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From computer algor i thms to
quantum field theory: an
introduct ion to operads

Ulr ich Krähmer

An operad is an abstract mathematical tool encoding
operations on specific mathematical structures. It
finds applications in many areas of mathematics and
related fields. This snapshot explains the concept of
an operad and of an algebra over an operad, with a
view towards a conjecture formulated by the mathe-
matician Pierre Deligne. Deligne’s (by now proven)
conjecture also gives deep inights into mathematical
physics.

1 Introduct ion

When solving a problem, it is usually important to understand its true nature
and meaning. Imagine for example a jigsaw puzzle with all pieces turned upside
down. You can still solve it using only the shapes of the pieces, but it will be
harder and relatively boring, because you will only understand what it is all
about when you flip the pieces over.

Furthermore, problems which at first sight appear to be different can turn
out to be the same when viewed in an appropriate way; or they may at least be
solved using the same tools. The present snapshot is about such a universal tool
from mathematics and neighbouring fields. It is called the theory of operads.
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2 An operad from computer science

2.1 The general idea

Given a specific type of computer, one can ask how many different functions
(that is to say algorithms or programmes) P one can use it to compute. Let
Pn denote the list of all these functions that take inputs x1, . . . , xn of a fixed
type (for instance this could be the type “number”) and spit out a single output
y = P (x1, . . . , xn) of the same type.

Observe now there is an easy way of forming new functions out of old ones:
if P ∈ Pn and Q ∈ Pm (the symbol “∈” means “is an element of”, so P is
a function with n inputs and Q is one with m inputs), then we can feed the
output of Q as the i-th input into P , where i is any number from 1 to n. The
result is a function with m + n− 1 inputs that we denote by P ·i Q. Pictorially,
we could denote this as follows:
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x3
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~~

x5

yy

Q(x2, x3)

��
P (x1, Q(x2, x3), x4, x5)

In this example, m = 2, n = 4, i = 2, and x1, . . . , x5 are the inputs of P ·2 Q.
In terms of an abstract formula, P ·i Q is generally defined by

(P ·i Q)(x1, x2, . . . , xm+n−1)
= P (x1, x2, . . . , xi−1, Q(xi, . . . , xi+m−1)︸ ︷︷ ︸

i-th input of P

, xi+m, . . . , xm+n−1). (1)

2.2 An example

Consider a simple computer that has two basic operations, the multiplication M
and the addition A of natural numbers. We can think of these operations as
functions with two inputs and one output and write

A(x, y) = x + y, M(x, y) = x · y.

In other words, A and M form the set P2. The set P3 then consists of all
functions that we can build out of A and M using the products ·i, such as for
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example the function A ·1 M which is defined by

(A ·1 M)(x, y, z) = A(M(x, y), z) = x · y + z.

In total, we can form eight such expressions,

A ·1 A, A ·1 M, M ·1 A, M ·1 M, A ·2 A, A ·2 M, M ·2 A, M ·2 M.

However, not all of them are different! Indeed, we have

A ·1 A = A ·2 A, M ·1 M = M ·2 M (2)

as you can verify by expanding the above expressions for arbitrary inputs. The
reason is – as you might have found out – the associativity of addition and
multiplication, meaning

(x + y) + z = x + (y + z), (x · y) · z = x · (y · z)

holds for all natural numbers x, y, and z.
Quiz. Show that all the other expressions are different, so that P3 has exactly
six elements. How many elements does P4 have? Can you find a general formula
for the number of elements in Pn?

2.3 Associat iv i ty of ·i

At this point, we make another observation: ·1 itself is associative, that is,

(P ·1 Q) ·1 R = P ·1 (Q ·1 R)

holds for all functions P, Q, R. For i 6= 1 it gets more complicated, though. For
example, if P ∈ P3 , Q ∈ P2 and R ∈ P1, then

(P ·2 Q) ·2 R = P ·2 (Q ·1 R)

holds: both sides equal the function S ∈ P4 which is given by

S(x, y, z, t) = P (x, Q(R(y), z), t).

Looking a bit closer at these products (P ·i Q) ·j R, one finds out that the sets
Pn reveal an interesting structure. Namely, for any P ∈ Pn, Q ∈ Pm, R ∈ Pl

and for all computers and types of input they satisfy a set of rules:

(P ·i Q) ·j R =

 (P ·j R) ·i+l−1 Q if j < i,
P ·i (Q ·j−i+1 R) if j = i,
(P ·j−m+1 R) ·i Q if j > i.

