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The natural numbers

The starting point of all mathematics is counting, one of our
fundamental intellectual abilities that leads to the definition of
the natural numbers

1, 2, 3, 4, 5, . . .

We denote the set of all these numbers by the symbol N,

N := {1, 2, 3, 4, 5, . . .}

Here := is the symbol we will use when defining something, and
the curly brackets {} are used to denote sets.
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Infinity

The set N of natural numbers is infinite.

Here is a 3000 year old attempt to define what that means:

Definition (Yajurveda)

If you remove a part from infinity or add a part to infinity, still what
remains is infinity.

We will instead now first define what we mean by a finite set
and then all sets that are not finite will simply be called infinite.
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Functions

What does it mean to count the elements in a set?

We could say it means to build a machine in which you input a
number between 1 and n (where n stands for the number of
elements in the set), and the machine outputs the corresponding
element of the set.

More generally and abstractly, we call such a machine that takes
inputs from some set and produces by some fixed rule an output
that is an element of a possibly different set a function.

The sentence “f is a function that maps elements of a set X to
elements of a set Y ” is abbreviated

f : X → Y ,

and we write f (x) for the output assigned to an input x .
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A picture of a function f : X → Y

Here X = {1, 2, 3, 4, 5, 6, 7} and Y is the set of all continents.
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Thus we have for example f (6) = Europe.
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Bijectivity

When counting the elements of a set, each element therein is of
course counted exactly once.

More abstractly, we define:

Definition
A function f : X → Y is bijective if for each element y of Y there
exists a unique element x of X with f (x) = y .

Equivalently, f : X → Y is bijective it there is an inverse
function g : Y → X which maps an element y in Y to the
unique x in X such that f (x) = y , that is, one for which we have

f (g(y)) = y , g(f (x)) = x

for all elements x of X and all elements y of Y .
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Finite and infinite sets

Now we use our new language to formally define:

Definition
A set X is said to have n elements if there exists a bijective function

f : {1, 2, 3, . . . , n} → X .

A nonempty set X for which there is no natural number n such that
X has n elements is called infinite.

The next one is more subtle than you might think:

Definition
One says a set X has as many elements as a set Y (or that they
have the same cardinality) if there is a bijective function f : X → Y .

This makes sense for infinite sets as well!
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Rational numbers

Consider the set Q+ of numbers that can be written as fractions
of two natural numbers,

Q+ :=
{m

n
| m, n are natural numbers

}
.

This notation means take all those things left of the bar | which
are formed using the rules right of the bar.

We will now prove something that might come as a surprise:

Theorem
The set Q+ is countable, that is, has as many elements as N.
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Prime factorisation

Every natural number m has a factorisation into powers of
pairwise different prime numbers p1, . . . , pr :

m = pi1
1 × pi2

2 × · · · × pir
r .

This is unique up to reordering the primes.

Some examples:
24 = 8× 3 = 23 × 3,

180 = 5× 36 = 5× 4× 9 = 22 × 32 × 5,

289835 = 5× 73 × 132.
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Prime factorisation and fractions

Given a fraction
m

n
,

we can write both m, n in their prime factorisations,

m

n
=

pi1
1 × · · · × pir

r

qj1
1 × · · · × qjs

s

.

Note we may assume that none of the primes occurring in the
enumerator occurs in the denominator. For if some prime occurs
in both, we can cancel the fraction until the common prime has
disappeared from either enumerator or denominator.

Example:
8

42
=

4

21
=

22

3× 7
.
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The bijective function

Now consider the function

f : Q+ → N

that maps m
n

expressed as on the previous slide to

f
(m

n

)
:= p2×i1

1 × · · · × p2×ir
r × q2×j1−1

1 × · · · × q2×js−1
s .

We will prove this function is bijective by writing down the
inverse function.

But first two examples:

f
(2

3

)
= 22 × 31 = 4× 3 = 12,

f
(22

49

)
= 22 × 112 × 73 = 4× 121× 343 = 166012.
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The inverse function

Write any natural number n as

n = p2×i1
1 × · · · × p2×ir

r × q2×j1−1
1 × · · · × q2×js−1

s

with the pi ’s and qj ’s mutually different primes. This is just the
prime factorisation of n, ordered in such a way that we first list
those primes that occur with an even exponent.
Now the inverse function g : N→ Q+ of f is given by

g(n) :=
pi1
1 × · · · × pir

r

qj1
1 × · · · × qjs

s

Example:

n = 180 = 5× 36 = 5× 4× 9 = 22 × 32 × 5,

g(180) =
21 × 31

5
=

2× 3

5
=

6

5
.
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Exercises

Which of the following functions are bijective?
1 The function q : N→ N that maps a number n to n2 = n × n.
2 The function p : P → T , where P is the set of all current

Scottish Premier League players and T is the set of all current
teams, and p assigns to a player his team.

3 The function s : Q+ → Q+ that divides every fraction by 17.

For f , g from the lecture, compute g(n) for as many
n = 1, 2, 3, . . . as you wish (maybe up to 10 or 20), and then

g(100) and f
(

44
15

)
.

