with respect to the filtration studied in [DK1].
The coproduct of the new basis elements is directly available since ∆(l±ij) =
∑

k l
±
ik ⊗ l±kj . One also can compute explicitly their commutation relations.

3.2.2.8 Proof of (3.9). Inserting the explicit entries of the symmetrized
Cartan matrix one computes for k ≤ N

〈λk, αl〉 k, l G
−1
−2
+2

0

k = l = N,
k = l 6= N,
k = l + 1
otherwise

BN

−1
−2
+1

0

k = l < N
k = l = N
k = l + 1
otherwise

CN

−1
+1
−1
−1

0

k = l
k = l + 1 6= N
k = l + 1 = N
k = l − 1 = N − 1
otherwise

DN

For j − 1 ≤ N we have f(j − 1) = j − 1 > i, but also for j − 1 > N we have
f(j − 1) = (j − 1)′ − 1 = j′ > i except for j = i′ in the case G = CN where
f(j − 1) = i. Hence (for i 6= N , the case i = N does not appear)

〈λi, αf(j−1)〉 =

{

−1 j = i′, G = CN

0 otherwise
.
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Now we consider 〈λj−1, βij−1〉 by inserting the explicit expressions for βij−1 in
all cases. Let first j − 1 ≤ N . Then for G = BN we have

〈λj−1, βij−1〉 = 〈λj−1, αi + · · · + αj−2〉 = 2 = −〈αj−1, βij−1〉,

for G = CN , DN we have (recall that j = N + 1 was excluded)

〈λj−1, βij−1〉 = 〈λj−1, αi + · · · + αj−2〉 = 1 = −〈αj−1, βij−1〉.

If j − 1 = N + 1, then for G = BN we have

〈λN+1, βiN+1〉 = 〈0, αi + · · · + αN 〉 = 0 = −〈αN , βiN+1〉 = −〈αf(N+1), βiN+1〉,

for G = CN we have

〈λN+1, βiN+1〉 = −〈λN , αi + · · · + αN 〉 = 1

= −〈αN−1, βiN+1〉 = −〈αf(N+1), βiN+1〉

and for G = DN we have

〈λN+1, βiN+1〉 = −〈λN , αi + · · · + αN−2 + αN 〉 = 1

= −〈αN−1, βiN+1〉 = −〈αf(N+1), βiN+1〉.

If j − 1 > N + 1, then for G = BN we have

〈λj−1, βij−1〉 = −〈λ2N+3−j , αi + · · · + α2N+2−j + 2α2N+3−j + · · · + 2αN 〉

= 2 = −〈α2N+2−j , βij−1〉 = −〈αf(j−1), βij−1〉,

for G = CN we have

〈λj−1, βij−1〉

= −〈λ2N+2−j , αi + · · · + α2N+1−j + 2α2N+2−j + · · · + 2αN−1 + αN 〉

= 1

=

{

1 j = i′

−〈α2N+1−j , βij−1〉 otherwise

=

{

〈αf(j−1), βij−1〉 + 1 j = i′

−〈αf(j−1), βij−1〉 otherwise

and for G = DN we have for j − 1 = N + 2

〈λN+2, βiN+2〉 = −〈λN−1, αi + · · · + αN 〉 = 1

= −〈αN−2βiN+2〉 = −〈αf(N+2), βiN+2〉

and otherwise

〈λj−1, βij−1〉

= −〈λ2N+2−j ,

2N+1−j
∑

k=i

αk + 2

N−2
∑

k=2N+2−j

αk + αN−1 + αN 〉

= 1

= −〈α2N+1−j , βij−1〉

= −〈αf(j−1), βij−1〉

So (3.9) is proven.
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3.3 L-functionals on Cq[G] ⊲⊳ Cq[G]

3.3.1 L-functionals on the quantum double A ⊲⊳ A

3.3.1.1 The Hopf algebra A ⊲⊳ A. Let A be a coquasitriangular Hopf
algebra with universal r-form r. Then r can be used to define the quantum
double A ⊲⊳ A. This is a Hopf algebra which is the tensor product coalgebra
A⊗A endowed with the product

(f ⊗ g)(f ′ ⊗ g′) := (ff ′
(2) ⊗ g(2)g

′) r̄(f ′
(1), g(1))r(f

′
(3), g(3)).

The antipode of A ⊲⊳ A is given by S(f ⊗ g) := (1 ⊗ S(g))(S(f) ⊗ 1). See
[Ho, Ma1, KS1] for more information about quantum doubles.

3.3.1.2 A ⊲⊳ A as realification of A. If A is a Hopf ∗-algebra and r is real,
then A ⊲⊳ A is a Hopf ∗-algebra with involution defined by (f ⊗ g)∗ := g∗ ⊗ f∗

([Ma1], Section 7.3, [KS1], Section 10.2.7). This applies in particular to the case
of the coordinate algebras Cq[G0]. Then any element of A ⊲⊳ A can be written
uniquely as f∗g with f, g ∈ A (considered as a Hopf subalgebra of A ⊲⊳ A via
the embedding f 7→ 1⊗ f of A). One says that A ⊲⊳ A is a realification of A (in
[Ma1] it is called a complexification).

3.3.1.3 Coquasitriangularity of A ⊲⊳ A. By [KS1], Corollary 10.23, the Hopf
algebra A ⊲⊳ A is again coquasitriangular. We define its FRT-dual U(A ⊲⊳ A)
with respect to the universal r-form r̂ := r̄41r̄31r24r23, that is,

r̂(f ⊗ g, f ′ ⊗ g′)

= r̄(g′(1), f(1))r̄(f
′
(1), f(2))r(g(1), g

′
(2))r(g(2), f

′
(2)) (3.10)

= r̄(f ′
(1)g

′
(1), f)r(g, f ′

(2)g
′
(2)).

If A is a Hopf ∗-algebra and r is of real type, then r̂ is inverse real [KS1],
Proposition 10.29.

3.3.1.4 L-functionals on A ⊲⊳ A. Consider the multiplication map m as a
map from A ⊲⊳ A to A and define a second linear map

θ : A ⊲⊳ A→ U(A), f ⊗ g 7→ S(l−(g)l+(f)).

Denote by θ◦ : A→ (A ⊲⊳ A)◦ and m◦ : U(A) → (A ⊲⊳ A)◦ the dual maps,

〈θ◦(f), g ⊗ h〉 := 〈θ(g ⊗ h), f〉, 〈m◦(X), f ⊗ g〉 := 〈X, fg〉.

The properties of r and the fact that ∆ is an algebra homomorphism imply

r̂(f ⊗ g, f ′ ⊗ g′) = r̄(f ′
(1)g

′
(1), f)r(g, f ′

(2)g
′
(2))

=
〈

l+
(

S−1(f)
)

, (f ′g′)(1)
〉 〈

l−
(

S−1(g)
)

, (f ′g′)(2)
〉

= 〈θ(f ⊗ g),m(f ′ ⊗ g′)〉.

For the convolution inverse ¯̂r = r̄23r̄24r31r41 of r̂ one obtains similarly

¯̂r(f ⊗ g, f ′ ⊗ g′) =
〈

S−1 (θ(f ⊗ g)) ,m(f ′ ⊗ g′)
〉

.

Hence the l-functionals on U(A ⊲⊳ A) are given by

l̂+ = θ◦ ◦m, l̂− = m◦ ◦ S−1 ◦ θ.
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In particular, the images of l̂+ and l̂− are contained in those of θ◦ and m◦,
respectively. The mapm is obviously surjective. But S−1◦θ : a⊗b 7→ l−(b)l+(a)
is also surjective by (3.1). Hence one even has

im l̂+ = im θ◦, im l̂− = imm◦.

3.3.1.5 U(A ⊲⊳ A) as a subalgebra of U(A)⊗U(A). It is shown in [Ho] that

ι : U(A ⊲⊳ A) → A◦ ⊗A◦, X 7→ 〈X(1), (· ⊗ 1)〉 ⊗ 〈X(2), (1 ⊗ ·)〉 (3.11)

is an embedding of algebras (but not of coalgebras) and that

ι ◦m◦ = ∆, ι ◦ θ◦ = (l− ⊗ l+) ◦ ∆.

In particular, im ι ⊂ U(A) ⊗ U(A).

3.3.1.6 Morphism properties of m◦, θ◦. It follows from m21 = rmr̄ that
m : A ⊲⊳ A → A is a homomorphism of Hopf algebras. It is straightforward
to check that the restriction of 1 ⊗ ε defines a Hopf algebra homomorphism
U(A) ⊗ U(A) ⊃ ι(U(A ⊲⊳ A)) → U(A). Hence θ = S ◦ (1 ⊗ ε) ◦ ι ◦ l̂− is a Hopf
algebra homomorphism from A ⊲⊳ A to U(A)cop. By dualization we obtain

Proposition 14 The maps m◦ : U(A) → U(A ⊲⊳ A) and θ◦ : Aop → U(A ⊲⊳ A)
are Hopf algebra homomorphisms.

In the sequel, we will use the product, coproduct and antipode of A to express
those of Aop. So the product of f, g ∈ Aop will be written as gf and the
coproduct and the antipode of Aop are ∆ and S−1, respectively.

