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Abstract

We use variational methods to study obstacle problems for geometrically exact (Cosserat)
theories for the planar deformation of nonlinearly elastic rods. These rods can suffer flexure,
extension, and shear. There is a marked difference between the behavior of a shearable
and an unshearable rod. The set of admissible deformations is not convex, because of the
exact geometry used. We first investigate the fundamental question of describing contact
forces, which we necessarily treat as vector-valued Borel measures. Moreover, we introduce
techniques for describing point obstacles. Then we prove existence for a very large class of
problems. Finally, using nonsmooth analysis for handling the obstacle, we show that the
Euler-Lagrange equations are satisfied almost everywhere. These equations provide very
detailed structural information about the contact forces.
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Introduction

Analyses of existence and regularity problems for elastic rods that are constrained by obstacles
were carried out before, but to the best of my knowledge, only for planar deformations on the
basis of the Euler elastica (restricted to small deflections) or its linearization, i.e., for models
where the rod is idealized as a curve and where the obstacles can be described by a graph. In
these cases the set of possible deformations is a closed convex subset in a suitable function space
and the variational approach leads to a variational inequality as necessary solvability condition.
The existence of a solution is in fact easy to show for this situation. Therefore, such authors as
Bertocchi & Degiovanni [11], Degiovanni & Marino [16], Degiovanni & Lancelotti [15], Kučera
[28, 29, 30], Link [32], Miersemann [33, 34], Miersemann & Mittelmann [35], Quittner [40, 41],
Schuricht [43, 42], and Zeidler [45] were mainly interested in the investigation of multiple solu-
tions, bifurcation problems and continuation. There are a few results about the regularity of
such solutions for the linearized model (cf. Frehse [21], Gastaldi & Kinderlehrer [22], Kinder-
lehrer & Stampacchia [27], Lewy & Stampacchia [31]). These are not completely satisfactory,
however, because one only knows that the reactions with the obstacle correspond to measures.
But, roughly speaking, either there is contact on an interval and this fact itself gives all the
information one can get (without special regularity investigations) or there is contact at some
point at which a concentrated contact force acts. But, in general, the models used furnish no
information about the actual direction of the contact forces. Moreover, effects caused by shear-
ing, which are important for contact reactions, have been excluded. In short, the rod models
previously used lack enough structure to give a detailed description of the effect of the obstacle.1

A more suitable model is the Cosserat theory, because it is geometrically exact and it allows
not only flexure but also shear and extension and, furthermore, it involves very general constitu-
tive relations which can describe a very large class of materials (cf. Antman [3]). Even for planar
deformations it has enough structure to describe many aspects in a detailed and satisfactory
way. On the other hand, it still leads to ordinary differential equations and is, therefore, not too
complicated for the analysis. In this paper we study very general planar obstacle problems for

1After finishing this article I still found some unpublished existence and regularity results of Ball concerning

obstacle problems for extensible rods (partially without restriction to small deformations). However, though the

used models are less primitive than the Euler elastica, thickness and shear of the rod are still neglected and there

are no regularity results for more realistic situations (cf. Ball [7]).
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this model by variational methods. This theory is a consistent intrinsically one-dimensionally
theory. For purposes of interpretation, however, we also regard it as being derived from a higher-
dimensional theory. In contrast to the usual obstacle problems studied so far in elasticity, the set
of admissible deformations for Cosserat rods is not convex. The nature of contact reactions can
be quite subtle. To handle them in a physically and mathematically reasonable way, we have to
investigate the foundations of the concept of force and moment with more than usual care. We
verify the existence of a solution for a very large class of obstacle problems. Then we derive the
Euler-Lagrange equations as a necessary condition. These equations are identical with the usual
equilibrium conditions. They provide new and very detailed information about the structure of
solutions of contact problems in elasticity. This information is obtained by a special description
of obstacles and by computing a corresponding generalized gradient with methods of nonsmooth
analysis. In our existence and regularity theory we follow the ideas which are presented in the
book of Antman [3, Chapt. VII] and which are based on Antman [1, 2] and Ball [8].

In Section 1 we introduce the Cosserat theory for planar deformations, following Antman
[3]. However, we have to extend some aspects so that we can handle obstacle problems. In
continuum mechanics it is usually assumed that the forces are either body forces or surface
tractions with integrable densities, where the stresses corresponding to surface tractions can be
described by a constitutive rule. But this is too restrictive for contact problems, because there
can actually arise concentrated contact forces without an integrable density. For this reason
we must introduce forces and couples as vector-valued Borel measures and no longer suppose
that all contact forces acting at a surface are absolutely continuous. This approach coincides
with some general axiomatics introduced by Noll [39] and has the special consequence that we
cannot apply Cauchy’s fundamental theorem about the existence of a stress tensor in general.
Nevertheless, we are able to handle the analysis for general obstacle problems by variational
methods. Another special question, which becomes more interesting by this generalization and
which will be discussed in this paper, is how we can determine the real contact reactions by
means of the constitutive functions at points where concentrations occur. We cannot expect
that at such points where the stress tensor does not exist the reactions can be determined by
the strains at this point only.

Section 2 is devoted to the question of the formulation of obstacle problems. In contrast
to previous investigations where the rod is idealized as a curve, we consider the rod as a two-
dimensional body in the plane. First we discuss the normally used model where it is assumed
that the elastic body can deform within the closure of the complement of the obstacle. Then we
introduce a new and more sophisticated approach which can also describe point obstacles, e.g.
To justify this formulation we must show that the deformations under consideration correspond
to open mappings. That we can verify the existence of a solution, corresponding to a minimizer
of the energy, with the Weierstrass Theorem, we need that the set of admissible deformations
is weakly closed in a suitable function space. Usually one exploits the fact that a closed convex
set is weakly closed. But this argument does not work in our situation, because the admissible
set is not convex even if the rod can only deform within a convex set in the plane. However, the
weak closedness can be verified relatively easy directly for the standard model. For the more
general model we have to impose the natural additional assumption that the stored energy goes
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to infinity under total compression.
The minimization of the energy of the rod, subject to constraints describing obstacles, bound-

ary conditions, and orientation preservation, is studied in Section 3. We impose usual growth
conditions to the stored energy for coercivity and apply the Weierstrass Theorem. However, a
sophisticated argument is necessary for the more general obstacle model. In this way we get
the existence of minimizers for a very large class of external forces, boundary conditions and
obstacles. Finally we point out that we lose some information about the growth of the stored
energy if we describe the rod by coordinates with respect to axis which are fixed in the plane,
i.e., we obtain existence of minimizers only in a larger space in general.

In Section 4 we formulate and discuss the Euler-Lagrange equations for a very general class
of obstacle problems. In the case without obstacles it is standard to derive the Euler-Lagrange
equations, which coincide with the equilibrium conditions and, hence, finally justify the vari-
ational approach. This step has frequently been omitted for obstacle problems, the analysis
terminating with the derivation of a variational inequality and containing no further informa-
tion on regularity. At first glance, our problem seems to be even worse than those for more
primitive models, since even those obstacles that confine the rod to a convex set in Euclidean
space do not correspond to a convex set of admissible deformations in a suitable function space.
Therefore the formulation of a reasonable variational inequality is not possible in the usual way.
However, we choose a different approach and describe the obstacle by an inequality side con-
dition with a locally Lipschitz continuous functional which contains very detailed information
about the obstacle. Then we apply the nonsmooth Lagrange Multiplier Rule of Clarke’s calcu-
lus of generalized gradients and obtain, in a first step, a variational equation which is in fact
equivalent to an abstract variational inequality. But we then determine the exact structure of
the gradient corresponding to the obstacle and finally obtain the Euler-Lagrange equations by
usual arguments. Since these equations coincide with the equilibrium conditions for the rod, we
obtain that the minimizers of our variational problem are solutions of a corresponding obstacle
problem. Moreover, we get a very obvious description of the contact forces which correspond
to a vector-valued Borel measure supported on the contact set and directed, roughly speaking,
normal to the boundary of the obstacle, i.e., we in fact get the usual condition for frictionless
contact, that the tangential components of the traction vanish at contact points, as a regularity
result. However, since we need some regularity for the side conditions in order to get normality
in the Lagrange Multiplier Rule, we need some restrictions for the obstacle and the boundary
conditions. We cannot handle the case where, e.g., the position of a material point is prescribed
on the boundary of the obstacle, i.e., we encounter difficulties which also arise in the simple
linearized model (cf. Kinderlehrer & Stampacchia [27, Chapt. IV,VII], Lewy & Stampacchia
[31]). Furthermore, we have to restrict our attention to obstacles that can be described by the
standard model (i.e., without point obstacles) and such that the reactions are not dominated
by the constraints as, e.g., if the rod is rigidly clamped by the obstacle. A special difficulty is
provided by the orientation-preserving condition: The minimizers of Section 3 are found within
a class which allows total compression on a set with positive measure. The stored energy has bad
differentiability properties on this class. By modifying the method used by Antman [3, Chapter
VII] for problems without obstacles, we can overcome these difficulties and finally obtain that
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the solutions even satisfy the stronger orientation-preserving condition.
Section 5 presents a short introduction to Clarke’s calculus of generalized gradients and pro-

vides the tools we need for our analysis. In particular, we show how to compute the generalized
gradients for the functional describing the obstacle. Finally the proof that the Euler-Lagrange
equations are fulfilled is given in Section 6 in several steps.

For the mathematical analysis of obstacle problems which are not restricted to rods we refer
the reader to Hlaváček, Haslinger, Nečas & Lov́ı̌sek [26], Ciarlet & Nečas [12], Fichera [20], Do
[18].

I am greatly indebted to Stuart Antman for encouraging my studies in obstacle problems
for the Cosserat theory and for many interesting and helpful discussions, especially during my
one-year stay in College Park.

Notation. We denote by cl A, int A, ∂A and Ac the closure, the interior, the boundary
and the complement of the set A. If X is a Banach space, then X∗ stands for its dual space and
〈·, ·〉 for the duality form on X∗ ×X. The scalar product on Rn is expressed by a · b.

1 Rod theory

In this section we formulate an extended version of the special Cosserat theory of rods which
describes planar deformations of nonlinearly elastic rods which can bend, stretch and shear. To
handle the general forces arising in obstacle problems, we have to extend some aspects of the
model introduced by Antman [3], which was derived both as an intrinsic one-dimensional model,
and exactly from three-dimensional elasticity by the imposition of a simple material constraint.

The main point is that in standard continuum mechanics the forces are supposed to be
the sum of contact and body forces with integrable densities (cf. Antman [3], Gurtin [23],
Truesdell [44], Zeidler [47]). This is however too restrictive for obstacle problems, because for
them concentrated forces can occur. Thus we have to use a more general notion for forces. Such
concentrated forces cause discontinuities in the surface traction and, consequently, Cauchy’s
fundamental theorem on the existence of a stress tensor cannot be applied. On the other
hand, we cannot expect the existence of a stress tensor at points where the surface traction
has a discontinuity. Respecting a usual constitutive rule, a discontinuity in the surface traction
should correspond to a discontinuity in the strain. In this connection the next question is
how we can determine the resultant reaction at a surface, where no stress tensor exists, by the
strains through the constitutive functions. We see that obstacle problems raise many questions
touching the foundations of classical continuum mechanics. However, we do not need to study
these difficulties in all detail for our variational approach to obstacle problems for rods. We
merely discuss those aspects that finally can be justified by our results.

To get an appropriate formulation for obstacle problems for rods, we have to focus on the
geometry of the rod and the location where the reactions take place more carefully than usual.
Therefore modelling questions have to be studied first in a very detailed way from a higher-
dimensional point of view. For simplicity of representation we restrict such questions to a
planar setting and give a short explanation how to extend them to the three-dimensional case.
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In this way we present a consistent one-dimensional model which allows a geometrically exact
interpretation in a two- or three-dimensional setting.

1.1 Geometry of deformation

Let {i, j,k} be a fixed right-handed orthonormal basis in R3. We consider a slender three-
dimensional body B that is symmetric with respect to the {i, j}-plane and we restrict our studies
to deformations that preserve this symmetry. (Alternatively, we may regard B as a very long
cylindrical body with generators parallel to k. This is called the plain-strain problem.)

