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TWISTED HOMOLOGY OF QUANTUM SL(2) - PART II

TOM HADFIELD AND ULRICH KRÄHMER

Abstract. In this article, the cup and cap product in Hochschild (co)-
homology are studied for the quantised coordinate ring A = Kq[SL(2)] of
SL(2), with coefficients being A with the canonical left action twisted
to a ⊲ b = σ(a)b, σ ∈ Aut(A). The results are used to complete the
calculation of the twisted cyclic homology that we began in [12]. In
particular, a nontrivial cyclic 3-cocycle is constructed which remains
nontrivial when considered in Hochscild cohomology.

Dedicated to Prof. K. Schmüdgen on the occasion of his 60th birthday

1. Introduction

1.1. Background. In [12], we computed the Hochschild homologyH•(A, σA)
of the quantised coordinate ring A = Kq[SL(2)], where q ∈ K is not a root
of unity and σA is the A-bimodule arising from A by twisting the canon-
ical left action to a ⊲ b = σ(a)b, σ ∈ Aut(A). It had been pointed out by
Kustermans, Murphy and Tuset [20] that the cyclic homology HCσ

• (A) built
on H•(A, σA) as a special case of Hopf-cyclic homology [6, 14] is intimately
related to Woronowicz’s theory of covariant differential calculi, and this con-
nection was the original motivation for our work. However, we realised in
the subsequent paper [13] that the coefficients σA also arise naturally from
Poincaré duality in Hochschild (co)homology: using the general theory de-
veloped by van den Bergh in [28] we showed that

(1) Hn(A,A) ≃ H3−n(A, σ
q−2,1

A),

where for λ, µ ∈ K \ {0}, σλ,µ ∈ Aut(A) is determined by its values λa, µb,
µ−1c, λ−1d on the standard generators a, b, c, d of A. In particular, σq−2,1

reduces for q ∈ R to the modular automorphism of the Haar state of the
compact quantum group generated by A.

As a consequence of (1) there is a fundamental class dA ∈ H3(A, σ
q−2,1

A)

which corresponds under the isomorphism to 1 ∈ H0(A,A), the centre
of A. Explicitly, dA is represented in the normalised Hochschild complex
C̄•(A, σ

q−2,1
A) = A⊗ Ā⊗•, Ā := A/K, as

dA = [−qd⊗ (b ∧ a ∧ c) + c⊗ (b ∧ a ∧ d)].

Here ∧ is defined using the braiding

Ψ : A⊗A → A⊗A, x⊗ y 7→ r(y(1), x(1))y(2) ⊗ x(2)r(S(y(3)), x(3))

in which r is the universal r-form of the standard coquasitriangular Hopf
algebra structure on A, S : A → A is the antipode and x 7→ x(1) ⊗ x(2) is
the coproduct in Sweedler notation.
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More generally, a Poincaré-type duality as in (1) holds for formal defor-
mation quantisations of smooth Poisson varieties as shown by Etingof and
Dolgushev [8] and also, as shown by Brown and Zhang, for a large class
of Noetherian Hopf algebras that includes in particular the quantised co-
ordinate rings Kq[G] for all simple algebraic groups G [2]. See also [9, 18]
for more examples and background. It thus seems the rule rather than the
exception that a well-behaved algebra admits a fundamental class dA in
Hochschild homology, but in general this unavoidably involves noncanonical
coefficient bimodules.

1.2. Results. In the present article, we finish the computation of the cyclic
theory HCσ

• (A) for the case σ = σq−N ,1, N ∈ Z, which was left open in [12].
We begin by recalling the results of our computations from [12] with some
simplifications and corrections, see Section 2. Inspired by the work of Nest
and Tsygan (see e.g. [25]), we investigate the cup and cap product

`: Hm(A, σA) ⊗Hn(A, τA) → Hm+n(A, τ◦σA),

a: Hn(A, σA) ⊗Hm(A, τA) → Hn−m(A, τ−1◦σA).

For coordinate rings of smooth varieties, the Hochschild-Kostant-Rosenberg
theorem identifies the (untwisted) Hochschild cohomology (H•(A,A),`)
with the algebra of multivector fields on the variety. For A = Kq[SL(2)],
there are twisted derivations ∂+

H , ∂
+
E , ∂

+
F and ∂−H , ∂

−
E , ∂

−
F that arise respec-

tively from the left and right action of the Hopf dual A◦ and deform the
action of left- and right-invariant vector fields on SL(2) (see Section 3.1.5 for
their definition). In Section 3.2.3 we show that these generate a q-deformed
exterior algebra inside the twisted Hochschild cohomology ring of A. Its cap
product action allows us to identify nontrivial 2- and 3-cycles (Sections 3.2.2
and 3.2.4), and using this tool we then compute HCσ

• (A) in Section 4.
As shown by Connes [4], any cyclic homology theory rests upon a simpli-

cial one which for HCσ
• (A) is denoted by HHσ

• (A). There is a map

H•(A, σA) → HHσ
• (A),

and when σ is diagonalisable, this is an isomorphism (see Section 4 for
details). Recall further that there is the Connes spectral sequence

E1
pq = HHσ

q−p(A) ⇒ HCσ
p+q(A),

and that HHσ
n(A) = 0 for all n > 3 (which follows from Poincaré duality)

implies HCσ
n (A) ≃ HCσ

n+2(A) for n > 3. In this way, one obtains the two
periodic cyclic homology groups HP σ

0 (A) and HP σ
1 (A) as the limit of the

HCσ
2n(A) and HCσ

2n+1(A), respectively.
The following theorem summarises the result of our computations. For

the sake of clarity, we only describe here the periodic cyclic homology, see
Section 4.2.4 for the additional classes in the nonperiodic HCσ

• (A).

theorem 1.1. Let A be the quantised coordinate ring Kq[SL(2)], q not a
root of unity, and σq−N ,1 ∈ Aut(A) be determined by

σq−N ,1(a) = q−Na, σq−N ,1(b) = b, N ∈ Z,
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where a, b, c, d are the standard generators of A. Then the σq−N ,1-twisted
periodic cyclic homology of A is given by

HP
σ

q−N ,1

0 = HC
σ

q−N ,1

4 =

{

K[brcr(dA a ∂−H)] N = 2r + 2, r ≥ 0,
K[1] otherwise

HP
σ

q−N ,1

1 = HC
σ

q−N ,1

3 =

{

K[brcrdA] N = 2r + 2, r ≥ 0,
K[b⊗ c] otherwise.

Here, classes in HCσ
n(A) are represented by classes in HHσ

n−2p(A), p ≥ 0

using the spectral sequence E1
pq = HHσ

q−p(A) ⇒ HCσ
p+q(A).

Finally, we construct in Sections 3.2.4 and 5.2.2 a cyclic cocycle that pairs
nontrivially with the fundamental class dA, that is, a linear functional

ϕ : C̄•(A, σA) → K

which is a Hochschild cocycle (i.e, vanishes on the image of the Hochschild
boundary b and thus induces a functional on H•(A, σA)) and futher satisfies

ϕ(a0, ā1, . . . , ān) = (−1)nϕ(σ(an), ā0, . . . , ān−1)

for all ai ∈ A, where ā is the class of a ∈ A in Ā:

theorem 1.2. Define for all j, k ≥ 0 a functional
∫

[bjck] : A → K by
∫

[bjck]
er,s,t := δ0,rδj,sδk,t, ei,j,k :=

{

aibjck i ≥ 0
d−ibjck i < 0

and two linear functionals C̄3(A, σ
q−2,1

A) → K by

ϕA(·) :=

∫

[1]
· a (∂+

H ` ∂+
E ` ∂+

F ),

ηA(·) := 2

∫

[bc]
· a (∂+

H ` (σ1,1/2 − id) ` (σ1,2 − id)).

Then ϕA and ηA are σq−2,1-twisted Hochschild cocycles, ϕA +ηA is a σq−2,1-
twisted cyclic cocycle, and (ϕA + ηA)(dA) = ϕA(dA) = 1.

The cocycle ϕA + ηA gives an explicit description of HC3
σ

q−2,1
(A) =

(HC
σ

q−2,1

3 (A))∗ ≃ K in terms of Connes’ λ-complex, and one should ex-
pect that there is a spectral triple that realises this cocycle via a twisted
variant of the Connes-Moscovici local index formula, e.g. as in [7, 24, 26].

