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Abstract. In [CM], Connes and Moscovici studied �twisted� spectral triples
(A,H,D) in which the commutators [D, a] are replaced by D ◦ a − σ(a) ◦D,
where σ is a second representation of A on H. The aim of this note is to point
out that this yields representations of arbitrary covariant di�erential calculi
over Hopf algebras in the sense of Woronowicz. For compact quantum groups,
H can be completed to a Hilbert space and the calculus is given by bounded
operators. At the end, we discuss as an explicit example one of Heckenberger's
3-dimensional covariant di�erential calculi on quantum SU(2) [He].

1. Introduction

One of the basic invariants of Connes' spectral triples (A,H,D) is the operator-
valued derivation d : a 7→ [D, a]. For Dirac-type operators on manifolds, da is
the di�erential of a ∈ C∞(X) that acts by Cli�ord multiplication. Thus one can
view Ω1 := {

∑
i aidbi | ai, bi ∈ A} as an abstract space of 1-forms de�ned by the

triple. Its elements also play an important role as �gauge transformations� of the
triple: perturbing D to D + ω, ω ∈ Ω1, yields a new spectral triple with similar
properties. In particular, the bimodule Ω1 remains obviously the same as well as
the class of d in H1(A,Ω1) (the space of derivations A → Ω1 modulo inner ones),
and it is this class rather than d itself that enters the homological constructions
in noncommutative geometry. Similarly, the more sophisticated invariants (Chern
character, spectral action) are independent under the transformation D 7→ D + ω.

Given an abstract noncommutative algebra A, there is no longer a canonical pair
(Ω1,d) attached to A, and it becomes a rather subtle task to motivate a speci�c
choice. One possibility suggested by Woronowicz is to take into account Hopf
algebra symmetries of A. This leads to the concept of covariant di�erential calculi
[Wo1, Wo2] that we will review in some detail in the next section.

Several authors have worked intensively on the classi�cation of these structures.
In particular, Heckenberger has classi�ed the left-covariant calculi of rank 3 over
the standard quantum SU(2) group [He]. The result was that covariance alone
does not �x a particular (Ω1,d): even when requiring the universal di�erentially
graded algebra generated by (Ω1,d) to resemble the de Rham complex of SU(2), the
number of nonisomorphic calculi reduces only to seven. Furthermore, Schmüdgen
has proved the nonexistence of spectral triples that lead to these calculi [Sch1, Sch2].

The aim of the present note is to remark that this problem naturally points
towards twisted spectral triples as recently introduced by Connes and Moscovici
[CM]: here [D, a] becomes replaced by a twisted commutator D ◦ a− σ(a) ◦D for
an automorphism σ ∈ Aut(A), and it was shown in [CM] that some core structures
of noncommutative geometry generalise to this setting which can be classically
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motivated by considering the e�ect that a conformal rescaling of the metric of a spin
manifold has on the Dirac operator. We �rst strip o� all analytical considerations
and allow A to be any algebra over a �eld k, H to be any A-module and D ∈
Endk(H) be any linear map. Furthermore we consider the essential step in [CM] to
be the appearance of a second representation of A onH that is linked to the �rst one
by D, that is, we also replace σ ∈ Aut(A) by any homomorphism σ : A→ Endk(H).
Calling such data in full generality twisted spectral triples one easily proves:

Theorem 1. Any covariant di�erential calculus of �nite rank over a Hopf algebra
with invertible antipode can be realised by means of a twisted spectral triple.

Turning then to compact quantum groups we show that here the Haar functional
allows one to introduce Hilbert space structures in such a way that the elements of
the calculi are given by bounded operators:

Theorem 2. If A is a compact quantum group, then any covariant di�erential
calculus of �nite rank over A can be realised by a twisted spectral triple on a Hilbert
space H with all elements of the calculus given by bounded operators.

In the last section we study a speci�c example for SUq(2) in which σ is indeed
an automorphism as in [CM]. This distinguishes one of Heckenberger's calculi, so it
seems an interesting candidate for further study. However, the operator D that we
obtain does not have compact resolvent, so an immediate application of the ana-
lytic techniques from [CM] is not possible (the same seems to apply to the similarly
constructed example from [An]).

