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ON THE HOCHSCHILD (CO)HOMOLOGY OF

QUANTUM HOMOGENEOUS SPACES

ULRICH KRÄHMER

Abstract. The recent result of Brown and Zhang establishing Poincaré
duality in the Hochschild (co)homology of a large class of Hopf algebras
is extended to right coideal subalgebras over which the Hopf algebra is
faithfully flat, and applied to the standard Podleś quantum 2-sphere.

1. Introduction

1.1. Theory. As work in particular by Takeuchi [41], Masuoka and Wigner
[31], and Müller and Schneider [34] has shown, the following definition pro-
vides a reasonable generalisation of affine homogeneous spaces of algebraic
groups (see Section 1.3 below for some discussion of the commutative case):

Definition 1. A quantum homogeneous space is a right faithfully flat ring
extension B ⊂ A where A = (A,µ, η,∆, ε, S) is a Hopf algebra with bijective
antipode S over a field k and B is a right coideal subalgebra, ∆(B) ⊂ B⊗A.

Our aim here is to generalise a theorem by Brown and Zhang [5] from
Hopf algebras to such subalgebras. For its statement we adopt the following
terminology (see Section 1.3 for background information and motivation):

Definition 2. Let k be field and B be a (unital, associative) k-algebra.

(1) The dimension dim(B) of B is its projective dimension in the cate-
gory of finitely generated B-bimodules. B is smooth if dim(B) <∞.

(2) A character ε : B → k is Cohen-Macaulay if for the induced left B-
module structure on k and some d ≥ 0 one has ExtnB(k,B) = 0 for

n 6= d, and Gorenstein if in addition ExtdB(k,B) ≃ k as k-modules.

Under these conditions we can deduce a Poincaré-type duality in the
Hochschild (co)homology of B as studied by Van den Bergh in [42]:

Theorem 1. If B ⊂ A is a smooth quantum homogeneous space and the
restriction of ε to B is Cohen-Macaulay, then there are isomorphisms

(1) ExtnBe(B, · ) ≃ TorBe

dim(B)−n(ω ⊗B · , B), ω := Ext
dim(B)
Be (B,Be)

of functors on the category of B-bimodules that are right flat. Here ⊗ := ⊗k,
Be := B⊗Bop, we identify left and right Be-modules and B-bimodules, and
the B-bimodule structure on ω is induced by right multiplication in Be.

If B = A and ε is Gorenstein, then Brown and Zhang’s result also says
that ω ≃ Aσ for some σ ∈ Aut(A) [5], by which we mean it is isomorphic
to A as left module but the right action is given by a ◭ b := aσ(b). In
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particular, ω is an invertible bimodule with inverse ω−1 ≃ Aσ−1 , so the
duality (1) can be reversed to

(2) TorBe

n ( · , B) ≃ Ext
dim(B)−n

Be (B,ω−1⊗B · ), ω⊗Bω
−1 ≃ ω−1⊗Bω ≃ B,

and this holds in fact on the category of all B-bimodules (the flatness as-
sumption becomes obsolete), see [42]. Then the duality is not only of theo-
retical interest but a valuable tool when explicitly computing the Hochschild
cohomology of B, see [28] for a concrete demonstration.

Algebraic geometry suggests that the Gorenstein condition implies the in-
vertibility of ω in greater generality: we will show in Theorem 7 that ω carries
in the Gorenstein case the structure of a (B,A)-Hopf bimodule. These are
noncommutative generalisations of the modules of sections of homogeneous

vector bundles, and Ext
dim(B)
B (k,B) reduces for commutative rings to the

typical fibre. So the Gorenstein condition means here that we are dealing
with a line bundle whose module of sections is invertible.

We will recall that any quantum homogeneous space can be written as

(3) B = {a ∈ A | (π ⊗ idA) ◦∆(a) = π(1)⊗ a},

where ∆ is the coproduct in A and π is the canonical projection onto
A/B+A, B+ := B ∩ ker ε, see Section 2.3. This is a Hopf algebra map if
and only if AB+ = B+A (since B+A = S(AB+) as observed by Koppinen,
see [34], Lemma 1.4). Our second main result applies to this case:

Theorem 2. If B ⊂ A is a smooth and Gorenstein quantum homogeneous

space with AB+ = B+A, then Ext
dim(B)
Be (B,Be) is an invertible B-bimodule.

The condition AB+ = B+A holds trivially if A is the commutative coor-
dinate ring of an algebraic group G. Then B is the coordinate ring k[X] of
an affine homogeneous space of G, and A/B+A is the coordinate ring k[H] of
the isotropy group H ⊂ G of X ≃ H \G, see Section 1.3. Important noncom-
mutative examples with AB+ = B+A are quantisations of quotients H \G of
a Poisson group by a Poisson subgroup, such as the standard quantisations
of the generalised flag manifolds studied e.g. in [7, 17, 18, 19, 27, 39].

There are, however, plenty examples of quantum homogeneous spaces
with AB+ 6= B+A such as the nonstandard Podleś spheres [35, 34] and
more generally quantisations of quotients of Poisson groups by coisotropic
subgroups. We use the antipode of A/B+A explicitly when constructing
ω−1 but we are not aware of a counterexample to Theorem 2 with the
assumption AB+ = B+A removed, and we expect its conclusion holds for
the nonstandard Podleś spheres. Hence we ask:

Question 1. Is ω invertible for all smooth quantum homogeneous spaces
when ε is Gorenstein?

1.2. Application. Our main motivation is to apply our results to the paradig-
matic example of a quantum homogeneous space which is Podleś’ standard
quantum sphere [35]. Here A is the quantised coordinate ring Cq[SL(2)],
and A/B+A ≃ C[z, z−1]. The quotient π deforms the map dual to the
embedding of a maximal torus T ≃ C∗ into SL(2,C), so B deforms the
coordinate ring of the coset space T \SL(2,C) which is isomorphic to the
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complexified 2-sphere given in C3 by x2 + y2 + z2 = 1. We will prove that
B satisfies all the homological assumptions of Theorem 2 and compute ω:

Theorem 3. Let q ∈ C∗ be not a root of unity and A be the quantised
coordinate ring of SL(2,C). Then the standard Podleś quantum 2-sphere
B ⊂ A is smooth with dim(B) = 2, ε|B is Gorenstein, and we have ω ≃ Bσ,
where σ is the restriction of the square S2 of the antipode of A to B.

This form of ω had to be expected from Dolgushev’s results [10] in the
setting of formal deformation quantisations, and Hadfield’s computations
[16], since S2|B quantises the flow of the modular vector field of the quan-
tised Poisson structure on the 2-sphere, and also coincides with the modular
automorphism of the Haar functional of A, see Section 3.1 for further details.

As we mentioned above, the standard quantum 2-sphere can be further
deformed to quantum homogeneous spaces of Cq[SL(2)] where AB+ 6= B+A
[35, 34]. The Gorenstein condition is checked for these in the same way as
for the standard sphere. It was shown in [1] that their global dimension is
2, but the methods used there seem not to allow us to answer

Question 2. Are the nonstandard Podleś spheres smooth?

1.3. The case of coordinate rings. For the reader’s convenience we briefly
recall here the geometric background of the theory in the case that B ⊂ A
are coordinate rings of affine varieties over an algebraically closed field.

A Hopf algebra structure on the coordinate ring A = k[G] of an affine va-
riety G corresponds directly to an algebraic group structure on G. Further-
more, a faithfully flat embedding B = k[X] ⊂ A corresponds to a surjection
G→ X ([32], Theorem 7.3 on p. 48). Since ∆(B) ⊂ B ⊗ A ≃ k[X ×G], ∆
defines an algebraic action X × G → X of G on X for which the quotient
map G → X is equivariant. Hence X is indeed a homogeneous space of G,
that is, the action is transitive and X ≃ H \G for a closed subgroup H ⊂ G.