(3)

You can verify these rules by using the abstract product definition given
in (1).
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2.4 Operads

Whenever mathematicians find a structure interesting, they turn it into an
abstract definition. In case of the Pn’s and of what we have studied so far, this
results in the definition of an operad:

Definition. An operad P is a sequence of sets P1,P2,P3, . . . together with
products P ·1 Q, . . . , P ·n Q in Pm+n−1 for all P ∈ Pn and Q ∈ Pm that satisfy
the set of rules (3) above.

An example of an operad is, as we have seen, the sequence of Pn’s introduced
in Section 2.1. Other examples will follow soon.

2.5 Symmetr ic operads

So far, we have seen that the product ·i combining functions from Pn and Pm,
respectively, produces a new function from Pm+n−1. There is another way
of creating new functions: if we permute (meaning we shuffle or reorder) the
inputs of a function, we can produce new functions. For example, let Pn be the
simple addition-multiplication operad from Section 2.2 and let Qn be obtained
by permutation of the inputs.

To begin with, we have Q2 = P2, because it is

A(x, y) = x + y = y + x = A(y, x)

and similarly M(x, y) = M(y, x). In mathematical language we say both
addition A and multiplication M are commutative operations, that is swapping
the two variables does not create a new function. However, this is no longer
true for n > 2:

Quiz. Show that P given by P (x, y, z) = (A ·1 M)(y, x, z) = x · z + y is not in
P3. Show that Q3 contains eight elements.

In the theory of operads, there are objects we call symmetric operads. These
are operads with a generalisation of the input permutation operation above.
The interested reader can find more information on these in [5].

2.6 One more: the endomorphism operad

Moving now slowly from computer science to pure mathematics, we can note
that any set X whatsoever defines an operad E(X). Namely, E(X)n consists of
all functions f with inputs x1, . . . , xn ∈ X and one output f(x1, . . . , xn) ∈ X.
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Definition. E(X) is called the endomorphism operad of X.

In other words, E(X) is the operad of the universal computer in which one
can implement any function of variables and with values in X.

Quiz. If X has 3 elements, how many elements does E(X)n have?

Thus, by definition, the operads P defined earlier were all subsets of E(X),
where X is the set of all values that variables of the functions in P can take.
We will now see an intriguing operad that is not of this form.

3 Lit t le discs and the Del igne conjecture

3.1 The l i t t le discs operad D

A configuration of n little discs specifies the positions and radii of n numbered
non-intersecting discs inside a single disc of radius 1. The figure below shows a
configuration of n = 3 little discs:

1
2

3

Let us denote the set of all possible such pictures by D. Then D becomes an
operad if, for given P , Q ∈ D, we define the products P ·i Q as the result of the
following procedure:

Product algorithm: Glue a scaled copy of the picture Q into the i-th disc in
P and discard the boundary of this i-th disc subsequently. Finally, renumber
the discs, starting with the first disc in P and numbering the newly inserted
discs in the same order as they appeared in Q, starting with i.

The following picture illustrates the process for i = 2:
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Here, the discs 1 and 3 of P are the discs 1 and 4 in P ·2 Q. Disc

2 gets replaced by a scaled copy of Q, so the discs 1 and 2 in Q become

discs 2 and 3 in P ·2 Q. I hope this explains the recipe sufficiently. One
can check that this product satisfies the rules (3) which makes D an operad.
We call it the little discs operad. Moreover, noticing that the little discs within
a configuration can be permuted, you maybe can even believe that D is also a
symmetric operad.

Quiz. In Section 2.2, we found out that the associativity of the elements M
and A of P2 implies (2). Show that there is no configuration P ∈ D2 of two
little discs which is associative (that is, you have to show that there is none
that satisfies P ·1 P = P ·2 P ).

3.2 Kontsevich and Del igne

Changing gears, imagine a balloon filled with gas. By pressing and stretching
you can deform it into many shapes, but, for example, not into a doughnut-
shaped object, which in mathematics one usually calls a torus. With this picture
in mind, we can easily imagine such deformations of geometrical objects. In
mathematics, one describes and classifies these on a formal level and also deals
with the “deforming” of more abstract structures (of which we will see an
example very soon). All this is a well developed branch of mathematics, called
deformation theory and has applications also in other sciences.

Let us consider an example. Physics was over centuries well described
and explained by a theory based on Newton’s laws of motion, formulated by
the English scientist Isaac Newton in his Philosophiae Naturalis Principia
Mathematica, first published in 1687. Nowadays, we refer to this theory as
classical mechanics in contrast to the theory of quantum mechanics which
physicists started to develop in the early years of the 20th century driven by
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the realisation that classical mechanics no longer was adequate to describe
phenomena observed in nature. 1

Astonishingly, it turns out that this fundamental new theory of quantum
mechanics can be described as a deformation of classical mechanics. Indeed,
it is one of the deepest mathematical results of the 20th century, Kontsevich’s
Formality Theorem, which implies that every classical mechanical system –
which we, for example, could imagine to be three particles rotating around
each other, held together by gravitation – can be “deformed” into a quantum
mechanical one. The theorem is named after the Russian-French mathematician
Maxim Kontsevich, born 1964.