U.K. thanks A. Connes, I. Heckenberger and S. Kolb for discussions. My work
is funded by the EPSRC fellowship EP/E/043267/1 and partially by the Polish
Government Grant N201 1770 33.

2. Covariant differential calculi

In order to �x notations and for the reader's convenience, we survey in this
section in some detail Woronowicz's theory of (�rst-order) covariant di�erential
calculi over Hopf algebras [Wo1, Wo2] (see also [KS] for a detailed account).

Let A be a Hopf algebra with counit ε, coproduct ∆ and antipode S.

De�nition 1. A covariant A-module is a (left) A-module and (left) A-comodule
M whose action . : A ⊗M → M and coaction ∆M : M → A ⊗M are compatible
in the sense that ∆M (a . ω) = a1ω−1 ⊗ (a2 . ω0) for all a ∈ A,ω ∈M .

Here and in what follows we use Sweedler's notation for coproducts and coactions
and write a1 ⊗ a2 and ω−1 ⊗ ω0 for ∆(a) and ∆M (ω), respectively. Throughout,
we work over a �eld k, and an unadorned ⊗ means tensor product over k.

To a covariant A-moduleM one attaches the k-vector space of invariant elements

(1) Minv := {ω ∈M |∆M (ω) = 1⊗ ω}.
Conversely, NA := A⊗N becomes for any vector space N through

(2) ∆NA(a⊗ n) := a1 ⊗ a2 ⊗ n, a . (b⊗ n) := ab⊗ n
a covariant A-module, and one clearly has N ' (NA)inv as vector spaces. Finally,
there is for any covariant A-module M an isomorphism of covariant A-modules

(3) ξ : M → (Minv)A, ω 7→ ω−2 ⊗ S(ω−1) . ω0, ξ−1(a⊗ ω) = a . ω.
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Since both N 7→ NA and M 7→Minv are functorial, this means:

Proposition 1. The category A
AMod of covariant A-modules is equivalent to the

category kMod of k-vector spaces.

In particular, a covariant A-module is always free as an A-module, and any
vector space basis of Minv is simultaneously a module basis of M .

De�nition 2. A covariant A-bimodule is a covariant A-module and A-bimodule
M whose right A-action / : M ⊗ A → M is compatible with ∆M in the sense that
∆M (ω / a) = ω−1a1 ⊗ (ω0 / a2) for all a ∈ A,ω ∈M .

If M is a covariant bimodule, then Minv becomes through the adjoint action
ad(a)ω := S(a1) . ω / a2 a right A-module. If N is conversely a right A-module,
then the covariant A-module NA de�ned above is a covariant bimodule with right
action (a⊗ n) / b := ab1 ⊗ nb2. In analogy to Proposition 1 this gives:

Proposition 2. The category A
AModA of covariant A-bimodules is equivalent to

the category ModA of right A-modules.

If S is invertible, then an isormorphism similar to (3) shows that any vector
space basis of Minv is also a basis of M as right module.

De�nition 3. A covariant derivation on A with values in M ∈ A
AModA is an

A-comodule morphism d : A→M satisfying d(ab) = a . db+ (da) / b for a, b ∈ A.

Proposition 3. Let d : A → M be a covariant derivation and consider the right
A-module Minv as bimodule with trivial left action aω := ε(a)ω. Then

(4) dinv : A→Minv, a 7→ S(a1) . da2

is a derivation, any derivation with values in Minv arises in this way, and d is
uniquely determined by dinv since da = a1 . dinv(a2).

This correspondence takes inner derivations to inner ones. If we thus denote by
H1
A(A,M) the space of equivalence classes of covariant derivations modulo inner

ones and take into account the realisation of Hochschild cohomology of a Hopf
algebra described e.g. on p. 197 in [GK], this gives:

Corollary 1. H1
A(A,M) ' H1(A,Minv) ' Ext1A(k,Minv) in kMod.

Here in Ext1A(k,Minv), k is considered with trivial A-action and Minv is as left
A-module with action aω = ad(S(a))ω.