Recall next that a variety X is smooth in a point if and only if its local ring
in the point has finite global dimension which is then equal to dim(X) ([32],
Theorem 19.2 on p. 156). Since Ext is compatible with localisations in the
sense that for all maximal ideals m in a commutative Noetherian ring B and
all finitely generated modules M,N over B one has ([44], Proposition 3.3.10)

(4) (Ext•B(M,N))m ≃ Ext•B(M,N)⊗B Bm ≃ Ext•Bm
(Mm, Nm),

X is smooth in all points if and only if gl.dim(k[X]) <∞.
One has in general gl.dim(B) ≤ dim(B) (see Lemma 3 in Section 2.5), so

the smoothness from Definition 2 implies for B = k[X] that X is smooth
in all points. It can happen that dim(B) = ∞ even when gl.dim(B) = 0
(consider e.g. B = C over k = Q), but for k = k̄, k[X]-bimodules are
the same as modules over k[X] ⊗ k[X] ≃ k[X × X], and this has finite
global dimension if k[X] has ([20], Theorem 2.1) and is Noetherian. Hence
the finitely generated k[X]⊗ k[X]-module k[X] admits a finitely generated
projective resolution of finite length and dim(k[X]) <∞. Thus smoothness
as in Definition 2 is really equivalent to geometric smoothness of X.

For a classical homogeneous space the smoothness condition in Theorem 1
becomes in fact void in characteristic zero: Corollary 5 below tells that an



4 ULRICH KRÄHMER

affine homogeneous space X ≃ H \G is smooth if G is so, and affine algebraic
groups are smooth in characteristic zero, see [43] Sections 11.6 and 11.7.

Similarly, a smooth character of a coordinate ring is Gorenstein since
this is for these equivalent to the finiteness of the injective dimension of the
corresponding local ring as a module over itself ([32], Theorem 18.1 on p. 141
in combination with (4)). In the noncommutative case this equivalence
breaks down which results in various nonequivalent generalisations of the
Gorenstein and similarly the Cohen-Macaulay condition. The ones from
Definition 2 are closest in spirit to the notions of AS Gorenstein and AS
Cohen-Macaulay rings [22] but still more naive and just meant as a working
terminology to be used within this paper.

Lastly we remark that the coordinate ring of any smooth affine variety
satisfies the duality from Theorem 1 with ω being the inverse of the module
of top degree Kähler differentials (algebraic differential forms), see e.g. [26].

1.4. Structure of the paper. Theorems 1 and 2 are proved in Section 2.
Sections 2.1-2.3 recall background material on Hochschild (co)homology and
quantum homogeneous spaces, mainly from [25, 42] and [31, 34, 41]. Sec-
tion 2.4 extends the description of the Hochschild cohomology of a Hopf
algebra A as a derived functor over A rather than Ae to quantum homoge-
neous spaces. Using this we prove Theorem 1 in Section 2.5.

In Section 2.6 we give ω = Ext
dim(B)
Be (B,Be) for smooth and Gorenstein

quantum homogeneous spaces B ⊂ A the structure of a (B,A)-Hopf bimod-
ule and deduce that it is as a left B-module isomorphic to

{a ∈ A | (π ⊗ idA) ◦∆(a) = g ⊗ a}

for some group-like element g ∈ C = A/B+A. Using this we construct
in Section 2.7 under the assumption AB+ = B+A a B-bimodule ω̄ with
ω̄ ⊗B ω ≃ Bσ for some algebra endomorphism σ of B. Section 2.8 discusses
a generalisation of the transitive action of a group G on X = H \G to char-
acters on quantum homogeneous spaces. This is used to show in Section 2.9
that σ is an automorphism which implies Theorem 2.

A short Section 2.10 contains a criterion to prove the smoothness of some
quantum homogeneous spaces which is applied later in the proof of The-
orem 3, and Section 2.11 gives three examples of quantum homogeneous
spaces that illustrate certain aspects of the general theory developed so far.

Section 3 is devoted to the Podleś sphere and the proof of Theorem 3.

Acknowledgements. I am deeply indebted to the referee who pointed out
that an originally submitted version of the paper was incorrect and also has
made other suggestions for improving the paper. Equally warm thanks go to
Ken Brown, Tomasz Brzeziński and Stefan Kolb, to my EPSRC fellowship
EP/E/043267/1 and the Polish Government Grant N201 1770 33.

2. Theory

2.1. Hochschild (co)homology. Let k be a field. For a k-algebra B, we
denote by Bop the opposite algebra (same vector space, opposite multipli-
cation) and by Be := B ⊗Bop the enveloping algebra of B (here and in the
rest of the paper, an unadorned ⊗ denotes the tensor product over k). The
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tensor flip τ(a ⊗ b) := b ⊗ a defines a canonical isomorphism (Be)op ≃ Be

and hence identifies left and right Be-modules, and these are also the same
as B-bimodules (with symmetric action of k). For any such bimodule M ,
the Hochschild (co)homology of B with coefficients in M is

H•(B,M) := TorBe

• (M,B), H•(B,M) := Ext•Be(B,M),

where B is considered as a B-bimodule using multiplication in B.
The bar resolution of B yields canonical (co)chain complexes computing

H•(B,M) and H•(B,M). For cohomology, this cochain complex is

C•(B,M) := Homk(B
⊗•,M)

with the coboundary operator b : Cn(B,M)→ Cn+1(B,M) given by

bϕ(b1, . . . , bn+1) = b1ϕ(b2, . . . , bn+1)

+

n
∑

i=1

(−1)iϕ(b1, . . . , bibi+1, . . . , bn+1)(5)

+ (−1)n+1ϕ(b1, . . . , bn)bn+1.

For further information see e.g. [6, 29, 44].

2.2. Van den Bergh’s theorem. The following theorem was proven by
Van den Bergh in [42]. To be precise, Van den Bergh considered the case in
which the bimodule ω is invertible. For the sake of clarity we include the
sketch of a proof not using this assumption, see [25] for details.

Theorem 4. Let B be a smooth algebra and assume there exists d ≥ 0 such
that Hn(B,Be) = 0 for n 6= d. Then d = dim(B) and there is for all n ≥ 0
and for every right B-flat B-bimodule M a canonical isomorphism

(6) Hn(B,ω ⊗B M) ≃ Hd−n(B,M), ω := Hd(B,Be),

where the bimodule structure of ω is induced by right multiplication in Be.

Proof. The assumption that B is smooth means that the Be-module B ad-
mits a resolution P• of finite length consisting of finitely generated projec-
tive Be-modules. Using Hn(B,Be) = 0 for n 6= d and Schanuel’s lemma
one can assume without loss of generality (see the proof of Theorem 23 in
[25] for the detailed argument) that this resolution has length d, and then
P ∗

d−• := HomBe(Pd−•, B
e) is a finitely generated projective resolution of ω.

Therefore we have canonical isomorphisms

(7) HomBe(P•,M) ≃ P ∗
• ⊗Be M ≃ (P ∗

• ⊗B M)⊗Be B.

As a right Be-projective module, P ∗
• is right B-flat, so P ∗

• ⊗B M is a resolu-
tion of ω⊗B M . Furthermore, one easily convinces oneself that P ∗

• ⊗B M is
Be-flat if M is right B-flat (taking into account that P ∗

• is finitely generated
projective over Be). Hence taking homology in the above equation gives

Extn
Be(B,M) ≃ TorBe

d−n(ω ⊗B M,B)

as claimed. �
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The point of our main result Theorem 1 is that the condition about
H•(B,Be) can be replaced for quantum homogeneous spaces by the Cohen-
Macaulay condition which is easier to check for concrete examples as we
shall see below (it boils down to constructing resolutions of the B-module
k rather than of the B-bimodule B). In the commutative case, Van den
Bergh’s condition is a global one concerned with the behaviour of the em-
bedding of the corresponding space X as the diagonal into X × X, while
the Cohen-Macaulay condition in Theorem 1 is local in nature, dealing only
with the local properties of X around the point corresponding to ε.