3.3.2 Casimir operators in U(A ⊲⊳ A)

3.3.2.1 Casimir operators. Let cij be the matrix coefficients of a finite-
dimensional corepresentation of A. Then

C :=
∑

ijk

S(l−(cij))l
+(cjk )̄f(cki).

belongs to the center of U(A) [KS1], Proposition 10.16. We call it the Casimir
operator associated to the corepresentation. The following remarks will be used
below:

Proposition 15 The Casimir operators associated to the corepresentations with
matrix coefficients S2(cij) and S(cji) coincide with C and S(C), respectively. In
particular, S2(C) = C. If the corepresentation is irreducible, then there exists a
constant λ such that fr̄21

(cij) = λf(cij) and S(C) = λCr̄21
, where fr̄21

and Cr̄21

are the analogues of f, C defined with respect to r̄21. If A is a Hopf ∗-algebra, r
is real and c∗ij = S(cji), then C∗ = C.

Proof. It is clear that f(S2(f)) = f(f) for all f ∈ A. Inserting this into the
definition of C and using two times Proposition 10 to transform S2 into the
identity, one gets

∑

ijk

S(l−(S2(cij)))l
+(S2(cjk))̄f(S2(cki)) = C.
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For the second statement we calculate with Proposition 10 and the Yang-Baxter
equation

S(C) =
∑

ijk

S(l+(cjk))S2(l−(cij))̄f(cki)

=
∑

ijk

l+(S−1(cjk))l−(S−2(cij))̄f(cki)

=
∑

ijkrstu

r̄(S−2(cir), S
−1(cuk))l−(S−2(crs))l

+(S−1(ctu))

r(S−2(csj), S
−1(cjt))̄f(cki)

=
∑

ikrstu

r(cir , cuk)l−(S−2(crs))l
+(S−1(ctu))f(cst )̄f(cki)

=
∑

ikrstu

r(S2(cki), cuk )̄f(cir)l
−(S−2(crs))l

+(S−1(ctu))f(cst)

=
∑

itu

f̄(S−1(cui))l
−(cit))l

+(S−1(ctu))

=
∑

itu

S(l−(S(cit)))l
+(S(cui))̄f(S

−1(ctu))

=
∑

itu

S(l−(S(cit)))l
+(S(cui))̄f(S(ctu)).

If the matrix corepresentation {cij} is irreducible, then Schur’s lemma implies
that (fr̄21

f̄)(cij) = λδij for some constant λ, because fr̄21
f̄ is central in the

convolution algebra of linear functionals on A [Sch1]. Hence fr̄21
(cij) = λf(cij).

Then the second equality in the above computation of S(C) gives

S(C) =
∑

ijk

S(l+(cjk))l−(cki)̄f(cki) = λCr̄21
.

If A is a Hopf ∗-algebra, r is real and c∗ij = S(cji), then l±(cij)
∗ = S(l∓(cji))

[KS1], Proposition 10.14. It is immediate that f(cij) ∈ R. Inserting this into
the definition of C∗ one gets C∗ = C. 2

3.3.2.2 Casimir operators in U(A ⊲⊳ A). As we will prove below, the
embedding ι is in general not surjective. But for any Casimir operator C ∈
U(A), the elements C ⊗ 1, 1 ⊗ C are contained in im ι:

Proposition 16 Let cij be the matrix coefficients of a corepresentation of A.
Let C1, C2 be the Casimir operators of U(A ⊲⊳ A) associated to the corepresen-
tations with matrix coefficients c1ij := cij ⊗ 1 and c2ij = 1 ⊗ cij , respectively.
Then

ι(C1) = S(C) ⊗ 1, ι(C2) = 1 ⊗ C,

where C ∈ U(A) is the Casimir operator associated to {cij}. If A is a cosemisim-
ple Hopf ∗-algebra and r is real, then

ι
(

(C1)∗
)

= 1 ⊗ S(C), ι
(

(C2)∗
)

= C ⊗ 1.
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Proof. Let fr̂ be the analogue of f for A ⊲⊳ A. We have

fr̂(c
2
ij) =

∑

k

r̂
(

S2(1 ⊗ cik), 1 ⊗ ckj

)

=
∑

k

r
(

S2(cik), ckj

)

= f̄(cij).

Furthermore, ι ◦S(l̂−(c2ij)) = ∆ ◦S (l−(cij)) and ι ◦ l̂+(c2ij) = (l− ⊗ l+) ◦∆(cij).
Hence

∑

k

ι ◦ S(l̂−(c2ik))ι ◦ l̂+(c2kj) =
∑

k

1 ⊗ S
(

l−(cik)
)

l+(ckj).

Therefore C2 = 1 ⊗ C. The calculation for C1 is analogous.
If A is a Hopf ∗-algebra, then for f ⊗ g we have

〈(1 ⊗ C)∗, f ⊗ g〉 = 〈1 ⊗ C, S(f ⊗ g)∗〉.

Furthermore, we have

S(f ⊗ g)∗ = ((1 ⊗ S(g))(S(f) ⊗ 1))∗

= (S(f) ⊗ 1)∗(1 ⊗ S(g))∗

= (1 ⊗ S(f)∗)(S(g)∗ ⊗ 1)

= (S(g)∗(2) ⊗ S(f)∗(2))r̄(S(f)∗(1), S(g)∗(1))r(S(f)∗(3), S(g)∗(3))

= (S(g(2))
∗ ⊗ S(f(2))

∗)r̄(S(f(3))
∗, S(g(3))

∗)r(S(f(1))
∗, S(g(1))

∗)

= (S(g(2))
∗ ⊗ S(f(2))

∗)r(f∗
(3), S(g(3))

∗)r(S(f(1))
∗, S(g(1))

∗).

Inserting this into the first equation we get for real r

〈(1 ⊗ C)∗, f ⊗ g〉 = 〈1 ⊗ C, S(g(2))∗ ⊗ S(f(2))∗〉

r(f∗
(3), S(g(3))∗)r(S(f(1))∗, S(g(1))∗)

= ε(g(2))〈C, f(2)〉r(S(g(3)), f(3))r(S(g(1)), S(f(1))).

By cosemisimplicity of A we may assume that f and hence all f(2) are ma-
trix coefficients of an irreducible corepresentation. Then Schur’s lemma implies
〈C, f(2)〉 = λε(f(2)) for some constant λ which is independent of f(2). Inserting
this we get

. . . = λε(g(2))ε(f(2))r(S(g(3)), f(3))r(S(g(1)), S(f(1)))

= λr(S(g(2)), f(2))r(S(g(1)), S(f(1)))

= λr(S(g), S(f(1))f(2))

= λε(g)ε(f)

= 〈C ⊗ 1, f ⊗ g〉.

The calculation of ι
(

(C1)∗
)

is analogous. 2

Note that coquasitriangular Hopf algebras need not to be cosemisimple; a coun-
terexample is given by Sweedler’s Hopf algebra.

3.3.3 The quantum Iwasawa decomposition

3.3.3.1 Quantum Iwasawa decomposition. Define a linear map

ζ : Aop ⊲⊳ U(A) → U(A ⊲⊳ A), ζ(f ⊗X) := θ◦(f)m◦(X)

with the quantum double Aop ⊲⊳ U(A) constructed with respect to the canonical
pairing of U(A) and A. Then we have [Ho, Ma1, RS]:
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Proposition 17 The map ζ is an epimorphism of Hopf algebras.

Proof. The surjectivity follows from the above discussion of l̂± and (3.1).
It is immediate that ζ is a coalgebra homomorphism. That it is an algebra
homomorphism follows from the relation

θ◦(f(1))m
◦(X(1))〈X(2), f(2)〉 = m◦(X(2))θ

◦(f(2))〈X(1), f(1)〉, f ∈ A,X ∈ U(A).

To prove this relation one can assume by (3.1) and linearity that X = l−(g)l+(h)
with g, h ∈ A. By applying it then to i⊗j ∈ A ⊲⊳ A it turns out to be equivalent
to

r̄12r31r̄42r25r̄43r35r̄41r15 = r̄41r15r̄42r25r̄43r35r̄12r31.

This equation in turn is proven by use of r̄12r23r̄14r43 = r̄24r̄14r43r̄12r23r24

which follows from the Yang-Baxter equation. 2

3.3.3.2 The case of ∗-algebras. If A is a Hopf ∗-algebra and r is real, then
there is an involution on Aop ⊲⊳ U(A) defined by

(f ⊗X)∗ := (1 ⊗X∗)
(

S2(f)∗ ⊗ 1
)

,

for which Aop ⊲⊳ U(A) becomes a Hopf ∗-algebra and ζ a ∗-homomorphism, see
[Ma1], Proposition 7.1.4 and Theorem 7.3.5.

3.3.3.3 Main result. Now we prove the main result of this chapter.

Theorem 2 For A = Cq[G] the map ζ is an isomorphism.

Proof. It remains to check the injectivity. We prove that

ζ′ := ι◦ζ : Cq[G]op ⊲⊳ Uq(g) → Uq(g)⊗Uq(g), f⊗X 7→ l−(f(1))X(1)⊗l
+(f(2))X(2)

with ι from (3.11) is injective.
Suppose X ∈ ker ζ′, X =

∑

λ∈L,i,j∈Nn
0
fλij ⊗KλFiEj with fλij = 0 for almost all

λij. We have to show that X vanishes.
Order Nn

0 in such a way that the weights µj of Ej form a non-decreasing (with
respect to <) sequence. Let j0 be a maximal j for which there exists an fλij 6= 0.
Recall that ι ◦m◦ = ∆ and ι ◦ θ◦ = (l− ⊗ l+) ◦ ∆. Note that by Proposition 13
and Proposition 1 we have

(l− ⊗ l+) ◦ ∆(fλij) ∈ Uq(b−) ⊗ Uq(b+), ∆(KλFi) ∈ Uq(b−) ⊗ Uq(b−).