We stress that most computations in this paper have been verified with
the help of the computer algebra system FELIX [1] in order to exclude
as far as possible computational mistakes. The FELIX output is available
in electronic form [19], and it can easily be adapted to perform similar
computations with other algebras given in terms of generators and relations.

1.3. Acknowledgements. T.H. & U.K.: We thank S. Launois who pointed
out to us the inconsistency between the results of [12] and [13] which arises
from a mistake in our computation of HHσ

2 (A) in [12] (see [21]).
U.K.: My work was supported by the Marie Curie fellowship EIF 515144

and the EPSRC fellowship EP/E/043267/1. Further thanks go to István
Heckenberger who introduced me to the computer algebra system FELIX,
and to Andreas Thom, Boris Tsygan, and Christian Voigt for discussions.
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2. Hochschild homology

2.1. Background. In Section 2.1, we fix notations and conventions con-
cerning Hochschild homology and the quantised coordinate ring of SL(2).
For proofs and details see for example [3, 23, 29] and [16, 17], respectively.

2.1.1. Algebras and bimodules. Throughout this paper, K is an algebraically
closed field of characteristic 0, and “algebra” means unital associative K-
algebra. An unadorned ⊗ denotes the tensor product of K-vector spaces.
We denote for a bimodule M and two automorphisms σ, τ of an algebra A
by σMτ the bimodule which is M as vector space with bimodule structure
x ◮ y ◭ z := σ(x) ⊲ y ⊳ τ(z), x, z ∈ A, y ∈ M, where ⊳, ⊲ are the original
actions on M. Note that one has bimodule isomorphisms

σ′(σMτ )τ ′ ≃ σ◦σ′Mτ◦τ ′ , M⊗A σN ≃ Mσ−1 ⊗A N , Aσ−1 ≃ σA.

2.1.2. Hochschild homology. The Hochschild homology groups of an algebra
A with coefficients in an A-bimodule M are

Hn(A,M) := TorA
e

n (M,A),

where Ae := A⊗Aop is the enveloping algebra of A (so Ae-modules are just
A-bimodules). They can be computed using the canonical bar resolution of
A as an Ae-module, and then are realised as the simplicial homology of the
simplicial K-vector space C•(A,M) := M⊗A⊗• whose structure maps are

b0 : a0 ⊗ . . .⊗ an 7→ a0 ⊳ a1 ⊗ a2 ⊗ . . .⊗ an,

bi : a0 ⊗ . . .⊗ an 7→ a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an, 0 < i < n,

bn : a0 ⊗ . . . ⊗ an 7→ an ⊲ a0 ⊗ . . .⊗ an−1,

si : a0 ⊗ . . .⊗ an 7→ a0 ⊗ . . .⊗ ai ⊗ 1 ⊗ ai+1 ⊗ . . . ⊗ an.

That is, H•(A,M) is (isomorphic to) the homology of the chain complex
C•(A,M) whose boundary map is given by

b :=

n
∑

i=0

(−1)ibi.

In the sequel, we will often write b(a0, . . . , an) instead of b(a0 ⊗ . . .⊗ an).
If A is the coordinate ring K[X] of a smooth affine variety, then H•(A,A)

can be identified canonically with the Kähler differentials (algebraic differ-
ential forms) on X (Hochschild-Kostant-Rosenberg theorem).

2.1.3. The normalised complex. For any simplicial K-vector space,

D := span{im si} ⊂ C

is a contractible subcomplex with respect to b, so the canonical map

C → C̄ := C/D

is a quasi-isomorphism of complexes, and to work with the so-called nor-
malised complex (C̄•, b) simplifies many computations.

For C = C(A,M) from the previous section, we have C̄n = M ⊗ Ā⊗n,
where Ā := A/K. So informally speaking one can neglect in the computation
of Hochschild homology all elementary tensors with a tensor component
being equal to a multiple of 1 ∈ A.
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2.1.4. Quantum SL(2). For the remainder of Section 2, q ∈ K denotes a
fixed nonzero parameter, which we assume is not a root of unity. Further-
more, A is throughout the quantised coordinate algebra Kq[SL(2)] of SL(2),
that is, the algebra generated by symbols a, b, c, d with relations

ab = qba, ac = qca, bc = cb, bd = qdb, cd = qdc,

ad− qbc = 1, da− q−1bc = 1.

It follows from the defining relations that the elements

(2) ei,j,k :=

{

aibjck i ≥ 0
d−ibjck i < 0

i ∈ Z, j, k ∈ N

form a vector space basis of A.
For λ, µ ∈ K× there are unique automorphisms σλ,µ, τλ,µ of A with

σλ,µ(a) = λa, σλ,µ(b) = µb, σλ,µ(c) = µ−1c, σλ,µ(d) = λ−1d,

τλ,µ(a) = λa, τλ,µ(b) = µ−1c, τλ,µ(c) = µb, τλ,µ(d) = λ−1d,

and all automorphisms of A are of this form (see [16]). For later use, we
compute for all σλ,µ the twisted commutators

ei,j,ka− λaei,j,k = (q−j−k − λ)ei+1,j,k

+

{

0 i ≥ 0
(q−j−k−1 − λq−1−2i)ei+1,j+1,k+1 i < 0,

ei,j,kb− µbei,j,k = (1 − µq−i)ei,j+1,k,(3)

ei,j,kc− µ−1cei,j,k = (1 − µ−1q−i)ei,j,k+1,

ei,j,kd− λ−1dei,j,k = (qj+k − λ−1)ei−1,j,k

+

{

0 i ≤ 0
(qj+k+1 − λ−1q1−2i)ei−1,j+1,k+1 i > 0

.

Finally, we recall (see [17]) that the standard Hopf algebra structure on
A admits a so-called universal r-form r : A⊗A → K. This can be used in
particular to define a braiding

Ψ : A⊗A → A⊗A, x⊗ y 7→ r(y(1), x(1))y(2) ⊗ x(2)r(S(y(3)), x(3)),

where x 7→ x(1) ⊗ x(2) is the coproduct in Sweedler notation and S : A → A
is the antipode. This braiding should be considered as a quantum analogue
of the tensor flip and is used in the standard way to define

(4) x ∧ y := (id − Ψ)(x⊗ y)

and

x ∧ y ∧ z := (id − Ψ1,2 − Ψ2,3 + Ψ2,3 ◦ Ψ1,2 + Ψ1,2 ◦ Ψ2,3

−Ψ1,2 ◦ Ψ2,3 ◦ Ψ1,2)(x⊗ y ⊗ z),

where Ψ2,3 := id ⊗ Ψ and Ψ1,2 := Ψ ⊗ id. On generators, one has








r(a, a) r(a, b) r(a, c) r(a, d)
r(b, a) r(b, b) r(b, c) r(b, d)
r(c, a) r(c, b) r(c, c) r(c, d)
r(d, a) r(d, b) r(d, c) r(d, d)









= q−1/2









q 0 0 1
0 0 0 0
0 q − q−1 0 0
1 0 0 q
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and

Ψ(a⊗ a) = a⊗ a, Ψ(a⊗ b) = q−1b⊗ a+ (1 − q−2)a⊗ b,

Ψ(a⊗ c) = qc⊗ a, Ψ(a⊗ d) = d⊗ a+ (q − q−1)c⊗ b,

Ψ(b⊗ a) = q−1a⊗ b, Ψ(b⊗ b) = b⊗ b, Ψ(b⊗ c) = c⊗ b,

Ψ(b⊗ d) = qd⊗ b, Ψ(c⊗ a) = qa⊗ c+ (1 − q2)c⊗ a,

Ψ(c⊗ b) = b⊗ c− (q − q−1)2c⊗ b+ (q − q−1)a⊗ d+ (q−1 − q)d⊗ a,

Ψ(c⊗ c) = c⊗ c, Ψ(c⊗ d) = q−1d⊗ c+ (1 − q−2)c⊗ d,

Ψ(d⊗ a) = a⊗ d− (q − q−1)c⊗ b, Ψ(d⊗ b) = qb⊗ d+ (1 − q2)d⊗ b,

Ψ(d⊗ c) = q−1c⊗ d, Ψ(d⊗ d) = d⊗ d.

2.2. Results. Here we recall from [12] the description of Hn(A, σA) for
A = Kq[SL(2)] and σ = σλ,µ, but we simplify the presentation and also
correct some errors. Throughout, elements of Hn(A, σA) are represented in
the normalised Hochschild complex C̄•(A, σA).