2.3. Quantum homogeneous spaces. We will freely use standard con-
ventions and notations from Hopf algebra theory. In particular, we denote by
∆, ε, S the coproduct, counit and antipode of a co- or Hopf algebra and use
Sweedler’s notation ∆(a) = a(1)⊗a(2) for coproducts and m 7→ m(−1)⊗m(0)

and n 7→ n(0) ⊗ n(1) for left and right coactions, see e.g. [23, 40].
We recall in this section from [31, 34, 41] various characterisations of the

right faithful flatness of a Hopf algebra A over a right coideal subalgebra B
that we use later. Some of them are given in terms of the left coaction

A→ C ⊗A, a 7→ a(−1) ⊗ a(0) := π(a(1))⊗ a(2),

where we write as in the introduction

π : A→ C := A/B+A, a 7→ π(a) := a mod B+A, B+ := B ∩ ker ε.

Yet others involve the categories MC and BM
A of right C-comodules and

of (B,A)-Hopf modules, meaning left B-modules and right A-comodules M
for which the coaction M →M ⊗A is B-linear if B acts on M ⊗A via

b(m⊗ a) := b(1)m⊗ b(2)a b ∈ B,m ∈M,a ∈ A.

There are two functors relating these two categories. The first one is

(8) BM
A →MC , M 7→M/B+M,

where the C-coaction on M/B+M is induced by the A-coaction on M , and
the second one is the cotensor product

(9) MC → BM
A, N 7→ N2CA

given for N ∈MC with coaction N → N ⊗ C, n 7→ n(0) ⊗ n(1) by

N2CA := {
∑

i

ni⊗ ai ∈ N ⊗A |
∑

i

ni
(0) ⊗n

i
(1)⊗ a

i =
∑

i

ni⊗ ai
(−1) ⊗ a

i
(0)}

on which the B-action and A-coaction are given by (co)multiplication in A.
The following is [31], Theorem 2.1 and [34], Theorem 1.2 and Remark 1.3:

Theorem 5. Let A be a Hopf algebra with bijective antipode and B ⊂ A be
a right coideal subalgebra. Then the following are equivalent:

(1) A is faithfully flat as a right module over B.
(2) A is projective as a right B-module and there exists B⊥ ⊂ A such

that A = B ⊕B⊥ as right B-module.
(3) The functors (8) and (9) are (quasi)inverse equivalences.
(4) A is left C := A/B+A-coflat and we have

B = k2CA = {b ∈ A |π(b(1))⊗ b(2) = π(1)⊗ b}.
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If AB+ = B+A, then Remark 1.3 in [34] also tells that A is faithfully flat
as a left module if it is faithfully flat as a right module.

Question 3. Is this true in general?

By Theorem 5 (4) a quantum homogeneous space can be recovered from
π : A→ C as k2CA. Many examples are in fact defined in this way starting
with π. This works in particular when C is cosemisimple (equals the direct
sum of its simple subcoalgebras), see e.g. [34], Corollary 1.5:

Corollary 1. Let A be a Hopf algebra with bijective antipode, π : A→ C be
a coalgebra and right A-module quotient, and assume that C is cosemisimple.
Then B := k2CA ⊂ A is a quantum homogeneous space and C ≃ A/B+A.

For C = k[H] cosemisimplicity means that H is reductive, so a quotient
H \G of an algebraic group G by a reductive subgroup H is affine with
coordinate ring B isomorphic to the ring of H-invariant regular functions
on G (this is essentially the classical Matsushima-Onishchik theorem). A
(B,A)-Hopf module M ∈ BM

A is here isomorphic to the module of sections
of the G-homogeneous vector bundle with typical fibre M/B+M .

Later we will also use categories that we denote byMC
B,τ and by BM

A
B,τ ,

where τ : B → A is an algebra map. By the first we shall mean the category
of right C-comodules and right B-modules N that satisfy

(10) (nb)(0) ⊗ (nb)(1) = n(0)b(1) ⊗ n(1)τ(b(2)),

where we use in the second tensor component on the right hand side the right
A-action on A/B+A. Similarly, objects in BM

A
B,τ are objects in BM

A with
an additional right B-action that commutes with the left one and satisfies
(10), now being an equation in M⊗A. Clearly, the equivalence BM

A ≃MC

that holds in the faithfully flat case also induces BM
A
B,τ ≃M

C
B,τ .

2.4. H•(B,M) and Ext•B(k, ad(M)). Here we remark that the description
of the Hochschild (co)homology of a Hopf algebra A used in [5] works almost
as well for quantum homogeneous spaces B ⊂ A. The proof is the same as
for B = A [12, 15], we recall it only for the convenience of the reader:

Lemma 1. Let A be a Hopf algebra, B ⊂ A be a right coideal subalgebra,
and M be a B-A-bimodule. Consider k as left B-module with action given by
the counit ε of A, and let ad(M) be the left B-module which is M as vector
space with left action given by the adjoint action ad(b)m := b(1)mS(b(2)).
Then there is a vector space isomorphism H•(B,M) ≃ Ext•B(k, ad(M)).

Proof. Compute Ext•B(k, ad(M)) using the free resolution

. . .→ B⊗3 → B⊗2 → B

of the B-module k whose boundary map is given by

b0⊗· · ·⊗bn 7→

n−1
∑

i=0

(−1)ib0⊗· · ·⊗bibi+1⊗· · ·⊗bn +(−1)nb0⊗· · ·⊗bn−1ε(bn).

After identifying B-linear maps B⊗n+1 →M with k-linear maps B⊗n →M
(fill the zeroth tensor component with 1 ∈ B), this realises Ext•B(k, ad(M))
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as the cohomology of the cochain complex which as a vector space is

C•(B,M) = Homk(B
⊗•,M),

the standard Hochschild cochain complex, but whose coboundary map is

dϕ(b1, . . . , bn+1)

= ad(b1)ϕ(b2, . . . , bn+1) +

n
∑

i=1

(−1)iϕ(b1, . . . , bibi+1, . . . , bn+1)

+ (−1)n+1ϕ(b1, . . . , bn)ε(bn+1).

Now consider the k-linear isomorphism

ξ : C•(B,M)→ C•(B,M), (ξ(ϕ))(b1, . . . , bn) := ϕ(b1(1), . . . , b
n
(1))b

1
(2) · · · b

n
(2)

whose inverse is given by

(ξ−1(ϕ))(b1, . . . , bn) := ϕ(b1(1), . . . , b
n
(1))S(b1(2) · · · b

n
(2)).

Then b ◦ ξ = ξ ◦ d, where b is the standard Hochschild coboundary operator
(5), so (C•(B,M), d) ≃ (C•(B,M), b) as cochain complexes. �

One can apply Theorem VIII.3.1 from [6] to the map B → B ⊗ Aop,
b 7→ b(1) ⊗ S(b(2)) to show Ext•B⊗Aop(A,M) ≃ Ext•B(k, ad(M)). When A
is flat over B, then the same theorem applied to the obvious embedding of
B⊗Bop into B⊗Aop also implies Ext•B⊗Aop(A,M) ≃ H•(B,M) and hence
the above lemma. We included the above proof since it does not require
flatness. On the other hand, this seems to be a rather weak condition. It is
always satisfied in the commutative case [31], note also the recent results of
Skryabin [38]. For a counterexample see [37], Corollary 2.8 and Remark 2.9.

2.5. The proof of Theorem 1. To get Theorem 1 we only have to consider
the special case M = B ⊗A of Lemma 1 in more detail. We first recall:

Lemma 2. Let R,S be rings, L be an R-module, M be an R-S-bimodule
and N be an S-module. Then the canonical map

ExtnR(L,M)⊗S N → ExtnR(L,M ⊗S N)

is bijective if N is flat and L admits a finitely generated projective resolution.

Proof. Fix a finitely generated projective resolution P• → L. Then one has
HomR(P•,M) ⊗S N ≃ HomR(P•,M ⊗S N), see e.g. [3], Proposition 8.b)
on p. 16. Now pass to cohomology taking into account that N is flat (see
e.g. [ibid.], Corollary 2 on p. 74). �

This will be used with R = M = B,S = L = k and N = A. For the
assumption on L = k we recall from [6]:

Lemma 3. If B is an algebra over a field k and P• → B is a (finitely
generated) projective resolution of Be-modules, then P• ⊗B L is for any
left B-module a (finitely generated) projective resolution of B-modules. In
particular, one has for any algebra gl.dim(B) ≤ dim(B).