Hence only ∆(Ej) contribute to the Uq(n+)-part in the first tensor component.
Expand them according to Proposition 1. Then the PBW theorem implies that

∑

λi

(l− ⊗ l+) ◦ ∆(fλij0 ) · ∆(KλFi) · (Ej0 ⊗ 1)

is linearly independent from the other terms occurring in ζ′(X) and vanishes
separately. Since Uq(g)⊗Uq(g) = Uq(g⊕g) is an integral domain (Proposition 4),
we get

∑

λi

(l− ⊗ l+) ◦ ∆(fλij0) · ∆(KλFi) = 0.
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The same argument applied to a maximal i0 and the second tensor component
shows

∑

λ

(l− ⊗ l+) ◦ ∆(fλi0j0) · ∆(Kλ) = 0.

By Proposition 13 we can write (l− ⊗ l+) ◦∆(fλi0j0) as
∑

ξ∈LXλξKξ ⊗YλξK−ξ

for some Xλξ ⊗ Yλξ ∈ Uq(n−) ⊗ Uq(n+). Then the last equation becomes
∑

ξλ

XλξKξ+λ ⊗ YλξK−ξ+λ = 0.

This implies Xλξ ⊗ Yλξ = 0 for all λ, ξ. Finally,

(l− ⊗ l+) ◦ ∆(fλi0j0) = 0

implies fλi0j0 = 0 in contradiction with the assumption, because (l− ⊗ l+) ◦ ∆
is injective by the definition of U(Cq[G]). 2

3.3.4 On the quantum codouble Uq(g) ◮◭ Uq(g)

3.3.4.1 Finite-dimensional case. If A is finite-dimensional, then any univer-
sal r-form r is simultaneously a universal R-matrix R for the dual Hopf algebra
A◦ which therefore is quasitriangular. This R-matrix can be used to form a
quantum codouble A◦

◮◭ A◦ of two copies of A◦, see [Ma1]. Its structure is
completely dual to that of A ⊲⊳ A - it is the tensor product algebra A◦ ⊗ A◦

with a twisted coproduct

∆(X ⊗ Y ) := X(1) ⊗R(Y(1) ⊗X(2))R
−1 ⊗ Y(2). (3.12)

The map ι becomes a Hopf algebra homomorphism into A◦
◮◭ A◦. If A is in

addition factorizable, i.e., if f 7→ S(l−(f(1)))l
+(f(2)) is injective, then both ι and

ζ are isomorphisms [Ma1], Theorem 7.3.5. As we will see now, there is no way
to define the above coproduct in a rigorous way for arbitrary coquasitriangular
Hopf algebras A.

3.3.4.2 Uq(g) ◮◭ Uq(g) does not exist. The universal R-matrix dual to the
universal r-form r of Cq[G] does not exist as an element of Uq(g) ⊗ Uq(g), but
only in some topological completion. Nevertheless, parts of the theory of qu-
asitriangular Hopf algebras carry over to Uq(g), since the l-functionals contain
essentially the same information. Hence it is not a priori clear that there is no
way to define the twisted coproduct (3.12) as well on Uq(g) ⊗ Uq(g). But we
show now that this is in fact impossible.

Theorem 3 There exists no bialgebra structure on Uq(g) ⊗ Uq(g) such that ι
becomes a homomorphism of bialgebras.

Proof. Suppose that the opposite holds. Then ι ◦ θ◦ is a bialgebra homo-
morphism as well. Note that ±(ν − µ) /∈

∑N
i=1 N0αi implies l±(cλ−µ,ν) = 0 by

Proposition 12. Using this and Proposition 13 one computes

∆(Kλ ⊗K−λ) = ∆ ◦ ι ◦ θ◦(cλλ,−λ)

= (ι ◦ θ◦ ⊗ ι ◦ θ◦) ◦ ∆(cλλ,−λ)

=
∑

n

Kλ ⊗X+(cλλ,νn
)K−λ ⊗X−(cλ−νn,−λ)Kλ ⊗K−λ.
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This must be an invertible element of Uq(g)⊗4, because ∆ is an algebra homo-
morphism and Kλ⊗K−λ is invertible. Since Kλ⊗K−λ⊗Kλ⊗K−λ is invertible,
∑

nX
+(cλλ,νn

) ⊗X−(cλ−νn,−λ) is an invertible element of Uq(g) ⊗ Uq(g).
An invertible element of a graded algebra must be homogeneous - the product
of the homogeneous components of highest degrees n0,m0 of the element and its
inverse must be of degree zero, so m0 = −n0, the same must hold for the compo-
nents of lowest degrees n1,m1, so m1 = −n1 and n1 ≤ n0 and m1 ≤ m0 implies
then m0 = m1 = −n0 = −n1. By Proposition 13

∑

nX
+(cλλ,νn

)⊗X−(cλ−νn,−λ)
is not homogeneous with respect to the Q×Q-grading of Uq(g) ⊗ Uq(g), so we
obtain a contradiction. 2

Although (Cq[G], r) is factorizable [BS], we therefore have:

Corollary 1 The map ι is not surjective.

3.4 Bibliographical notes

Coquasitriangular Hopf algebras were introduced in [LT]. We refer to Chap-
ter 10 of [KS1] for more information. The quantum Iwasawa decomposition was
introduced in [PW1], but in the C∗-algebraic framework with the duality given
by the Haar functional instead of the r-form. The purely algebraic formulation
was intensively studied by S. Majid [Ma1], but the basic structures appeared
already earlier [RS]. For the analogous structures for Poisson-Lie groups see
[HY]. For proofs and further details on A ⊲⊳ A and the constructions used in
this chapter see [Ho] and Chapter 10 of [KS1].



Chapter 4

Dirac operators on

quantum flag manifolds

The first section contains preliminaries on quantum flag manifolds and quantum
homogeneous vector bundles. The second summarizes the theory of covariant
differential calculi on quantum homogeneous spaces developed in [HK3]. At its
end the notion of a Hilbert space representation (commutator representation)
of a differential calculus is explained. The main section is the third, where such
a representation is constructed for the irreducible finite-dimensional covariant
differential calculi on quantized irreducible flag manifolds found in [HK1].
In this chapter we assume q ∈ (1,∞) and that G is simple and simply connected.

4.1 Quantum flag manifolds

4.1.1 Flag manifolds

4.1.1.1 Definition. Let P ⊂ G be a parabolic subgroup, that is, a closed
subgroup whose Lie algebra p contains a maximal solvable Lie subalgebra of g.
Then the homogeneous space M := G/P is called a (generalized) flag manifold.
Given a maximal solvable subalgebra of g, there exists an inner automorphism
of g mapping this subalgebra to b+. Hence we assume that b+ ⊂ p from now on.
We denote by l the Levi factor of p (its maximal reductive subalgebra). Then
l =: h⊕

⊕

Φl⊂Φ gβ , and p = l⊕ u+, where u+ is the nilpotent ideal
⊕

Φ+\Φ+

l

gβ ,

Φ±
l := Φ± ∩ Φl [Kn], (5.93). Note that l determines p.

As a complex variety, M is projective. Thus it can not be described globally by
a single ring. But as explained in Chapter 1, it is as a real variety isomorphic to
the real form G0/L0 of the complex affine variety G/L. Here L0 is the compact
real form of the subgroup L of G corresponding to l. This allows to describe M
as a real variety by the ∗-algebra C[M ] ⊂ C[G0] of L0-invariant elements.

4.1.1.2 The tangent space. The Lie algebra p acts on the complex tangent
space TePM = g/p with action induced by the adjoint action of g. If u denotes
the orthogonal complement of l in g with respect to the Killing form, then g/p
is as a representation only of l isomorphic to u− := u∩n− (with action being the
adjoint action). The Killing form defines a non-degenerate pairing between u+

and u−, so u+ gets identified with the dual representation u∗− of l. The action of
l on u defines an embedding of l into so(2m,C), where m = dimC M = dimC u±.

31



32 4. DIRAC OPERATORS ON QUANTUM FLAG MANIFOLDS

4.1.1.3 Irreducible flag manifolds. We will have to assume that all consid-
ered flag manifolds are irreducible. By this we mean that g/p is an irreducible
representation of p. Engel’s theorem implies that u+ acts then trivially on g/p.
In this case there exists r ∈ {1, . . . , N} such that Φl = Φ ∩

⊕

i6=r Zαi, that is, l

is the Lie subalgebra of g generated by h and all Ek, Fk except Er, Fr [BE], Ex-
ample 3.1.10. The representations u± of l are irreducible with highest (lowest)
weight ∓αr. The following is a complete list of all possible values for r:

g AN BN CN DN E6 E7

r 1, . . . , N 1 N 1, N − 1, N 1 N

The cases AN and BN , DN , r = 1 give the complex Grassmannians Gr(r,N +1)
and the complexified spheres CSm. Note also that the irreducible flag manifolds
coincide with the irreducible compact Hermitian symmetric spaces [He1].

4.1.2 Quantum flag manifolds

4.1.2.1 Quantum homogeneous spaces. Let A be a Hopf algebra and
B ⊂ A be a left coideal subalgebra of A. Then the coproduct of A defines a left
coaction of A on B such that B becomes an A-comodule algebra. We call B
an algebra of functions on a quantum homogeneous space, if A is faithfully flat
as a B-module [MS]. This condition is natural from several points of view. In
particular, it enters in a crucial way the theory of covariant differential calculi on
B as was realized by U. Hermisson [He2], see the sections below. In the commu-
tative case it is necessarily fulfilled if the prime spectrum of B can be identified
with the quotient of the affine group scheme associated to A by the closed affine
subgroup scheme corresponding to the quotient Hopf algebra A/AB+, cf. [DG],
Proposition III.3.2.5. Here as in what follows we define B+ := B ∩ ker ε for a
vector subspace B of a coalgebra.