We will be mainly concerned with the case dimkMinv < ∞. Assuming this, �x
dual bases {ωi} and {xi} of Minv and M∗inv = Homk(Minv, k), respectively, and
de�ne linear functionals Xi, f

j
i ∈ A∗ by

Xi(a) := xi(dinv(a)), f ji (b) := xi(ad(b)ωj).

Recall that the Hopf dual A◦ ⊂ A∗ consists of those functionals whose kernel
contains an ideal of �nite codimension.

Proposition 4. One has Xi, f
j
i ∈ A◦ with ε(Xi) = 0, ε(f ij) = δij and

∆(Xi) =
∑
j

1⊗Xi +Xj ⊗ f ji , ∆(f ij) =
∑
k

f ik ⊗ fkj .(5)
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Proof. The f ij belong as matrix coe�cients of a �nite-dimensional (anti)representation
(namely Minv) to A

◦ and have the desired properties,

(6) f ji (ab) = xi(ad(ab)ωj) = xi(ad(b)(
∑
k

xk(ad(a)ωj)ωk)) =
∑
k

f jk(a)fki (b),

and therefore so do the Xi since

�(7) Xi(ab) = ε(a)Xi(b) + xi(ad(b)dinv(a)) = ε(a)Xi(b) +
∑
j

Xj(a)f ji (b).

In other words, Td := span {Xi} ⊕ k · 1 is a unital right coideal of A◦, and this
(almost) determines M and d: the bimodule structure of M is determined by

(8) ωi/a = a1S(a2).ωi/a3 = a1.ad(a2)ωi =
∑
j

a1f
i
j(a2).ωj =

∑
j

(f ij I a).ωj ,

where X I a := a1X(a2) is the canonical left action of A◦ on A, and we also have

(9) da = a1 . dinv(a2) =
∑
i

a1 . xi(dinv(a2))ωi =
∑
i

(Xi I a) . ωi.

However, dinv is in general not surjective (so that xi 7→ Xi is not injective):

Proposition 5. im dinv = Ω1
inv ⊂Minv, where Ω1 := {

∑
i aidbi | ai, bi ∈ A} ⊂M .

Proof. �⊂� is clear, and if ω =
∑
i aidbi ∈ Ω1

inv, then ω = dinv(
∑
i ε(ai)bi). �

Following Woronowicz we call d : A → Ω1 a (�rst order) covariant di�erential
calculus over A and dimkΩ1

inv its dimension. The above considerations now give:

Proposition 6. Finite-dimensional covariant di�erential calculi over A correspond
bijectively to �nite-dimensional unital right coideals of A◦.

One calls T+
d = Td ∩ ker ε the quantum tangent space of the corresponding

calculus. The calculi with trivial class in Ext1A(k,Ω1
inv) correspond to T+

d with

basis of the form Xi =
∑
j f

j
i − 1, f ji being as in (5) a matrix corepresentation.

Since this will be used below, we remark that any di�erential calculus over A
(covariance is irrelevant for this) can be realised as a quotient of a universal one
which is Ω1

univ := A⊗ ker ε with di�erential duniva := 1⊗ (a− ε(a)). This implies:

Proposition 7. Two di�erential calculi (Ω1
1,d1), (Ω1

2,d2) are isomorphic i�

(10)
∑
r

ard1br = 0 ∈ Ω1
1 ⇔

∑
r

ard2br = 0 ∈ Ω1
2 ∀

∑
r

ar ⊗ br ∈ A⊗A.

At the end, we brie�y consider Hopf ∗-algebras over k = C (see e.g. [KS], Sec-
tion 1.2.7 for background on such). Then the compatible structures on the various
data we studied above are as follows: on a covariant bimodule M one can con-
sider complex antilinear involutions ∗ : M → M with (a . ω / b)∗ = b∗ . ω∗ / a∗

and ∆M (ω∗) = ω∗−1 ⊗ ω∗0 . These restrict to Minv and are compatible with the
right adjoint action by (ad(a)ω)∗ = ad(θ(a))ω∗, where θ = ∗ ◦ S is the Cartan
involution of A (recall that θ ◦ θ = id). Derivations d : A → M can then be
required to be ∗-linear, (da)∗ = d(a∗), and this happens if and only if dinv sat-
is�es dinv(a)∗ = ad(θ(a1))dinv(a∗2). In terms of quantum tangent spaces, a �nite-
dimensional covariant di�erential calculus is ∗ if and only if Td (or equivalently
T+

d ) is invariant under the involution X∗(a) := X ◦ θ which turns A◦ into a Hopf
∗-algebra (see [KS], Proposition 14.6).
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3. Realisations by twisted spectral triples

