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Abstract

The aim of this note is to communicate a simple example of a Lie-Rinehart algebra
whose enveloping algebra is not a Hopf algebroid in the sense of B6hm and Szlachanyi.

1 Introduction

The enveloping algebra of a Lie algebra is a classical example of a Hopf algebra. Hence it is
natural to ask whether the enveloping algebra of a Lie algebroid [Pra67] or more generally of a
Lie-Rinehart algebra [Rin63] carries the structure of a Hopf algebroid. It turns out that they
always are left bialgebroids (introduced under the name x p-bialgebras by Takeuchi [Tak77]),
see [Xu01], and in fact left Hopf algebroids (introduced under the name x p-Hopf algebras by
Schauenburg [Sch00]), see [KK10, Example 2]; see also [Hue08, MM10].

However, the question whether these left Hopf algebroids are full Hopf algebroids in the sense
of [B6h09] (generalising the notion from [Lu96]) remained open. In the light of [KP11, Proposi-
tion 3.11], this is known to be true for Lie algebroids [ELW99] and for the Lie-Rinehart algebras
associated to Poisson algebras [Hue98, Section (3.2)]. A counterexample was announced by
Kowalzig and the first author, see [KP11, Remark 3.12], but the construction contained a gap.
To our knowledge, the literature still contains no example of a left Hopf algebroid that is not
a full one. Hence the aim of the present note is to communicate such an example:

Theorem 1.1. Let K be a field, R := K[z, y]/{z-y,2? y?), L be the 1-dimensional Lie algebra
with basis {a} and E € Derg(R) be the derivation with E(x) =y, E(y) = 0.

1. There is a Lie-Rinehart algebra structure on (R, L) with R-module structure on L given
by x-a=y-a=0 and anchor map given by p(a) = E.

2. There is no right V(R, L)-module structure on R that extends right multiplication in R.
In particular, V (R, L) is not a full Hopf algebroid.

The note is structured as follows: in Section 2 we recall some basic definitions. In Section
3 we provide a construction method of Lie-Rinehart algebras whose enveloping algebras do not
admit an antipode. The simplest example of these is the one in our theorem. Lastly, Section
4 illustrates the result by giving an explicit presentation of V(R, L) for our example in which
the nonexistence of an antipode becomes evident.
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2 Background

This section contains background on Lie-Rinehart algebras [Rin63], see also [Hue98, Kow09,
KP11,MM10] for more information. For the corresponding differential geometric notion of a
Lie algebroid see [Pra67] and for example [Mac87] for further details.

We fix a field K. An unadorned ® denotes the tensor product of K-vector spaces.

Definition 2.1. A Lie-Rinehart algebra consists of
1. a commutative K-algebra (R, -),
2. a Lie algebra (L,[—,—]1) over K,
3. a left R-module structure RQL — L, r®&—r-&,re R EE L, and

4. an R-linear Lie algebra homomorphism p : L — Derg (R) satisfying
&r-Co=r-1§L+pE)(r)- ¢ reRE(EL (2.1)

The map p is referred to as the anchor map.

There are two fundamental examples: if R is any commutative algebra, one can take L to
be Derg (R) with its usual Lie algebra and R-module structure, and p = id. The other extreme
is R = K and p = 0, L being any Lie algebra.

In his paper [Rin63], Rinehart generalised the construction of the universal enveloping alge-
bra of a Lie algebra to Lie-Rinehart algebras, see Section 2 therein for the precise construction.
The result is an associative K-algebra V' (R, L) that is generated by the (sum of the) images of
a K-algebra map

R — V(R,L)
and a Lie algebra map
(L7 [_7_]L) — (V(RvL)7[_7_])7 §—¢
where [—, —] denotes the commutator in V (R, L). As Rinehart, we do not distinguish between

an element in R and its image in V' (R, L) which is justified as the first map is always injective.
The construction is such that in V(R, L) one has for all r € R, € L

[§,r] = p(&)(r), rE=71-¢, (2.2)

where the product in V' (R, L) is denoted by concatenation.