Prove that the set of all integers Z (natural numbers decorated
with a sign ±) is countable. Is the set of natural numbers
greater or equal to 5 countable?
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The reals

The real numbers R are those that can be written using
decimal expansion as e.g. in

π = 3.141592653589793238462643383279502884197...

I claim the following:

Theorem
R is uncountable, i.e. its cardinality is not equal to that of N.

So R is more infinite than N!
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The proof - I

Assume there is a bijective function f : N→ R that counts all
the real numbers,

f (1), f (2), f (3), ...

Now we define a real number x as follows: x is of the form

0.x1x2x3...

where we choose the n-th digit xn different from the n-th digit
after the decimal dot in f (n), but not equal to 9. For example, if

f (1) = 3.14159...

f (2) = 2.71828...

f (3) = 11.23456,

then x could begin with

0.285...
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The proof - II

By construction, x differs from f (n) in the n-th digit after the
decimal dot. Hence x 6= f (n) for all natural numbers n, and
therefore f is not bijective in contradiction to our assumption.
This proves the theorem.

We have proved here a statement using a strategy known as
reductio ad absurdum - instead of proving directly that a
statement is true one assumes it is not, and then shows this
leads to a contradiction.
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The power set

Let X be any set.

Definition
The power set P(X ) is the set of all subsets of X .

Example: If X = {1, 2, 3}, then P(X ) has 8 elements:

{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}

and the empty set ∅ = {}.
If X has n elements, then P(X ) has 2n elements - encode a
subset E ⊂ X in a number written in binary code using as many
bits as X has elements. The number corresponding to E has the
i -th bit equal to 0 if the i -th element of X is not in E and equal
to 1 otherwise (obviously we have to number the elements of X ).
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Cantor’s theorem

Let X be any set.

Theorem
There is no surjective function f : X → P(X ), that is, no function
such that every element of P(X ) is of the form f (x) for some x.

For finite sets this is obvious as 2n > n for all natural numbers n.
The thrilling bit is that the theorem holds for all sets whatsoever.
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The proof - I

Assume f : X → P(X ) is a function as in the theorem and define
a set that mathematicians would cryptically write as follows:

C := {x ∈ X | x /∈ f (x)}

The symbol ∈ means “is an element of ”, and /∈ means the
opposite. So C contains exactly those elements x of X that are
not elements of the corresponding f (x). Recall, f assigns to x
an element f (x) of the power set, that is, f (x) is a subset of X ,
hence it makes sense to ask whether x is an element of f (x).
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The proof - II

We have assumed f is surjective. So there exists a c ∈ X such
that C = f (c). Hence we can ask: Is c an element of C ?

If it were, then c is an element of f (c) = C . But C was defined
to be the set of those elements x of X with x /∈ f (x), so this
leads to a contradiction.

But the other way round we also get a contradiction! If it were
not, c /∈ C = f (c), then c satisfies the defining condition that
determines the elements of C , so this is also a contradiction.

Hence the whole assumption at the beginning must have been
wrong. The theorem is proven.
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Cantor’s paradox

We have talked a lot about sets. But what is this, a set?

Our intuition says: take any well-defined notion at all, and there
will be the set of all the individual incarnations of that notion.

So how about the set S of all sets? It sounds like a very
philosophical thing, but still like something one can define.

However, every subset of S is a set, hence an element of S .
Therefore we can define a surjective function f : S → P(S) that
maps these to themselves and all other sets to the empty set.

You might think I have just confused you with all these words,
but the following is deadly serious and the naked truth:

Cantor’s paradox
The set of all sets does not exist.
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Axiomatic set theory

More precisely: If we assume we can do with sets the things we
naively assume we can do with them, then there can not be a
set that contains all sets as elements, the sheer concept leads to
unavoidable logical contradictions.

In modern mathematics, one thus begins by admitting that
debating what a set is is beyond mathematics. We simply
assume these beings exist, that they can be elements of each
other or not, and that certain rules called axioms restrict the
use of these words. For example, the axiom of extensionality
says that two sets that have the same elements are the same
sets. Then the whole of mathematics as you know it is
constructed using these axioms.

The fundamental upshot is: Mathematics is not about an
absolute truth, it is a game with players and rules that we have
chosen following our naive intuition.
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Exercises

A function f : X → Y is injective if whenever we have
f (x) = f (y) for two elements x , y of X , then x = y . Show that
for any set X there is an injective function f : X → P(X ).

Show that a function f : X → Y is bijective if and only if it is
injective and surjective.

Which of the functions in the exercises of the first half were
injective? Which ones were surjective?

Russell’s paradox is a variation of Cantor’s paradox that
demonstrates the issues with naive set theory in a slightly
different way: Contemplate the set R of all sets that do not
contain themselves as elements,

R := {X | X /∈ X}

Now ask yourself whether R ∈ R or R /∈ R .
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