Let H be a k-vector space, A ⊂ Endk(H) be a unital associative k-algebra and
σ : A→ Endk(H) be a second representation of A on H. Then Endk(H) becomes
an A-bimodule via

(11) a . ω / b := σ(a) ◦ ω ◦ b, a, b ∈ A,ω ∈ Endk(H),

and any D ∈ Endk(H) de�nes a derivation

(12) d : A→ Endk(H), a 7→ da := D ◦ a− σ(a) ◦D,
so

(13) Ω1
(A,H,σ,D) := spank{a . db ∈ Endk(H) | a, b ∈ A}

becomes a di�erential calculus over A. We say in this case that (A,H, σ,D) de�nes
a realisation of this calculus.

For σ = id the above is the algebraic structure underlying A. Connes' spectral
triples, and the idea to introduce the twist σ appeared recently in [CM] (for the
case σ ∈ Aut(A)). Therein it was shown that some core ideas of noncommutative
geometry can be generalised to such �twisted� spectral triples, taking into account
as well analytic aspects. In the present paper we focus mainly on algebraic questions
and speak for simplicity of (A,H, σ,D) in full generality of a twisted spectral triple
over A. Our main aim is to remark that the following fact holds:

Theorem 1. Any �nite-dimensional covariant di�erential calculus over a Hopf
algebra with invertible antipode can be realised by means of a twisted spectral triple.

Proof. Let (Ω1,d) be d-dimensional and {ωi}, {Xi} and f ij be as in the previous
section. We �rst de�ne

(14) sji := S−1(f ji ), ∂i :=
d∑
j=1

sjiXj ∈ A◦.

Then one has

(15) ∆(∂i) = ∂i ⊗ 1 + sji ⊗ ∂j , ∆(sji ) =
∑
k

ski ⊗ s
j
k.

The vector space H will be constructed now as a free module,

(16) H := A⊗ V,
with V a vector space, and the second representation σ and D will be given by

(17) σ(a) =
∑
ij

(sij I a)⊗ Eji , D =
∑
k

∂k ⊗ γk,

where Eji , γ
k are suitable k-linear maps on V . The actions of (sij I a) ∈ A and of

∂k ∈ A◦ on A are given by left multiplication and by I, respectively. One then has

(18) σ(a)σ(b) =
∑
ijmn

(sij I a)(smn I b)⊗ E
j
i ◦ E

n
m,

so σ will be a representation provided that

(19) Eji ◦ E
n
m = δni E

j
m,

since X I (ab) = (X1 I a)(X2 I b). For example, we can choose

(20) V = Ω1
inv, Eji : ωk 7→ δki ω

j .
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Furthermore, we have

D ◦ a− σ(a) ◦D =
∑
k

(∂k I a)⊗ γk

=
∑
k

σ(Xk I a) ◦ (1⊗ γk)(21)

=
∑
k

(Xk I a) . (1⊗ γk),

provided that

(22) Eji ◦ γ
k = δki γ

j .

It now follows from (21), (9) and Proposition 7 that the abstract calculus (Ω1,d)
we started with is in this case isomorphic to the one de�ned by the twisted spectral
triple (A,H, σ,D) as long as the γk are linearly independent over k. For example,
(22) follows from (19) provided that

(23) γk =
∑
n

Ekn ◦ γ̂n,

with arbitrary γ̂n ∈ Endk(V ). Thus we can choose in any case the simple ansatz
(20) with γ̂n = 1 for all n. �

The twisted spectral triple from the proof is not really interesting and takes not
into account spinorial e�ects at all. It lives onH = Ω1 itself with a somehow arti�cal
commutator realisation of d that becomes possible as a consequence of (9). On the
other hand, we will see below that for concrete examples of Hopf algebras there are
plenty possibilites to de�ne more interesting triples realising a given calculus. In
particular, if sij = δijs for some group-like element s ∈ A◦, then the condition on

the Eij reduces to

(24)
∑
ij

Eii ◦ E
j
j =

∑
k

Ekk ,

so one can choose e.g. Eij = 1
dδ
i
j . we can simply choose V arbitrary and Eij = 1 in

order to obtain a representation σ on H.