As indicated in the introduction, V (R, L) has the structure of a left Hopf algebroid. Its
counit endows R with the structure of a left V (R, L)-module, in such a way that the induced
action of r € R is given by left multiplication, and the induced action of £ € L is given by
the anchor map. For a full Hopf algebroid, composing the counit with the antipode yields also
a right V (R, L)-module structure on the base algebra R extending right multiplication in R,
see [KP11, Proposition 3.11] for full details. Thus the nonexistence of such a right module
structure on the base algebra R indeed implies the nonexistence of an antipode.



3 Proof of Theorem 1.1

We now prove Theorem 1.1. We begin by considering more generally Lie-Rinehart algebras
(R, L) whose R-module structure on L is given by a character x : R — K.

Proposition 3.1. Let (R,-) be a commutative K -algebra, (L,[—,—]r) be a Lie algebra and
p: L — Derg(R) be a Lie algebra map. Define an R-module structure on L by r - & := x(r)&,
where x : R — K is a character on R. Then (R, L) is a Lie-Rinehart algebra if and only if p
is R-linear and p(§)(r) € ker x for allr € R,§ € L.

Proof. This follows as the Leibniz rule (2.1) takes the form

€, x(r)¢]L = x(r)&; ¢l + x(p(§)(r))¢

and hence by the K-linearity of the bracket becomes equivalent to p(£)(r) € kery. O

Note that for these examples, [—.—|f, is even R-linear, so L is a Lie algebra over R. However,
in general we have p # 0.

Assume now that (R, L) is a Lie-Rinehart algebra as in the above proposition, and that
right multiplication in R can be extended to a right V' (R, L)-module structure on R. Denote
by 9(§) € R the element obtained by acting with £ € L on 1 € R under this right action. This
defines a K-linear map 0 : L — R, and in V(R, L) we have

pE)(r)=[Er] =&r—rE =8 —r &= — X,

so by acting with this element on 1 € R, one sees that this map 0 satisfies

p(&)(r) = 0(&) - (r — x(r))- (3.1)

A K-linear map 0 with this property defines a right V (R, L)-module structure extending mul-
tiplication on R if and only if it satisfies the condition 9([¢, {]r) = p(£)(9(C)) — p(¢)(D(&)). Tt
also corresponds to a generator of the Gerstenhaber bracket on AgL, see [Hue98], but we shall
not need these facts:

Proof of Theorem 1.1. The first part is verified by explicit computation; the Lie-Rinehart al-
gebra is of the form as in Proposition 3.1 with y given by x(z) = x(y) = 0.

For 2., take r = z and £ = ain (3.1). One obtains y = E(z) = p(a)(x) = 0(«)-z. However,
there is no element z € R such that y = z - x. O

4 A Hopf algebroid without antipode

Carrying out Rinehart’s construction explicitly yields a presentation of the associative K-
algebra V (R, L) in terms of generators z,y, & satisfying the relations

axr =y, dy:xd:yd:x2:y2:xy:yx20.
Hence V(R, L) has a K-linear basis given by {a", z,y}nen-

In view of Axiom (iii) in [B6h09, Definition 4.1], the antipode S of any Hopf algebroid H
over R satisfies S(t(r)) = s(r) where s,t: R — V(R, L) are the source and the target map of
the underlying left bialgebroid, respectively. For the left bialgebroid V (R, L), these are both the
inclusion of R into V(R, L), hence an antipode on V (R, L) would satisfy S(z) =z, S(y) = v.

However, the antipode of a Hopf algebroid is an algebra antihomomorphism, S(gh) =
S(h)S(g) for all g,h € H, see e.g. [B6h09, Proposition 4.4 (i)]. So in V (R, L), one would have

y=2S(y) = S(axr) = S(x)S(a) =zS(a).



This illustrates directly that V (R, L) admits no antipode, since there is no element z € V(R, L)
such that y = zz.
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