Let us identify the deformed body B with the region occupied by its intersection with the
{i, j}-plane. We assume that the position p of the deformed material points can be given in the
form

p(s, ζ) = r(s) + ζb(s) for (s, ζ) ∈ Ω, where (1.1)

Ω := {(s, ζ) ∈ R2 : s ∈ [0, L], ζ ∈ [h1(s), h2(s)]}. (1.2)

Here r(·) describes the deformed configuration of some material curve in the body B, the so-
called base curve (e.g., the curve of centroids or a suitable boundary curve), and b(s) is a unit
vector, called the director at s, describing the orientation of the cross-section at s. We interpret
s as length parameter and ζ as thickness parameter and suppose h1 and h2 to be given bounded
real functions on [0, L] with

h1(s) ≤ 0 ≤ h2(s) for all s ∈ [0, L]. (1.3)

This condition ensures that the base curve belongs to the rod and excludes reversed orientation
along this curve. Moreover, h1 and −h2 be lower-semicontinuous that Ω is closed.

The previous considerations show that we can describe a planar configuration of a rod by a
pair of vector-valued functions

s 7→ r(s), b(s) ∈ span {i, j}, s ∈ [0, L] (1.4)

which we suppose to be absolutely continuous. The continuity ensures that the rod does not
fracture. This setting gives us a one-dimensional model in the mathematical sense. In the
following we sometimes argue, for the purpose of motivation and interpretation, from a higher-
dimensional point of view. The reader should however observe, that we develop a consistent
one-dimensional theory.

Let us set a := −k× b and let us denote by θ the angle measured counter-clockwise from i
to a. Then

a = cos θ i + sin θ j, b = − sin θ i + cos θ j. (1.5)

Thus a configuration can be alternatively described by r and θ. Observe that the absolute
continuity of b(·) implies the absolute continuity of θ(·) (with the obvious choice of branch of θ

modulo 2π).
Since {a,b} is a natural basis for the description of deformations of the rod, we decompose

vector-valued functions with respect to it. We set

r′ = νa + ηb, µ := θ′. (1.6)
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By the absolute continuity of r and θ, the derivatives are defined almost everywhere on [0, L].
The question of further regularity will be a subject of our investigation.

We call the functions
ν, η, µ (1.7)

the strains of the configuration (1.4). For the natural undeformed state of the rod, which we take
to call the reference configuration, we identify all variables by a superposed circle and assume
that

◦
ν = 1,

◦
η = 0, i.e.,

◦
r ′ =

◦
a . (1.8)

This means that the cross-sections are orthogonal to the base curve and that s is the arc
length of the base curve in the reference configuration. An originally straight rod is obviously
characterized by

◦
µ= 0.

The requirement that the deformations be locally orientation-preserving can be expressed
by the condition that

det
(

∂p(s, ζ)
∂(s, ζ)

)
= ν(s)− ζµ(s) > 0 for all (s, ζ) ∈ Ω (1.9)

(cf. Antman [3, Chapter IV]). This can be written equivalently by the one-dimensional inequality

ν(s) > V (µ(s), s) for s ∈ [0, L], where V (µ, s) :=
{

h2(s)µ for µ ≥ 0,

h1(s)µ for µ ≤ 0.
(1.10)

Observe that V is a convex function in µ.
Note. In analogy to our planar setting let us consider a three-dimensional rod whith a constrained position

field p of the form

p(s, ζ1, ζ2) = r(s) + ζ1b(s) + ζ2k for (s, ζ1, ζ2) ∈ Ω̃, (1.11)

where Ω̃ := {(s, ζ1, ζ2) : s ∈ [0, L], (ζ1, ζ2) ∈ A(s)} and A(s) are parameter sets for the cross-sections at s, which

are symmetric with respect to ζ2 = 0. The corresponding condition for orientation preservation is equivalent to

(1.10) if, e.g.,

(s, ζ1, ζ2) ∈ Ω̃ implies that (s, ζ1, 0) ∈ Ω̃ (1.12)

(cf. Antman & Marlow [5, 6]). This means that our (one-dimensional) theory allows a geometrically exact three-

dimensional interpretation in this case. We shall use (1.12) below again to justify our planar setting for obstacle

problems.

For given integrable functions ν(·), η(·), µ(·), r0 ∈ R2, and θ0 ∈ R, we can represent a
configuration by

r(s) = r0 +
∫ s

0
(νa + ηb) dt,

= r0 +
∫ s

0

[
(ν cos θ − η sin θ)i + (ν sin θ + η cos θ)j

]
dt, (1.13)

θ(s) = θ0 +
∫ s

0
µ dt. (1.14)

We introduce cartesian coordinate functions x, y by

r = x i + y j, (1.15)

so that
ν = r′ · a = x′ cos θ + y′ sin θ, η = r′ · b = −x′ sin θ + y′ cos θ, µ = θ′. (1.16)
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It is easy to see from these transformations that one can formulate a rod problem either in terms
of the strains (ν, η, µ), which we call the intrinsic formulation, or by means of the functions
(x, y, θ), which we call the extrinsic formulation. While the intrinsic formulation is natural for
describing the mechanical response of the rod, the extrinsic formulation seems to be convenient
for the description of fixed obstacles in the {i, j}-plane. We shall discuss the differences in the
analysis for these two apparently equivalent formulations in this paper. As we shall see, the
extrinsic formulation gives a less effective existence theory and is inapplicable for the regularity
theory. Therefore we shall mainly work with the intrinsic formulation.

1.2 Forces and equilibrium conditions

As already mentioned, only body and contact forces with integrable densities are considered
in usual continuum mechanics, since this restriction is essential for the developed analysis, in
particular for the existence of a stress tensor (cf. Antman [3], Gurtin [23], Gurtin & Martins
[24], Noll [37, 39], Truesdell [44], Zeidler [47], Ziemer [49]). Obstacle problems, however, do not
fit in this setting, because concentrated forces can occur. Therefore we need a more general
approach for such problems.

Since a force can only be observed by the interaction between bodies, there is no physical
evidence for a force to have an integrable density. It is rather reasonable to describe a force by
a vector-valued mapping

(P1,P2) 7→ f(P1,P2) (1.17)

which assigns the resultant force exerted from a body P2 to a body P1 to suitable pairs (P1,P2).
We impose the natural condition that f is additive in each component corresponding to disjoint
decompositions. From special interest are the values of f for pairs (P,Pc), i.e., the resultant
force exerted to a body P by its environment Pc. Without danger of confusion we set

f(P) := f(P,Pc). (1.18)

From the mathematical point of view it is reasonable to assume that P 7→ f(P) is a vector-valued
measure on a suitable class of bodies and subbodies P.

Analogously we introduce a couple (which is a pure torque) as a vector-valued measure

(P1,P2) 7→ l(P1,P2). (1.19)

The force f and the couple l are called balanced if

f(P) = 0 and l(P) = 0 (1.20)

for all bodies and subbodies P, i.e., the physical system is in equilibrium.
In continuum mechanics we decompose the reactions f and l into a contact reaction, which

is exerted from the material of a body to the material of a neighbor body through a common
surface, and other external reactions. In the standard theory it is assumed that all forces acting
at a surface are contact forces with an integrable density and that all external forces are body
forces with an integrable density. Furthermore, couples are excluded. But, this is too restrictive
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for obstacle problems. Here we have to handle surface forces which are external and can even
have concentrations.

Note. The previous discussion is a little sloppy in some aspects, since we do not need these things in all

detail for our analysis. Let us however give some further discussion for the interested reader.

A very sophisticated question is to define a reasonable class of bodies and subbodies. We can ask whether a

body is an open or closed set. The fundamental difficulty here is to handle common surfaces of different bodies.

From the mathematical point of view, we have to say to which part we take a common surface if we cut a body

into two pieces. Noll proposed the class of bodies and subbodies to be a Boolean Algebra where the only known

reasonable example for continuum mechanics is, roughly speaking, the class of regularly open sets, i.e., sets with

int cl P = P (cf. Noll [38, 39] and, for a more general approach using geometric measure theory, cf. Gurtin,

Williams & Ziemer [25]). This problem of bodies and subbodies is also connected with the formulation of obstacle

problems, because we have to say which points a body can occupy when its deformation is restricted by another

body, e.g., by a rigid obstacle. We discuss this question a little more in Section 2.

Forces are introduced by Noll by some general axioms which roughly express the properties mentioned above

(cf. Noll [37, 39]). Since the analysis in continuum mechanics is mainly based on the existence of a stress

tensor, forces are usually restricted to body and contact forces with integrable densities such that Cauchy’s

famous theorem is applicable. It is still open to formulate a theory which can handle more general forces which

really occur in contact problems and where concentrated forces can cause discontinuities in the traction and in

the strains. In such cases also the determination of resultant forces exerted through a surface by means of a

constitutive function must be investigate with more care.

We do not intend to adopt the full axiomatic treatment of Noll for subbodies and forces in our investigations

and it is not necessary to have a rigorous three-dimensional theory allowing such general reactions for our analysis.

However, we have to invoke some of these aspects in our rod model. Following the previous ideas and some

argumentation in Antman & Lanza [4], we present an extended analysis for the Cosserat theory of nonlinearly

elastic rods which can handle more general forces and couples than is usual. In contrast to standard continuum

mechanics we do not distinguish a-priori between body and contact forces. We rather select, under all forces

acting at some body, the surface traction exerted by the material of a neighbor body through a common surface

as a special force. We, however, do not assume that this traction is identical with all forces acting at this

surface. Analogously we proceed with couples. This way we are finally able to describe all effects arising in

obstacle problems in a physically satisfactory sense. A special advantage of our setting is that a very large class of

external forces like boundary forces, weight, surface traction and any concentrations can be handled by one simple

expression during all computations. Some consequences of this more general approach related to the constitutive

functions are discussed in Section 1.3. Let us finally mention that we present a mathematically exact approach

sufficient for our purposes without emphasizing modelling questions too much. But our results can possibly give

some hints for a general rigorous modelling.

In our investigations we identify a subbody of the rod with the corresponding subset of Ω. It
is reasonable that we take at least all sets relatively open with respect to Ω as subbodies. Since
we intend to define measures on the class of subbodies, we have to choose all Borel sets in Ω as
subbodies. Of special interest for the rod model are subbodies of the form

ΩI := {(τ, ζ) ∈ Ω : τ ∈ I} for I ⊂ [0, L], Ωs := Ω[s,L] (1.21)

where the I’s as Borel sets.
For a given configuration, the material of Ω[s,L] exerts across section s a resultant force n(s)

and a resultant couple m(s) on the material of Ω[0,s). Naturally we have

n(0) = 0 and m(0) = 0. (1.22)

Let us mention that n and m can also be introduced as measures over subbodies of the form
(1.21) and that the mappings s 7→ n(s),m(s) then are distributions of these measures with
respect to the arc length s.
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Note. Let n(Ω̆) denote the resultant force exerted by the material of Ω̆c through the common surface on

the material of Ω̆ where Ω̆ ⊂ Ω are Borel sets. According to our previous discussion, n is assumed to be a

vector-valued Borel measure.

Since the position field of the rod has the form given in (1.1), it is sufficient to consider material reactions for

subbodies of the form ΩI . With I 7→ n(ΩI) we have a Borel measure on [0, L] which is uniquely determined by

one of its distribution functions

s 7→ n<(s) := n(Ω[0,s)) or s 7→ n≤(s) := n(Ω[0,s]) (1.23)

combined with the natural condition n<(0) = 0 or n≤(L) = 0, respectively. For our theory we have chosen

n(s) := n<(s). Observe that n<(s) and n≤(s) differ when a concentrated force acts at section s. Analogously we

can introduce the resultant couple.

Let us mention that the equivalence between measure and distribution function is very useful for the experi-

mental determination of n. While the practical determination of n(ΩI) is impossible for complicated Borel sets

I, this can be done for subintervals I ⊂ [0, L] which is sufficient for the distribution function.

We suppose that all other forces acting at the body, i.e., forces other than n, can be described
by a finite vector-valued Borel measure

P 7→ f(P) (1.24)

assigning the resultant force to subbodies P ⊂ Ω. f is said to be the external force. Let us recall
that the components of f are finite signed Borel measures (cf. Evans & Gariepy [19], Dinculeanu
[17]).

The external force causes the induced couple of f

lf(P) :=
∫
P

(
p(s, ζ)− r(s)

)
× df(s, ζ) =

∫
P

ζb(s)× df(s, ζ) (1.25)

(recall (1.1)). Observe that, in contrast to the force n, it is really important to know the
distribution of f on the whole body and not only along the base curve, because it makes obviously
a difference for lf whether, e.g., a force is acting at the top curve or at the bottom curve of the
rod.