4. Compact quantum groups

A major aim of noncommutative geometry is to obtain in a Hilbert space frame-
work index formulas for the operator D of a spectral triple. Thus one usually
considers spectral triples only for ∗-algebras A of bounded operators on a Hilbert
space which is a completion of H from the preceding section, and one assumes that
the di�erentials da, a ∈ A are also given by bounded operators, although D itself
is as an analogue of a �rst-order di�erential operator typically unbounded.

If we want to bring our algebraic considerations into contact with these ideas,
then A should resemble from now on an algebra of smooth functions on a compact
Lie group. Woronowicz also developed an according framework for this:

De�nition 4. A compact quantum group is a Hopf ∗-algebra A equipped with a
functional h : A→ C satsifying h(a1)a2 = h(a) and h(a∗a) > 0 for all a ∈ A \ {0}.
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Thus the ground �eld becomes restricted to k = C, and A is a ∗-algebra whose
involution a 7→ a∗ is compatible with ∆. The functional h is called the Haar state
of A since it is classically given by integration of a function with respect to Haar
measure. It is unique up to normalisation which we assume to be h(1) = 1, and it
also satis�es a1h(a2) = h(a) for all a ∈ A (for proofs and more details see e.g. [KS]).

Left multiplication in A de�nes a ∗-representation of A by bounded operators
on the pre-Hilbert space A with Hermitian form given by (see [KS], p. 420-421)

(25) (a, b) := h(a∗b), a, b ∈ A.
Since X(1) = ε(X) for all X ∈ A◦, the de�ning property of h implies h(X I a) =
ε(X)h(a) for all a ∈ A. Furthermore, the ∗-structure of A induces one on A◦ given

by X∗(a) := X(S(a)∗). Then (X I a)∗ = S(X)∗ I a∗. Finally, one has in any
Hopf ∗-algebra S−1 = ∗ ◦ S ◦ ∗ ([KS], Section 1.2.7). Thus

(a,X I b) = h((ε(X1) I a∗)(X2 I b)) = h(((X2S
−1(X1)) I a∗)(X3 I b))

= h(X2 I ((S−1(X1) I a∗)b)) = h((S−1(X) I a∗)b)(26)

= h((X∗ I a)∗b) = (X∗ I a, b).

What we want to point out is that the realisation of covariant di�erential calculi
from Theorem 1 satis�es at least the minimal requirment that one can have:

Theorem 2. If A is a compact quantum group, then any �nite-dimensional co-
variant di�erential calculus over A can be realised by a twisted spectral triple on a
Hilbert space H with all elements of the calculus given by bounded operators.

Proof. Use the algebraic realisation as in the previous section and complete H =
A⊗ V to a Hilbert space using (·, ·) on A and any Hermitian product on V . Then
the elements of the calculus act by bounded operators since they are given by �nite
matrices with entries in A. �

5. Example: Quantum SU(2) [Wo1]

Let A := Cq[SU(2)], q ∈ (0, 1), be the Hopf ∗-algebra with generators a, b, c, d,
relations

ab = qba, ac = qca, bd = qdb,

cd = qdc, bc = cb, ad− da = (q − q−1)bc,(27)

ad− qbc = 1, a∗ = d, b∗ = −qc
and the usual Hopf algebra structure, see e.g. [KS]. This is a compact quantum
group and has a Peter-Weyl-type vector space basis

(28) {tlmn ∈ A | l ∈ N/2,m, n = −l, . . . , l}
consisting of the matrix coe�cients of the �nite-dimensional irreducible corepresen-
tations, with the Haar functional h given by projection onto t000 = 1.