4.1.2.2 Quantum homogeneous spaces as infinitesimal invariants. The
quantum homogeneous spaces discussed in this chapter are all of the following
type: Let U be a Hopf algebra with bijective antipode, K ⊂ U be a right
coideal subalgebra, C be a category of finite-dimensional U -modules which is
closed under formation of tensor products and duals. Let A be the restricted
Hopf dual U◦

C of U with respect to C. We assume that the pairing 〈·, ·〉 between
U and A is non-degenerate and that the antipode of A is bijective as well. Set

B := {f ∈ A |X ⊲ f = ε(X)f ∀X ∈ K}, X ⊲ f := 〈X, f(2)〉f(1).

Then B is a left coideal subalgebra of A and A is faithfully flat over B if the
modules of C are semi-simple over K [MS], Theorem 2.2. The latter condition is
always fulfilled if U is a pointed Hopf ∗-algebra (i.e. one whose simple subcoal-
gebras are all one-dimensional), if any V ∈ C admits a Hermitian inner product
(·, ·) such that (Xv,w) = (v,X∗w) for all X ∈ U, v, w ∈ V , and if there exists a
coideal I ⊂ U with S(I)∗ ⊂ I such that

K = {X ∈ U |π(X(1)) ⊗X(2) = π(1) ⊗X},

where π : U → Ū := U/UI is the canonical projection.
Since this is more convenient in our applications, we will consider B usually not
as a left A-comodule algebra, but as a right U -module algebra with respect to
the action f ⊳ X = 〈X, f(1)〉f(2), X ∈ U, f ∈ B.
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4.1.2.3 Quantum flag manifolds. Let M = G/P be an irreducible flag
manifold and r be as in 4.1.1.3. Choose

U := Uq(g0), C := CG, I := span{Kλ − 1, Ei, Fi |λ ∈ P, i 6= r}.

Then U is pointed ([Mo], Lemma 5.5.5) and A is equal to Cq[G0]. It follows
from [MS], Theorem 1.2 and the fact that the coalgebra Ū = U/UI is equal to
U/UK+, that K is the Hopf ∗-subalgebra Uq(l0) ⊂ Uq(g0) generated by 1 and
I. The algebra B =: Cq[M ] is clearly a quantum analogue of C[M ]. We call it
the coordinate algebra of the quantum flag manifold Mq.

4.1.2.4 Quantum flag manifolds and quantum double groups. There
is a generalization of the isomorphism G/P = G0/L0 in the quantum case. Let
A,U,B,K be as in 4.1.2.2 with A coquasitriangular and U ⊂ U(A). Define

B′ := {f ∈ A ⊲⊳ A |X ⊲ f = ε(X)f ∀X ∈ Aop ⊲⊳ K}.

This is an A ⊲⊳ A-comodule algebra. The composition of the coaction with the
map m : A ⊲⊳ A→ A, f ⊗ g 7→ fg turns B′ into an A-comodule algebra.

Proposition 18 If the pairing of U(A ⊲⊳ A) and A ⊲⊳ A is non-degenerate,
then m defines an isomorphism of A-comodule algebras between B′ and B.

Proof. The map m is an epimorphism of A-comodule algebras. Suppose that
m(f) = 0 for some f ∈ B′. Under our assumptions the map ζ◦ := (m⊗ θ) ◦ ∆
dual to ζ from 3.3.3.1 is injective [Ho], Corollary 2.5. We can assume that
the summands of ζ◦(f) =

∑

m(f(1))⊗ θ(f(2)) have linearly independent second
tensor components. Hence for any of them there exists g ∈ A vanishing on all of
them but the considered one where it gives 1 (if the pairing of U(A ⊲⊳ A) with
A ⊲⊳ A is non-degenerate, then that of U(A) and A also is). Applying id ⊗ g
to ζ◦(f) we hence obtain the corresponding term of the first tensor component.
On the other hand we have

(id ⊗ g)(ζ◦(f)) = m(f(1)) ⊗ 〈θ(f(2)), g〉 = m(θ◦(g) ⊲ f) = ε(g)m(f) = 0,

because f ∈ B′. Hence ζ◦(f) = 0 and the claim follows. 2

Hence the homogeneous space of the quantum Lorentz group used to define in-
duced representations in [PW2] is just Podleś’ standard quantum sphere (com-
pare Remark 4.5 there), and in general quantum flag manifolds could be used
to construct unitary corepresentations of Cq[G0] ⊲⊳ Cq[G0] for arbitrary G.

4.1.3 Quantum homogeneous vector bundles

4.1.3.1 Homogeneous vector bundles. Let M = G/P = G0/L0 be a flag
manifold. Then any representation ρ of L0 on a vector space V associates to
the L0-principal fiber bundle G0 → G0/L0 a vector bundle over M . Its total
space G0 ×L0

V is the quotient of G0 × V by the right L0-action (x, v) ⊳ y :=
(xy, ρ(y−1)v), x ∈ G0, y ∈ L0, v ∈ V . The projection of the vector bundle
is defined by the projection of G0 × V onto the first factor. Its sections are
represented by functions ψ : G0 → V satisfying ψ(xy) = ρ(y−1)ψ(x) for all x ∈
G0, y ∈ L0. The vector space of all of them forms by definition the representation
IndG0

L0
ρ of G0 induced by ρ. One calls such vector bundles over M homogeneous

vector bundles [BE, Wa1].
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4.1.3.2 Quantum homogeneous vector bundles. Any representation of L0

admits a deformation to a ∗-representation of Uq(l0). Thus one can introduce
the following direct analogue of the vector space of sections of G0 ×L0

V [GZ]:

Γ(Mq, V ) := {ψ ∈ Cq[G0] ⊗ V |X ⊲ ψ = ρ(S(X))ψ ∀X ∈ Uq(l0)}

=
⊕

λ∈P+

V (λ) ⊗ HomUq(l0)(V (λ), V ). (4.1)

The last identification is induced by the Peter-Weyl decomposition of Cq[G0].
We recall several facts on quantum homogeneous vector bundles needed in the
sequel. For proofs we refer to [GZ].

4.1.3.3 A basis for Γ(Mq, V ). For any λ, let {Aλ
i } be a vector space basis

of HomUq(l0)(V (λ), V ). Then the elements ψλ
ij :=

∑

k S(cλkj) ⊗ Aλ
i (wλ

k ) form a

basis of Γ(Mq, V ). Here {wλ
i } is the basis of V (λ) with respect to which the

matrix coefficients cλij are defined.

4.1.3.4 Unitarity. There is a Hermitian inner product 〈·, ·〉V on Γ(Mq, V )
defined by applying 〈·, ·〉h to Cq[G0] and the invariant Hermitian inner prod-
uct (·, ·)V to V . We can choose the basis ψλ

ij to be orthonormal. We com-
plete Γ(Mq, V ) to a Hilbert space H(Mq, V ) which we call the space of square-
integrable sections of the quantum homogeneous vector bundle on Mq.

4.1.3.5 Module structure. The right action on Cq[G0] turns Γ(Mq, V ) into
a right Uq(g0)-module. The multiplication in Cq[G0] defines a Cq[M ]-bimodule
structure on Γ(Mq, V ) and when restricting to a one-sided action one obtains a
projective module (this is proven quite explicitly in [GZ], but follows also from
more abstract arguments, see e.g. [Du], Appendix B or [HK2], Remark 2.4.(iii)).

4.2 Covariant differential calculi

4.2.1 Covariant differential calculi

4.2.1.1 Differential calculi. A (first order) differential calculus over an alge-
bra B is a bimodule Γ together with a C-linear map d : B → Γ such that

Γ = spanC{fdg | f, g ∈ B}, d(fg) = (df)g + f(dg) ∀ f, g ∈ B.

A differential calculus over a ∗-algebra is called a ∗-calculus, if it admits a conju-
gate linear involution ∗ such that (fdg)∗ = d(g∗)f∗. A morphism of differential
calculi is a morphism of bimodules which intertwines the two differentials. Note
that a morphism of differential calculi is automatically surjective.

4.2.1.2 The universal calculus. Let B be any algebra and denote by f̄ the
class of f ∈ B in B̄ := B/C·1. Then Γu := B⊗B̄ becomes a differential calculus
over B with differential du(f) := 1 ⊗ f̄ , see [KS1]. The left module structure
is given by multiplication in B. The right one is determined by the Leibniz
rule. If (Γ, d) is any differential calculus over B, then fdug 7→ fdg extends to a
morphism Γu → Γ. Hence Γ is isomorphic to the quotient of Γu by the kernel
of this morphism. In particular, this implies:

Proposition 19 Two covariant differential calculi (Γ, d) and (Γ′, d′) over an
algebra B are isomorphic iff

∑

i fidgi = 0 ⇔
∑

i fid
′gi = 0.



4.2. COVARIANT DIFFERENTIAL CALCULI 35

4.2.1.3 Covariant differential calculi. Let A be a Hopf algebra and B be
a left A-comodule algebra. Then a differential calculus (Γ, d) over B is called
covariant, if Γ is a left A-comodule and the coaction is compatible with the
B-action and d in the sense that

(fdg)(1) ⊗ (fdg)(2) = f(1)g(1) ⊗ f(2)d(g(2)) ∈ A⊗ Γ

for all f, g ∈ B. If U is a Hopf subalgebra of A◦, then Γ becomes a right U -
module and X(fdg) = (f ⊳ X(1))d(g ⊳ X(2)) for all X ∈ U . In particular, d is
U -linear.