We now analogously suppose that all couples wich are different from m and lf can be given
by a finite vector-valued Borel measure

P 7→ l(P) (1.26)

which we call external couple.
In general, f and l can still depend on the configuration of the rod, on the time, on the motion

and also on the history of the deformation. We however restrict our attention to stationary
problems in this paper. Moreover we assume for our planar model that all forces take values in
the {i, j}-plane and that all torques and couples are orthogonal to this plane. Observe that this
is fulfilled by the induced couple lf if the external force f meets this condition.

Note. For a three-dimensional rod, which can be represented as in (1.11) and which should suffer only planar

deformations, it is reasonable to assume that the external force f takes values in the {i, j}-plane only and that f

is even with respect to σ. This in particular implies the orthogonality of lf to the {i, j}-plane and justifies our

assumption.

According to (1.20), the rod is in equilibrium if the resultant force and the resultant torque
about the origin vanish for each subbody. However, for our special model, we can restrict
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our attention to subbodies of the form ΩI . Since a measure is uniquely determined by its
distribution, it is sufficient to have the following balance of forces and moments, where we use
the notation z = (τ, ζ):

n(s)− f(Ωs) = n(s)−
∫

Ωs

df(z) = 0 for s ∈ [0, L], (1.27)

m(s) + r(s)× n(s)−
∫

Ωs

p(z)× df(z)−
∫

Ωs

dl(z) = 0 for s ∈ [0, L]. (1.28)

Observe that (1.22) tells us that the resultant external force and the resultant moment of all
external actions vanish for the whole body in equilibrium.

Let us still transform equation (1.28). It can be rewritten as

m(s) + r(s)× n(s)−
∫

Ωs

(
p(z)− r(τ)

)
× df(z)−

∫
Ωs

r(τ)× df(z)−
∫

Ωs

dl(z) = 0. (1.29)

Using Fubini’s Theorem and (1.27), we obtain a special form of partial integration for the fourth
term: ∫

Ωs

r(τ)× df(z) =
∫

Ωs

[
r(s) +

∫ τ

s
r′(ξ) dξ

]
× df(z)

= r(s)×
∫

Ωs

df(z) +
∫ L

s

[
r′(ξ)×

∫
Ωξ

df(z)
]

dξ

= r(s)× n(s) +
∫ L

s
r′(ξ)× n(ξ) dξ. (1.30)

Let us set

f(s) :=
∫

Ωs

df(z), l(s) :=
∫

Ωs

dl(z), (1.31)

lf (s) :=
∫

Ωs

dlf(z) =
∫

Ωs

ζb(τ)× df(τ, ζ). (1.32)

For the last relation recall (1.25). We can now reformulate (1.27) and (1.28) and obtain the
integral form of the equilibrium conditions

n(s) − f(s) = 0 for s ∈ [0, L], (1.33)

m(s) −
∫ L

s
r′(τ)× n(τ) dτ − lf (s) − l(s) = 0 for s ∈ [0, L]. (1.34)

Let us mention that, from the point of view of a one-dimensional model, f , l and lf are
given functions where the induced couple lf can still depend on b(·) or, alternatively, on θ(·)
(cf. Example 1.57). Inspired by the interpretation of f , l and lf as distributions of measures
describing certain forces and couples it is reasonable to assume that f , l and lf are BV -functions
(functions of bounded variation). Observe in this connection the continuity of b for absolutely
continuous strains. Furthermore, we can suppose a linear dependence of lf on b.

If the measures f, lf and l have integrable densities such that

f(s) =
∫ L

s
f̄(τ) dτ, lf (s) =

∫ L

s
l̄f (τ) dτ, l(s) =

∫ L

s
l̄(τ) dτ, (1.35)
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then we get the classical differential form of the equations of equilibrium

n′ + f̄ = 0 a.e. on [0, L], (1.36)

m′ + r′ × n + l̄f + l̄ = 0 a.e. on [0, L]. (1.37)

We introduce the component functions s 7→ N(s), H(s), M(s), the so-called stress resultants
of the problem, by

n = N a + H b, m = M k. (1.38)

1.3 Constitutive functions

We call a material elastic if there are constitutive functions N̂ , Ĥ, M̂ such that the stress
resultants are determined by the strains through

N = N̂(ν, η, µ, s), H = Ĥ(ν, η, µ, s), M = M̂(ν, η, µ, s). (1.39)

The domain of these functions is restricted obviously by (1.10). We assume that N̂ , Ĥ, M̂ are
smooth with respect to (ν, η, µ) and that N̂ν N̂η N̂µ

Ĥν Ĥη Ĥµ

M̂ν M̂η M̂µ

 is positive-definite, (1.40)

N̂(ν, η, µ, s) →
{

+∞
−∞

}
as ν →

{
+∞

V (µ, s)

}
, (1.41)

Ĥ(ν, η, µ, s) → ±∞ as η → ±∞, (1.42)

M̂(ν, η, µ, s) → ±∞ as µ approaches its positive and negative (1.43)

extremes of the region (1.10).

Furthermore, we require the mild symmetry condition

N̂(ν, ·, µ, s), M̂(ν, ·, µ, s) are even, Ĥ(ν, ·, µ, s) is odd. (1.44)

Condition (1.40) is a rod-theoretic version of the Strong Ellipticity Condition and implies that
N̂ is an increasing function of ν, Ĥ is increasing with η, and M̂ increases with µ.

In view of (1.13), (1.14), a configuration is determined to within a rigid displacement by a
triple of integrable strains ν(·), η(·), µ(·). Using the constitutive relations (1.39) we can define
integrable functions s 7→ Ň(s), Ȟ(s), M̌(s) by

Ň(s) := N̂(ν(s), η(s), µ(s), s), etc. (1.45)

In this way we obtain the stress resultants and, simultaneously, the resultant reactions n(s),
m(s) at the cross-section s. Clearly the shape of a configuration is not influenced by a change
of the strains on a set of measure zero. However, the constitutive functions give different stress
resultants by such a change according to formula (1.45). Therefore at best they can provide the
correct resultant reactions at cross-section s almost everywhere. This aspect is interesting from
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the physical point of view an will be discussed a little more in the following note. But it does
not influence our analysis.

Note. From the previous discussion, the question arises of how to get the real resultant reactions at every

cross-section for an equilibrium configuration. In the case where the measures f, lf and l have integrable densities,

the equilibrium equations (1.36) and (1.37) imply that the real stress resultants must be continuous. Since in this

case each triple of stress resultants (Ň , Ȟ, M̌) provided through the constitutive functions by the strains (ν, η, µ)

as in (1.45) coincides with the real continuous stress resultants almost everywhere, the continuous representative

can be selected by the following limit of the average

N(s) = lim
ε→0

−
Z

[s−ε,s+ε]

Ň(τ)dτ, etc., (1.46)

because the average is not influenced by a change on a null set. In previous investigations of problems without

obstacles the forces are usually assumed to have integrable densities and one in fact tacitly assumes that the right

continuous representative for the stress resultants is chosen.

Let us now study the more interesting case of equilibria subject to general external forces f and external

couples l, which are measures. In this case the distribution functions f(·), l(·), lf (·) are BV -functions. More-

over, they are continuous from the left and the limit from the right exists at every point (cf. Benedetto [10,

pp. 121,123,187]). Hence the equilibrium conditions (1.33) and (1.34) imply the same properties for the stress

resultants N(·), H(·), M(·). We can now argue as above. Unfortunately the method from (1.46) does not work in

this case. However, by the continuity from the left, the real stress resultants can be found by

N(s) = lim
ε→0

−
Z

[s−ε,s]

Ň(τ)dτ, etc. (1.47)

Alternatively, the limit of the average in (1.47) can be replaced by the approximate limit from the left (cf. Evans

& Gariepy [19]). If we put the procedure from (1.47) into the definition of the constitutive functions, then they

still respect the Principle of Determinism of Noll [36] (also called Principle of Local Action in Truesdell [44, p.

201]) and we avoid all difficulties. In the following we can tacitly assume that (1.47) is incorperated with (1.39).

For a large class of materials the matrix in (1.40) is symmetric (cf. Antman [3]). In this
case the material is called hyperelastic and there exists a real-valued function W of (ν, η, µ, s),
the so-called stored energy function, such that

N̂ = Wν , Ĥ = Wη, M̂ = Wµ. (1.48)

Since we use variational methods, we restrict our attention to hyperelastic materials. The total
stored energy of the rod is the functional

Es(ν, η, µ) =
∫ L

0
W (ν(s), η(s), µ(s), s) ds. (1.49)

Observe that Es is not influenced by a change of the strains on a null-set, i.e., Es is uniquely
determined for a given configuration.

Our variational approach begins with the existence of the stored energy function W . It
delivers Euler-Lagrange equations that are equivalent to the integral form of the equilibrium
conditions (1.33) and (1.34) almost everywhere on [0, L] by means of the constitutive equations
(1.48). In this way we finally justify our rod theory.

In the following we suppose that there are no prescribed external couples l and, for simplicity,
that the prescribed external force f only depends on the coordinates z = (s, ζ) and not on the
configuration p(·). Then this force is conservative and has the potential energy

Ep(p) := −
∫

Ω
p(z) · df(z) = −

∫
Ω

(
r(s) + ζb(s)

)
· df(z). (1.50)

13



Note. By our assumption that f is perpendicular to k we get the same expression for the potential energy if

we use the three-dimensional setting from (1.11).

Our analysis is applicable to more general conservative forces. The main difference would be
to find suitable growth conditions for the existence result in Section 3 (cf. Antman [3, Chapter
VII]). We omit such special technical questions, because they obscue our main goal of treating
difficulties associated with contact.

1.4 Special forces

In order to demonstrate the response of different external forces, we compute f(s) and lf (s) for some examples.

Though the two-dimensional setting from (1.1) would be sufficient for our analysis, we argue from the three-

dimensional point of view based on formula (1.11), because this is preferable in the light of applications. Recall

that A(s) denotes the cross-section of the three-dimensional rod at s, and we define Ω̃s in analogy to (1.21).

Instead of (1.31) and (1.32) we then have

f(s) :=

Z
Ω̃s

df(τ, ζ1, ζ2), lf (s) :=

Z
Ω̃s

„
ζ1b(τ) + ζ2k

«
× df(τ, ζ1, ζ2). (1.51)

Let us mention that f(s) and lf (s), determined in (1.51) by three-dimensional arguments, are appropriate one-

dimensional entries for our theory.

Example 1.52 (Terminal loads) .

(a) First we assume that we have a terminal load caused by a uniformly distributed contact force f̃ on the

cross-section A(0). This situation can be met if the end of the rod is welded to a rigid body. We readily get

f(s) =

(
m0 f̃ for s = 0,

0 for s > 0,
where m0 :=

Z
A(0)

dζ1 dζ2, (1.53)

lf (s) =

(
m1b(0)× f̃ for s = 0,

0 for s > 0,
where m1 :=

Z
A(0)

ζ1 dζ1 dζ2 . (1.54)

The concentrated couple at s = 0 vanishes if m1 = 0, i.e., if r(0) is the centroid of the cross-section A(0).

(b) Let us now assume that there is a terminal force f̆ that only acts at the point p(0, h0, 0). Thus

f(s) =

(
f̆ for s = 0,

0 for s > 0,
(1.55)

lf (s) =

(
h0b(0)× f̆ for s = 0,

0 for s > 0,
(1.56)

Here the concentrated couple at s = 0 vanishes if the force f̆ acts at the base curve, i.e., at the point r(0).

Example 1.57 (Weight) We assume that the rod has an integrable mass densitiy %(τ, ζ1, ζ2) > 0 which is even

in ζ2. Let g be the acceleration of gravity and let j point upward. Then

f(s) =

Z
Ω̃s

−g%(z) j dz = −g j

Z L

s

Z
A(τ)

%(τ, ζ1, ζ2) dζ1 dζ2 dτ

= −j

Z L

s

%0(τ) dτ with %0(τ) := g

Z
A(τ)

%(τ, ζ1, ζ2) dζ1 dζ2, (1.58)

lf (s) =

Z
Ω̃s

„
ζ1b(τ) + ζ2k

«
×

„
−g%(z) j

«
dz

= g j×
Z L

s

b(τ)

»Z
A(τ)

ζ1%(τ, ζ1, ζ2) dζ1 dζ2

–
dτ

= k

Z L

s

%1(τ) sin(θ(τ)) dτ with %1(τ) := g

Z
A(τ)

ζ1%(τ, ζ1, ζ2) dζ1 dζ2. (1.59)
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Hence, the distributions f , lf have the integrable densities

f̄(τ) = −%0(τ) j, l̄f (τ) = %1(τ) sin(θ(τ)) k. (1.60)

For the special case where %(·) is constant and r(·) is a curve of centroids, we get lf = 0.