2.2.1. n = 0. H0(A, σA) is easily computed directly, using the canonical
complex C•(A, σA). Since

(5) x⊗ yz = xy ⊗ z + σ(z)x⊗ y − b(x, y, z),

the boundary operator b on C1(A, σA) satisfies

b(x, yz) = b(xy, z) + b(σ(z)x, y),

so its image is spanned by b(ei,j,k, a), b(ei,j,k, b), b(ei,j,k, c) and b(ei,j,k, d),
that is, by the twisted commutators (3). This yields a vector space basis of
H0(A, σA) consisting of the homology classes

{[ai], [di] | i ≥ 0, λ = 1} ∪ {[bj ], [cj ] | j ∈ S, µ = 1}

∪ {[ωN,i] | i = 0, . . . , N, λ = q−N , N > 0, µ = 1}(6)

∪ {[ei,N,0], [e−i,0,N ] |λ = q−N , µ = qi, i 6= 0, N > 0},

where

(7) S := N \ {N − 2r |λ = q−N , N > 0, r ≥ 0}, ωr,i := bicr−i,

and [1] is counted only once when appearing repeatedly in (6).
Note that although this computation was carried out correctly in [12],

the overview table on p. 328-329 therein claimed that H0(A, σA) is infinite-
dimensional only for µ = 1 whereas it should correctly read µ = 1 or λ = 1.

2.2.2. n = 1. We also used C•(A, σA) to compute H1(A, σA). By (5),
H1(A, σA) is generated by the classes of linear combinations of ei,j,k ⊗ a,
ei,j,k ⊗ b, ei,j,k ⊗ c and ei,j,k ⊗ d. These are mapped by b to the twisted com-
mutators (3), and it is straightforward to compute which linear combination
of these tensors defines a cycle and which of these are homologous to each
other (see [12] for the details). As a result, one obtains the following vector
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space basis of H1(A, σλ,µ
A):

{[ai ⊗ a], [di ⊗ d] | i ≥ 0, λ = 1}

∪ {[bj−1 ⊗ b], [cj−1 ⊗ c] | j ∈ S, µ = 1}

∪ {[ωN−1,i ⊗ b], [ωN−1,i ⊗ c] | 0 ≤ i ≤ N − 1, λ = q−N , N > 0, µ = 1}

∪ {[ai−1bN ⊗ a], [aibN−1 ⊗ b] |λ = q−N , µ = qi, i,N > 0}(8)

∪ {[dicN−1 ⊗ c], [di−1cN ⊗ d] |λ = q−N , µ = qi, i,N > 0}

∪ {[di−1bN ⊗ d], [dibN−1 ⊗ b] |λ = q−N , µ = q−i, i,N > 0}

∪ {[aicN−1 ⊗ c], [ai−1cN ⊗ a] |λ = q−N , µ = q−i, i,N > 0},

where S and ωr,i are as in (7) and we write with abuse of notation

[c−1 ⊗ c] := [b⊗ c], [b−1 ⊗ b] := [c⊗ b]

which appears in the above set except when λ = q−N with N = 2r, r > 0,
but should be counted only once:

lemma 2.1. For λ 6= q−2, one has [b⊗ c] = −[c⊗ b].

Proof. This follows from [1⊗bc] = [b⊗c]+[c⊗b] (as a special case of (5)) in
combination with b(1⊗(a⊗d−λ−1d⊗a+(1−λ−1)⊗1)) = (λ−1q−1−q)⊗bc. 2

2.2.3. n = 2. In higher degrees, working with the canonical complex is no
longer feasible, but we showed in [12], Proposition 4.1 that the trival left
A-module K (on which A acts by the counit ε of the standard Hopf algebra
structure) admits a noncommutative Koszul resolution of the form

(9) 0 // A // A3 // A3 // A // 0

with morphisms given by the matrices

(

c −b q−2a− 1
)

,





b 1 − q−1a 0
c 0 1 − q−1a
0 c −b



 ,





a− 1
b
c





that operate by right multiplication on row vectors. Then we computed
Hn(A, σA) for n ≥ 2, using the alternative derived functor description of
H•(A,M) for Hopf algebras due to Feng and Tsygan [10].

However, for n = 2 the computations in [12] contain a mistake: The
second half of the first sentence after Proposition 4.10 on page 349 in [12] is
wrong, the generators given in Proposition 4.10 for µ = 1 all remain linearly
independent in homology. The correct result is that H2(A, σλ,µ

A) = 0 except

when λ = q−N , N > 0, and in this case

dimKH2(A, σλ,µ
A) ∼=







2(N − 1) µ = 1
2 µ = q±i, i > 0
0 µ /∈ qZ

with a linear basis given by

{[ω2(N − 2, i)], [ω
′

2(N − 2, i)] | i = 0, . . . , N − 2, µ = 1}

∪ {[ai−1bN−1 ⊗ (b ∧ a)], [di−1cN−1 ⊗ (d ∧ c)] |µ = qi, i > 0}

∪ {[ai−1cN−1 ⊗ (a ∧ c)], [di−1bN−1 ⊗ (b ∧ d)] |µ = q−i, i > 0},
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where x ∧ y is as defined in (4) and

ω2(r, i) := ωr,i

(

bc⊗ (a ∧ d) − bd⊗ (a ∧ c) +

da⊗ (b ∧ c) − q−1ca⊗ (b ∧ d)
)

,

ω
′

2(r, i) := ωr,i ⊗ (b ∧ c).

2.2.4. n = 3. One has H3(A, σλ,µ
A) = 0 except when λ = q−N , N > 1,

µ = 1, and in this case

dimKH3(A, σ
q−N ,1

A) = N − 1

with a basis given in the normalised complex C̄3(A, σ
q−N ,1

) by the classes of

(10) ω3(N −2, i) := ωr,i

(

−qd⊗ (b∧a∧c)+c⊗ (b∧a∧d)
)

, 0 ≤ i ≤ N −2.

Again, there was a misprint in [12], where in the explicit formula for b∧a∧d
an additional term −(q−1 − q)bicN+1−i ⊗ b⊗ c⊗ b was missing.

2.2.5. n > 3. Since the resolution (9) has length 3, Hn(A, σA) = 0 for n > 3.

3. Hochschild cohomology

3.1. Background. Section 3.1 recalls products and Poincaré duality in
Hochschild (co)homology (see e.g. [3, 25, 28]), as well as twisted derivations
of Kq[SL(2)] that arise from the left and right action of its Hopf dual.

3.1.1. Hochschild cohomology. The Hochschild cohomology Hn(A,M) :=
ExtnAe(A,M) of A with coefficients in an A-bimodule M can be computed
as the cohomology of the cochain complex C•(A,M) of K-linear maps ϕ :
A⊗• → M with coboundary map given by

(bϕ)(a1, . . . , an+1) := a1 ⊲ ϕ(a2, . . . , an+1) − ϕ(a1a2, . . . , an+1) + . . .

+(−1)n+1ϕ(a1, . . . , an) ⊳ an+1.

This presentation of cocycles yields for example the standard identification

H0(A,M) ≃ {m ∈ M| a ⊲ m = m ⊳ a for all a},

and of H1(A,M) with the space of derivations

(11) ∂ : A → M, ∂(xy) = x ⊲ ∂(y) + ∂(x) ⊳ y

modulo inner ones (those of the form x 7→ x ⊲ m−m ⊳ x, m ∈ M).

3.1.2. The cup product. The cup product

`: Hm(A,M) ⊗Hn(A,N ) → Hm+n(A,M⊗A N )

is given on the level of cochains by

(ϕ ` ψ)(a1, . . . , am+n) := ϕ(a1, . . . , am) ⊗ ψ(am+1, . . . , am+n),

where ϕ ∈ Cm(A,M), ψ ∈ Cn(A,N ). Since

b(ϕ ` ψ) = (bϕ) ` ψ + (−1)mϕ ` (bψ)

(for ϕ ∈ Cm(A,M)), the cup product is well-defined on the level of coho-
mology. As a special case, we obtain for σ, τ ∈ Aut(A) a map

(12) Hm(A, σA) ⊗Hn(A, τA) → Hm+n(A, τ◦σA)
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given on cochains by

(13) (ϕ ` ψ)(a1, . . . , am+n) = τ(ϕ(a1, . . . , am))ψ(am+1, . . . , am+n).