To be a little bit more precise: what we mean by deformation of a classical
system is the deformation of the multiplication on the set O of observables of
the system. Observables represent physical quantities which we can measure for
a particular physical system. These might be for instance velocity, temperature,
or pressure. The outcome of a measurement of an observable is a specific
value, which is assigned to the state of the system. The notion of measurement,
however, is very different depending on whether we consider classical or quantum
mechanics. Accordingly, the mathematical objects which are used to describe
observables in a physical theory behave quite differently depending on the
context.

What has all this to do with operads? Well, let us take a step back and start
from a different direction. You already know the little discs operad D. Now,
there is a general process to derive a new operad from a given operad which
we will call “taking (co)chains”. A detailed explanation how this works would
unfortunately take a snapshot on its own, so we will have to be content with
knowing that this process exists and that these chains encapsulate essential
structural information about mathematical objects.

Anyway, by taking chains of the little discs operad D (or more specifically
speaking, taking so-called singular chains) one obtains a new operad. We will
denote this operad by C.

On the other hand, one can take the so-called Hochschild cochains of the set
O of observables and obtains the operad H of Hochschild cochains of O. This
operad H consists of all functions C which have observables x1, . . . , xn ∈ O as
inputs and one observable as output. Moreover, these functions are linear in
each variable, meaning

C(. . . , ax + y, . . .) = aC(. . . , x, . . .) + C(. . . , y, . . .)

1 More on quantum mechanics and what distinguishes it from classical mechanics you can
find for example in the Snapshot 8/2014 The Kadison-Singer problem by Alain Valette.
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holds for all observables x, y and any number a. It turns out that the operad H
possesses more structure than one guesses at first sight.

In order to formulate this fact, we will make use of the following:

Definition. If P is an operad, then a P-algebra is a set X together with a
rule t that assigns to each P ∈ Pn some t(P ) ∈ E(X)n in such a way that for
all P, Q ∈ P we have t(P ) ·i t(Q) = t(P ·i Q).

When one is dealing with an abstract operad P , it can be helpful to look for
such a t because with its help one can represent the elements of P by concrete
functions on a set X. However, sometimes it is the other way round and a
P-algebra structure on a set X is what this set really is about: the naked set X
is like the jigsaw puzzle with all pieces turned upside down, and the P-algebra
structure is like the picture on the back of the pieces.

Indeed, the miracle is:

Theorem. H carries the structure of a C-algebra.

This is Deligne’s Conjecture. The Belgian mathematician Deligne (born
1944) was first to suppose this statement, however, he left it as a speculation and
the extremely hard problem to prove it. Recently, our mathematical community
has found different proofs to transform this conjecture into a theorem. Some of
the ideas in these proofs are then also used in proofs of Kontsevich’s theorem
mentioned above.

Indeed, Kontsevich’s theorem itself makes highly nontrivial statements about
properties of this C-algebra structure and in the end these also imply the
existence of deformations of classical systems into quantum systems.

You realise I become more and more sketchy, but all I want is to send you
the following message: there was a hard problem in mathematical physics, and
extremely clever people had stared at it for decades without succeeding. The
solution indeed could first be found when turning the problem upside down,
revealing and understanding the hidden structures behind it, namely linking
the – at first sight completely unrelated – Hochschild cochains H to the action
of the singular chains of the little discs operad D.

3.3 Out look

We arrive at a different field of research by a variation of the little discs operad D.
For this, we modify the little discs a bit by putting a marker on the boundaries,
with the ambient disc marked at the top:
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Now, also the “product algorithm” for P ·i Q has to be adjusted: when gluing
Q into P we have to make sure to rotate the disc Q first, so that the marker
on the boundary of Q matches the marker on the i-th disc in P . We call the
resulting new operad the marked little discs operad.

As has become clear not so long ago, algebras over the singular chains of that
marked little discs operad define so-called Batalin-Vilkovisky algebras. Even if
we at this point cannot go into what exactly these algebras are, it is interesting
to know that they form a mathematical structure which itself was first discovered
on so-called ghost fields of quantum field theories, which play an important role
in modern physics.

I myself stumbled across Batalin-Vilkovisky algebras in my own research in
yet another, completely different field called Hopf algebras. A goal of research
within these topics is also to bring physicists, geometers and algebraists together
and understand at least some of the hidden connections between these fields.

This text hopefully gave you some idea what operads are and why we study
them. The references below contain more details and further references, but
they are mostly written for research mathematicians, so please do not hesitate
to contact me if you have any questions!
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