Proof. The complex . . . → Pd → . . . → P0 → B → 0 is a flat resolution of
the right B-module 0. Therefore, H•(P ⊗B L) ≃ TorB

• (0, L) = 0, so P•⊗B L
is and it consists of (finitely generated) projective left B-modules. �
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Secondly, we need the following direct generalisation of the case B = A:

Lemma 4. Let A be a Hopf algebra and B ⊂ A be a right coideal subalgebra.
Then the B-B ⊗Aop-bimodule B ⊗A with actions

ad(x)(b⊗ a)(y ⊗ z) := x(1)by ⊗ zaS(x(2))

is isomorphic to the B-B ⊗Aop-bimodule B ⊗A with actions

x(b⊗ a) ⊳ (y ⊗ z) := xby(1) ⊗ zaS
2(y(2)).

Proof. The isomorphism is given explicitly by

ρ : B ⊗A→ B ⊗A, b⊗ a 7→ b(1) ⊗ aS
2(b(2)).

Its inverse is given by

ρ−1 : b⊗ a 7→ b(1) ⊗ aS(b(2)),

and it follows straightforwardly from the Hopf algebra axioms that

ρ(x(1)by ⊗ zaS(x(2))) = xρ(b⊗ a) ⊳ (y ⊗ z). �

Combining the lemmata gives:

Theorem 6. Let B ⊂ A be a right coideal subalgebra and consider B⊗A as a
B⊗Aop-bimodule via multiplication in B⊗Aop. If the left B-module k admits
a finitely generated projective resolution, then there is an isomorphism

H•(B,B ⊗A) ≃ Ext•B(k,B)⊗A

of right B ⊗Aop-modules, where Ext•B(k,B)⊗A is a B ⊗Aop-module via

([ϕ] ⊗ a)(x⊗ y) := [ϕ]x(1) ⊗ yaS
2(x(2)), x ∈ B, [ϕ] ∈ Ext•B(k,B), a, y ∈ A

with the right B-action on Ext•B(k,B) induced by right multiplication in B.

Proof. Apply Lemma 1 with M = B ⊗ A. The cochain complexes and the
isomorphisms ξ, ξ−1 defined in its proof are clearly right B ⊗ Aop-linear in
this case, so the lemma gives a right B ⊗Aop-module isomorphism

(11) H•(B,B ⊗A) ≃ Ext•B(k, ad(B ⊗A)),

where the right B ⊗ Aop-action on Ext•B(k, ad(B ⊗ A) is induced by right
multiplication in B ⊗Aop (which commutes with the left B-action given by
ad). Now apply the Lemmata 4, 3 and 2 to get the isomorphisms

(12) Ext•B(k, ad(B ⊗A)) ≃ Ext•B(k,B ⊗A) ≃ Ext•B(k,B)⊗A.

Composing these isomorphisms with (11) yields the claim. �

Theorem 1 is an easy consequence:

Proof of Theorem 1. Theorem 5 gives a B-trimodule decomposition

B ⊗A ≃ B ⊗ (B ⊕B⊥) ≃ Be ⊕ (B ⊗B⊥),

so we also have Hn(B,B ⊗ A) ≃ Hn(B,Be) ⊕ Hn(B,B ⊗ B⊥) as right
B-modules. Theorem 6 and the Cohen-Macaulay assumption imply that
Hn(B,Be) = 0 for n 6= dim(B), so Theorem 1 follows from Theorem 4. �
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2.6. ω as a Hopf bimodule. The key step towards Theorem 2 is to turn
ω into an object in BM

A
B,S2. Recall that any right A-comodule N is via

(13) X.n := n(0)X(n(1)), X ∈ A◦, n ∈ N

a left module over the Hopf algebra A◦ of linear functionals on A that
vanish on an ideal of finite codimension, see e.g. [40] for background. The
A◦-modules of this form are traditionally called rational. We define now an
A◦-action on C•(B,B ⊗A) that restricts to C•(B,Be) and commutes with
the coboundary operator b and therefore induces an A◦-action on ω. While
C•(B,Be) will not be rational in general we will prove afterwards that ω is.

In the definition of the searched for A◦-action on ϕ ∈ Cn(B,B ⊗ A) we
denote the canonical A◦ ⊗A◦-action on B ⊗A by

(X ⊗ Y ) ⊲ (x⊗ y) = X.x⊗ Y.y, X, Y ∈ A◦, x ∈ B, y ∈ A,

where the actions of X,Y result as in (13) from the A-coactions given by
the coproduct. This gets mixed with an action on the arguments of ϕ:

(Xϕ)(b1, . . . , bn) := (S2(X(n+2))⊗X(1))⊲(14)

ϕ(S(X(n+1)).b
1, . . . , S(X(2)).b

n)).

It follows from the Hopf algebra axioms that this defines a left A◦-action,
and in this way C•(B,B ⊗A) becomes a cochain complex of A◦-modules:

Lemma 5. One has b(Xϕ) = X(bϕ) for all X ∈ A◦, ϕ ∈ C•(B,B ⊗A).

Proof. This is checked using that we have for m ∈ B ⊗A, b, c ∈ B,X ∈ A◦

X.(bc) = (X(1).b)(X(2).c),

(X ⊗ 1) ⊲ (bm) = (X(1).b)((X(2) ⊗ 1) ⊲ m),

(1⊗X) ⊲ (mb) = ((1⊗X(1)) ⊲ m)(X(2).b).

We demonstrate the claim in degree n = 1, the general case is analogous:

(X(bϕ))(b, c)

= (S2(X(4))⊗X(1)) ⊲ (bϕ(S(X(3)).b, S(X(2)).c))

= (S2(X(4))⊗X(1)) ⊲ ((S(X(3)).b)ϕ(S(X(2)).c)

− (ϕ(S(X(3)).b)(S(X(2)).c)) + ϕ(S(X(3)).b)(S(X(2)).c))

= (S2(X(4))⊗X(1)) ⊲ ((S(X(3)).b)ϕ(S(X(2)).c))

− (S2(X(4))⊗X(1)) ⊲ (ϕ((S(X(3)).b)(S(X(2)).c)))+

(S2(X(4))⊗X(1)) ⊲ (ϕ(S(X(3)).b)(S(X(2)).c))

= (S2(X(4))S(X(3)).b)((S
2(X(5))⊗X(1)) ⊲ (ϕ(S(X(2)).c)))

− (S2(X(3))⊗X(1)) ⊲ (ϕ((S(X(2))(1).b)(S(X(2))(2).c)))+

((S2(X(5))⊗X(1)) ⊲ (ϕ(S(X(4)).b)))(X(2)S(X(3)).c)

= b((S2(X(3))⊗X(1)) ⊲ ϕ(S(X(2)).c))

− (S2(X(3))⊗X(1)) ⊲ (ϕ(S(X(2)).(bc)))+

((S2(X(3))⊗X(1)) ⊲ (ϕ(S(X(2)).b)))c

= b(Xϕ)(b, c). �
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Furthermore, we obviously have:

Lemma 6. For any right coideal subalgebra B ⊂ A, the canonical map
C•(B,Be) ⊂ C•(B,B ⊗A) is an embedding of complexes of A◦-modules.

Thus we obtain an A◦-action on H•(B,Be) and the canonical map to
H•(B,B ⊗ A) is A◦-linear. Our final aim is to prove that these two A◦-
modules are for a smooth and Gorenstein quantum homogeneous space ra-
tional, and that we indeed have ω ∈ BM

A
B,S2 .

Lemma 7. Let B ⊂ A be a smooth right coideal subalgebra and assume ε|B
is Gorenstein. Let χ : B → k be the character defined by the right B-action

on Ext
dim(B)
B (k,B) ≃ k and define the k-algebra homomorphism

(15) σ : B → A, σ(x) := S2(χ(x(1))x(2)).