Example 1.61 (Hydrostatic pressure) Though we do not study such cases, we finally give an example of a

force depending on the configuration of the body (cf. Antman [3, Chapter VII]). For simplicity of representation

we argue in a two-dimensional setting in this case. Assume that the hydrostatic pressure acts along the bottom

curve of the rod which we also take as base curve, i.e., h1(s) = 0 on [0, L]. If % is the pressure, then we can

describe the corresponding force by the line density f̄ := %k× r′ and obtain

f(s) = %

Z L

s

k× r′(τ) dτ. (1.62)

Since the force acts only at the base curve, the corresponding couple lf (s) vanishes everywhere.

In addition to these examples, we study general contact forces in Section 4 below.

2 Obstacle problems

We now give a mathematical description of obstacles for the deformation of elastic rods. We
study two slightly different methods. While the first follows the intuitively preferred standard
procedure, the second seems to be a little artificial at the first sight. It is, however, a more
sophisticated and powerful version. In contrast to the first method, the second can handle point
obstacles.

To formulate obstacle or contact problems exact, we are faced with difficulties like those
that arise in defining subbodies. The question which points in the space can be occupied by a
body is a little sophisticated in the case where two bodies are in contact, because we cannot
assign the common boundary points uniquely to a body. In the axiomatics for subbodies of Noll
this problem plays an important role (cf. Noll [38, 39]). Since we do not claim to adopt these
axiomatics in full generality, let us briefly discuss this point more intuitively, which is sufficient
for our purposes. Observe that an obstacle can be considered as fixed rigid body.

We start with the nice case in which the bodies are closures of open sets, i.e., where we
assume a natural “thickness” for bodies. Here we can demand that the interior of one body not
be penetrated by another body. In this way we obtain a correct modelling if, roughly speaking,
the topological structure of all bodies is preserved during deformations. For the formulation of
an obstacle problem it is therefore sufficient in this case to restrict the deformable body to the
complement of the interior of the obstacle or, equivalently, to the closure of the complement of
the obstacle. This is the method used in the literature for contact problems. We shall use it for
a first variant of obstacle problems.

We can also consider “thin” bodies such as points and curves. This provides serious difficul-
ties for a reasonable mathematical formulation. The previous method from “thick” bodies can
be transferred in an obvious way only to the case in which there is at most one “thin” obstacle.
For the contact between two “thin” bodies it does not work. To overcome this difficulty par-
tially, we could “fatten” such bodies at least in certain directions. On the other hand we could
argue that bodies are always “thick” in the real world. But it seems convenient, especially for

15



qualitative investigations, to idealize, e.g., very thin obstacles as lower-dimensional objects. We
do not claim to study this modelling question in full generality. We shall, however, present a
formulation for obstacle problems, corresponding to the Cosserat theory, which can handle any
closed set as obstacle.

Since our investigations are restricted to planar deformations of rods, we restrict our attention
to obstacle problems that are reasonable in such a setting.

Note. In the plain-strain problem, where we regard also the obstacle as an infinitely long cylindrical body

with generators parallel to k, our planar setting is very natural and geometrically exact. Obstacle problems for

slender three-dimensional rods, whith a position field p constrained as in (1.11), can be formulated reasonably in

a planar setting if, e.g., we assume that also the obstacle is symmetric about the {i, j}-plane, that the rod satisfies

(1.12), and that the obstacle meets a condition analogous to (1.12).

Let X denote a space of vector-valued functions s 7→ u(s) which uniquely determine config-
urations (e.g., u = (r,b) or u = (ν, η, µ, r0, θ0) or u = (x, y, θ)). Hence we can express p(s, ζ)
in terms of u, which we indicate by

p(s, ζ) = p[u](s, ζ) for (s, ζ) ∈ Ω. (2.1)

Later we specify the space X.
For our purposes we define an obstacle O as a closed subset of R2 with Oc 6= ∅. In a first

variant we assume that the rod can occupy the points of cl(Oc).

Variant 1. We define the set of admissible configurations with respect to the obstacle O by

A1 := {u ∈ X : p[u](s, ζ) ∈ clOc for all (s, ζ) ∈ Ω}. (2.2)

It is easy to see that this variant only works if

Oc = int ( clOc ). (2.3)

Obviously this relation is not fulfilled if the obstacle O contains isolated points or curves,
i.e., if we have a “thin” obstacle. For this reason we consider a second variant which is only
slightly changed compared with the previous one. However, it is more powerful, but it needs
some deeper justification.

Variant 2. We define the set of admissible configurations with respect to the obstacle O by

A2 := {u ∈ X : p[u](s, ζ) ∈ Oc for all (s, ζ) ∈ int Ω}. (2.4)

Following the ideas mentioned above, we demand in this second variant that inner points of
the rod remain in the complement of the closed obstacle. That we do not get physical nonsense
in this case, we have to ensure that (s, ζ) 7→ p[u](s, ζ) is an open mapping on intΩ for all
admissible deformations. We justify this version by

Lemma 2.5 If u ∈ X defines a configuration that satifies the orientation-preserving condition
(1.10), then (s, ζ) 7→ p[u](s, ζ) is an open mapping on int Ω, i.e., the images of open sets are
open.
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The proof mainly uses (1.10) and is given at the end of this section. It is easy to see that
we are able to handle point and curve obstacles in a physically reasonable sense in this model.

At this point it arises a new problem. To carry out the analysis of an existence theory by
minimization of the energy, we need side conditions in our variational problem which represent
weakly closed sets in the space X. The condition (1.10) of orientation preservation, however,
does not satisfy this condition. Therefore, for technical purposes, we have to enlarge the set of
admissible deformations by the weaker condition

ν(s) ≥ V (µ(s), s) a.e. on [0, L]. (2.6)

This means that we also take into account configurations with ν = 0, µ = 0, i.e., complete
compression, on a whole interval for existence theory. Later we shall however show by regularity
arguments that, under some mild additional conditions, solutions really satisfy the orientation-
preserving condition in the strong variant.

Unfortunately, Lemma (2.5) does not hold under the weaker condition (2.6). But let us
suppose the very natural condition that the stored energy W approaches infinity under complete
compression, i.e.,

W (ν, η, µ, s) →∞ as ν − V (µ, s) → 0. (2.7)

This condition will also play an important role for our regularity results in Section 4. Now we
can give a more subtle variant of Lemma (2.5).

Lemma 2.8 Let W fulfil (2.7). If u ∈ X defines a configuration that satisfies (2.6) and which
has a finite total stored energy Es(u) =

∫ L
0 W [u](ν(s), η(s), µ(s), s) ds < ∞, then (s, ζ) 7→

p[u](s, ζ) is an open mapping on intΩ.

The proof is also postponed to the end of this section. Let us now discuss the weak closedness
of A1 or A2 in a suitable space X. For p1, p2, p3 > 1, we choose for the intrinsic formulation

X := Lp1 × Lp2 × Lp3 × R2 × R with u = (ν, η, µ, r0, θ0). (2.9)

Here Lp denotes the usual Lebesgue space of p-integrable functions on [0, L].

Proposition 2.10 .
1) A1 is weakly closed in X.
2) Let (ν, η, µ, s) 7→ W (ν, η, µ, s) be measurable in s and twice continuously differentiable in

the other arguments. Let (2.7) be hold and suppose that there is an integrable function s 7→ γ(s)
such that

W (ν, η, µ, s) ≥ γ(s) for all ν, η, µ, s. (2.11)

Then, for a given constant c ∈ R, the set

A3 := {u ∈ A2 : Es(u) ≤ c, u satisfies (2.6) } (2.12)

is weakly closed in X.
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Note. With respect to the extrinsic formulation, we can choose

X0 := W1,p1 ×W1,p2 ×W1,p3 with u = (x, y, θ) (2.13)

for p1, p2, p3 > 1. HereW1,p denotes the usual Sobolev space of p-integrable functions with generalized p-integrable

derivative. Using the compact embedding of W1,p into the space C of continuous functions, we can argue as in

the proof of Proposition (2.10) below and get an analogous assertion.

Let us now discuss some questions which are necessary for our regularity investigations in
Section 4. In order to derive the Euler-Lagrange equations for the variational problem, we
shall apply a general Lagrange Multiplier Rule. For this purpose, the restrictions caused by the
obstacle must be described by an inequality side condition. Let distOc(q) denote the distance
of point q from the set Oc, then this can be done by

distOc p[u](s, ζ) ≤ 0 for all (s, ζ) ∈ Ω (2.14)

or, equivalently,
max

(s,ζ)∈Ω
distOc p[u](s, ζ) ≤ 0. (2.15)

Since the functions distOc(·) and distclOc(·) are identical, this method however only works in
the case where Variant 1 is applicable (cf. (2.3)). Roughly speaking, the inequality condition
does not recognize a lower-dimensional obstacle.

To get normality in the Lagrange Multiplier Rule, we need some regularity in condition (2.14),
which is not fulfilled by the function distOc(·) appearing there, because the generalized gradient
∂distOc(p) contains the zero vector for points p where equality holds in (2.14) (cf. Section 5).
Moreover, condition (2.14) cannot indicate the points of the rod which are in contact with the
obstacle, since distOc(q) = 0 for all points q which can be occupied by the rod. It is rather
desirable to choose a function which equals zero only for boundary points of the obstacle. Using
such a function we are able to determine the contact points and, consequently, the points where
contact forces can act. For this reason we use

d(q) := distOc q− distO q, q ∈ R2, (2.16)

instead of distOc(·) in conditions (2.14), (2.15) and we restrict our attention, roughly speaking,
to obstacles with the property that

0 6∈ ∂d(q) for q ∈ R2 with d(q) = 0 (2.17)

(cf. condition (4.8) below).

P r o o f of Proposition 2.10. (1) We assume that

un ⇀ u in X, where either all un ∈ A1 or all un ∈ A3. (2.18)

This means that
νn ⇀ ν, ηn ⇀ η, µn ⇀ µ, r0,n → r0, θ0,n → θ0 (2.19)

in the corresponding spaces. Using (1.13), (1.14), (1.5), we define rn, θn, bn, and r, θ, b
with respect to un and u, respectively. Thus rn, θn, bn, r, θ, b are absolutely continuous
functions on [0, L]. By the compactness of integral operators, we obtain

rn → r, θn → θ, bn → b (2.20)
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in corresponding spaces of continuous functions. Hence we have the pointwise convergence

p[un](s, ζ) → p[u](s, ζ) for all (s, ζ) ∈ Ω. (2.21)

This directly implies that u ∈ A1, and we have verified the first case.
(2) Let us continue with the second case. By our assumptions W is a Carathéodory function

and by (1.40), (1.48), W (·, ·, ·, s) is convex. The boundedness of W by (2.11) then implies that
Es(·) is weakly lower-semicontinuous (cf. Dacorogna [14, Theorem 3.4]). Using (1.3), (1.10), we
get that (2.6) describes a convex set. Since a strongly convergent sequence in a space Lpi has a
subsequence that converges a.e., this set is also strongly closed. Thus the set given by (2.6) is
weakly closed in X. Hence, u satisfies (2.6) and Es(u) ≤ c. We now assume that

q0 := p[u](s0, ζ0) 6∈ Oc for some (s0, ζ0) ∈ int Ω. (2.22)

According to the properties of the set U0 in the proof of Lemma (2.5) and (2.8) below, there
exists a closed ball B0 ⊂ intΩ with center (s0, ζ0) and positive radius such that p[u] is injective
on B0.