Thus for any monoid G ⊂ Aut(A) we obtain an N ×G-graded algebra

Λ•
G(A) :=

⊕

n∈N,σ∈G

Hn(A, σA).

We call the subalgebra Λ0
G(A) the G-twisted centre of A and the elements

of the Λ0
G(A)-bimodule Λ1

G(A) the G-twisted derivations of A. Obviously,
G could be replaced by any monoid of bimodules, but we will not need this
in the present paper.

Note that in degree 0, (13) reduces to the opposite product of A,

(14) x ` y = yx, x ∈ H0(A, σA), y ∈ H0(A, τA),

and that for z ∈ H0(A, σA) and ∂ ∈ C1(A, τA) we have

(z ` ∂)(x) = σ(∂(x))z = z∂(x),

(∂ ` z)(x) = τ(z)∂(x),(15)

⇒ ∂ ` z = τ(z) ` ∂.

Finally, we have for twisted derivations ∂ ∈ C1(A, σA), ∂′ ∈ C1(A, τA)

(∂ ` ∂′ + (σ−1 ◦ ∂′ ◦ σ) ` ∂)(x, y)

= τ(∂(x))∂′(y) + ∂′(σ(x))∂(y)

= ∂′(∂(x)y) − ∂′(∂(x))y + ∂′(σ(x)∂(y)) − τ(σ(x))∂′(∂(y))

= ∂′(∂(xy)) − ∂′(∂(x))y − τ(σ(x))∂′(∂(y))

= −b(∂′ ◦ ∂)(x, y),

so in cohomology one has

(16) [∂] ` [∂′] = −[σ−1 ◦ ∂′ ◦ σ] ` [∂] ∈ H2(A, τ◦σA).

3.1.3. The cap product. The duality between Hochschild homology and co-
homology results from the cap product pairing

a: Hn(A,M) ⊗Hm(A,N ) → Hn−m(A,M⊗A N ), m ≤ n

defined on (co)chains simply by evaluation,

(a0 ⊗ . . .⊗ an) a ϕ = a0 ⊗ ϕ(a1, . . . , am) ⊗ am+1 ⊗ . . . ⊗ an.

Form = n, the pairing a becomes the duality pairing from [23], Section 1.5.9
after identifying

H0(A,M⊗A N ) = M⊗A N ⊗Ae A ≃ M⊗Ae N .

Taking N = M∗ = HomK(M,K) and composing with the canonical evalu-
ation map M⊗Ae M∗ → K gives the duality pairing

Hn(A,M) ⊗Hn(A,M∗) → K.

By the universal coefficient theorem, this yields an isomorphismHn(A,M∗) ≃
(Hn(A,M))∗. In this way a Hochschild cocycle ϕ ∈ Cn(A,M∗) will usually
be viewed as a K-linear map M⊗A⊗n → K.



10 TOM HADFIELD AND ULRICH KRÄHMER

For any G ⊂ Aut(A), the cap product endows

ΩG
• (A) :=

⊕

n∈N,σ∈G

Hn(A, σ−1A)

with the structure of an N ×G-graded (right) module over Λ•
G(A) (here we

use the convention that a homogeneous element of a graded ring lowers the
degree of an element of a homogeneous module by its degree). Be aware that
one has to take into account the identification σA⊗A τA → τ◦σA: explicitly,
the action of ϕ ∈ Cm(A, τA) on a0 ⊗ . . .⊗ an ∈ Cn(A, σA) is given by

(a0⊗ . . .⊗an) a ϕ = τ(a0)ϕ(a1, . . . , am)⊗am+1⊗ . . .⊗an ∈ Cn−m(A, τ◦σA).

In particular, the cap product with a twisted central element z ∈ H0(A, σA)
is simply given by multiplication from the left,

(17) (a0 ⊗ . . .⊗ an) a z = σ(a0)z ⊗ . . .⊗ an = za0 ⊗ . . .⊗ an.

3.1.4. Poincaré duality. The cap product is also the source of Poincaré-type
dualities in Hochschild (co)homology. As pointed out by van den Bergh [28],
for well-behaved algebras A there exists a specific invertible bimodule D and
a fixed number d such that

(18) Hn(A,N ) ≃ Hd−n(A,D ⊗A N )

for all bimodules N . This applies in particular to A = Kq[SL(2)] [13]:

theorem 3.1. A = Kq[SL(2)] satisfies (18) with n = 3 and D = σ
q−2,1

A.

3.1.5. Twisted primitive elements in the Hopf dual of Kq[SL(2)]. For the
rest of Section 3, we focus again on A = Kq[SL(2)] and recall (see e.g. [15,
17] and the references therein) that the Hopf dual of the standard Hopf
algebra structure on A contains a Hopf subalgebra U that has generators
H,K,K−1, E, F having relations

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F,

[E,F ] =
K −K−1

q − q−1
, [H,K] = 0, [H,E] = 2E, [H,F ] = −2F.

This is the standard Drinfeld-Jimbo quantised universal enveloping algebra
Uq(sl(2)) extended by the unquantised functional H (so when working with
formal deformations one would have K = e~H , q = e~).

The dual pairing of U and A gives two commuting left and right actions
of U on A, and the operators assigned by these actions to H,EK−1 and F
are (twisted) derivations which we denote by

∂+
H : a, b, c, d 7→ −a, b,−c, d, ∂−H : a, b, c, d 7→ −a,−b, c, d ∈ C1(A,A),

∂+
E : a, b, c, d 7→ qb, 0, qd, 0, ∂+

F : a, b, c, d 7→ 0, a, 0, c ∈ C1(A, σ
q,q−1A),

∂−E : a, b, c, d 7→ 0, 0, q−1a, q−1b, ∂−F : a, b, c, d 7→ c, d, 0, 0 ∈ C1(A, σq,qA).

Because of the Leibniz rule (11), this determines the derivations uniquely.

3.2. Results. Here we compute the twisted centre and the twisted deriva-
tions of Kq[SL(2)]. Then we show how their cap product action on the
twisted Hochschild homology groups can be used to determine the homol-
ogy class of a given 2- or 3-cycle.
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3.2.1. Twisted central elements. The twisted centre Λ0 := Λ0
Aut(A)(A) of A

is a (commutative) polynomial ring in two indeterminates:

lemma 3.2. There is an isomorphism of graded algebras

Λ0 =
⊕

N≥0

H0(A, σ
q−N ,1

A) ≃ K[b, c].

Proof. By Poincaré duality (Theorem 3.1) and the results of the com-
putation of H3(A, σA) recalled in Section 2.2.4, H0(A, σA) vanishes except
when σ = σq−N ,1, N ≥ 0, and in this case it has dimension N + 1 over K.

Obviously, the monomials ωN,i = bicN−i, i = 0, . . . , N , form N + 1 linearly
independent elements of H0(A, σ

q−N ,1
A) and hence a vector space basis. Fi-

nally, (14) gives ωr,i ` ωs,j = ωr,iωs,j since b and c commute. 2

The cap product action of Λ0 gives additional structure to the results
of our computations of H•(A, σA). For example, the direct sum of the
nontrivial H3(A, σA) forms a free module of rank one over Λ0 with generator
dA. Similarly we will see below that applying twisted derivations to dA leads
for example to the 2-dimensional H2(A, σ

q−N ,q±i
A).

3.2.2. Detecting nontrivial 2-cycles. For large n,m it is typically difficult
to decide whether or not a given cycle c ∈ Cn(A, σA) and cocycle ϕ ∈
Cm(A, τA) have trivial classes in (co)homology. A sufficient criterion is
that c a ϕ ∈ Cn−m(A, τ◦σA) is nontrivial in homology, and this might be
easy to verify for small n − m. Here we give an example of this kind for
A = Kq[SL(2)] whose result is used below in the computation of twisted
cyclic homology, and also in order to determine Λ1

Aut(A)(A).

lemma 3.3. Abbreviate ∂ := 1
2(∂+

H + ∂−H) and ∂′ := −∂−H . Then one has

[ω2(N − 2, i)] a [∂] = [ω′
2(N − 2, i)] a [∂′] = [ωN−1,i+1 ⊗ c] + [ωN−1,i ⊗ b],

[ω′
2(N − 2, i)] a [∂] = [ω2(N − 2, i)] a [∂′] = 0.