Then there are isomorphisms of A-B-bimodules and A◦-modules

Hn(B,B ⊗A) ≃

{

0 n 6= dim(B),
Aσ n = dim(B),

where A◦ acts via the canonical action X.a := a(1)X(a(2)) on Aσ.

Proof. The claim about A-B-bimodules is a straightforward application of
Theorem 6. One then has to transport the A◦-action on C•(B,B ⊗ A)
though the used isomorphisms: conjugating it by ξ from Lemma 1 gives an
A◦-action on the cochain complex (C•(B,B ⊗A), d) that is given by

(X ◮ ϕ)(b1, . . . , bn) := (S2(X(2))⊗X(1)) ⊲ ϕ(b1, . . . , bn),

so this action is entirely induced from an action on the coefficient bimodule.
Conjugating this action with ρ from Lemma 4 gives the action

(X.ϕ)(b1, . . . , bn) := (1⊗X) ⊲ ϕ(b1, . . . , bn),

that is, in the identifications (11) and (12) in the proof of Theorem 6 the

original A◦-action on Hdim(B)(B,B⊗A) induced by (14) is transformed into

the one on Ext
dim(B)
B (k,B) ⊗ A where A◦ acts simply on the second tensor

component A in the canonical way. �

In particular, Hdim(B)(B,B⊗A) is a rational A◦-module, and hence so is
any A◦-submodule ([40], Theorem 2.1.3.a). Furthermore, Aσ and hence any
B-subbimodule and A-subcomodule is an object in BM

A
B,S2 . This gives:

Corollary 2. If B ⊂ A is a smooth quantum homogeneous space and ε|B is

Gorenstein, then ω = Hdim(B)(B,Be) becomes through the embedding

ω = Hdim(B)(B,Be)→ Hdim(B)(B,B ⊗A) ≃ Aσ

an object in BM
A
B,S2 .

This allows us to describe ω finally as follows using the canonical projec-
tion π : A→ C = A/B+A:

Theorem 7. Let B ⊂ A be a smooth quantum homogeneous for which ε|B
is Gorenstein, and let χ be the character on B defined by its action on

Ext
dim(B)
B (k,B) ≃ k. Then there exists a group-like g ∈ C = A/B+A with

ω ≃ {a ∈ Aσ |π(a(1))⊗ a(2) = g ⊗ a}, σ(b) = χ(b(1))S
2(b(2))
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as an object of BM
A
B,S2, and we have for all b ∈ B

(16) gσ(b) = χ(b)g,

where gσ(b) is defined using the right A-action on C = A/B+A.

Proof. Theorem 5 and the discussion at the end of Section 2.3 tell that
ω ∈ BM

A
B,S2 is of the form N2CA for some N ∈ MC

B,S2. It follows that as

a special case of (the proof of) Theorem 5.8 in [4] there are isomorphisms of
A-B-bimodules

A⊗B ω ≃ A⊗B (N2CA) ≃ N2C(A⊗B A) ≃ N2C(C ⊗A) ≃ N ⊗A,

where the left A-action on N⊗A is given by multiplication in A and the right
B action on N ⊗A is (n⊗ a)b := nb(1) ⊗ S

2(b(2)). The second isomorphism
(the mixed associativity of 2C and ⊗B) uses the right flatness of A and the
third is the Galois isomorphism for the algebra extension B ⊂ A which is
explicitly given by

A⊗B A→ C ⊗A, x⊗B y 7→ π(y(1))⊗ xy(2).

It follows that there is a right B-linear isomorphism

N ≃ (A⊗B ω)/A+(A⊗B ω), A+ = ker ε.

But we also have A-B-bimodule isomorphisms

A⊗B ω = A⊗B Ext
dim(B)
Be (B,B ⊗B) ≃ Ext

dim(B)
Be (B,B ⊗A) ≃ Aσ

by Lemmata 2 and 7. Together this shows that as B-modules we have

N ≃ Ext
dim(B)
B (k,B),

and a coaction on the ground field is given by a group-like element g ∈ C as

k ∋ λ 7→ λ⊗ g ∈ k ⊗ C

that has to obey (16) in order to define an object in MC
B,S2 . The result

follows now by the definition of N2CA. �

2.7. The Hopf-Galois case. As we have recalled in the introduction, the
assumption B+A = AB+ means that π : A → C = A/B+A is a Hopf
algebra quotient. Hence MC is a monoidal category, where M ⊗ N is for
N,M ∈MC the tensor product over k equipped with the coaction

m⊗ n 7→ m(0) ⊗ n(0) ⊗m(1)n(1).

Furthermore, any M ∈ MC is canonically an object in MC
B,id if B acts

trivially (through ε) from the right. Hence M2CA is canonically an object
in BM

A
B := BM

A
B,id with B-bimodule structure

(17) x(m⊗ a)y := m⊗ xay, m ∈M,a ∈ A,x, y ∈ B,

and with respect to this bimodule structure we have (this generalises to any
faithfully flat Galois extension of an algebra B by a Hopf algebra C)

(18) (M2CA)⊗B (N2CA) ≃ (M ⊗N)2CA

as B-bimodules. Any group-like element g of C is now invertible with inverse
g−1 = S(g), and Theorem 7 immediately gives:
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Corollary 3. Retain all assumptions and notation from Theorem 7 and
assume in addition AB+ = B+A. Then σ(B) ⊂ B, and if we consider

ω̄ := {a ∈ A |π(a(1))⊗ a(2) = g−1 ⊗ a}

as a B-bimodule via (17), then we have a B-bimodule isomorphism

ω̄ ⊗B ω ≃ Bσ.

Proof. Take in (18) for M the ground field k with the C-coaction given by
λ 7→ λ ⊗ g−1 and for N the same but with g instead of g−1. Then we get
ω̄ ⊗B (N2CA) ≃ B as B-bimodules. The B-bimodule ω is obtained from
N2CA by twisting the right B-action by σ, so the claim follows. �

The fact that σ(B) ⊂ B is probably the most unexpected observation
here. It illustrates how restrictive (16) is especially for AB+ = B+A since
it can in this case be multiplied from the left by g−1 to give

π(σ(b)) = χ(b)π(1)

for all b ∈ B, and from this we indeed also compute directly that

π(σ(b)(1))⊗ σ(b(2)) = π(χ(b(1))S
2(b(2)))⊗ S

2(b(3))

= π(σ(b(1)))⊗ S
2(b(2))

= π(1)⊗ χ(b(1))S
2(b(2))

= π(1)⊗ σ(b),

hence σ(b) ∈ B by Theorem 5.
We now want to show that in fact σ(B) = B. For this we need a small

digression about characters and the following basic remark:

Lemma 8. If B ⊂ A is a quantum homogeneous space and AB+ = B+A,
then we have S2(B) = B.

Proof. Koppinen’s S(AB+) = B+A ([34], Lemma 1.4) gives

S2(B+A) = S2(AB+) = S(B+A) = S(AB+) = B+A

and hence for all b ∈ B

π(S±2(b)(1))⊗ S
±2(b)(2) = π(S±2(b(1)))⊗ S

±2(b(2)) = π(1)⊗ S±2(b),

so S±2(B) ⊂ B which implies S2(B) = B. �

2.8. Remarks on characters. For a Hopf algebra A the set G := Char(A)
of characters (algebra homomorphisms γ : A → k) is canonically an affine
group scheme represented by the commutative Hopf algebra A/J(A), where

J(A) := {a ∈ A | γ(a) = 0∀ γ ∈ Char(A)},

and for a right coideal subalgebra B ⊂ A the set X := Char(B) becomes
an affine G-scheme represented by B/J(B). The (right) G-action on X is
given like the group structure in G by the canonical product on Homk(A, k)

(19) (ϕψ)(a) := ϕ(a(1))ψ(a(2)), ϕ, ψ ∈ Homk(A, k), a ∈ A

for which ε is the unit element.
The inclusion B → A induces a homomorphism B/J(B)→ A/J(A), and

the restriction of a character from A to B is the dual morphism G → X.
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However, even for some well-behaved examples of quantum homogeneous
spaces (such as the Podleś sphere that we will define in Section 3.1) the
map G→ X is not surjective, B/J(B)→ A/J(A) is not faithfully flat and
not even injective, and the G-action on X is not transitive.