Let us define
qn := p[un](s0, ζ0) and Qn := (q0,qn), (2.23)

where the last expression denotes the open line segment between the points q0 and qn. We
study the set Pn := p[un](B0) ∩Qn. Since Pn ⊂ Oc and q0 6∈ Oc, there is a boundary point q̃n

of Pn with respect to Qn. By the continuity of p[un] on Ω, the image p[un](B0) is closed and
we can find (sn, ζn) ∈ B0 such that p[un](sn, ζn) = q̃n. Lemma 2.8 tells us that p[un] is also
an open mapping on int Ω. Hence we even have (sn, ζn) ∈ ∂B0. Thus there is a subsequence,
denoted the same way, for which (sn, ζn) → (s̃, ζ̃) ∈ ∂B0. By (2.21),

qn = p[un](s0, ζ0) → p[u](s0, ζ0) = q0. (2.24)

Since q̃n ∈ Qn = (q0,qn), this implies that

q̃n → q0. (2.25)

On the other hand, the equicontinuity of p[un](·, ·), which follows because of the definition of
rn, bn as integral operators, implies that

q̃n = p[un](sn, ζn) → p[u](s̃, ζ̃). (2.26)

This yields p[u](s0, ζ0) = p[u](s̃, ζ̃), which contradicts the injectivity of p[u] on B0, i.e., (2.22)
cannot be true. Thus p[u](s, ζ) ∈ Oc for all (s, ζ) ∈ intΩ, and this implies the assertion for the
second case. ♦

P r o o f of Lemma 2.5. Let us fix any u ∈ X that satisfies (1.10). First we show that
p[u](·, ·) is locally injective on int Ω. For this purpose we choose any (s0, ζ0) ∈ int Ω. Then we
can find ε > 0 and δ > 0 such that

cl U0 ⊂ int Ω, where U0 := {(s, ζ) ∈ Ω : s ∈ (s0 − ε, s0 + ε), ζ ∈ (ζ0 − δ, ζ0 + δ)}. (2.27)
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Define
ζ̃ := inf

s∈[s0−ε,s0+ε]
{h2(s)− (ζ0 + δ), (ζ0 − δ)− h1(s)}. (2.28)

Then
h2(s) ≥ ζ + ζ̃, h1(s) ≤ ζ − ζ̃ for all (s, ζ) ∈ U0. (2.29)

Using (1.10), we obtain
ν(s)− ζµ(s) > ζ̃|µ| on U0. (2.30)

Since (s̄1, s̄2) 7→ a(θ(s̄1)) · a(θ(s̄2)) is continuous and ‖a‖ = 1, we can choose ε so small that

1
2 < a(θ(s̄1)) · a(θ(s̄2)) < 3

2 for s̄1, s̄2 ∈ (s0 − ε, s0 + ε). (2.31)

Observing that ζ̃ > 0, we can assume ε to be so small that∫ s0+ε

s0−ε
|η| dτ < 1

3 ζ̃. (2.32)

If p[u](·, ·) is not injective on U0 for given u ∈ X, then there are points (s1, ζ1), (s2, ζ2) ∈ U0,
s1 < s2 such that

p[u](s1, ζ1) = p[u](s2, ζ2). (2.33)

Using p̃(s) := p[u](s, ζ2), we study

∆p := p̃(s2)− p̃(s1)

= (s2 − s1)
∫ 1

0
p̃′(s1 + t(s2 − s1)) dt

= (s2 − s1)
∫ 1

0
r′(s1 + t(s2 − s1))− ζ2µ(s1 + t(s2 − s1))a(θ(s1 + t(s2 − s1))) dt

= (s2 − s1)
∫ 1

0
ν̃(t)a(θ̃(t)) + η̃(t)b(θ̃(t))− ζ2µ̃(t)a(θ̃(t)) dt (2.34)

where ν̃(t) := ν(s1 + t(s2 − s1)), etc.

Setting a1 := a(θ(s1)), we get

∆p · a1 = (s2 − s1)
∫ 1

0

(
ν̃(t)− ζ2µ̃(t)

)
a(θ̃(t)) · a1 + η̃(t)b(θ̃(t)) · a1 dt. (2.35)

Let us show that this expression is positive. We have

b(θ̃(t)) = b(θ(s1 + t(s2 − s1)))

= b(θ(s1))− (s2 − s1)
∫ t

0
µ(s1 + τ(s2 − s1))a(θ(s1 + τ(s2 − s1))) dτ. (2.36)

Since a(θ(s1)) · b(θ(s1)) = 0,

b(θ̃(t)) · a1 = −(s2 − s1)
∫ t

0
µ̃(τ)a(θ̃(τ)) · a1 dτ. (2.37)
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Observing (2.31), (2.32), we can estimate

|b(θ̃(t)) · a1| ≤ (s2 − s1)
∫ t

0
|µ̃(τ)||a(θ̃(τ)) · a1| dτ

≤ 3
2(s2 − s1)

∫ 1

0
|µ̃(τ)| dτ, (2.38)∫ 1

0
|η̃(t)| dt =

∫ 1

0
|η(s1 + t(s2 − s1))| dt =

1
s2 − s1

∫ s2

s1

|η(σ)| dσ

<
ζ̃

3(s2 − s1)
. (2.39)

In view of (2.30), (2.31), (2.38), equation (2.35) implies

∆p · a1 ≥ (s2 − s1)
2

ζ̃

∫ 1

0
|µ̃(t)| dt − 3

2(s2 − s1)2
∫ 1

0
|η̃(t)| dt

∫ 1

0
|µ̃(τ)| dτ. (2.40)

Inequalities (2.39) and (2.40) yield that

∆p · a1 > 0 if
∫ 1

0
|µ̃(t)| dt > 0. (2.41)

Otherwise, µ = 0 a.e. on [s1, s2]. This implies that θ(s) = θ(s1) and, therefore, a(θ(s)) · a1 = 1,
b(θ(s)) · a1 = 0 on [s1, s2] (recall (1.14), (1.5)). Since ν > 0 by (1.3) and (1.10), equation (2.35)
gives

∆p · a1 =
∫ 1

0
ν̃(t) dt > 0 if

∫ 1

0
|µ̃(t)| dt = 0. (2.42)

Recalling (1.1), (2.33), (2.41), (2.42), we get the contradiction

0 =
(
p(s2, ζ2)− p(s1, ζ1)

)
· a1 =

(
p(s2, ζ2)− p(s1, ζ2)

)
· a1 = ∆p · a1 > 0. (2.43)

Consequently (2.33) cannot be true and p[u](·, ·) must be injective on U0. Since (s0, ζ0) ∈ int Ω
is arbitrary, we have the local injectivity on int Ω. The continuity of p[u](·, ·) then implies that
p[u](·, ·) maps open sets onto open sets (cf. Zeidler [46, Theorem 16.C]). ♦

Observe that p(·, ·) is not continuously differentiable in general and, therefore, we cannot
conclude in the usual way that the invertibility of the matrixes ∂p/∂(s, ζ), which follows from
(1.10), is sufficient for the injectivity of p (cf. Zeidler [46, Theorem 4F]). Moreover, the Jacobian
of p need not be invertible in the case of Lemma 2.8.

P r o o f of Lemma 2.8. As in the proof of Lemma 2.5, we get (2.41). For the proof of
(2.42), we use (2.7) and E(u) < ∞, which implies that ν > 0 a.e. on [0, L] and therefore that∫ 1
0 ν̃(t) dt > 0. Then we can continue as in the previous proof. ♦

3 Existence of minimizers

In this section we verify the existence of solutions for very general obstacle problems. If we
assume that a given external force f is applied to the rod, then we have the total energy

E(u) := Es(u) + Ep(u) =
∫ L

0
W [u](s) ds −

∫
Ω

p[u](z) · df(z). (3.1)
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As in Section 2 for the intrinsic formulation, we take

(ν, η, µ, r0, θ0) = u ∈ X = Lp1 × Lp2 × Lp3 × R2 × R, p1, p2, p3 > 1, (3.2)

‖u‖ := ‖ν‖p1 + ‖η‖p2 + ‖µ‖p3 + ‖r0‖+ |θ0| (3.3)

where ‖ · ‖p denotes the usual Lp-norm. Recall that u defines a configuration by (1.13), (1.14).
Now we study the following variational problem:

E(u) → Min! , u ∈ X, (3.4)

u ∈ A, (3.5)

F(u) = 0, (3.6)

ν(s)− V (µ(s), s) ≥ 0 a.e. on [0, L]. (3.7)

Here A stands for either A1 or A2 and F is a map from X into a Banach space Y, which we
suppose to be weakly continuous, i.e., un ⇀ u implies that F(un) ⇀ F(u). By (3.6) we can
express, e.g., very general boundary conditions like confining r0 to a bounded set. As we already
mentioned, we have to work with the weaker orientation-preserving condition (3.7) for existence
theory, since the stronger variant (1.10) does not define a weakly closed set in X. We later
however show that solutions really satisfy the stronger condition under some mild additional
assumptions.

In view of the translation invariance of the stored energy, we need some kind of boundedness
for the admissible configurations in our problem, so that we can derive something like a gener-
alized Poincaré inequality as basis for coercivity. In this connection we introduce the following
notion. We say that the constraints (3.5) and (3.6) imply pseudo-bounded configurations if there
exist linearly independent vectors e1, e2 ∈ R2, numbers s1, s2 ∈ [0, L] and K ∈ R such that

|e1 · r[u](s1)| < K, |e2 · r[u](s2)| < K for all u ∈ X satisfying (3.5), (3.6). (3.8)

This condition is fulfilled, e.g., if some point r(s0) is confined to a bounded set or if r(s1) and
r(s2) are enforced to move on nonparallel lines.

Recalling (1.1), (1.5), (1.13), (1.14), we observe a 2π-periodicity of E and A with respect
to θ0. Since we can suppose the same periodicity in condition (3.6) for a physically reasonable
problem, we have a multiplicity in our problem which prevents coercivity for E. However, from
the geometrical point of view, this multiplicity is artificial. Therefore we can demand without
any loss of generality that

θ0 ∈ [0, 2π]. (3.9)

Here we choose the closed interval, because we need compactness. Thus we again have a multi-
plicity. But this does not bother our analysis.

A key role for coercivity is played by the growth condition

W (ν, η, µ, s) ≥ c(|ν|p1 + |η|p2 + |µ|p3) + γ(s) (3.10)

where c > 0 is a constant and γ an integrable function.
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Theorem 3.11 (Existence) . Let (ν, η, µ, s) 7→ W (ν, η, µ, s) be measurable in s and twice
continuously differentiable in the other arguments and let the growth condition (3.10) be satisfied.
Let F be weakly continuous and f be a given vector-valued Borel measure on Ω. Let (3.5), (3.6)
imply pseudo-bounded configurations and let (2.7) hold when A = A2. If there exists at least one
admissible configuration with finite energy E, then there is a minimizer u ∈ X of the variational
problem (3.4) – (3.7) combined with (3.9).

P r o o f. The weak convergence un ⇀ u in X implies that

νn ⇀ ν, ηn ⇀ η, µn ⇀ µ, r0,n → r0, θ0,n → θ0 (3.12)

in the corresponding spaces. If un → u, then all the convergences in (3.12) are strong.
Condition (3.6) defines a weakly closed subset of X by the weak continuity of F. As shown in

the proof of Proposition 2.10, the set determined by (3.7) is weakly closed. Obviously, restriction
(3.9) also forms a weakly closed set. Condition (3.5) will be studied later.

By the Riesz Representation Theorem, there is a unique correspondence between the linear
continuous functionals on the space C(Ω, R2) of continuous functions and the vector-valued
measures on Ω (cf. Bauer [9], Benedetto [10], Zeidler [48, Appendix (87)]). This implies that

q 7→
∫

Ω
q(z) · df(z) (3.13)

defines a linear continuous functional on C(Ω, R2) satisfying∣∣∣ ∫
Ω

q(z) · df(z)
∣∣∣ ≤ |f| ‖q‖C (3.14)

where ‖ · ‖C denotes the supremum norm and

|f| := sup
e(·)∈C(Ω), ‖e‖C≤1

∫
Ω

e(z) · df(z) (3.15)

is the total variation of the measure f.
Recalling (2.20), we obtain that the weak convergence of a sequence {un} in X implies the

strong convergence of p[un] in the space of continuous functions. Consequently (3.14) implies
the weak continuity of the potential energy u 7→ Ep(u) in X. Since the functions h1, h2 are
bounded on [0, L], say by a constant c̃1 > 0, and using (1.1), (3.14), we can find a constant
d0 > 0 such that

|Ep(u)| ≤ |f|
(
‖ r[u] ‖C + 2c̃1

)
≤ d0

(
‖ r[u] ‖C + 1

)
. (3.16)

By the continuity properties of W , the growth condition (3.10) and the convexity of W caused
by (1.40), we get the weak lower-semicontinuity of u 7→ Es(u) by standard arguments (see also
the proof of Proposition 2.10). Thus the total energy E(·) is weakly lower-semicontinuous.