Proof. For σ = σq−2,1 one has in C̄1(A, σA)

b(bc⊗ a⊗ d) = q−2abc⊗ d− qbc⊗ bc+ q2dbc⊗ a,

b(bc⊗ b⊗ c) = b2c⊗ c− bc⊗ bc+ bc2 ⊗ b,

b(ca⊗ (d ∧ b)) = (q3 − q)bc2 ⊗ b,

b(ba⊗ (d ∧ c)) = (q − q−1)b2c⊗ c.

Using this, one computes directly that

[ω2(0, 0)] a [∂+
H ] = 2[−q−2abc⊗ d− q2dbc⊗ a+ qbc2 ⊗ b

+q−1b2c⊗ c+ c⊗ b+ b⊗ c]

= 2(q−1 − q)[ω3,2 ⊗ c] + 2[ω1,1 ⊗ c] + 2[ω1,0 ⊗ b]

= 2[ω1,1 ⊗ c] + 2[ω1,0 ⊗ b],

that [ω2(0, 0)] a [∂−H ] = 0, and that

[ω′
2(0, 0)] a [∂+

H ] = −[ω′
2(0, 0)] a [∂−H ] = [c⊗ b+ b⊗ c].

The claim follows by Λ0
Aut(A)(A)-linearity of the products. 2
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corollary 3.4. The 2(N + 1) cohomology classes

[ωN,i] ` [∂], [ωN,i] ` [∂′], i = 0, . . . , N,

are linearly independent in H1(A, σ
q−N ,1

A).

3.2.3. Twisted derivations. We now describe the twisted derivations (mod-
ulo inner derivations) Λ1 := Λ1

Aut(A)(A) as a bimodule over the twisted

centre Λ0, and study their relations under the cup product.
Note first that for all i > 0, the cochains

C1(A, σ
q,q−i

A) ∋ ∂+
E ` di−1 : a, b, c, d 7→ qdi−1b, 0, qdi, 0,

C1(A, σ
q,q−i

A) ∋ ∂+
F ` ai−1 : a, b, c, d 7→ 0, ai, 0, ai−1c,

C1(A, σ
q,qi

A) ∋ ∂−E ` ai−1 : a, b, c, d 7→ 0, 0, q−1ai, q−1ai−1b,

C1(A, σ
q,qi

A) ∋ ∂−F ` di−1 : a, b, c, d 7→ di−1c, di, 0, 0,

are (twisted) derivations, although ai−1, di−1 /∈ Λ0. The point is that for ex-
ample ∂+

E (A) ⊂ B, where B ⊂ A is the subalgebra generated by b, d, and one

has di−1 ∈ Λ0
Aut(B)(B) with twisting automorphism extending to the whole

of A. This implies the claim which of course can also be verified directly.
We denote the classes of these derivations in cohomology by ∂+

i , ∂
+
−i, ∂

−
i , ∂

−
−i,

respectively, and put ∂±0 := [∂±H ].

lemma 3.5. As a left Λ0-module, Λ1 is generated by the {∂±i , i ∈ Z}, and

[b] ` ∂±−i = 0, [c] ` ∂±i = 0, i > 1,

∂±i ` [bjck] = q±i(j−k)[bjck] ` ∂±i , i ∈ Z, j, k ∈ N,(19)

∂ε
i ` ∂δ

j = −qδj+ε|i|sgn(j)∂δ
j ` ∂ε

i , i, j ∈ Z, ε, δ ∈ {−1,+1}.

Proof. The second and third lines in (19) are computed directly from
(15) and (16). Next, notice that Section 2.2.3 and (18) give

dimKH
1(A, σλ,µ

A) =







2(N + 1) λ = q−N , µ = 1,
2 λ = q−j, µ = qi, i 6= 0, j > 0,
0 otherwise.

Corollary 3.4 implies that {[ωN,i] ` ∂±0 | i = 0, . . . , N} is a linearly indepen-
dent subset of H1(A, σ

q−N ,1
A), so it is a basis for dimension reasons. The

∂±i , i 6= 0, are treated similarly. For example, one can use that for i, j > 0

[ω′
2(0, 0)] a (∂±i ` ∂±−j) = −q±(1−i)[e±(j−i),0,0] ∈ H0(A, σ

1,q∓(i+j)
A),

and that by the third line in (15),

∂ε
i ` ∂δ

j = q(sgn(i)+sgn(j))(ε|i|+δ|j|)∂ε
i ` ∂δ

j ,

so ∂ε
i ` ∂δ

j = 0 except when sgn(j) = −sgn(i) or δ = −ε, |j| = |i|. 2



TWISTED HOMOLOGY OF QUANTUM SL(2) - PART II 13

3.2.4. Detecting nontrivial 3-cycles. Here we present computations similar
to those in Section 3.2.2, but this time we act on ω3(0, 0) and want to decide
whether 3-cycles are trivial.

lemma 3.6. In H1(A, σ
q−N ,1

A), one has

[ω3(N − 2, i)] a ([∂+
H ] ` [∂−H ]) = 2([ωN−1,i+1 ⊗ c] + [ωN−1,i ⊗ b]).

In particular, · a ([∂+
H ] ` [∂−H ]) : Ω

Aut(A)
3 (A) → Ω

Aut(A)
1 (A) is injective.

Proof. By direct computation, one obtains [ω3(0, 0)] a [∂−H ] = −[ω2(0, 0)],
so the result follows from Lemma 3.3 and Lemma 3.5. 2

As we shall see below, this lemma is in practice strong enough to de-
tect nontrivial homology classes. However, it would be obviously more easy
(and standard) to apply a further twisted derivation to obtain 0-cycles whose
classes in homology are even simpler to control than those of 1-cycles. While
this works very nicely for the fundamental class dA = [ω3(0, 0)], it is un-
fortunately not possible for all the other generators ω3(r, i), r > 0: The
orbit of dA under the cap product action of Λ1 is determined completely by
Lemma 3.5 and the straightforwardly computed relations

ω3(0, 0) a (∂+
H ` ∂+

E ` ∂+
F ) = (q−1 − q)bc+ 1,

ω3(0, 0) a (∂+
H ` ∂+

E ` ∂−H) = 2(q4 − 1)db2c− 2qdb,

ω3(0, 0) a (∂+
H ` ∂+

E ` ∂−E ) = (q − q−3)b3c− q−2b2,

ω3(0, 0) a (∂+
H ` ∂+

E ` ∂−F ) = (q − q5)d2bc+ d2,

ω3(0, 0) a (∂+
H ` ∂+

F ` ∂−H) = 2(q − q−3)abc2 − 2ac,

ω3(0, 0) a (∂+
H ` ∂+

F ` ∂−E ) = (q−1 − q−5)a2bc− a2,

ω3(0, 0) a (∂+
H ` ∂+

F ` ∂−F ) = (q−1 − q3)bc3 + (2 − q2)c2,

ω3(0, 0) a (∂+
H ` ∂−H ` ∂−E ) = 2(q−4 − q−2)ab2c+ 2q−1ab,

ω3(0, 0) a (∂+
H ` ∂−H ` ∂−F ) = 2(q − q3)dbc2 + 2dc,

ω3(0, 0) a (∂+
H ` ∂−E ` ∂−F ) = 2(1 − q2)b2c2 + 2q−1bc+ 1,

ω3(0, 0) a (∂+
E ` ∂+

F ` ∂−H) = 2(q−4 − q2)b2c2 + (2q−3 − q + q−1)bc+ 1,

ω3(0, 0) a (∂+
E ` ∂+

F ` ∂−E ) = (q−7 − q−1)ab2c+ q−4ab,

ω3(0, 0) a (∂+
E ` ∂+

F ` ∂−F ) = (q4 − q−2)dbc2 − q−1dc,

ω3(0, 0) a (∂+
E ` ∂−H ` ∂−E ) = (q − q−3)b3c− q−2b2,

ω3(0, 0) a (∂+
E ` ∂−H ` ∂−F ) = (q5 − q)d2bc− d2,

ω3(0, 0) a (∂+
E ` ∂−E ` ∂−F ) = (q5 − q)db2c− db,

ω3(0, 0) a (∂+
F ` ∂−H ` ∂−E ) = (q−5 − q−1)a2bc+ a2,

ω3(0, 0) a (∂+
F ` ∂−H ` ∂−F ) = (q−1 − q3)bc3 + (2 − q2)c2,

ω3(0, 0) a (∂+
F ` ∂−E ` ∂−F ) = (q−2 − q2)abc2 + q−1ac,

ω3(0, 0) a (∂−H ` ∂−E ` ∂−F ) = 1,

which hold on the level of chains in the normalised Hochschild complex. By
inspection one now obtains:
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lemma 3.7. One has

dA a [∂+
H ` ∂+

E ` ∂+
F ] = [1] ∈ H0(A, σ1,q−2A),

[ω3(r, r)] a [∂+
H ` ∂−E ` ∂+

E ] = [br+2] ∈ H0(A, σ
q−r,1

A),

[ω3(r, 0)] a [∂−H ` ∂−F ` ∂+
F ] = [cr+2] ∈ H0(A, σ

q−r,1
A),

but for all ∂1, ∂2, ∂3 ∈ Λ1, z ∈ Λ0, and 0 < i < r one has

[ω3(r, i)] a [z ` ∂1 ` ∂2 ` ∂3] = 0.

