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Geometry

Geometry = constructions with ruler and compass.

Problem: Given points p, q in the upper half plane,
construct the point x on the horizontal axis for
which the sum of the lengths px and xq is minimaal.
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Algebra

Algebra = solving systems of polynomial equations.

Problem: For which numbers a, b do the equations

x ` y ` z “ 3,

x2 ` y 2 ` z2 “ a,

x3 ` y 3 ` z3 “ b

admit exactly one solution?

U. Krähmer (U Glasgow) Structure and Symmetry Greifswald 2016 4 / 24



Algebra

Algebra = solving systems of polynomial equations.

Problem: For which numbers a, b do the equations

x ` y ` z “ 3,

x2 ` y 2 ` z2 “ a,

x3 ` y 3 ` z3 “ b

admit exactly one solution?

U. Krähmer (U Glasgow) Structure and Symmetry Greifswald 2016 4 / 24



Solution: symmetry

Reflect p at the axis and connect the resulting point
p1 with q. Now take x to be the intersection of this
line with the axis.
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Solution: symmetry

If px , y , zq is a solution, then so are py , x , zq and
px , z , yq. So a unique solution must be of the form

x “ y “ z .

Inserting this into the equations yields

x ` x ` x “ 3x “ 3,

x2 ` x2 ` x2 “ 3x2 “ a,

x3 ` x3 ` x3 “ 3x3 “ b.

The first equation implies x “ 1. Inserting this into
the remaining two implies a “ b “ 3.
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What is a symmetry?

Each problem involved certain objects: the points
on the plane or the variables x , y , z .

A symmetry is given by a map (or function)

f : m ÞÑ f pmq

that permutes these objects. Think of a machine
that takes an object m as an input and produces a
new object f pmq as output.

The rôles of inputs and outputs should be
symmetric in that there is an inverse map f ´1 such
that f ´1pnq “ m if and only if f pmq “ n.
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Composition

Applying one symmetry after another yields a new
one called the composition

f ˝ g : m ÞÑ f pgpmqq.

We can also build f ˝ g ˝ f , and g ˝ f ˝ g , and then
f ˝ g ˝ f ˝ g ... Note: f ˝ g ‰ g ˝ f in general!
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Groups

Definition
A nonempty set G of permutations of some objects is a
group if it contains for all f , g in G also f ˝ g and f ´1.

Example: If rα is the anti-clockwise rotation of the
Euclidean plane by the angle α, then

r0, r90, r180, r270

form a group. For example, we have

r180 ˝ r270 “ r90, r´190 “ r270.
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Isomorphic groups

Example: On t0, 1, 2, 3u, define the symmetries

anpmq “ m ` n modulo 4.

Then
a0, a1, a2, a3

form a group.

This can be identified with the group of rotations by
multiples of 90˝; the two groups are isomorphic:

a0 ÞÑ r0, a1 ÞÑ r90, a2 ÞÑ r180, a3 ÞÑ r270.
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Group theory

A mathematician would ask: How many pairwise
nonisomorphic groups with n elements exist?

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14,

1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1,

2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2,

5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267,

1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15,

2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2, . . .

A normal person would ask: So what?
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The Gauss-Wantzel theorem

Problem: Construct the regular n-gon
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Solution: Possible if and only if n is of the form

n “ 2k ¨ p1 ¨ p2 ¨ ¨ ¨ pi

where the pi are pairwise different Fermat primes,
i.e., prime numbers of the form 22

j

` 1 for some j .
We believe there are only five of them:

3, 5, 17, 257, 65537.
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Complex numbers

In Cartesian coordinates px , yq, intersecting lines
and circles means solving polynomial equations.

Helpful tool: Invent the field C of complex
numbers by imagining a number i satisfying

i2 “ ´1

and identify a point px , yq with u “ x ` iy .

We denote by }u} the distance of px , yq from p0, 0q,
so the unit circle S1 consists of all u with }u} “ 1.
The corners of the regular n-gon are the solutions of

un ´ 1 “ 0.
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Galois theory

Every polynomial equation has a solution in C.
Problem: Can it be expressed in radicals as in

u2 ` pu ` q “ 0 ô u “ ´
p

2
˘

c

p2

4
´ q?

Solution: Possible if and only if the group of
symmetries of the equation is soluble.
Example: Not the case for

u5 ´ 6u ` 3 “ 0.
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Quantum mechanics

In quantum mechanics, a particle is modelled by a
C-valued wave function ψ on space-time, and

ż

M

}ψpt, x , y , zq}2dxdydz

represents the probability of detecting the particle at
time t in the region M Ď R3.

If u is in the unit circle, then

}uψ} “ }u}}ψ} “ }ψ}

Electromagentism can be derived from the
resulting S1-symmetry of quantum mechanics.
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Gauge theory

Cartan, Engel, Klein, Killing, Lie: Study compact
Lie groups - classification possible and fascinating:

S1, An, Bn, Cn, Dn, E6, E7, E8, F4, G2.

Standard model of elementary particles: A2- and
A3-symmetries describe weak and strong interaction.

GUT: Explain all forces as one using a bigger
symmetry group (ToE = GUT + gravity).
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Quantum groups

Observables are modelled by linear operators
acting on wave functions. That they do not
commute leads to the uncertainty principle.

Space-time itself is not affected, the quantum
versions of the Cartesian coordinates commute.

Noncommutative geometry: Quantise
space-time itself.

Quantum groups: Quantise even the syemmtries.
Just like a quantum particle does not have a
position, quantum groups do not have elements but
only an algebra of their “observables”.
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Some applications

Analysis: Nonabelian Pontryagin duality.

Algebra: New examples of Hopf algebras;
algebraic structure of (co)homology theories.
Physics: The integrability of spin chains in a
magnetic field is due to a quantum group symmetry.
Topology: The representations (realisations as linear
symmetries of vector spaces) of many quantum
groups form braided monoidal categories which
yield polynomial invariants of knots.
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Homogeneous spaces

Definition
A set M is a homogeneous space for a group G of
symmetries if there is an element m such that for any
other element n there exists some f in G with f pmq “ n.

M can be described entirely in terms of G and the
subgroup H of the symmetries f with f pmq “ m. Here

structure = symmetry

Definition
A quantum homogeneos space is a right coideal
subalgebra B of a Hopf algebra A such that A is a
faitfhully flat B-module.
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An unexpected example

The plane curve given by the equation

x3 ´ y 2 “ 0

is not a homogeneous space as it has a
singularity at x “ y “ 0.

But: It turns out it has the structure of
a quantum homogeneous space!
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Future

Which varieties, schemes, orbifolds etc are quantum
homogeneous spaces?

Can we use quantum group symmetries to solve
classical problems in geometry, for example the
study of singularities and of their resolutions?

Applications in representation theory?

Lots of interesting analytic questions.
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Some references

Krähmer, Tabiri, The nodal cubic is a quantum
homogeneous space

Kassel, Quantum Groups

Artin, Galois Theory

Weyl, Group Theory and Quantum Mechanics

Paramanov, Symmetries in mathematics

Or if you want to ask me a question later:

ulrich.kraehmer@glasgow.ac.uk
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