In order to study the coercivity of E, we first need some preliminary investigations. Using
(1.6), (3.8) and the Hölder inequality, we can find a constant d1 > 0 such that

|r(s) · ei| =
∣∣∣r(si) · ei +

∫ s

si

r′ · ei dτ
∣∣∣

≤ |r(si) · ei|+
∫ s

si

| ν a · ei |dτ +
∫ s

si

| η b · ei |dτ

≤ K + d1( ‖ν‖p1 + ‖η‖p2 ) for all s ∈ [0, L], i = 1, 2, (3.17)
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if r(·) corresponds to any u that satisfies the side conditions (3.5) and (3.6). By the equivalence
of norms in R2, this implies that for suitable constants d2, d3 > 0,

‖r(s)‖ ≤ d2( |r(s) · e1|+ |r(s) · e2| )

≤ d3( ‖ν‖p1 + ‖η‖p2 + 1 ) for all s ∈ [0, L]. (3.18)

Consequently, if u respects the side conditions (3.5) and (3.6), then

‖r0‖ ≤ d3( ‖ν‖p1 + ‖η‖p2 + 1 ), ‖ r[u] ‖C ≤ d3( ‖ν‖p1 + ‖η‖p2 + 1 ). (3.19)

This is something like a generalized Poincaré inequality and is essentially based on the bound-
edness condition (3.8).

Since θ0 is bounded by (3.9) and since ‖r0‖ can be estimated by (3.19), for an admissible u
we have that

‖u‖ → ∞ implies ‖ν‖p1 + ‖η‖p2 + ‖µ‖p3 →∞. (3.20)

From the growth condition (3.10), we can derive

Es(u) ≥
∫ L

0

[
c
(
|ν(s)|p1 + |η(s)|p2 + |µ(s)|p3

)
+ γ(s)

]
ds

≥ c( ‖ν‖p1
p1

+ ‖η‖p2
p2

+ ‖µ‖p3
p3

) + d4, d4 > 0. (3.21)

Using the estimates (3.16) and (3.19), we get

|Ep(u)| ≤ d5( ‖ν‖p1 + ‖η‖p2 + 1 ), d5 > 0. (3.22)

Therefore,

E(u) ≥ c( ‖ν‖p1
p1

+ ‖η‖p2
p2

+ ‖µ‖p3
p3

) + d4 − d5( ‖ν‖p1 + ‖η‖p2 + 1 )

= ‖ν‖p1( c‖ν‖p1−1
p1

− d5 ) + ‖η‖p2( c‖η‖p2−1
p2

− d5 ) + c‖µ‖p3
p3

+ d4 − d5. (3.23)

Recalling (3.20), we obtain the coercivity of E for admissible configurations, i.e.,

E(u) →∞ as ‖u‖ → ∞ (3.24)

as long as u respects the side conditions (3.5), (3.6), (3.9).
Since there exists an admissible configuration ũ ∈ X with finite energy E, to minimize E we

can restrict our attention to the set

Ã0 := {u ∈ X : E(u) ≤ E(ũ), u satisfies (3.5), (3.6), (3.7), (3.9)}. (3.25)

The coercivity (3.24) gives that Ã0 is bounded.
By (3.22), Ep(·) is bounded on the bounded set Ã0. Since E(·) is bounded from above on Ã0

by definition, Es(·) must also be bounded from above on Ã0, say by a constant c̃ > 0. Therefore,
we can replace A in (3.5) with the subset

Ă := {u ∈ A : Es(u) ≤ c̃}, (3.26)
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and we can restrict the minimization to the set

Ã := {u ∈ X : E(u) ≤ E(ũ), u ∈ Ă, u satisfies (3.6), (3.7), (3.9)}. (3.27)

Ã is bounded as subset of Ã0. As we have already shown, the sets given by (3.6), (3.7), (3.9)
are weakly closed and E and Es are weakly lower-semicontinuous. Proposition 2.10 tells us that
A1 is weakly closed and, for the case A = A2, that all u ∈ Ă satisfying (3.7) form a weakly
closed set. Thus Ã is weakly compact. By the Theorem of Weierstrass, the weakly lower-
semicontinuous funtional E admits a minimum on the weakly compact set Ã which satisfies our
variational problem. ♦

Let us now discuss the existence with respect to the extrinsic formulation. For this purpose, we mainly have

to study the properties of the stored energy W under transformation (1.16). The transformation of the side

conditions does not provide serious problems in this connection. The stored energy has the form

(x′, y′, θ′, θ, s) 7→ W̃ (x′, y′, θ′, θ, s) (3.28)

The convexity and the coercivity of W̃ in the highest derivatives are important for the existence problem. As we

can see in the following lemma, the convexity is not influenced by the transformation.

Lemma 3.29 (Convexity) If W (·, ·, ·, s) is twice continuously differentiable and convex, then the transformed

function W̃ (·, ·, ·, θ, s) is also twice continuously differentiable and convex.

Before we give the proof, let us still discuss the coercivity. As shown by Antman [3], the stored energy must

be a function of (ν, η, µ) which are the natural strains for the rod model. Here every strain has a different material

response and, therefore, (3.10) is a natural growth condition for the stored energy. However, if we intend to adopt

the ideas of the proof of Theorem 3.11 for the extrinsic formulation, then we need an equivalent growth condition

for W̃ with respect to (x′, y′, θ′).

Lemma 3.30 (Coercivity) The growth condition (3.10) implies that

W̃ (x′, y′, θ′, θ, s) ≥ c̃( |x′|p̃ + |y′|p̃ + |θ′|p3 ) + γ̃(s) (3.31)

where p̃ = min{p1, p2}, c̃ > 0 is a constant and γ̃ is an integrable function. Moreover, the exponent p̃ in (3.31) is

optimal and the growth conditions (3.10) and (3.31) are equivalent in the case p1 = p2 only.

We see that the desired equivalence is not fulfilled. In fact this equivalence cannot be expected, because x′

and y′ are independent of a special material direction. In paticular if a = i, then x′ behaves like ν, and if b = i,

then x′ behaves like η. This means that the behavior of x′ depends on the direction θ, and one always has the

worst exponent p̃ for a special θ. The same is valid for y′. We can conclude that we lose some information about

the growth of W if we use coordinates which are independent of special material directions. Possibly one could

bypass this problem by working in a suitable Orlicz space. However, this would provide other technical difficulties,

since one has to imitate in fact the natural situation from (3.10) with unsuitable coordinates.

In summary, we can formulate an existence result analogous to Theorem 3.11 for the extrinsic formulation,

but only with less efficient growth condition for the stored energy.

P r o o f of Lemma 3.29. Recall the transformation (1.16). The differentiability of W̃ is a simple consequence

of the chain rule. We set

v := (ν, η, µ), z := (x′, y′, θ′). (3.32)

Suppressing the dependence on s, θ, we consider W and W̃ as functions of v and z, respectively. By the chain

rule we get
∂

∂z
W̃ (z) =

∂

∂z
W (v(z)) =

∂W

∂v
(v(z)) · ∂v

∂z
(z) =

„
∂v

∂z

«∗
(z) · ∂W

∂v
(v(z)) (3.33)
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(here * denotes the adjoint matrix),

∂2

∂z2
W̃ (z) =

∂

∂z

„
∂v

∂z

«∗
(z) · ∂W

∂v
(v(z)) +

„
∂v

∂z

«∗
(z) · ∂2W

∂v2
(v(z)) · ∂v

∂z
(z). (3.34)

Observing (1.16), we find

∂v

∂z
(z) =

0B@ cos θ sin θ 0

− sin θ cos θ 0

0 0 1

1CA and, thus,
∂

∂z

„
∂v

∂z

«∗
(z) = 0 (3.35)

for all z. Consequently,
∂2

∂z2
W̃ =

„
∂v

∂z

«∗
· ∂2W

∂v2
· ∂v

∂z
. (3.36)

Since ∂2W/∂v2 is a positive-definite matrix by the convexity of W and since ∂v/∂z is a regular matrix, ∂2W̃/∂z2

is also positive-definite, i.e., W̃ is convex in z. ♦

P r o o f of Lemma 3.30. Obviously,

|ν|p1 ≥ |ν|p̃ − 1 and |η|p2 ≥ |η|p̃ − 1 for ν, η ∈ R. (3.37)

Therefore, (3.10) implies that

W (ν, η, µ, s) ≥ c( |ν|p̃ + |η|p̃ + |µ|p3 ) + γ(s)− 2c. (3.38)

If we exploit the equivalence of norms in R2 and use the transformation formulas (1.16), then we get

|ν|p̃ + |η|p̃ ≥ d1(ν
2 + η2)p̃/2

= d1

„
(x′ cos θ + y′ sin θ)2 + (−x′ sin θ + y′ cos θ)2

«p̃/2

= d1(|x′|2 + |y′|2)p̃/2 ≥ d2(|x′|p̃ + |y′|p̃), d1, d2 > 0. (3.39)

Inequalities (3.38), (3.39) yield condition (3.31). The optimality of the exponent p̃ can be seen from (3.10) if we

choose θ = 0 and θ = π
2

in (1.16). This also means that we cannot have equivalence between (3.10) and (3.31) in

the case of p1 6= p2. If p1 = p2 = p, then this equivalence follows from the estimates

|x′|p + |y′|p ≥ d3(|x′|2 + |y′|2)p/2 = d3(|ν|2 + |η|2)p/2

≥ d4(|ν|p + |η|p), d3, d4 > 0. (3.40)

Use (1.13) for the inverse transformation of (1.16). ♦

4 Euler-Lagrange equations

We now study the regularity of solutions of the variational problem. Under some mild additional
assumptions we derive the Euler-Lagrange equations, which are equivalent to the equilibrium
conditions introduced in Section 1, as necessary condition. It follows that the orientation-
preserving condition must be fulfilled in the strong variant (1.10). Furthermore, we obtain very
detailed information about the contact forces, i.e., they correspond to a vector-valued Borel
measure that is supported on the contact set and directed, roughly speaking, normal to the
obstacle. However, the case in which the position of a point of the rod is confined to lie on
the boundary of the obstacle cannot be handled completely, because the side conditions are not
independent in this case and, consequently, one cannot verify the normality for the Lagrange
Multiplier Rule in general. As far as I know, such cases are always excluded in regularity
investigations in the literature (see, e.g., Kinderlehrer & Stampacchia [27]).
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Clarke’s calculus of generalized gradients ∂g(·) for locally Lipschitz continuous functionals
is a fundamental tool for our analysis. We actually use this concept in the main result in this
section, though it is formally introduced only at the beginning of the next section. Readers
who are not familiar with this concept could replace it for a moment with the subdifferential for
convex functionals or the derivative for continuously differentiable funtionals.