Proof. The first part is obtained by direct computation. For the second
note that we can assume by Lemma 3.5 that ∂i ∈ {∂+

H , ∂
−
H , ∂

+
E , ∂

−
E , ∂

+
F , ∂

−
F },

and we know that there is z′ with [z ` ∂1 ` ∂2 ` ∂3] = [∂1 ` ∂2 ` ∂3 `

z′] (z, z′ might be monomials in a, b, c or d, b, c). The homology class of
ω3(0, 0) a (∂1 ` ∂2 ` ∂3) can be read off for these ∂i from the list above
(using the commutation relations (15) of the ∂i), and whenever the result
is nonzero, then Lemma 3.5 gives [ωr,i ` ∂1 ` ∂2 ` ∂3] = 0 for 0 < i < r,
which implies the claim. 2

To complete the picture, we compose the action of [∂+
H ` ∂+

E ` ∂+
F ] with

a twisted trace
∫

: A → K,

∫

xy =

∫

σ1,q−2(y)x.

to obtain a numerical invariant of dA. For A = Kq[SL(2)], the complete list
of twisted traces can be given as follows: for any element [ei,j,k] of our basis
(6) of H0(A, σA) define a linear functional

∫

[ei,j,k] by

∫

[ei,j,k]
er,s,t := δi,r ·

{

∑∞
n=0 δs,j+nδt,k+n(−q)n 1−qj+kλ

1−qj+k+2nλ
i = 0, jk = 0

δs,jδt,k otherwise.

Then these descend to linearly independent functionals on H0(A, σA) that
are dual to the basis (6),

∫

[ei,j,k][er,s,t] = δi,rδj,sδk,t for [ei,j,k], [er,s,t] ∈ (6).

If ϕ ∈ Cn(A, σA) is an n-cocycle and
∫

∈ C0(A, (τA)∗) is a twisted trace,
then, using σA ⊗ (τA)∗ ≃ σ(τA)∗ ≃ (τAσ)∗ ≃ (σ−1◦τA)∗, ϕ `

∫

can be
identified with a functional on Hn(A, σ−1◦τA). In particular, we get for
A = Kq[SL(2)] from the above Lemma 3.7:

corollary 3.8. Let
∫

[1] : A → K be the σ1,q−2-twisted trace given by
∫

[1]
er,s,t := δ0,rδ0,sδ0,t.

Then
∫

[1]
dA a [∂+

H ` ∂+
E ` ∂+

F ] = 1.

In other words, the linear functional

(20) ϕA(a0, a1, a2, a3) :=

∫

[1]
σq2,q−2(a0∂

+
H(a1))σq,q−1(∂+

E (a2))∂
+
F (a3)

is a twisted Hochschild 3-cocycle with a nontrivial class in H3(A, (σ
q−2,1

A)∗)

that is dual to the fundamental class dA in the sense that ϕA(dA) = 1.
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4. Cyclic homology

4.1. Background. In Section 4.1 we recall definitions and results used in
the computation of the twisted cyclic homology of quantum SL(2), namely.
the definition of (para)cyclic objects, of cyclic homology, Connes’ spectral
sequence and the SBI-sequence. For background and details, see [23, 29].

4.1.1. Paracyclic objects. Paracyclic objects [11] (say in an abelian category)
slightly generalise Connes’ cyclic objects [4]:

definition 4.1. A paracyclic object is a simplical object (C•, b•, s•) equipped
with morphisms t : Cn → Cn that satisfy (on Cn)

bit = −tbi−1, sit = −tsi−1, b0t = (−1)nbn, s0t = (−1)nt
2
sn, 1 ≤ i ≤ n.

The difference with cyclic objects is that T := tn+1 is not required to
be the identity id. However, one directly verifies that T commutes with all
the paracyclic generators t, bi, sj . As a consequence, one can attach to any
paracyclic object a cyclic one by passing to the coinvariants C/im (id − T)
of T. In well-behaved cases, there is no loss of homological information in
this step - for example, one has ([12], Proposition 2.1):

lemma 4.2. If C is a paracyclic K-vector space and T is diagonalisable, then
(C, b) → (C/im (id − T), b) is a quasi-isomorphism.

As for cyclic objects, one puts

N :=

n
∑

i=0

t
i, s := (−1)n+1

tsn, B := (id − t)sN,

all acting on Cn, and as in the cyclic case one has

(21) b(id − t) = (id − t)b′, b
′
N = Nb, sb

′ + b
′
s = id,

where b′ :=
∑n−1

i=0 (−1)ibi. But B is in general not a differential anticommut-
ing with b - instead, one has BB = (id−T)(id− t)ssN and bB+Bb = id−T.

Note that B(D) ⊂ D, where D := span{im si} is the degenerate part of
C. Therefore, B descends to the normalised complex C̄•, where it takes the
simplified form B = sN since ts = (−1)n+1ttsn = −s0t. Therefore, we work
in the normalised complex throughout our explicit computations below.

4.1.2. Cyclic homology. The cyclic homology HC•(C) of a cyclic object is
the total homology of the bicomplex E0

pq := Cq−p, p, q ≥ 0, Cn := 0 for
n < 0, whose differentials are given by b and B:

...
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b

��

...
b

��

...
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oo
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��
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Similarly one defines the periodic cyclic homology HP•(C) as the (direct
product) total homology of the bicomplex in which p, q take arbitrary values
in Z. For a paracyclic object, cyclic homology is defined in terms of the
associated cyclic object C/im (id − T).

4.1.3. Connes’ spectral sequence. The main tool for computing cyclic homol-
ogy is the spectral sequence E•

pq ⇒ HCp+q(C) arising from filtering the total
complex of the (b,B)-bicomplex by columns. Its first page consists of the
simplicial homologies E1

pq = Hq−p(C, b), between which B induces a bound-

ary map whose homology fills the second page E2
pq = Hq−p(H(C, b),B).

4.1.4. The SBI-sequence. If one views (C, b) (C a cyclic object) as a bicom-
plex with trivial horizontal differential, then the identity map Cn → Cn =
E0

0q is a bicomplex embedding of (C, b) into the (b,B)-bicomplex as its first

column. The quotient bicomplex is the (b,B)-bicomplex again, but shifted
in both degrees by 1. The resulting short exact sequence of total complexes
gives a long exact homology sequence

(22) . . . // Hn(C, b)
I // HCn(C)

S // HCn−2(C)
B // Hn−1(C, b) // . . .

in which B appears as the connecting homomorphism.
In particular, Hn(C, b) = 0 for all n > d implies that S : HCn+1(C) →

HCn−1(C) is an isomorphism for n > d. In this case, one obtains the peri-
odic cyclic homology groups HP0(C) and HP1(C) as the limit of HC2n(C)
and HC2n+1(C) respectively (see [23], Section 5.1.10).

4.1.5. Twisted cyclic homology of an algebra A. If A is an algebra and σ ∈
Aut(A), then the simplicial object C•(A, σA) is in fact paracyclic [20] with

t : a0 ⊗ . . .⊗ an 7→ (−1)nσ(an) ⊗ a0 ⊗ a1 ⊗ . . . ⊗ an−1.

For this paracyclic object, B is given on C̄•(A, σA) by

B : a0 ⊗ . . .⊗ an 7→ 1 ⊗
n

∑

i=0

(−1)niσ(an−i+1) ⊗ . . .⊗ σ(an) ⊗ a0 ⊗ . . .⊗ an−i.