But at least we can say the following:

Theorem 8. If χ is a character on a quantum homogeneous space B ⊂ A,
β : A→ B is a right B-linear projection as in Theorem 5 (2) and we define

γ : A→ k, a 7→ χ(β(S−1(a))),

then we have
χγ = ε

as functionals on B.

Proof. This follows by straightforward computation:

(χγ)(b) = χ(b(1))χ(β(S−1(b(2)))) = χ(β(S−1(b(2))))χ(b(1))

= χ(β(S−1(b(2)))b(1)) = χ(β(S−1(b(2))b(1)))

= χ(β(ε(b))) = ε(b),

where we used the properties of χ and β and the fact that in every Hopf
algebra with bijective antipode we have

S−1(a(2))a(1) = S−1(S(S−1(a(2))a(1))) = S−1(a(1)S(a(2))) = ε(a)

for all a ∈ A since S is always an algebra antihomomorphism. �

Note that γ is in general not a character on A, though.

2.9. The proof of Theorem 2. Theorem 8 implies:

Corollary 4. If χ is a character on a quantum homogeneous space B ⊂ A,
then the algebra homomorphism σ : B → A given by

σ(b) := χ(b(1))S
2(b(2))

is injective. If AB+ = B+A and σ(B) ⊂ B, then σ(B) = B.

Proof. An explicit left inverse of σ is given by

σ−1 : A→ A, σ−1(a) := γ(S−2(a(1)))S
−2(a(2)),

where γ is as in Theorem 8. Under the additional assumption AB+ = B+A
we have S2(B) = B (Lemma 8), so σ(B) ⊂ B implies

σ̂(b) := χ(b(1))b(2) = S−2(σ(b)) ∈ B

for b ∈ B. Now abbreviate for a given b ∈ B

M := {ϕ(b(1))b(2) |ϕ ∈ Homk(B, k)} ∩B.

We have

σ̂(ϕ(b(1))b(2)) = ϕ(b(1))χ(b(2))b(3) = (ϕχ)(b(1))b(2) ∈M,

that is, σ̂(M) ⊂ M . Since σ and hence σ̂ has been shown already to be
injective, σ̂|M is bijective since dimk(M) <∞ (if ∆(b) =

∑n
−=0 xi⊗yi, then

M is spanned by the yi). Furthermore, b = ε(b(1))b(2) ∈ M , so b ∈ im σ̂.

Thus b ∈ im σ̂ for arbitrary b ∈ B and hence also σ = S2◦σ̂ is surjective. �
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Proof of Theorem 2. We have constructed in Corollary 3 a B-bimodule ω̄
with ω̄ ⊗B ω ≃ Bσ, where σ(b) = χ(b(1))S

2(b(2)). Corollary 4 shows that σ
is under the assumptions of Theorem 2 an automorphism of B. This implies

Bσ ≃ σ−1B

as bimodules, where σ−1B is B as right module but the left action is twisted
by σ−1 (the isomorphism is given by σ−1). Hence we get

σω̄ ⊗B ω ≃ B.

To see that we also have

ω ⊗B σω̄ ≃ B

note that we know

ω̄ ⊗B ωσ−1 ≃ B,

and ωσ−1 ∈ BM
A
B . Applying the monoidal functor M 7→M/B+M gives the

corresponding g−1g = 1 in C, but here we also have gg−1 = 1. Retranslating
this into Hopf bimodules yields

ω ⊗B σω̄ ≃ ωσ−1 ⊗ ω̄ ≃ B. �

2.10. A smoothness criterion. We mention here a useful tool for proving
the smoothness of B ⊂ A. The key remark is [33], Theorem 7.2.8:

Theorem 9. Let B ⊂ A be a ring extension such that B is a direct summand
in A as a B-bimodule. Then gl.dim(B) ≤ gl.dim(A) + proj.dimB(A).

Together with Theorem 5 this implies for example:

Corollary 5. If B ⊂ A is a quantum homogeneous space and A is commu-
tative, then gl.dim(B) ≤ gl.dim(A).

But also in many noncommutative examples it will happen that the de-
composition in Theorem 5,(2) is actually a decomposition of bimodules:

Lemma 9. Let B ⊂ A be a quantum homogeneous space and assume that
A/B+A is cosemisimple with AB+ = B+A. Then gl.dim(B) ≤ gl.dim(A).

Proof. As remarked above, the condition AB+ = B+A means that C =
A/B+A is a Hopf algebra quotient of A. The cosemisimplicity can be char-
acterised as the existence of a (unique) functional h : C → k satisfying

h(1) = 1, h(c(1))c(2) = c(1)h(c(2)) = h(c), c ∈ C,

see e.g. [23], Theorem 13 in Section 11.2.1, and it is easily verified that

β : A→ A, a 7→ h(π(a(1)))a(2)

is then a B-bilinear projection from A onto B ⊂ A. �

Note that the assumption of cosemisimplicity of C can be weakened, it
suffices that there is a total integral h : C → A in the sense of [9] whose
image commutes with B ⊂ A as in [ibid.], Proposition (1.7)(b).

Corollary 6. If B ⊂ A is as in Lemma 9 and Ae is left Noetherian with
gl.dim(Ae) <∞, then B is smooth.
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Proof. If B ⊂ A is as in the lemma, then so is Be ⊂ Ae, hence the lemma
gives gl.dim(Be) ≤ gl.dim(Ae). Therefore, gl.dim(Ae) <∞ implies that the
left Be-module B has finite projective dimension. Finally, the left Noethe-
rianity of Ae implies that of Be (apply Ae ⊗Be · to an ascending chain of
left ideals in Be and use faithful flatness). Therefore, the projective dimen-
sion of the finitely generated Be-module B will coincide with its projective
dimension in the category of finitely generated Be-modules. �

2.11. Some (counter)examples. Before entering the discussion of the Po-
dleś sphere let us mention here three simpler but instructive examples.

First of all, every Hopf subalgebra B ⊂ A is in particular a right coideal
subalgebra. If A = U(g) and B = U(h) are universal enveloping algebras
of finite-dimensional Lie algebras h ⊂ g, then the Poincaré-Birkhoff-Witt
theorem says that A is free over B and hence faithfully flat. However, even
the basic example of the Borel subalgebra h := b+ in g := sl(2, k) behaves
rather badly: the characters of b+ are in bijection with k but only one of
them (the counit) extends to A. The dualising bimodule of A is A without
any twist σ, but that of B is of the form Bσ for a nontrivial automorphism
(see [5], this example was suggested by Ken Brown to me). Note also that
AB+ = B+A, but B is not as a B-bimodule a direct summand in A.

Secondly, consider B = k[y] and for A the Hopf algebra obtained by
adding a generator x satisfying

x2 = 1, xy = −yx,

so A is the smash (aka crossed or semidirect) product B ⋊ Z2 of B by the
automorphism that sends y to −y. The Hopf algebra structure is given by

∆(x) = x⊗ x, ∆(y) = 1⊗ y + y ⊗ x,

ε(x) = 1, ε(y) = 0, S(x) = x, S(y) = −yx.

The monomials {yi, xyi | i ≥ 0} form a k-vector space basis of A, so A is
free over B with basis {1, x}. In particular, B ⊂ A is faithfully flat. In
this example one can verify directly that H i(B,M) ≃ H1−i(B,M) for all
B-bimodules M , and that B is Gorenstein with χ = ε. However, σ(b) =
χ(b(1))S

2(b(2)) = S2(b) is not the identity automorphism since

S2(y) = −S(yx) = −S(x)S(y) = xyx = −y.