For our regularity investigations it is reasonable to describe the obstacle by an inequality
side condition. We accordingly choose the method introduced in the discussion centered on
(2.14) and, roughly speaking, restrict our attention to obstacles satisfying (2.17). Furthermore,
we specialize the general side condition (3.6) to prescribe restrictions for p(·, ·), θ(·) at a finite
number of points in Ω. Thus we consider solutions of the variational problem:

E(u) → Min!, u ∈ X, (4.1)

g0(u) := max
(s,ζ)∈Ω

d(p[u](s, ζ)) ≤ 0, (4.2)

gi(u) := g̃i(p[u](s1, ζ1), θ[u](s1), . . . ,p[u](sm, ζm), θ[u](sm)) = 0, i = 1, . . . , n, (4.3)

ν(s)− V (µ(s), s) ≥ 0 a.e. on [0, L]. (4.4)

Here X is the same Banach space as used in the previous section (cf. (3.2)). d : R2 7→ R is
the function given by

d(q) := distOcq− distOq, q ∈ R2, (4.5)

where O denotes the obstacle (cf. Section 2), (sj , ζj) ∈ Ω are prescribed points for j = 1, . . . ,m

and
g̃i : (R2 × R)m 7→ R, i = 1, . . . , n, (4.6)

are given functions. While (4.2) describes the obstacle, (4.3) can impose boundary conditions or
more general “concentrated” side conditions. We assume that the functions g̃i are continuously
differentiable and that the matrix

∂(g̃1, . . . , g̃n)
∂(p1, θ1, . . . ,pm, θm)

is regular if g̃i(p1, θ1, . . . ,pm, θm) = 0 for all i = 1, . . . , n. (4.7)

Here regularity means that the matrix maps onto Rn.
We call sc ∈ [0, L] a contact parameter of a configuration u if d(p[u](sc, ζ)) = 0 for some ζ ∈

[h1(sc), h2(sc)]. A configuration u is said to have regular contact if for every contact parameter
sc ∈ [0, L] there is an open neighborhood I(sc) ⊂ R such that

0 6∈ co {∂d(q)| d(q) = 0, q = p[u](s, ζ) for some (s, ζ) ∈ ΩI(sc)}, (4.8)

where ΩI(sc) := {(s, ζ) ∈ Ω|s ∈ I(sc)}. This is in fact a condition for both the configuration and
the obstacle. It is used to prevent the reactions in the rod from being enforced by the contact
reactions only. For a large class of obstacles, (4.8) is fulfilled by all configurations. Roughly
speaking, if the complement of an obstacle with piecewise smooth boundary and only Lipschitz
corners is so “thick” that the rod can touch the obstacle near a contact parameter sc only along
either the bottom or the top curve (i.e. ζ = h1(s) or ζ = h2(s)), then the previous condition is
always satisfied (cf. also (2.17)).
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A main difficulty for regularity investigations is to handle the singularity caused by (1.41)
– (1.43) on the boundary of the set described by ν − V (µ, s) > 0 (observe (1.48)), because this
singularity yields bad differentiability properties for the total stored energy Es, and the standard
technique with growth restrictions for the derivatives Wν ,Wη,Wµ cannot be employed. For this
reason, we impose the natural condition that a total compression implies an infinite stored
energy W :

W (ν, η, µ, s) →∞ as ν − V (µ, s) → 0. (4.9)

Otherwise, we would get rods with finite total stored energy Es which are compressed to length
zero on a whole interval. (Observe that we already used this condition in Section 2.) Assuming
(4.9) instead of the usual growth restrictions, we can adopt a modified version of a method used
by Antman for problems without obstacles to bypass the difficulties with the singularity (cf.
Antman [3, Chapter VII.5]).

Theorem 4.10 (Euler-Lagrange equations) Let W be measurable in s, continuously differ-
entiable in the other arguments and satisfy (4.9). Let the functions g̃i be continuously differen-
tiable with (4.7). Let u = (ν, η, µ, r0, θ0) be a solution of the variational problem (4.1) – (4.4)
with regular contact, such that all points sj, j = 1, . . . ,m are not contact parameters. Define

n[u](s) := Wν(ν(s), η(s), µ(s), s)a(θ[θ0, µ](s)) + Wη(ν(s), η(s), µ(s), s)b(θ[θ0, µ](s)), (4.11)

m[u](s) := Wµ(ν(s), η(s), µ(s), s)k. (4.12)

Then there exist a vector-valued Borel measure fc on Ω and vector-valued step functions fs, lfs,
ls with jumps at most at s = sj such that the following Euler-Lagrange equations are valid a.e.
on [0, L]:

0 = n[u](s) − f(s) − fc(s) − fs(s), (4.13)

0 = m[u](s) −
∫ L

s
r′(τ)× n[u](τ) dτ − lf (s) − lfc(s) − lfs(s) − ls(s), (4.14)

0 = − f(0) − fc(0) − fs(0), (4.15)

0 = −
∫ L

0
r′(τ)× n[u](τ) dτ − lf (0) − lfc(0) − lfs(0) − ls(0), (4.16)

where
fc(s) :=

∫
Ωs

dfc(τ, ζ), lfc(s) :=
∫

Ωs

ζb[u](τ)× dfc(τ, ζ). (4.17)

Moreover,
ess infs∈[0,L]

(
ν(s)− V (µ(s), s)

)
> 0, (4.18)

n[u](s), m[u](s) are essentially bounded on [0, L]. (4.19)

The measure fc describes the contact force exerted by the obstacle on the rod and is supported
on the contact set

Ωu := {(s, ζ) ∈ Ω : d(p[u](s, ζ)) = 0}. (4.20)

More precisely, there exist a real non-negative Borel measure ρ on Ω supported on Ωu and a
ρ-integrable mapping (s, ζ) 7→ d∗(s, ζ) ∈ ∂d(p[u](s, ζ)) (∂ with respect to d(·)) such that

fc(Ω̆) = −
∫

Ω̆
d∗(s, ζ) dρ(s, ζ) for all Borel sets Ω̆ ⊂ Ω. (4.21)
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lfc is the distribution of the induced couple of fc.
The step functions fs, lfs and ls are the distributions of concentrated forces, the corresponding

induced couples, and other concentrated couples, respectively, caused by the side conditions (4.3).
In particular, there are numbers λi ∈ R, i = 1, . . . , n, such that

fs(s) =
n∑

i=1

λi

m∑
j=1

χ̆j(s)p∗ij , ls(s) =
n∑

i=1

λi

m∑
j=1

χ̆j(s)θ∗ij , (4.22)

lfs(s) =
n∑

i=1

λi

m∑
j=1

χ̆j(s)ζjb(θ(sj))× p∗ij , (4.23)

where

p∗ij :=
∂g̃i

∂pj
(p[u](s1, ζ1), θ[u](s1), . . . ,p[u](sm, ζm), θ[u](sm)), (4.24)

θ∗ij :=
∂g̃i

∂θj
(p[u](s1, ζ1), θ[u](s1), . . . ,p[u](sm, ζm), θ[u](sm)), (4.25)

χ̆j(s) =

{
1 for s ∈ [0, sj ],
0 for s ∈ (sj , L].

(4.26)

Corollary 4.27 Theorem 4.10 holds without the assumption that sj0 not be contact parameter
under the following condition:

If sj0 is a contact parameter of u, then the sets

Λj0 := span { ∂

∂rj0

g̃1[u], . . . ,
∂

∂rj0

g̃n[u]}, (4.28)

Σj0 := co {∂d(q)| d(q) = 0, q = p[u](sj0 , ζ) for some ζ ∈ [h1(sj0), h2(sj0)]} (4.29)

are disjoint.

Remark 4.30 .
1) Recalling Lemma 2.8 we can see that Ωu ⊂ ∂Ω under some very natural additional

conditions which we already assumed for the existence in Theorem 3.11.
2) The condition d∗(s, ζ) ∈ ∂d(p[u](s, ζ)) in fact means that, for parameters (s, ζ) with

d(p[u](s, ζ)) = 0, the vector d∗(s, ζ) belongs to the normal cone of Oc at the point p[u](s, ζ).
Equation (4.21) then tells us that the contact forces are directed normal to the obstacle. In
this way we obtain the usually prescribed contact condition that the tangential components of
the traction vanish in the case of contact without friction. The result that the contact force is
normal to the obstacle can be sharpened in the case where the rod touches the obstacle at a
corner.

3) Let us denote by fs the measure on Ω that is given by the concentrations
∑n

i=1 λip∗ij at
the points (sj , ζj), j = 1, . . . ,m. Then fs is just the corresponding distribution according to
formula (1.31) and lfs is the distribution of the induced couple lfs according to (1.32). ls is the
distribution of pure couples caused by constraints for the angles θ(sj).

4) The Euler-Lagrange equations (4.13) – (4.16) coincide with the equilibrium equations
(1.33), (1.34) combined with (1.22) and provide very detailed information about the structure
of the contact forces.
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5) Observe that we get the Euler-Lagrange equations in natural way only almost everywhere
on [0, L]. Thus we are led to the discussion in Section 1.3 again. Since all functions except
n[u](·) and m[u](·) in (4.13) and (4.14) are BV -functions, n[u](·) and m[u](·) also have to be
BV -functions. In this way we can once more justify the necessity and sufficiency of a setting
like (1.47).

6) The condition in Corollary 4.27 roughly means that the equality side conditions and the
obstacle cannot cause concentrated forces at s = sj0 in the opposite direction and, consequently,
the side conditions are linearly independent.

Obviously the sets Λj0 and Σj0 lie in R2, because we study planar configurations. Since Λj0

is a linear space, it must be a line or only the origin. Otherwise Λj0 and Σj0 cannot be disjoint.
If Λj0 = {0}, then the condition of the Corollary is always fulfilled by (4.8). This situation
is met if all functions g̃i are independent of rj0 . If Λj0 is a line, then both sets are disjoint,
roughly speaking, in the case where the point r(sj0) is restricted by (4.3) to move along a curve
which intersects the boundary of the obstacle transversally. The condition of the Corollary is
not fulfilled if (4.3) prescribes the position of r(sj0) on the boundary of the obstacle.

7) The conditions for the functions g̃i can be weakened; e.g., that they need only be locally
Lipschitz continuous. For this purpose one can work with partial generalized gradients (cf.
Clarke [13]). However, we do not intend to complicate our analysis with such technicalities.

8) One could try to prove a similar result in terms of the extrinsic formulation in the space
X0 (cf. (2.13)). In this case the stored energy depends on (x′, y′, θ′, θ, s) (cf. (1.16)). However,
the singularity of W prevents the imposition of the usual growth condition on the derivatives of
W . To handle the bad differentiability properties of Es in the proof of Theorem 4.10, we employ
a subtle method using variations only on some measurable subsets of [0, L] for the intrinsic
formulation. With respect to the extrinsic formulation this causes very serious difficulties in
getting suitable variations for θ and is probably not applicable. This observation completely
justifies the use of the intrinsic formulation.

Theorem 4.31 Let the assumptions of Theorem 4.10 be fulfilled, let W (·, ·, ·, s) be strictly convex
for all s ∈ [0, L], and let W be continuous in s. If u = (ν, η, µ, r0, θ0) is a solution of the
variational problem, then ν, η, µ belong to L∞ and, therefore, r and θ are Lipschitz continuous.

If, in addition, W is independent of s and twice continuously differentiable in the other
arguments, then ν, η, µ are actually BV -functions.

5 Generalized gradients of Clarke

Let us now give a short introduction to Clarke’s generalized gradients for locally Lipschitz
continuous functionals. This calculus is a fundamental tool for handling nonsmooth problems. A
comprehensive exposition can be found in Clarke [13]. We also provide some special results which
we need for our regularity investigations, i.e., we prepare the computation of the generalized
gradient ∂g0(u) (cf. (4.2)).

Let X be a Banach space and f : X 7→ R a locally Lipschitz continuous functional. The
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generalized directional derivative f0(u;h) of f at u in the direction h is given by

f0(u;h) := lim sup
v∈X, v→u, t→+0

f(v + th)− f(v)
t

. (5.1)

Then we define the generalized gradient ∂f(u) of f at u as the set

∂f(u) := {f∗ ∈ X∗ : 〈f∗, h〉 ≤ f0(u;h) for all h ∈ X}. (5.2)

∂f(u) is a nonempty, bounded, convex and weak∗-compact subset of X∗. If f is continuously
differentiable, then ∂f(u) is the singleton {f ′(u)}. For convex functionals, f0(u;h) is the usual
one-sided directional derivative and ∂f(u) is the subdifferential of convex analysis.

Let us summerize some additional properties of the generalized gradient for our analysis (cf.
Clarke [13]).

Proposition 5.3 Let f be Lipschitz continuous near u ∈ X and let l0 be its Lipschitz constant
near u.

1) ‖f∗‖ ≤ l0 for all f∗ ∈ ∂f(u).
2.1) ∂(αf)(u) = α∂f(u) for all α ∈ R.
2.2) ∂

∑n
i=1 fi(u) ⊂

∑n
i=1 ∂fi(u) for locally Lipschitz continuous functionals fi.

3) If {ui} ⊂ X and {f∗i } ⊂ X∗ are sequences with f∗i ∈ ∂f(ui), ui → u and f∗i
∗
⇀ f∗ for

some f∗ ∈ X∗, then f∗ ∈ ∂f(u).
4) (Chain Rule). Let Y be a Banach space, F : X 7→ Y continuously differentiable at u ∈ X

and d : Y 7→ R Lipschitz continuous near F (u). Then g := d ◦ F is Lipschitz continuous near u

and
∂g(u) ⊂ ∂d(F (u)) ◦ F ′(u), (5.4)

i.e., for g∗ ∈ ∂g(u) there exists d∗ ∈ ∂d(F (u)) such that

〈g∗, w〉 = 〈d∗ ◦ F ′(u), w〉 = 〈d∗, F ′(u) w〉Y ∗×Y for all w ∈ X. (5.5)

5.1) (Minimum). If f attains a local minimum (or maximum) at u, then 0 ∈ ∂f(u).
5.2) (Lagrange Multiplier Rule). Assume that g0, g1, . . . , gn : X 7→ R are locally Lipschitz

continuous. If u is a local minimizer of f subject to the restrictions g0(v) ≤ 0 and gi(v) = 0,
i = 1, . . . , n, then there exist constants λf , λ0 ≥ 0, and λi ∈ R, not all zero, such that

0 ∈ λf∂f(u) + λ0∂g0(u) +
n∑

i=1

λi∂gi(u) (5.6)

and λ0g0(u) = 0.