4.2.2 Differential calculi on quantum flag manifolds

4.2.2.1 Differential calculi on quantum homogeneous spaces. Assume
now that B is a quantum homogeneous space of the type introduced in 4.1.2.2.
Define the dimension of a covariant differential calculus (Γ, d) over B to be
dim Γ := dimC Γ/B+Γ [He2]. Then finite-dimensional covariant differential cal-
culi over B can be characterized as follows [HK3], Corollary 5:

Proposition 20 There is a canonical one-to-one correspondence between m-
dimensional covariant differential calculi over B and m + 1-dimensional sub-
spaces T of the dual coalgebra B◦ such that

ε ∈ T, ∆(T ) ⊂ T ⊗B◦, KT ⊂ T.

Here KT is the orbit of T under the canonical action of K on B◦ given by
〈XY, f〉 := 〈X, f(1)〉〈Y, f(2)〉, X ∈ K,Y ∈ B◦, f ∈ B.
The vector space T corresponding to a given calculus (Γ, d) is

T =
{

X ∈ B◦
∣

∣

∣

∑

i

fidgi = 0 ⇒
∑

i

ε(fi)X(gi − ε(gi)) = 0
}

.

The vector space T+ = T ∩ ker ε is called the quantum tangent space of the
corresponding differential calculus.

4.2.2.2 Calculi obtained by restriction. Let B ⊂ A be as above and (Γ, d)
be a covariant differential calculus over A. Then Γ|B := span{fdg | f, g ∈ B}
is a covariant differential calculus over B. We will see below that all finite-
dimensional covariant differential calculi on quantum flag manifolds can be ob-
tained in this way from calculi over Cq[G0]. To show this we need the following
result, in which π : A◦ → B◦ denotes the restriction [HK3], Corollary 9:

Proposition 21 If Γ is finite-dimensional with quantum tangent space T+,
then Γ|B is finite-dimensional iff Kπ(T+) is finite-dimensional, and in this
case this is the quantum tangent space of Γ|B .

4.2.2.3 Differential calculi on quantum flag manifolds. By the above,
the main step to classify all finite-dimensional covariant differential calculi over
B is to determine the vector space F(B◦,K) := {X ∈ B◦ | dimKX <∞} which
was called in [HK3] the locally finite part of B◦. For quantized irreducible flag
manifolds one has F(B◦,K) = Ū [HK1], Theorem 6.5. Hence in this case the
quantum tangent spaces of finite-dimensional covariant differential calculi are
contained in π(U), where π : A◦ → B◦ is again the restriction map. Then
KT ⊂ T means that π(XY ) ∈ T for all X ∈ K and Y ∈ U with π(Y ) ∈ T .
Using this the following classification was obtained [HK1], Theorem 7.2:
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Proposition 22 There exist exactly two non-isomorphic finite-dimensional ir-
reducible covariant differential calculi (Γ±, d±) over Cq[M ]. Both have dimen-
sion m and their direct sum (Γ, d) is a ∗-calculus.

Here a covariant differential calculus Γ 6= {0} is called irreducible, if it possesses
no non-trivial quotient by a covariant B-subbimodule. The quantum tangent
spaces of Γ± are (cf. [HK1], Theorem 7.2 and Proposition 5.5)

T+
+ = span{π(Eβ) |β ∈ Φ+ \ Φ+

l }, T+
− = span{π(F−β) |β ∈ Φ+ \ Φ+

l }. (4.2)

4.2.3 Hilbert space representations

4.2.3.1 Spectral triples. Let B be a ∗-algebra and ρ : B → B(H) be a
∗-homomorphism into the algebra of bounded operators on a Hilbert space H .
Assume that D is a symmetric operator defined on a dense subspace of H
which is invariant under D and ρ(B). Then we will call (B,H,D) a spectral
triple, provided that all commutators df := i[D, ρ(f)], f ∈ B, are bounded on
the domain of definition of D. Note that this drastically simplifies the usual
terminology. For a more general setting with possibly unbounded df see [Sch2].

4.2.3.2 Representations of differential calculi. If (B,H,D) is a spectral
triple, then Γ := span{ρ(f)dg | f, g ∈ B} ⊂ B(H) is a differential ∗-calculus over
B. The spectral triple is called a (faithful) representation of a given differential
∗-calculus (Γ′, d′), if the map

ψ : Γ′ → Γ,
∑

k

fkd′gk 7→
∑

k

fkdgk

is an (injective) morphism of differential ∗-calculi.

4.3 Dirac operators on quantum flag manifolds

4.3.1 Lifting the quantum tangent spaces to Uq(g0)

4.3.1.1 Definition of u−. Recall the notations from Section 4.1. Define
λ := −2n ·ωr, where r is as in 4.1.1.3. The number n ∈ N \ {0} is arbitrary but
fixed and will play no role in the sequel. Set X0 := Kλ − 1 and

X1 := Fr •X0 = Fr •Kλ = FrKλKr −KλFrKr = (1 − q2ndr)FrKrKλ.

Proposition 23 The adjoint action turns u− := Uq(l0)•X1 into the irreducible
finite-dimensional representation of Uq(l0) with highest weight −αr.

Proof. Since ∆(Kµ) = Kµ ⊗Kµ and S(Kµ) = K−1
µ we have

Kµ •X1 = KµX1K
−1
µ = q−〈µ,αr〉X1 ∀µ ∈ P.

Furthermore, Kλ commutes with all Ei, Fi for i 6= r. Therefore we have

Ei •Kλ = EiKλ −KiKλK
−1
i Ei = EiKλ − EiKλ = 0

⇒ Ei •X1 = EiFr •Kλ = FrEi •Kλ = 0.

By Proposition 5, u− is finite-dimensional. Hence the claim follows. 2
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4.3.1.2 Definition of u+ and u. Fix a basis Xi of u− consisting of weight
vectors and define X i := X∗

i . Then the X i form a basis of a vector space which
we denote by u+. The adjoint action and the involution commute by

(X • Y )∗ = S(X(2))
∗Y ∗X∗

(1) = S(X)∗(1)Y
∗S(S(X)∗(2)) = θ(X) • Y ∗, (4.3)

since S ◦ ∗ ◦ S ◦ ∗ = id in any Hopf ∗-algebra. Furthermore, Uq(l0) is a Hopf
∗-subalgebra of Uq(g0). Hence u+ is Uq(l0)-invariant as well. Set u := u+ ⊕ u−.

4.3.1.3 Properties. The weight structure of the Uq(l0)-modules u± is the
classical one. Hence their complex dimension equals m, and the weights of u±
are the roots β ∈ Φ± \ Φ±

l , all with multiplicity 1. Therefore Proposition 6
implies that after an appropriate normalization we have 〈Xi, X

j〉 = δij .

4.3.2 Quantum γ-matrices

4.3.2.1 The classical Clifford algebra. The Clifford algebra Cl(2m,C) is
the universal algebra with a vector space embedding γ : C2m → Cl(2m,C) such
that γ(v)2 = −

∑

i v
2
i for all v ∈ C2m. The spin representation σ on the space

Σ2m := C2m

of 2m-spinors yields an isomorphism Cl(2m,C) = End(Σ2m) [Fr].

4.3.2.2 Cl(2m,C) as a representation of so(2m,C). Consider C2m and
End(Σ2m) = Σ2m ⊗ Σ∗

2m as the carrier spaces of the vector representation ρ of
so(2m,C) and of the tensor product representation σ ⊗ σ∗, respectively. Then
γ is even an embedding of so(2m,C)-representations. In fact, the standard
vector space isomorphism Cl(2m,C) = Λ∗

C
2m is an isomorphism of so(2m,C)-

representations, and γ is the restriction to C2m = Λ1C2m. Since σ is itself the
direct sum of the two half-spin representations σ± which are dual to each other
(see e.g. [FH]), σ is self-dual, σ = σ∗, but this is irrelevant for our purposes.

4.3.2.3 Definition of quantum γ-matrices. Not all flag manifolds are spin
[CG], but as Kähler manifolds they all admit spinC structures [Fr], Section 3.4.
In any case the embedding l ⊂ so(2m,C) obtained in 4.1.1.2 from the action of
l on (u+ ⊕ u−, 〈·, ·〉) defines the representations ρ and σ of l, and ρ appears as a
subrepresentation in σ ⊗ σ∗. These representations can be deformed to repre-
sentations of Uq(l0) which we denote by the same symbols. The representation
ρ was realized in the previous section on the vector space u+ ⊕ u− ⊂ Uq(g0)
defined there. Since the decomposition of σ ⊗ σ∗ into irreducible components
remains the same, we therefore have:

Proposition 24 There is a Uq(l0)-equivariant embedding

γ : u+ ⊕ u− → End(Σ2m).

Without loss of generality we can assume that

γ(X i) = γ(Xi)
T

=: γ(Xi)
∗,

because we can embed first only u− and define γ(X i) then by the above formula.
The involution on End(Σ2m) is defined here with respect to the Uq(l0)-invariant
Hermitian inner product (·, ·)σ on Σ2m.
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4.3.2.4 γ is not unique. The map γ is not uniquely determined by these
requirements. First of all, Λ1C2m is isomorphic to Λ2m−1C2m as a so(2m,C)-
representation, so there are for m > 1 two embeddings γ : ρ → σ ⊗ σ∗ of
so(2m,C)-representations. But the representations u± of l appear in general
even more often in σ⊗ σ∗. For example, if Xi, X

i are dual bases in u− and u+,
and if we identify u+⊕u− with Λ1C2m, then Y :=

∑

i Xi∧X
i is a non-vanishing

l-invariant element in Λ2C2m. For m > 1 one has X1 ∧ Y 6= 0, and hence this
element is a highest weight vector generating a copy of u− in Λ3C2m.
The results derived below do not depend on the choice of γ. But it is not
evident that the same is true for example for the algebra generated by the
matrices γ(Xi), γ(X

i). This could be an interesting problem for further studies.