These examples show that even if B satisfies Poincaré duality it can be
difficult to read off ω from the Hopf-algebraic data given. In particular it
can happen that the dualising bimodules of both A and B are of the form Aσ

and Bτ , but one can have τ = idB , σ 6= idA or conversely σ 6= idA, τ = idB.
Finally, we would like to mention that the cusp X ⊂ k2 given by the

equation x2 = y3 is also a quantum homogeneous space although it is surely
not a homogeneous space of an algebraic group since it is not smooth. The
ambient Hopf algebra is again a skew-polynomial ring A = B⋊Z, B = k[X],
that is denoted by B(1, 1, 2, 3, q) in [14], Construction 1.2. Therein the
notation is exactly the opposite of ours, their A is our B and vice versa.
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3. Application

3.1. The standard Podleś sphere. For the rest of the paper we fix k = C,
q ∈ k∗ is not a root of unity, and A is the standard quantised coordinate
ring of SL(2, k) (see e.g. [23] for background information). This is the Hopf
algebra with algebra generators a, b, c, d, defining relations

ab = qba, ac = qca, bc = cb, bd = qdb, cd = qdc,

ad− qbc = 1, da− q−1bc = 1

and the coproduct, counit, and antipode determined by

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d,

∆(c) = c⊗ a+ d⊗ c, ∆(d) = c⊗ b+ d⊗ d,

ε(a) = ε(d) = 1, ε(b) = ε(c) = 0,

S(a) = d, S(b) = −q−1b, S(c) = −qc, S(d) = a.

It follows from these relations that there is a unique Hopf algebra quotient

π : A→ C := k[z, z−1], π(a) = z, π(d) = z−1, π(b) = π(c) = 0,

where the Hopf algebra structure of k[z, z−1] is determined by ∆(z) = z⊗z,
that is, C is the coordinate ring of T = k∗, and the map π would correspond
for q = 1 to the embedding of T as a maximal torus into SL(2, k).

By Corollary 1, π gives rise to a quantum homogeneous space B as in
(3). This subalgebra deforms the coordinate ring of T \SL(2, k) and was
discovered by Podleś [35] and hence is referred to by most authors as the
(standard) Podleś quantum sphere. The elements

y−1 := ca, y0 := bc, y1 := bd

generate B as an algebra, and B can be characterised abstractly as the
algebra with three generators y−1, y0, y1 and defining relations

(20) y0y±1 = q±2y±1y0, y±1y∓1 = q∓2y2
0 + q∓1y0,

see [8, 30, 35].

3.2. The Koszul resolution of the B-module k. We will construct a
free resolution of the B-module k (with action given by ε) by using the
probably simplest case of Priddy’s noncommutative Koszul resolutions [36]:

Lemma 10. Let B be a k-algebra and assume z±1 ∈ B are such that

(1) z−1z1 = λz1z−1 for some λ ∈ k,
(2) az−1 = 0 implies a = 0 for all a ∈ B and
(3) ν(az1) = 0 implies ν(a) = 0 for all ν(a) := amodBz−1 ∈ B/Bz−1.

Then the chain complex K• := K•(z1, z−1) given by

0→ B → B ⊕B → B → 0

with nontrivial boundary maps

a 7→ (az−1,−λaz1), (b, c) 7→ bz1 + cz−1

is a free resolution of B/I, I := Bz1 +Bz−1.
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Proof. We clearly have H0(K) = B/I by very definition and H2(K) = 0 by
assumption (2). Now consider the subcomplex

K̃ := 0→ B → Bz−1 ⊕B → Bz−1 → 0

of K and the quotient complex K/K̃ which is of the form

0→ 0→ B/Bz−1 → B/Bz−1 → 0.

Its one nontrivial boundary map map is

B/Bz−1 → B/Bz−1, ν(a) 7→ ν(az1),

so assumption (3) means H1(K/K̃) = 0. Furthermore, we have H1(K̃) = 0:
a cycle is an element (bz−1, c) ∈ Bz−1 ⊕B with

0 = bz−1z1 + cz−1 = (λbz1 + c)z−1,

so assumption (2) gives c = −λbz1, hence (bz−1, c) = (bz−1,−λbz1) is a
boundary. Considering the long exact homology sequence derived from the
short exact sequence 0→ K̃ → K → K/K̃ → 0 now yields H1(K) = 0. �

From now on let B be again the Podleś sphere. Then the above gives:

Theorem 10. The left B-module k admits a free resolution of the form
K•(z1, z−1) with z±1 := y±1 + y0, λ := q2.

Proof. It is easily seen that B+ := B ∩ ker ε is generated as a left ideal by
the elements yn. But since one has q−1y−1(y1 + y0) − qy0(y−1 + y0) = y0,
B+ is in fact generated as a left ideal by the two elements z±1.

One verifies directly that z−1z1 = q2z1z−1 which is assumption (1) in
Lemma 10. Secondly, B is a domain (see e.g. [1]), so assumption (2) holds
as well. For (3) we turn B into a Z-graded algebra by assigning to yi the
degree i which is compatible with the defining relations (20). Then we have

B =
⊕

j∈Z

Bj , BiBj ⊂ Bi+j, Bj := spank{eij | i ≥ 0},

where

eij :=

{

yi
0y

j
1 j ≥ 0,

yi
0y

−j
−1 j < 0,

i ∈ N0, j ∈ Z,

and these form a vector space basis of B. Under ν : B → B/Bz−1 we have

ν(yi
0y

j
−1) = yi

0y
j−1
−1 ν(y−1) = −yi

0y
j−1
−1 ν(y0)

= −yi
0ν(y

j−1
−1 y0) = −q2(j−1)yi

0ν(y0y
j−1
−1 )

= −q2(j−1)yi+1
0 yj−2

−1 ν(y−1)

= q2(j−1)yi+1
0 yj−2

−1 ν(y0)

= q2(2j−1−2)yi+2
0 yj−3

−1 ν(y−1)

= −q2(2j−1−2)yi+2
0 yj−3

−1 ν(y0)

= . . .

= (−1)jq2((j−1)j−1−2−...−(j−1))yi+j−1
0 yj−j

−1 ν(y0)

= (−1)jq(j−1)jν(yi+j
0 ).
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Similarly we have for i > 0, j > 0

ν(yi
0y

j
1) = q2jyi−1

0 ν(yj
1y0) = q2jyi−1

0 yj
1ν(y−1)

= q2jyi−1
0 yj−1

1 ν(q−2y2
0 + q−1y0)

= q2j−2yi−1
0 yj−1

1 ν(y2
0) + q2j−1yi−1

0 yj−1
1 ν(y0)

= q−2j+2ν(yi+1
0 yj−1

1 ) + qν(yi
0y

j−1
1 )

= q−2j+2(q−2j+4ν(yi+2
0 yj−2

1 ) + qν(yi+1
0 yj−2

1 ))

+q(q−2j+4ν(yi+1
0 yj−2

1 ) + qν(yi
0y

j−2
1 ))

= q−4j+6ν(yi+2
0 yj−2

1 ) + q−2j+3(1 + q2)ν(yi+1
0 yj−2

1 ) + q2ν(yi
0y

j−2
1 )

= q−4j+6(q−2j+6ν(yi+3
0 yj−3

1 ) + qν(yi+2
0 yj−3

1 ))

+q−2j+3(1 + q2)(q−2j+6ν(yi+2
0 yj−3

1 ) + qν(yi+1
0 yj−3

1 ))

+q2(q−2j+6ν(yi+1
0 yj−3

1 ) + qν(yi
0y

j−3
1 ))

= q−6j+12ν(yi+3
0 yj−3

1 ) + q−4j+7(1 + q2 + q4)ν(yi+2
0 yj−3

1 )

+q−2j+4(1 + q2 + q4)ν(yi+1
0 yj−3

1 ) + q3ν(yi
0y

j−3
1 )

= . . .

=

j
∑

r=0

q(−2r+1)j+r2

(

j
r

)

q

ν(yi+r
0 )

where we abbreviated

(

j
r

)

q

:= 1 + q2 + q4 + . . . + q
2

 

j
r

!