Following [20], we denote by Cσ
• (A) := C•(A, σA)/im (id − T) the associ-

ated cyclic object and by HHσ
• (A) and HCσ

• (A) its simplicial and cyclic
homology, respectively. By Lemma 4.2 one has H•(A, σA) ≃ HHσ

• (A) if
σ is diagonalisable. This is crucial in the computation of HCσ

• (A) since
H•(A, σA) is computable via its derived functor description, while HHσ

• (A)
is the first page of the Connes spectral sequence E ⇒ HCσ(A).

For σ = id, HCσ
• (A) reduces to the standard cyclic homology HC•(A) [4,

27]. If A = K[X] for a smooth affine variety, then the Hochschild-Kostant-
Rosenberg isomorphism identifies B with Cartan’s exterior differential, and
the Connes spectral sequence stabilises at E2, giving

(23) HPn(K[X]) ≃
⊕

i≥0

H2i+n
deRham(X),

where the right hand side is the even and odd algebraic de Rham cohomology
of X with coefficients in K, see e.g. [5, 23].
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4.2. Results. Here we compute for A = Kq[SL(2)] and

σ = σq−N ,1, N ∈ Z,

the second page of the spectral sequence E ⇒ HCσ(A). Lemma 4.2 gives
HHσ(A) ≃ H(A, σA) which is reflected by the fact that all the generators
of H(A, σA) listed in Section 2.2 are invariant under T = σ⊗ . . .⊗ σ. From
now on we suppress the distinction between HHσ(A) and H(A, σA). We
will compute the action of B : HHσ

n (A) → HHσ
n+1(A) on the vector space

bases from Section 2.2. It will then be possible to read off directly the
(co)homology E2, and it is then immediate that E• stabilises at E2.

Recall that we work throughout in the normalised complex C̄•(A, σA).

4.2.1. E2
pp and HHσ

1 (A)/im B. For n = 0, the action of B on the basis (6)
of HHσ

0 (A) is given by

[1] 7→ 0, 0 ∈ S, [ai], [di] 7→ i[ai−1 ⊗ a], i[di−1 ⊗ d] i ≥ 1, N = 0,

[bj ], [cj ] 7→ j[bj−1 ⊗ b], j[cj−1 ⊗ c], j > 0, j ∈ S,(24)

[ωN,i] 7→ i[ωN−1,i−1 ⊗ b] + (N − i)[ωN−1,i ⊗ c] i = 0, . . . , N,N > 0,

where S := N \ {N − 2r |N > 0, r ≥ 0} as defined in (7).
Comparing (24) with the basis (8) of HHσ

1 (A) gives:

lemma 4.3. We have (for p > 0)

E2
pp =

{

K[1] 0 ∈ S,
0 0 /∈ S,

HHσ
1 (A)/im B =

N−2
⊕

i=1

K[ωN−1,i ⊗ b] ⊕

{

K[b⊗ c] 0 ∈ S,
0 0 /∈ S,

where we identify elements of HHσ
1 (A) with their classes in HHσ

1 (A)/im B.

4.2.2. E2
pp+1 and HHσ

2 (A)/im B. The basis (8) is mapped by B to

[ai ⊗ a], [di ⊗ d] 7→ 0, i ≥ 0, N = 0,

[bj−1 ⊗ b], [cj−1 ⊗ c] 7→ 0, j > 0, j ∈ S,

[b⊗ c] 7→ [1 ⊗ (b ∧ c)], 0 ∈ S,

[ωN−1,i ⊗ b] 7→ −(N − 1 − i)[ωN−2,i ⊗ (b ∧ c)], 0 ≤ i ≤ N − 1,

[ωN−1,i ⊗ c] 7→ i[ωN−2,i−1 ⊗ (b ∧ c)], 0 ≤ i ≤ N − 1.

Now note that Lemma 3.3 and Lemma 2.1 imply [1 ⊗ (b ∧ c)] = 0 for
0 ∈ S, because in this case [1 ⊗ (b ∧ c)] a [∂] = 0 and [1 ⊗ (b ∧ c)] a [∂′] =
−[b ⊗ c] − [c ⊗ b] = 0. Comparing with our descriptions of HHσ

1 (A)/im B

from Lemma 4.3 and of HHσ
2 (A) given in Section 2.2.3 above, this yields

lemma 4.4. We have (for p > 1)

E2
pp+1 =

{

K[b⊗ c] 0 ∈ S,
0 0 /∈ S,

HHσ
2 (A)/im B =

N−2
⊕

i=0

K[ω2(N − 2, i)].



18 TOM HADFIELD AND ULRICH KRÄHMER

4.2.3. E2
pp+2 and E2

pp+3 = HHσ
3 (A)/im B. This involves a lengthier compu-

tation, so we state the result first:

lemma 4.5. In HHσ
3 (A), we have

(25) B([ω2(r, i)]) = (2i− r)[ω3(r, i)], r ≥ 0, i = 0, . . . , r,

so (for p > 2)

E2
pp+2 =

{

0 0 ∈ S,
K[ω2(2r, r)] N = 2r + 2, r ≥ 0,

E2
pp+3 = HHσ

3 (A)/im B =

{

0 0 ∈ S,
K[ω3(2r, r)] N = 2r + 2, r ≥ 0.

Proof. We show (25), the second part is then immediate. We have

B(ω2(r, i))

= B(ωr,i(bc⊗ (a⊗ d− d⊗ a− (q − q−1)c⊗ b) − bd⊗ (a⊗ c− qc⊗ a)

+da⊗ (b⊗ c− c⊗ b) − q−1ca⊗ (b⊗ d− qd⊗ b)))

= 1 ⊗ (ωr+2,i+1 ⊗ a⊗ d+ qr+2d⊗ ωr+2,i+1 ⊗ a+ a⊗ d⊗ ωr+2,i+1

−ωr+2,i+1 ⊗ d⊗ a− q−r−2a⊗ ωr+2,i+1 ⊗ d− d⊗ a⊗ ωr+2,i+1

−(q − q−1)(ωr+2,i+1 ⊗ c⊗ b+ b⊗ ωr+2,i+1 ⊗ c+ c⊗ b⊗ ωr+2,i+1)

−ωr,ibd⊗ a⊗ c− c⊗ ωr,ibd⊗ a− q−r−2a⊗ c⊗ ωr,ibd

+qωr,ibd⊗ c⊗ a+ qq−r−2a⊗ ωr,ibd⊗ c+ qq−r−2c⊗ a⊗ ωr,ibd

+ωr,ida⊗ b⊗ c+ c⊗ ωr,ida⊗ b+ b⊗ c⊗ ωr,ida− ωr,ida⊗ c⊗ b

−b⊗ ωr,ida⊗ c− c⊗ b⊗ ωr,ida− q−1ωr,ica⊗ b⊗ d

−q−1qr+2d⊗ ωr,ica⊗ b− q−1qr+2b⊗ d⊗ ωr,ica+ ωr,ica⊗ d⊗ b

+b⊗ ωr,ica⊗ d+ qr+2d⊗ b⊗ ωr,ica

We apply a ∂, where ∂ = 1
2(∂+

H + ∂−H). This gives

(B(ω2(r, i))) a ∂

= qr+2d⊗ ωr+2,i+1 ⊗ a− a⊗ d⊗ ωr+2,i+1 + q−r−2a⊗ ωr+2,i+1 ⊗ d

−d⊗ a⊗ ωr+2,i+1 − ωr,ibd⊗ a⊗ c+ q−r−2a⊗ c⊗ ωr,ibd

+qωr,ibd⊗ c⊗ a− q−r−1a⊗ ωr,ibd⊗ c+ q−1ωr,ica⊗ b⊗ d

−qr+1d⊗ ωr,ica⊗ b− ωr,ica⊗ d⊗ b+ qr+2d⊗ b⊗ ωr,ica.