4.3.3 The Dirac operator

4.3.3.1 The spinor bundle. We now can define the Dirac operator using the
classical formulas given for example in [CFG]. The spinor fields on which the
Dirac operator acts are introduced as the sections of the quantum homogeneous
vector bundle associated to the spinor representation σ of Uq(l0).
We retain all notations introduced in Section 4.1.3 with V = Σ2m. We call
H := H(Mq,Σ2m) the Hilbert space of square-integrable spinor fields on Mq.

4.3.3.2 Definition of D. We first define a map D− on HomUq(l0)(V (λ),Σ2m).

Proposition 25 Suppose that A ∈ HomUq(l0)(V (λ),Σ2m). Then

D−(A) := −
∑

i

γ(X i) ◦A ◦ ρλ(Xi)

is again an element of HomUq(l0)(V (λ),Σ2m).

Proof. For Y ∈ Uq(l0) we have

∑

i

γ(X i) ◦A ◦ ρλ(Xi)ρλ(S(Y ))

=
∑

i

γ(X i) ◦A ◦ ρλ(S(Y(1))Y(2)XiS(Y(3)))

=
∑

i

γ(X i)σ(S(Y(1))) ◦A ◦ ρλ(Y(2) •Xi)

=
∑

ij

γ(X i)σ(S(Y(1))) ◦A ◦ ρλ(〈Y(2) •Xi, X
j〉Xj)

=
∑

ij

γ(〈Xi, S(Y(2)) •X
j〉X i)σ(S(Y(1))) ◦A ◦ ρλ(Xj)

=
∑

j

γ(S(Y(2)) •X
j)σ(S(Y(1))) ◦A ◦ ρλ(Xj)

=
∑

j

σ(S(Y(3)))γ(X
j)σ(S2(Y(2)))σ(S(Y(1))) ◦A ◦ ρλ(Xj)

= σ(S(Y ))
∑

j

γ(Xj) ◦A ◦ ρλ(Xj),

where we used the Hopf algebra axioms and the equivariance of γ. 2
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The resulting operator on Γ(Mq,Σ2m) which acts trivially on V (λ) in (4.1) will
be denoted by the same symbol. It can be extended to a linear operator

D− : Cq[G0] ⊗ Σ2m → Cq[G0] ⊗ Σ2m, f ⊗ v 7→ −
∑

j

(S−1(Xj) ⊲ f) ⊗ γ(Xj)v.

We consider D− as densely defined operator on H . Analogously there is an
operator D+ acting on Cq[G0] ⊗ Σ2m by

D+ : f ⊗ v 7→ −
∑

j

(S−1(Xj) ⊲ f) ⊗ γ(Xj)v.

Finally we define the Dirac operator D := D+ +D−.

4.3.3.3 Self-adjointness of D. Notice that for X ∈ Uq(g0) and f, g ∈ Cq[G0]
the Uq(g0)-invariance of h and (4.3) imply

h((X ⊲ f)g∗) = h((X(1) ⊲ f)(X(2)S(X(3)) ⊲ g
∗))

= h(X(1) ⊲ (f(S(X(2)) ⊲ g
∗)))

= h(f(S2(X)∗ ⊲ g)∗).

Hence

h((S−1(Xi) ⊲ f)g∗) = h(f(S(Xi)
∗ ⊲ g)∗) = h(f(S−1(X i) ⊲ g)∗).

Together with γ(X i)∗ = γ(Xi) this shows that D∗
±|Γ(Mq ,Σ2m) = D∓, so D

is symmetric on the domain Γ(Mq,Σ2m). This is the orthogonal sum of the
finite-dimensional D-invariant spaces V (λ) ⊗ HomUq(l0)(V (λ),Σ2m). Hence D
becomes diagonal in a suitable orthonormal basis and extends to a self-adjoint
operator on H which we denote by D as well.

4.3.3.4 On the spectrum of D. Classically, the action of D2 on A ∈
HomU(l0)(V (λ),Σ2m) can be expressed as

D2(A) = A ◦ ρλ(Cg0
+ Cl0), (4.4)

where Cg0
and Cl0 are quadratic Casimir elements in U(g0) and U(l0), respec-

tively. This formula goes back to [Pa], in the above form it can be found e.g. in
[SS]. It can be used in particular to calculate the spectrum of D2 from which
one deduces that of D. See [CFG, SS] for the explicit calculation for the exam-
ple of odd-dimensional projective spaces.
It seems a non-trivial task to generalize such calculations to the quantum case.
It might of course be possible that there exists an analogue of (4.4) relating D2

to the Casimir elements of Uq(g0) and Uq(l0) introduced in 3.3.2.1 (in the case of
the Podleś sphere it can indeed be checked by hand that D2 acts by the Casimir
of Uq(su(2)) plus a constant [NT, SW2]). But to extend the classical proof
one would need to know the commutation relations of the quantum γ-matrices.
And even with such a result at hand it would remain to compute the values of
the Casimir elements in a given irreducible representation as a function of its
highest weight. This is to the author’s knowledge also an unsolved problem.
Since only finite matrices are involved which are smooth deformations of those
describing the classical Dirac operator, the spectrum should as well be a smooth
deformation of the classical spectrum. Hence it can at least be conjectured that
D has compact resolvent which is one of Connes’ axioms for the Dirac operator
of a spectral triple.
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4.3.4 The case of Podleś’ quantum sphere

4.3.4.1 The standard quantum sphere. The simplest example of a gen-
eralized flag manifold is the projective line CP 1 = S2. The corresponding
quantum flag manifold is the standard quantum sphere introduced by P. Po-
dleś [Po]. In fact, Podleś introduced a whole family of quantum spheres which
are parametrized by a parameter ρ ∈ C ∪ {∞}, see the next chapter for their
definition. The one which we call ’standard’ is that corresponding to ρ = ∞.

4.3.4.2 The Dirac operator of Da̧browski-Sitarz. The Dirac operator on
Cq[S

2] was constructed before by L. Da̧browski and A. Sitarz [DS1]. They in
fact classified all spectral triples sharing a list of properties with the classical
spectral triple on S2 and showed that under the assumptions made D is unique
up to a rescaling of D+ by a non-zero complex constant. Their starting point
was the ansatz that the Hilbert space representation H of Cq[S

2] of the triple
can be extended to a representation of the crossed product with Uq(su(2)),
and that this is as in the classical case the direct sum of two non-equivalent
subrepresentations H± which are as representations of Uq(su(2)) both equal to
⊕

n∈N0
V ((2n+ 1)ω1). The two representations H± are classically the sections

of the homogeneous vector bundles associated to the half-spin representations
σ± (the irreducible components of the spin representation σ). It was shown
with help of MAPLE that this fixes the Hilbert space representation uniquely,
see Lemma 5 in [DS1] and also [SW1]. Since (the completion of) Γ(S2

q ,Σ2)
fulfills these conditions, the uniqueness result Theorem 8 of [DS1] implies that
our spectral triple reduces to the one from [DS1] for Mq = S2

q .

4.3.5 The associated differential calculus

4.3.5.1 Main result. The main result of this chapter is the following:

Theorem 4 The Hilbert space representation of Cq[M ] derived in the previous
section defines together with the operators D and D± faithful representations of
the differential calculi (Γ, d) and (Γ±, d±), respectively.

The rest of this chapter is devoted to the proof. We will treat only Γ−, the
analogous results for Γ+ and Γ are immediate.

4.3.5.2 Lifting Γ− to Cq[G0]. We first show that Γ− can be obtained by
restricting the differential calculus over Cq[G0] with quantum tangent space

TG+
− := CS−1(X0) ⊕ S−1(u−) ⊂ Uq(g0).

Using that S−1 is a coalgebra antihomomorphism and that Kλ commutes with
all elements of Uq(l0) one calculates that

∆(S−1(Y •X1))

= K−1
λ ⊗ S−1(Y •X1) + S−1(Y(2) •X1) ⊗ S−1(Y(1)KrKλS(Y(3)))

∈ TG
− ⊗ Uq(g0)

for all Y ∈ Uq(l0), where TG
− := C · 1 ⊕ TG+

− . Thus Proposition 20 implies that
there exists a differential calculus (ΓG

−, d
G
−) over Cq[G0] with quantum tangent

space TG+
− (the last condition in Proposition 20 becomes trivial).

Note now that the quantum tangent space of Γ− can be described as follows,
where π : Cq[G0]

◦ → Cq[M ]◦ is as above the restriction map:
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Proposition 26 The vector space spanned by π ◦ S−1(Xi), i = 1, . . . ,m coin-
cides with the quantum tangent space T+

− of Γ−.

Proof. For f ∈ Cq[M ] we have

〈FrKrKλ, f〉 = 〈Fr , (KrKλ) ⊲ f〉 = 〈Fr, f〉

and similarly
〈Y •X1, f〉 = 〈Y X1, f〉 ∀Y ∈ Uq(l0).

Hence the claim reduces to the fact that T+
− is Uq(l0)π(Fr). This follows from

Proposition 20 since π(Fr) ∈ T+
− , cf. (4.2). 2

Therefore π(TG+
− ) = T+

− , and Proposition 21 gives:

Corollary 2 We have ΓG
−|Cq [M ] = Γ−.