The Hopf dual A◦ contains the Hopf ∗-subalgebra U := Uq(su(2)) with generators
K±1 = (K±1)∗, E, F = E∗ having relations

(29) KEK−1 = qE, KFK−1 = q−1F, EF − FE =
K2 −K−2

q − q−1

and coproduct

(30) ∆(K±1) = K±1 ⊗K±1, ∆(X) = X ⊗K +K−1 ⊗X, X = E,F.
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The nonvanishing pairings of these generators with those of A are

(31) 〈K±1, a〉 = 〈K∓1, d〉 = q∓1/2, 〈E, c〉 = 〈F, b〉 = 1.

In [He] Heckenberger classi�ed the 3-dimensional covariant di�erential calculi
over A = Cq[SU(2)]. Requiring that the universal higher order calculi share some
natural properties with the classical de Rham complex of SU(2) he obtained a list
of 7 nonisomorphic calculi which have essentially all the same algebraic properties.

The aim of this section is to realise one of them, namely No. 10 in Heckenberger's
�nal list [He], pp. 234-235, by a twisted spectral triple. The functionals Xi of this
calculus are given by

(32) X1 = X∗1 :=
2

q − q−1
(1−K2), X2 := q−1/2FK, X3 := X∗2 = q−1/2KE,

and the appearing corepresentation of U is simply

(33) f ij = δijK
2.

In other words, one has

(34) ∆(Xi) = 1⊗Xi +Xi ⊗K2, i = 1, 2, 3,

and for all a ∈ A,ω ∈ Ω1
inv

(35) ω / a = σ−1(a) . ω, σ(a) := K−2 I a.

To obtain this calculus as in Section 3 we can use as V the classical spinor space
C4, that is, we set H := A2 whose elements will be written as column vectors

ψ =
(
ψ+
ψ−

)
, ψ± ∈ A. We �x quantum gamma-matrices γi ∈M2(C) as

(36) γ1 := γ0

(
1 0
0 −1

)
, γ2 := λγ0

(
0 1
0 0

)
, γ3 := λ̄γ0

(
0 0
1 0

)
with

(37) λ ∈ C \ {0}, γ0 :=
(
q−1 0
0 q

)
and then introduce ∂i ∈ U = Uq(su(2)), i = 1, 2, 3, and D by

(38) ∂i := K−2Xi, D :=
3∑
i=1

γi∂i,

where Xi are as in (32). Then by the reasoning in Section 3 the calculus associated
to (A,H,D) is isomorphic to Heckenberger's abstract one. Note that this is not
the calculus studied in [FP] which is in fact not compatible with the ∗-structure of
SUq(2) but rather with that of SLq(2,R) de�ned for q ∈ C, |q| = 1. Note further
that this calculus is also di�erent from Woronowicz's original 3D-calculus.

The explicit form of the gamma-matrices was chosen in particular to have an
essentially self-adjoint operator D when turning H into a pre-Hilbert space using

(39) ((φ, ψ)) := (φ+, ψ+) + (φ−, ψ−), φ, ψ ∈ H.

In fact, the γi need only to be linearly independent for the di�erential calculus to
be the one we want to represent, and D is symmetric on H, ((Dφ,ψ)) = ((φ,Dψ))
for all φ, ψ ∈ H, provided that

(40) (γ1)∗ = γ1, (γ2)∗ = q−2γ3.
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If Hl ⊂ H consists of ψ ∈ H whose components are linear combinations of the
tlmn ∈ A from (28) with �xed l, then H =

⊕
lHl, Hl ⊥ Hl′ , dim(Hl) < ∞, and

DHl ⊂ Hl. Thus D is even essentially self-adjoint.
The covariance of the triple (A,H,D) can be implemented in form of a right

action of U = Uq(su(2)) on H that commutes with D. We point out that in order
to have compatibility of the ∗-structure of U with the one arising on EndC(H)
from ((·, ·)) one has to de�ne the right U -action in a nonstandard way: there is a
canonical right action of A◦ on A given by

(41) a J X := a2X(a1), a ∈ A,X ∈ A◦.

However, for this action a computation as in (26) gives

(a, b J X) = h((a∗ J ε(X1))(b J X2)) = h((a∗ J (S(X1)X2))(X3 I b))
= h(((a∗ J S(X1))b) J X2) = h((a∗ J S(X))b)(42)

= h((a J S2(X)∗)∗b) = (a J S2(X)∗, b).