Now apply a
1
2(∂+

H − ∂−H). This gives

((B(ω2(r, i))) a ∂) a
1

2
(∂+

H − ∂−H)

= (2i− r)qr+2dωr+2,i+1 ⊗ a+ (2i − r)q−r−2aωr+2,i+1 ⊗ d

−q−r−2ac⊗ ωr+1,i+1d− qωr+1,i+1dc⊗ a

−(2i− r + 1)q−r−1aωr+1,i+1d⊗ c+ q−1ωr+1,iab⊗ d

−qr+1(2i− r − 1)dωr+1,ia⊗ b+ qr+2db⊗ ωr+1,ia

= (2i− r − 1)qr+2dωr+2,i+1 ⊗ a+ (2i− r + 1)q−r−2aωr+2,i+1 ⊗ d

−q−r−2ac⊗ ωr+1,i+1d− (2i− r + 1)adωr+1,i+1 ⊗ c

−(2i− r − 1)daωr+1,i ⊗ b+ qr+2db⊗ ωr+1,ia.
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Lemma 3.5 gives [∂] `
1
2 [∂+

H − ∂−H ] = 1
2 [∂−H ] ` [∂+

H ], so by subtracting

b((2i − r − 1)ωr+2,i+1 ⊗ d⊗ a+ b⊗ ωr+1,ia⊗ d+ q−r−2ac⊗ ωr+1,i+1 ⊗ d)

we get in homology

1

2
[B(ω2(r, i))] a ([∂−H ] ` [∂+

H ])

= [(2i− r − 1)ωr+2,i+1 ⊗ bc+ b⊗ ωr+1,i − c⊗ ωr+1,i+1

−q−1bc2 ⊗ ωr+1,i+1 − (2i − r + 1)ωr+1,i+1 ⊗ c

−(2i− r + 1)qωr+3,i+2 ⊗ c− (2i − r − 1)ωr+1,i ⊗ b

−(2i− r − 1)q−1ωr+3,i+1 ⊗ b].

Using the calculus of differential forms over K[b, c], that is, using the fact
that [f ⊗ bjck] = [jfbj−1ck ⊗ b] + [kfbjck−1 ⊗ c] for f ∈ K[b, c], we obtain

1

2
[B(ω2(r, i))] a ([∂−H ] ` [∂+

H ])

= −(2i− r)[ωr+1,i ⊗ b+ ωr+1,i+1 ⊗ c]

+[((2i− r − 1) − q−1(r − i) − (2i− r + 1)q)ωr+3,i+2 ⊗ c

+((2i− r − 1) − (3i− r)q−1)ωr+3,i+1 ⊗ b].

And with b(ωr+1,ia⊗ b∧d) = (1− q2)ωr+3,i+1⊗ b and b(ωr+1,i+1a⊗d∧ c) =
(q − q−1)ωr+3,i+2 ⊗ c the above finally simplifies to

1

2
[B(ω2(r, i))] a ([∂−H ] ` [∂+

H ]) = −(2i− r)[ωr+1,i ⊗ b+ ωr+1,i+1 ⊗ c].

The claim now follows from Lemma 3.6. 2

4.2.4. Stabilisation of the spectral sequence. There is no further page of the
spectral sequence to be computed - the differential on E2 maps E2

pq to

E2
p−2q+1, and for all p, q either one space or the other is zero:

lemma 4.6. For σ = σq−N ,1, N ∈ Z, we have HCσ
n(A) ≃

⊕

p+q=nE
2
pq.

Proof. In case 0 ∈ S, E2 looks as follows (the lines are for the reader’s
orientation and depict the p = 0 and q = 0 axes):

...
...

...

0 0 0 K[b⊗ c] . . .

0
⊕N−2

i=0 K[ω2(N − 2, i)] K[b⊗ c] K[1] . . .

0
LN−2

i=1 K[ωN−1,i⊗b]
⊕K[b⊗c]

K[1] 0

0 HHσ
0 (A) 0

0
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And otherwise, it looks like that:

...
...

...

0 0 K[ω3(N − 2, N/2 − 1)] K[ω2(N − 2, N/2 − 1)] . . .

0 K[ω3(N − 2, N/2 − 1)] K[ω2(N − 2, N/2 − 1)] 0 . . .

0
⊕N−2

i=0 K[ω2(N − 2, i)] 0 0 . . .

0
⊕N−2

i=1 K[ωN−1,i ⊗ b] 0 0

0 HHσ
0 (A) 0

0

2

5. Cyclic cohomology

5.1. Background. In this final section we construct a cyclic cocycle that
pairs nontrivially with dA and hence represents a generator ofHC3

σ
q−2,1

(A) ≃

K in Connes’ λ-complex.

5.1.1. Cyclic cocycles. In view of (21), im(id − t) ⊂ C is for any cyclic K-
vector space a subcomplex with respect to b, and as Connes showed, cyclic
homology can be realised for Q ⊂ K as the homology of the quotient,

HC•(C) ≃ H•(C/im(id − t), b).

For C = Cσ(A) one can dually consider Hochschild cochains ϕ ∈ Cn(A, (σA)∗)
which are cyclic, that is, satisfy

(26) ϕ(a0, . . . , an) = (−1)nϕ(σ(an), a0, . . . , an−1)

for all a0, . . . , an ∈ A. These form a subcomplex of (C•(A, (σA)∗), b) whose
cohomology is twisted cyclic cohomology HC•

σ(A) ≃ (HCσ
• (A))∗.

If one works with the normalised complex, then ϕ(a0, . . . , an) = 0 when-
ever ai ∈ K for some i > 0. For cyclic ϕ this property obviously extends to
i = 0. Conversely, a Hochschild cocycle that vanishes on 1⊗ a1 ⊗ . . .⊗ an is
cyclic as follows by applying it to b(1 ⊗ a0 ⊗ . . .⊗ an).
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5.2. Results. First we show that ϕA from (20) itself is not cyclic. Then we
construct a coboundary ηA by which it differs from a cyclic cocycle.

5.2.1. ϕA is not cyclic. The natural question is whether the twisted Hochschild
3-cocycle ϕA from (20) is already cyclic. As remarked at the end of Sec-
tion 5.1.1, this is equivalent to the condition that

ϕA(1, a1, a2, a3) = 0

for all a1, a2, a3 ∈ A. And since one has for all i, j ≥ 0

σq,q−1(∂
+
E (djc))∂+

F (aib) = qi−2jdj+1ai+1,

σq2,q−2(∂+
H(ej−i,0,0)) = (i− j)q2(j−i)ej−i,0,0,

and therefore

ϕA(1, ej−i,0,0, d
jc, aib) = q−i(i− j)

∫

[1]
ej−i,0,0d

j+1ai+1 = q−i(i− j),

we see that ϕA is not a cyclic cocycle.

5.2.2. The correction term. We make the ansatz

ηA(·) :=

∫

?
· a (∂+

H ` (σλ1,µ1 − id) ` (σλ2,µ2 − id)),

where
∫

? is a suitable twisted trace to be determined.

lemma 5.1. ϕA + ηA is a cyclic cocycle which is as a Hochschild cocycle
cohomologous to ϕA, provided that λ1 = λ2 = 1, µ2 = µ−1

1 6= 1 and
∫

?
= −

µ2

(µ2 − 1)2

∫

[bc]
∈ H0(A, (σ

q−2,1
A)∗).

Proof. For any automorphism σ of an algebra, σ − id is a σ-twisted
derivation which is inner - it is simply the twisted commutator with 1 ∈
A. Therefore, its cohomology class vanishes, and as a consequence, ηA is
automatically a coboundary. Furthermore, one has for all i, j ≥ 0

σλ2,µ2((σλ1,µ1 − id)(djc))(σλ2,µ2 − id)(aib)

= q−iλ−j
2 µ−1

2 (λ−j
1 µ−1

1 − 1)(λi
2µ2 − 1)djaibc,

σλ1λ2,µ1µ2(∂
+
H(ej−i,0,0))

= (i− j)(λ1λ2)
j−iej−i,0,0,

so

ηA(1, ej−i,0,0, d
jc, aib)

= q−iλ−j
2 µ−1

2 (λ−j
1 µ−1

1 − 1)(λi
2µ2 − 1)(i − j)(λ1λ2)

j−i

∫

?
ej−i,0,0d

jaibc.

Therefore, we need
∫

? to be a σq−2λ1λ2,µ1µ2
-twisted trace for which

∫

?
ej−i,0,0d

jaibc = −
λi−j

1 λi
2µ2

(λ−j
1 µ−1

1 − 1)(λi
2µ2 − 1)

.

One easily checks that ϕA(1, ei,j,k, el,m,n, er,s,t) = ηA(1, ei,j,k, el,m,n, er,s,t) =
0 for all other i, j, k, l,m, n, r, s, t, using that b, c are twisted central. 2
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