4.3.5.3 The calculus defined by D−. Recall that Γ(Mq,Σ2m) is a Cq[M ]-
bimodule. We treat the elements of Cq[M ] from now on as linear operators
on Γ(Mq,Σ2m) by considering the right action. Usually, one considers spectral
triples with left actions of the algebra on the Hilbert space. That we consider a
right action is only a matter of convention; if one rewrites this chapter starting
with the left coset space P \G, then one ends up with a left action.
We denote by (Γ′

−, d
′
−) the differential calculus over Cq[M ] defined by D−:

Γ′
− := spanC{fd′

−g | f, g ∈ Cq[M ]} ⊂ End(Γ(Mq,Σ2m)), d′
−f := i[D−, f ].

4.3.5.4 A formula for d′
−. We derive now a formula for the differential d′

−

of Γ′
−. It is an analogue of the classical df =

∑

i
∂f
∂xi dx

i, but the counterparts
of the dxi are not elements of the calculus.

Proposition 27 For all f ∈ Cq[M ] we have

d′
−f = −i

m
∑

i=1

S−1(Xi) ⊲ f ⊗ σ(Kλ)γ(X i).

Proof. The coproduct of S−1(X1) = −(1 − q2ndr)K−1
λ Fr is given by

S−1(X1) ⊗K−1
r K−1

λ +K−1
λ ⊗ S−1(X1).

Since Xj = Y •X1 for some Y ∈ Uq(l0) one obtains for
∑

i gi⊗vi ∈ Γ(Mq,Σ2m)
and f ∈ Cq[M ] the relation

∑

i

S−1(Xj) ⊲ (gif) ⊗ vi

=
∑

i

(Y(3)S
−1(X1)S

−1(Y(2)) ⊲ gi)(Y(4)K
−1
r K−1

λ S−1(Y(1)) ⊲ f) ⊗ vi

+(Y(3)K
−1
λ S−1(Y(2)) ⊲ gi)(Y(4)S

−1(X1)S
−1(Y(1)) ⊲ f) ⊗ vi

=
∑

i

(S−1(Xj) ⊲ gi)f ⊗ vi + gi(S
−1(Xj) ⊲ f) ⊗Kλ ⊲ vi,

where we used the defining properties of Cq[M ],Γ(Mq,Σ2m) and the fact that
Kλ commutes with elements of Uq(l0). 2



42 4. DIRAC OPERATORS ON QUANTUM FLAG MANIFOLDS

4.3.5.5 d′
−f is bounded. Since the multiplication operators Rg : f 7→ fg,

f, g ∈ Cq[G0] extend to bounded operators on the Hilbert space obtained by
completing Cq[G0] with respect to the Haar measure, Proposition 27 implies:

Corollary 3 The elements of Γ′
− extend to bounded operators on H.

4.3.5.6 Completing the proof. The general theory of covariant differential
calculi over Hopf algebras with invertible antipode (see [KS1], Section 14.1)
implies that in ΓG

− the differential can be written as

dG
−f =

m
∑

i=0

(S−1(Xi) ⊲ f) · ωi ∀f ∈ Cq[G0], (4.5)

where {ωi} is a basis of ΓG
− consisting of invariant 1-forms. Proposition 27

generalizes the above formula to differential calculi over quantum flag manifolds.
The relation (4.5) implies in particular that

∑

i

fid
G
−gi = 0 ⇔

∑

i

fi(S
−1(Xj) ⊲ gi) = 0 ∀j. (4.6)

The matrices σ(Kλ)γ(X i) are linearly independent, because σ(Kλ) is invertible,
γ is injective and the X i are linearly independent. Furthermore, Cq[G] is free
of zero divisors (Proposition 7). Hence Proposition 27 implies

∑

i

fid
′
−gi = 0 ⇔

∑

i

fi(S
−1(Xj) ⊲ gi) = 0. (4.7)

Theorem 4 follows in view of (4.6) and (4.7) from Proposition 19.

4.4 Bibliographical notes

For the theory of generalized flag manifolds we refer to [Ak, BE, FH, Wa1].
That G/L is affine with coordinate ring given by (1.2) can be found in [HK5],
Theorem 5.1. In general, a quotient of a reductive group is affine iff the stabi-
lizer subgroup is reductive (Matsushima-Onishchik’s criterion), see [Ri].
For further information on quantum flag manifolds see [HK1, HK2, DS2, St].
The notion of covariant differential calculus on quantum spaces was introduced
by S. L. Woronowicz. See [KS1], Chapters 12-14 for more information on co-
variant differential calculi. For classical spin geometry we refer to [Fr].



Chapter 5

On the non-standard

Podleś spheres

Here the coordinate algebras Bqρ of the non-standard Podleś spheres are con-
sidered. It is proven that Bqρ, Bqρ′ are isomorphic iff ρ′ = ±ρ. This proves a
conjecture from [HMS].

5.1 On the non-standard Podleś spheres

5.1.1 The algebras Bqρ

5.1.1.1 Definition. Let q ∈ C \ {0} be not a root of unity and ρ ∈ C. Define
Bqρ to be the algebra with generators x−1, x0, x1 and relations

x0x±1 = q±2x±1x0, x∓1x±1 = q±2x2
0 + (1 + q±2)ρx0 − 1. (5.1)

Analogously one defines Bq∞ by the relations

x0x±1 = q±2x±1x0, x∓1x±1 = q±2x2
0 + (1 + q±2)x0. (5.2)

5.1.1.2 Embedding into Cq[SL(2,C)]. Define the following set of generators

K±1 := K±ω1
, E := E1K−ω1

, F := Kω1
F1

of Uq(sl(2,C)) and set

Xρ :=

{

ρq1/2 q+q−1

q−q−1 (K −K−1) + qE + F ρ ∈ C,

K −K−1 ρ = ∞.

Then ∆(Xρ) = Xρ ⊗K−1 +K ⊗Xρ, and hence

{f ∈ Cq[SL(2,C)] |Xρ ⊲ f = 0}

is a left coideal subalgebra of Cq[SL(2,C)]. This is isomorphic to Bqρ, see [KS1],
Proposition 4.31. Note that in [KS1] right invariants are considered, we switched
to left invariants using an isomorphism Uq(sl(2,C)) = Uq(sl(2,C))cop hidden in
the above definition of K,E, F whose coproduct is the coopposite of that of the
elements denoted by the same symbols in [KS1] (cf. Section 3.1.2 therein). Note
also that our x0 is denoted by x0 − ρ (ρ 6= ∞) and x0 − 1 (ρ = ∞) in [KS1].
In particular, Bq∞ is the coordinate algebra of the standard Podleś sphere
discussed in the previous chapter. It was shown in [MS] for all but an exceptional
sequence {ρn} of values for ρ that Cq[SL(2,C)] is faithfully flat over Bqρ.
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5.1.2 Some properties

5.1.2.1 A vector space basis. For i ∈ N0, j ∈ Z define

eij :=

{

xi
0x

j
1 j ≥ 0

xi
0x

−j
−1 j < 0.

Proposition 28 The elements {eij} form a vector space basis of Bqρ.

See [KS1], p. 125, for a proof.

5.1.2.2 Z-grading. It follows from the defining relations that Bqρ is Z-graded,
Bqρ =

⊕

j∈Z
Bj , BjBk ⊂ Bj+k, with

Bj := span{eij | i ∈ N0} = {f ∈ Bqρ |x0f = q2jfx0}.

5.1.2.3 The ideal I. Let I be the ideal generated by x0. Using the basis {eij}
one sees that I = x0Bqρ = Bqρx0. We denote by π : Bqρ → Bqρ/I the canonical
projection.

5.1.2.4 Characters. We recall the (well-known) character theory of Bqρ:

Proposition 29 The following is a complete list of the characters of Bqρ:

ρ 6= ∞,±i : χλ(x0) = 0, χλ(x±1) = λ±1, λ ∈ C \ {0},

ρ = ±i : χλ(x0) = 0, χλ(x±1) = λ±1, λ ∈ C \ {0},

χ′(x±1) = 0, χ′(x0) = ∓i,

ρ = ∞ : χ±
λ (x±1) = χ±

λ (x0) = 0, χ±
λ (x∓1) = λ, λ ∈ C.

Proof. It is straightforward to check that the above equations define characters
of Bqρ. Let conversely χ be any character. We write χ(x) as x for simplicity.
The first relations in (5.1), (5.2) show x0 = 0 or x1 = x−1 = 0. Suppose x0 = 0.
Then the other two relations both become

x−1x1 =

{

−1 ρ 6= ∞
0 ρ = ∞.

.

Hence χ = χλ (ρ 6= ∞) or χ = χ±
λ (ρ = ∞) for some λ.

If x0 6= 0 and x1 = x−1 = 0, then the second relations in (5.1) yield for ρ 6= ∞

x2
0 + (1 + q∓2)ρx0 − q∓2 = 0.

These equations are equivalent to x0 = ±i, ρ = ∓i, so χ = χ′. For x0 6= 0, x1 =
x−1 = 0 and ρ = ∞ one gets by the second relations in (5.2)

x0(q
±2x0 + (1 + q±2)) = 0

which can not be solved under the assumption x0 6= 0. 2

5.1.2.5 The ideal J. We denote by J ⊂ Bqρ the intersection of the kernels
of all characters. For ρ 6= ∞,±i an element x =

∑

ij ξijeij ∈ Bqρ, ξij ∈ C, is

mapped by χλ to f(λ), where f is the Laurent polynomial f(z) =
∑

j∈Z
ξ0jz

j.
Thus χλ(x) = 0 for all λ ∈ C \ {0} iff f = 0. Hence J = I. The same is true
for ρ = ∞ as one checks similarly. For ρ = ±i one obtains the smaller ideal
I ∩ kerχ′.
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5.1.3 Bqρ depends on ρ

It is shown in [KS1], Proposition 4.27 that Bqρ, Bqρ′ are isomorphic as comodule
algebras iff ρ′ = ±ρ. Here we show that the same holds already if only the
algebra structure is considered.