Since S2(X) = K2XK−2 and K = K∗, the twisted right action

(43) π(X)a := a J K−1XK

thus de�nes a right ∗-action of U on A and hence on H,

(44) (π(X)a, b) = (a, π(X∗)b) ⇒ ((π(X)φ, ψ)) = ((φ, π(X∗)ψ)).

Since I,J turn A and hence H into a U -bimodule, and since the action of D is
based on I, we have

(45) [D,π(X)] = 0 ∈ EndC(H) ∀X ∈ U.

Since the ∂i commute according to

q∂2∂1 − q−1∂1∂2 = −2∂2,

q−1∂3∂1 − q∂1∂3 = 2∂3(46)

q−1∂3∂2 − q∂2∂3 = −∂1 −
q − q−1

4
∂2
1 ,

the square of D is given for general γi by

D2 = ((γ1)2 − q − q−1

4
qγ3γ2)∂2

1 + (γ2)2∂2
2 + (γ3)2∂2

3

+q−1(qγ1γ2 + q−1γ2γ1)∂1∂2 + q(q−1γ1γ3 + qγ3γ1)∂1∂3 + (q−1γ2γ3 + qγ3γ2)q∂2∂3

−qγ3γ2∂1 − 2q−1γ2γ1∂2 + 2qγ3γ1∂3.

With our particular ansatz for the γi we have

(γ0)2 = (γ1)2 = [2]qγ0 − 1, (γ2)2 = (γ3)2 = 0,

q−1γ2γ1 = −qγ1γ2 = −γ2, qγ3γ1 = −q−1γ1γ3 = γ3,(47)

qγ3γ2 = −q−1γ2γ3 + |λ|2γ0 =
|λ|2

q − q−1
(qγ0 − 1) =

|λ|2

[2]q
(1− qγ1)
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with [n]q := qn−q−n

q−q−1 . Therefore we get

D2 − 2D = ((γ1)2 − q − q−1

4
qγ3γ2)∂2

1 − (2γ1 + qγ3γ2)∂1 + |λ|2γ0q∂2∂3

= ([2]qγ0 − 1− |λ|
2

4
(qγ0 − 1))∂2

1 + |λ|2γ0q∂2∂3(48)

+(2(
[2]q

q − q−1
γ0 − 2

q − q−1
)− |λ|2

q − q−1
(qγ0 − 1))∂1

This in turn suggests to take λ = 2 since then the above reduces to

(49) . . . = γ0(q−1γ0∂2
1 − 2∂1 + 4q∂2∂3) = 4γ0K−2(C − [2]q

(q − q−1)2
),

where

(50) C = EF +
q−1K2 + qK−2

(q − q−1)2
= FE +

qK2 + q−1K−2

(q − q−1)2

is the quantum Casimir operator of U which is related to the ∂i by

(51)
q−1

4
∂2
1 + µ∂1 + q∂2∂3 = K−2(C + 2

(q − q−1)µ− q−1

(q − q−1)2
)− 1 + 2µ

q − q−1
.

Both C and K−2 act diagonally on the Peter-Weyl basis (28), so (D − 1)2 acts
diagonally on the basis of H given by

(52) ψl+mn :=
(
tlmn

0

)
, ψl−mn :=

(
0
tlmn

)
, l ∈ N/2,m, n = −l, . . . , l.

Inserting the explicit formulas for the action of C and K from [KS], pp. 61-62 (note
that there K2 is written as K and that the formulas for C is slightly incorrect),

(53) K I tlmn = qntlmn, C I tlmn =
q2l+1 + q−(2l+1)

(q − q−1)2
tlmn

one obtains the corresponding eigenvalues

(54) λl±mn = 1 +
4q∓1

(q − q−1)2
q−2n((q2l+1 + q−2l−1)− [2]q)

which in the classical limit q → 1 become

(55) lim
q→1

λl±mn = (2l + 1)2.

On the other hand, we have for n = −l

(56) lim
l→∞

λl±m−l = 1 + q±1 4q−1

(q − q−1)2

so that the resolvent ofD is not compact. The analytic theory from [CM] is therefore
not directly applicable to this spectral triple. In a word, we think the mystery in
the interplay between spectral triples and covariant di�erential calculi on quantum
groups will live on.
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