−2

.

Thus we have

B/Bz−1 = spank{ν(y
i+1
0 ), ν(yi

1) | i ≥ 0}.

These residue classes are also linearly independent: assume that

(21)
∑

i≥0

λiν(y
i
0) +

∑

j≥0

µjν(y
j+1
1 ) = 0

in B/Bz−1. One easily checks that

B/(Bz−1 +By0) = B/(By−1 +By0)

is an algebra quotient of B (i.e. that By0 +By−1 is a two-sided ideal in B)
and that it is as such isomorphic to the polynomial ring generated by the

residue class of y1. Hence the residue classes of yj
1 are linearly independent

in this quotient of B/Bz−1. Considering the image of (21) therein thus gives

µj = 0 ∀ j ≥ 0.

We are left with

(22)
∑

i≥0

λiν(y
i
0) = 0 ⇔

∑

i≥0

λiy
i
0 = az−1

for some a ∈ B. But
∑

i≥0 λiy
i
0 is homogeneous of degree 0, B is a domain,

and z−1 is not homogeneous, so the right hand side can not be homogeneous
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unless a = 0: if

a = aj0 + . . .+ ajn
, aji

∈ Bji
\ {0}, j0 < . . . < jn

is the decomposition of a into homogeneous components, then az−1 has a
nonzero component aj0y−1 in degree j0 − 1 and a nonzero component ajn

y0

in degree jn. Thus a = 0 and since the yi
0 are linearly independent in B it

follows that also

λi = 0 ∀ i ≥ 0.

Now we compute the action of he map

(23) ζ : B/Bz−1 → B/Bz−1, ν(a) 7→ ν(az1)

on the basis vectors. We get for i > 0

ν(yi
0z1) = ν(yi

0y1) + ν(yi+1
0 )

= q2yi−1
0 ν(q−2y2

0 + q−1y0) + ν(yi+1
0 )

= 2ν(yi+1
0 ) + qν(yi

0)

and for j ≥ 0

ν(yj
1z1) = ν(yj+1

1 ) + ν(yj
1y0)

= ν(yj+1
1 ) + q−2jν(y0y

j
1)

= ν(yj+1
1 ) + q−2j

j
∑

r=0

q(−2r+1)j+r2

(

j
r

)

q

ν(y1+r
0 ).

So if we abbreviate

Vj := spank{ν(y0), . . . , ν(y
j+1
0 ), ν(1), ν(y1), . . . , ν(y

j
1)},

then we have

B =
⋃

j≥0

Vj , ζ(Vj) ⊂ Vj+1

and ζ|Vj
is represented with respect to our basis by a matrix of the form































q ∗ . . . ∗

2
. . .

. . .
...

. . . q ∗
2 0 . . . 0

0

1
. . .
. . . 0

1































,

where the ∗ denote nonzero entries and all other entries vanish. Hence ζ
is evidently injective (composing ζ|Vj

with the canonical projection onto

Vj+1/spank{ν(y0), ν(1)} yields an isomorphism of determinant 2j) which is
assumption (3) of Lemma 10. �
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3.3. The Gorenstein condition. From the minimal resolution of k pro-
vided by the Koszul complex one can read off ExtnB(k,B):

Lemma 11. One has ExtnB(k,B) = 0 for n 6= 2 and Ext2B(k,B) ≃ k. The
resulting character χ of B is equal to ε.

Proof. Apply HomB(·, B) to the Koszul complex and identify HomB(B,B) ≃
B. This gives the cochain complex

0← B ← B ⊕B ← B ← 0

of right B-modules whose two nontrivial coboundary maps are given by

f 7→ (z1f, z−1f), (f, g) 7→ q−1z−1f − qz1g.

The exactness of this complex in degree 0 and 1 can be shown as the exact-
ness of the Koszul complex using Lemma 10 (with B replaced by Bop). In
degree 2, the cohomology is B divided by the right ideal generated by z±1.
The result follows since with qz1y−1−q

−1z−1y0 = y0 one easily deduces that
this ideal is again ker ε. �

Thus the relevant twisting automorphism is

σ(f) = χ(f(1))S
2(f(2)) = S2(f)

which is explicitly given by

σ(y−1) = q2y−1, σ(y0) = y0, σ(y1) = q−2y1.

Note this is also the restriction of Woronowicz’s modular automorphism (see
e.g. [23, 16] for more information) to B.

3.4. The smoothness condition. The smoothness ofB follows from Corol-
lary 6 since for this example Ae ≃ kq[SL(2)×SL(2)] is left Noetherian with
global dimension 4, see [13] and the references therein.

3.5. Determining ω. We now know that Theorem 2 applies to B with
dim(B) = 2, and that B acts trivially (via ε) on Ext2B(k,B) ≃ k so that the
automorphism σ from Theorem 7 equals S2. Equation (16) becomes trivial,
so g therein could be any of the group-like elements in C = k[z, z−1], that
is, an arbitrary monomial zn for some n ∈ Z. So according to Theorem 7, ω
is isomorphic as an object of BM

A
B,S2 to ωn,1, where we define for m,n ∈ Z

ωn,m := {a ∈ AS2m |π(a(1))⊗ a(2) = zn ⊗ a} ∈ BM
A
B,S2m .

As B-bimodules, we have isomorphisms

ωn,m ≃ (ωn,0)S2m ≃ (ωn,0)⊗B BS2m = ωn,0 ⊗B ω0,m

and (as a special case of (18))

ωl,0 ⊗B ωn,0 ≃ ωl+n,0.

Finally, the B-bimodule isomorphism S2m : S−2mA → AS2m restricts to a
B-bimodule isomorphism

S−2m(ωn,0) ≃ ωn,m,

and combining these three equations we see that as B-bimodules we have

(24) ωn,m ⊗B ωi,j ≃ ωn+i,m+j.

Furthermore, we obtain by direct computation:
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Lemma 12. One has

H0(B,ωi,j) ≃

{

k i = 2(m− j) for some 0 ≤ m ≤ 2j,
0 otherwise.

Proof. The defining relations of A imply that the monomials

flmn :=

{

albmcn l ≥ 0,
d−lbmcn l < 0,

l ∈ Z,m, n ∈ N0

form a vector space basis, that A is a Z-graded B-bimodule,

A =
⊕

l∈Z

Al, BiAlBj ⊂ Ai+j+l, Al := spank{flmn |m,n ≥ 0},

and that

Al = {f ∈ A | y0f = q2lfy0}.

Furthermore, the explicit formulas for the coproduct of the generators a, b, c, d
given in Section 3.1 and the fact that π(flmn) = δm,0δn,0z

l show that

ωi,j = spank{flmn | i = l +m− n} ⊂ AS2j .

The zeroth Hochschild cohomology is by very definition isomorphic to the
centre of the coefficient bimodule (identify ϕ ∈ HomBe(B,M) with ϕ(1) ∈
M), and since S2(y0) = y0, the last two equations imply

H0(B,ωi,j) ⊂ ωi.j ∩A0 = spank{b
mcn |m− n = i}.

And from S2(y±1) = q∓2y±1 and

y±1b
mcn = q∓(m+n)bmcny±1

we deduce now that

H0(B,ωi,j) = spank{b
mcn |m− n = i,m+ n = 2j}.

The claim follows by elementary arithmetics. �

Now we can finish the proof of Theorem 3:

End of proof of Theorem 3. By Theorem 2 and Hadfield’s explicit compu-
tation of H•(B,BS2) [16] we have

H0(B, (ω−1)S2) ≃ H0(B,ω−1 ⊗B BS2)

≃ H2(B,ω ⊗B ω−1 ⊗B BS2)(25)

≃ H2(B,BS2) ≃ k.

If ω = ωn,1, then by (24) we have

(ω−1)S2 ≃ ω−n,0,

and inserting this into Lemma 12 yields n = 0, so we have ω ≃ ω0,1 = BS2

as claimed in Theorem 3. �
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