Theorem 5 The algebras Bqρ, Bqρ′ are isomorphic iff ρ′ = ±ρ (−∞ = ∞).

Proof. We first note that Bq∞ can not be isomorphic to Bqρ with ρ 6= ∞:
OtherwiseBq∞/J would be isomorphic toBqρ/J . The first algebra is isomorphic
to C[z] ⊕ C[z] with π(x±1) as generators. This follows from adding x0 = 0 to
(5.2). For ρ 6= ∞,±i the algebra Bqρ/J is instead isomorphic to C[z, z−1] with
z±1 corresponding to ±π(x±1). For ρ = ±i we have J = I ∩ kerχ′ ⊂ I, and
Bq±i/I is as above isomorphic to C[z, z−1]. That is, this is a quotient algebra
of Bq±i/J , hence the latter can also not be isomorphic to Bq∞/J = C[z]⊕C[z].
Suppose now that ψ : Bqρ′ → Bqρ is an isomorphism with ρ, ρ′ 6= ∞. We denote
by Xi ∈ Bqρ the images of the generators of Bqρ′ under ψ.
Since Xi generate Bqρ, π(Xi) generate π(Bqρ) = C[z, z−1]. This algebra is
a commutative integral domain, so π(X0)π(X±1) = q±2π(X±1)π(X0) implies
that either π(X0) or both π(X±1) vanish. But C[z, z−1] can not be generated
by a single element, so π(X0) = 0. Hence X0 = λ0x0 for some λ0 ∈ Bqρ.
Repeating the whole argumentation with the roles of xi and Xi interchanged
one gets x0 = µ0X0, that is, X0 = µ0λ0X0 for some µ0 ∈ Bqρ. Now Cq[G] is an
integral domain (Proposition 7), and the only invertible elements in Cq[G] are
the non-zero multiples of 1 [Jo], 9.1.14). Thus λ0 = µ−1

0 ∈ C \ {0}.
Therefore x0X±1 = q±2X±1x0. Hence X±1 ∈ B±1, so X±1 = P±(x0)x±1 for
some polynomials P± ∈ C[z]. Inserting this into (5.1) one sees that both P±

must be of degree zero. So Xi = λixi for three non-zero constants λi. Inserting
this again into the relations (5.1) we get

q±2λ2
0x

2
0 + (1 + q±2)ρ′λ0x0 − 1 = λ1λ−1(q

±2x2
0 + (1 + q±2)ρx0 − 1),

which is equivalent to

λ0 = ±1, ρ′ = ±ρ, λ1λ−1 = 1.

If conversely ρ′ = −ρ, then it is immediate that the assignment x−1, x0, x1 7→
x−1,−x0, x1 extends to an isomorphism Bqρ′ → Bqρ. 2

5.2 Bibliographical notes

The theory of the Podleś spheres as used here was developed in [Po] and [DK2].
See also [HK4, MS, NM] for more information. For similar quantizations of
general symmetric spaces see [Le]. For the semi-classical picture of the quantum
2-spheres see [Ci, Ro].
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List of notations

≡ X ≡ Y ⇔ ∃x ∈ C \ {0} : X = xY 3.2.2.2
• adjoint action of Uq(g) 2.2.1.11
⊲, ⊳ left, right actions 2.2.2.2
C(q)[G] (quantized) coordinate algebra of G 2.1.2.3, 2.2.2.1
C(q)[G0] compact real form of C(q)[G] 2.1.2.3, 2.2.2.3
C(q)[M ] a (quantized) algebra of functions on M 4.1.1.1, 4.1
∗ involution of a ∗-algebra 2.2.1.5
〈·, ·〉 Killing form of g (on h and h∗); 2.1.1.1

dual pairing between two Hopf algebras;
quantum Killing form of Uq(g) 2.2.1.11

〈·, ·〉h Hermitian inner product on Cq[G0] 2.2.2.5
(·, ·)λ Hermitian inner product on V (λ) 2.2.1.12
A ⊲⊳ B a quantum double 3.3.1.1
A ◮◭ B a quantum codouble 3.3.4.1
B+ B ∩ ker ε 4.1.2.1

a ⊕ n+ 2nd factor in Iwasawa decomposition 2.1.1.3
b± Borel subalgebras of g 2.1.1.1
g complex semi-simple Lie algebra 2.1.1.1
gR g as a real Lie algebra 2.1.1.3
g0 compact real form of g 2.1.1.3
g∗0 dual space of g0, identified with a ⊕ n+ 2.1.1.3
gβ root space (β ∈ Φ) 2.1.1.1
h Cartan subalgebra of g 2.1.1.1
l Levi factor of p 4.1.1.1
l0 l ∩ g0 4.1.1.1
n± maximal nilpotent subalgebras of g 2.1.1.1
p parabolic subalgebra of g containing b+ 4.1.1.1
u orthogonal complement of l in g or its 4.1.1.2, 4.3.1.2

quantum analogue
u± u ∩ n± or quantum analogues 4.1.1.1, 4.1.1.2,

4.3.1.1, 4.3.1.2

α1, . . . , αN simple roots 2.1.1.1
βk k-th root in ordering of Φ+ 2.1.1.2
Γ a differential calculus 4.2.1.1
Γ± differential calculi over Cq[M ] 4.2.2.3
Γ(Mq, V ) sections of quantum homogeneous 4.1.3.2

vector bundle
∆ coproduct of a Hopf algebra
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ε counit of a Hopf algebra
λ, µ, ν, ξ weights of g

ϕ dual pairing of Uq(b−) and Uq(b+)cop 2.2.1.11
Φ,Φ± (positive and negative) roots of g 2.1.1.1
Φl,Φ

±
l (positive, negative) roots of l 4.1.1.1

θ Cartan involution of g or Uq(g); 2.1.1.4, 2.2.1.5
a morphism from Aop to U(A ⊲⊳ A) 3.3.1.4

ω1, . . . , ωN fundamental weights 2.1.1.1

aij Cartan matrix of g 2.1.1.1
cv,w, c

λ
−µ,ν , c

λ
ij matrix coefficients of U -modules 2.2.2.1

d differential of a differential calculus 4.2.1.1
f, f̄ S−1 = fS f̄ 3.1.1.3
di

1
2 〈αi, αi〉 2.1.1.1

e unit element of G
f, g, h elements of A,B,Cq[G] or Cq[M ]
h the Haar functional on Cq[G] 2.2.2.5
m dimC M ;

multiplication map of an algebra 2.2.1.1
qi qdi 2.2.1.2
r, r̄ universal r-form and its inverse 3.1.1.1
ri generator of W 2.1.1.2
v, w vectors in U - or Uq(g)-modules
w0 longest element of W 2.1.1.2

A a Hopf algebra (think of Cq[G]) 3.1.1.1, 4.1.2.2
A◦ the dual Hopf algebra
B an algebra (think of Cq[M ]) 4.1.2.2
B◦ the dual coalgebra 4.2.2.1
Bqρ coordinate algebras of non-standard 5.1.1.1

Podleś spheres
C a tensor category of U -modules 4.1.2.2
CG the Uq(g)-modules with highest 2.2.1.12

weights in L+

Eβ (quantum) root vector (β ∈ Φ+) 2.1.1.3, 2.2.1.8
Ek Eαk

2.1.1.3
F−β (quantum) root vector (β ∈ Φ+) 2.1.1.3, 2.2.1.8
Fk F−αk

2.1.1.3
F(Uq(g)) locally finite part of Uq(g) 2.2.1.11
F(B◦,K) locally finite part of B◦ 4.2.2.3
G connected Lie group with Lie algebra g 2.1.2.1
G0, G

∗
0 subgroups of G corresponding to g0, g

∗
0 2.1.2.1

H a Hilbert space 4.2.3.1
Hk basis of h 2.1.1.3
I a coideal of U 4.1.2.2
K a right coideal subalgebra of U 4.1.2.2

(think of Uq(l0))
Ki Ki := Kαi

2.2.1.2
L subgroup of G corresponding to l 4.1.1.1
L0 L ∩G0 4.1.1.1
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L weights of G 2.1.1.1
M G/P = G0/L0 4.1.1.1
P subgroup of G corresponding to p 4.1.1.1
P,P+ (dominant) integral weights 2.1.1.1
Q root lattice of g 2.1.1.1
S antipode of a Hopf algebra
T+ tangent space of a differential calculus 4.2.2.1
Ti Lusztig automorphism of Uq(g) 2.2.1.8
U a Hopf algebra (think of Uq(g)) 4.1.2.2
U(g) universal enveloping algebra of g 2.1.1.4
Uq(g) quantized universal enveloping algebra 2.2.1.2
U(q)(g0) compact real form of U(q)(g) 2.1.1.4, 2.2.1.5
V (λ) irred. highest weight module 2.1.1.1, 2.2.1.12
W Weyl group of g 2.1.1.2
X,Y, Z elements of U or Uq(g)
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on the Standard Podleś Quantum Sphere. math.QA/0305168, to appear in
J. Reine Angew. Math.

[SS] S. Seifarth, U. Semmelmann: The Spectrum of the Dirac Operator on the
Odd Dimensional Complex Projective Space CP 2m−1. SFB 288 Preprint
No. 95, www.mathematik.uni-muenchen.de/˜semmelma/papers.html



56 BIBLIOGRAPHY

[Sp] T. Springer: Linear Algebraic Groups. Birkhäuser, 1998
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