To handle the inequality side condition (4.2), we study the generalized gradient of functionals
of the following type

g(v) := max
ξ∈Ω

d(p(v, ξ)) . (5.7)

We assume that
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(i) X, Y are Banach spaces where Y is supposed to be reflexive and Ω is a metrizable compact
topological space,

(ii) p : X × Ω 7→ Y is continuous and v 7→ p(v, ξ) is differentiable for all ξ ∈ Ω such that the
derivative pv(·, ·) is continuous on X × Ω,

(iii) d : Y 7→ R is Lipschitz continuous.

Since Ω is compact, g is well defined and

Ω(v) := {ξ ∈ Ω : g(v) = d(p(v, ξ))} (5.8)

is a nonempty closed subset of Ω. At the end of this section, we prove

Lemma 5.9 g is locally Lipschitz continuous on X.

We can describe the generalized gradient of g as a composition of ∂d(·) and pv(·, ·). Let us
denote the set of all regular probability Borel measures on Ω supported on Ω̆ ⊂ Ω by R[Ω̆].

Proposition 5.10 Suppose that (i) – (iii) hold. Then

∂g(v) ⊂ {
∫

Ω
∂d(p(v, ξ)) ◦ pv(v, ξ) dρ(ξ) : ρ ∈ R[Ω(v)] } for v ∈ X, (5.11)

where the term on the right hand side describes the subset of X∗ with the property that every
element g∗ of this set corresponds to a mapping d∗ : Ω 7→ Y ∗ with d∗(ξ) ∈ ∂d(p(v, ξ)) (∂ with
respect to d(·)) and to a measure ρ ∈ R[Ω(v)] such that

ξ 7→ 〈d∗(ξ) ◦ pv(v, ξ), w〉 = 〈d∗(ξ), pv(v, ξ)w〉Y ∗×Y (5.12)

is ρ-integrable for all w ∈ X and that

〈g∗, w〉 =
∫

Ω
〈d∗(ξ), pv(v, ξ)w〉 dρ(ξ) for all w ∈ X. (5.13)

P r o o f. As in Clarke [13, p. 85] we define a different kind of generalized gradients for the
parameter-dependent functionals

f[ξ] : X 7→ R with f[ξ](v) := d(p(v, ξ)), (5.14)

which take into account variations of the parameter, by

∂[Ω]f[ξ](v) := co∗
{

f∗ ∈ X∗ : f∗i
∗
⇀ f∗, f∗i ∈ ∂f[ξi](vi), vi → v, ξi → ξ, ξi ∈ Ω

}
(5.15)

where co∗ denotes the weak∗-closed convex hull. Since f[ξ] is locally Lipschitz continuous on X

for all ξ ∈ Ω, this gradient is well defined and, obviously, ∂f[ξ](v) ⊂ ∂[Ω]f[ξ](v). By Clarke [13,
Theorem 2.8.2] we obtain

∂g(v) ⊂
{∫

Ω
∂[Ω]f[ξ](v) dρ(ξ) : ρ ∈ R[Ω(v)]

}
=: ∂0g(v) ⊂ X∗ for v ∈ X. (5.16)
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The interpretation of ∂0g(v) is analogous to that of the right-hand side in (5.11), which we
denote by ∂1g(v). Thus we have to verify that ∂0g(v) ⊂ ∂1g(v).

By the Chain Rule (cf. Proposition 5.3), for ξ ∈ Ω we get

∂f[ξ](v) ⊂ ∂d(p(v, ξ)) ◦ pv(v, ξ), v ∈ X. (5.17)

This means that every element f̃∗ ∈ ∂f[ξ](v) corresponds to d∗ ∈ ∂d(p(v, ξ)) such that

〈f̃∗, w〉 = 〈d∗, pv(v, ξ)w〉Y ∗×Y for all w ∈ X. (5.18)

We now assume that

vk → v, ξk → ξ, ξk ∈ Ω, f∗k ∈ ∂f[ξk](vk), f∗k
∗
⇀ f∗. (5.19)

By definition (5.15), f∗ ∈ ∂[Ω]f[ξ](v). We show later in this proof that

f∗ ∈ ∂d(p(v, ξ)) ◦ pv(v, ξ). (5.20)

As a generalized gradient, ∂d(p(v, ξ)) is a convex and weak∗-compact subset of Y ∗. Hence the
set ∂d(p(v, ξ)) ◦ pv(v, ξ) ⊂ X∗ is convex and weak∗-closed. Observing (5.15), (5.19) and (5.20),
we get

∂[Ω]f[ξ](v) ⊂ ∂d(p(v, ξ)) ◦ pv(v, ξ). (5.21)

But this means that ∂0g(v) ⊂ ∂1(v) and thus gives the assertion.
It remains to prove (5.20). Let f∗ be given as in (5.19). By (5.17) there are elements

d∗k ∈ ∂d(p(vk, ξk)) with f∗k = d∗k ◦ pv(vk, ξk). (5.22)

Since d(·) is Lipschitz continuous, the sets ∂d(q) ⊂ Y ∗, q ∈ Y , are uniformly bounded (cf.
Proposition 5.3). Using the reflexivity of Y , we can therefore assume, possibly for a subsequence,
that d∗k ⇀ d∗ ∈ Y ∗. Thus, by the continuity of pv(·, ·),

〈f∗, w〉 = lim
k→∞

〈f∗k , w〉 = lim
k→∞

〈d∗k, pv(vk, ξk)w〉Y ∗×Y

= 〈d∗, pv(v, ξ)w〉Y ∗×Y = 〈d∗ ◦ pv(v, ξ), w〉 for all w ∈ X, (5.23)

i.e.,
f∗ = d∗ ◦ pv(v, ξ). (5.24)

Applying Proposition 5.3.3 and the continuity of p(·, ·), we obtain

d∗ ∈ ∂d(p(v, ξ)). (5.25)

Conditions (5.24), (5.25) now imply (5.20) and the proof is complete. ♦

P r o o f of Lemma 5.9. We study g near v0 ∈ X. First we show that there exists a Lipschitz
constant independent of ξ ∈ Ω for v 7→ p(v, ξ) near v0.

Since pv(·, ·) is continuous and Ω is compact, we can choose a neighborhood U0 of v0 such
that

‖pv(v, ξ)‖ ≤ l1 := max
ξ∈Ω

‖pv(v0, ξ)‖ + 1 for all v ∈ U0, ξ ∈ Ω. (5.26)
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We can suppose that U0 is convex and, thus,

‖p(v1, ξ)− p(v2, ξ)‖ = ‖
∫ 1

0
pv(tv1 + (1− t)v2, ξ)(v1 − v2) dt‖

≤ l1‖v1 − v2‖ for all v1, v2 ∈ U0, ξ ∈ Ω. (5.27)

If l2 denotes the Lipschitz constant of the functional d, for v1, v2 ∈ U0 we finally can estimate

|g(v1)− g(v2)| = | max
ξ∈Ω

d(p(v1, ξ))−max
ξ∈Ω

d(p(v2, ξ) |

≤ max
ξ∈Ω

|d(p(v1, ξ))− d(p(v2, ξ))|

= |d(p(v1, ξ0))− d(p(v2, ξ0))| for some ξ0 ∈ Ω

≤ l2‖p(v1, ξ0)− p(v2, ξ0)‖ ≤ l1l2‖v1 − v2‖. (5.28)

This verifies the assertion. ♦

6 Proof that the Euler-Lagrange equations are satisfied

We prove Theorem 4.10, Corollary 4.27 and Theorem 4.31 in this section. Some serious difficul-
ties arise from the fact that Es is only Gâteaux differentiable in special directions in X. Since
we also have to handle generalized gradients, the situation is even worse than usual, because
the generalized gradient coincides with the derivative only in the case of stronger differentia-
bility (e.g., for a continuous derivative). Therefore we cannot employ the usual arguments to
get Lagrange multipliers independent of a sufficiently large class of variations by means of the
Gâteaux derivative (cf. Antman [3, Chapter VII]). However, we bypass these difficulties by con-
sidering a corresponding modified variational problem in a different space where the functionals
have nice differentiability properties on suitable subspaces. To get normality in the Lagrange
Multiplier Rule, we need the regularity of the functionals g0, g1, . . . , gn and, moreover, the linear
independence of the corresponding generalized gradients on such subspaces of variations. We
derive this from conditions (4.7) and (4.8). However, we have to ensure that these subspaces are
large enough to get regularity for g0, since (4.8) expresses a local property both of the solution
u and of the obstacle. Thus we finally get the Euler-Lagrange equations.

6.1 Modified problem

Let us introduce the following space of variations

(
4
ν,

4
η,

4
µ,

4
r0,

4
θ0) =

4
u ∈ V := L∞ × L∞ × L∞ × R2 × R . (6.1)

V is a Banach space with the norm

‖
4
u ‖∞ := ‖ν‖∞ + ‖η‖∞ + ‖µ‖∞ + ‖

4
r0 ‖+ |θ0|. (6.2)

We define the functionals Ĕ, Ĕs, Ĕp, ğ0, ğ1, . . . , ğn on V by

Ĕ(
4
u) := E(u+

4
u), etc., (6.3)
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where u is a solution of the problem (4.1) – (4.4). We can now consider the following modified
variational problem

Ĕ(
4
u) → Min!,

4
u∈ V, (6.4)

ğ0(
4
u) ≤ 0, ği(

4
u) = 0, i = 1, . . . , n, (6.5)

ν(s)+
4
ν (s)− V (µ(s)+

4
µ (s), s) ≥ 0 a.e. on [0, L]. (6.6)

Since V ⊂ X, this problem obviously has a solution at
4
u= 0. We now study this modified

problem on suitable subspaces of V. Thus all differentiability properties which we consider are
taken with respect to V or to certain of it subspaces.

We provide some more notation. For k ∈ N, set

Uk(s) := {ξ := (ν̄, η̄, µ̄) ∈ R3 : |ν̄ − ν(s)|+ |η̄ − η(s)|+ |µ̄− µ(s)| < 3/k}, (6.7)

Ik := {s ∈ [0, L] : sup
ξ∈Uk(s)

(
|Wν(ξ, s)|+ |Wη(ξ, s)|+ |Wµ(ξ, s)|

)
≤ k}, (6.8)

χk(s) :=

{
1 for s ∈ Ik,

0 for s 6∈ Ik.
(6.9)

Our assumptions on W ensure that the sets Ik are measurable and, obviously, Ik ⊂ Ik+1.
By (1.41), (1.42), (1.43), (4.9), the gradient of W (·, ·, ·, s) is unbounded exactly where W is
unbounded. Hence, [0, L] \

⋃∞
k=1 Ik has measure zero. Otherwise Es(u) would not be finite.

We shall study the modified variational problem on the following subspaces of V

Vk := {
4
u∈ V :

4
ν (s) =

4
η (s) =

4
µ (s) = 0 for s 6∈ Ik}. (6.10)

Within these subspaces we consider the special neighborhoods of the origin

V0
k := {

4
u∈ Vk : ‖ 4

ν ‖∞, ‖
4
η ‖∞, ‖

4
µ ‖∞ < 1/k}. (6.11)

Clearly,(
ν(s)+

4
ν (s), η(s)+

4
η (s), µ(s)+

4
µ (s)

)
∈ Uk(s) a.e. on [0, L] for

4
u∈ V0

k . (6.12)

Observing (4.9), (6.8), (6.10), we readily see that
4
u respects the orientation-preserving condition

(6.6) for all
4
u∈ V0

k , k ∈ N, i.e., this condition is fulfilled automatically in a neighborhood of the
origin in the subspace Vk. Thus we can drop this condition as long as we study the modified
problem in such a subspace.

Since u has regular contact, (4.8) yields a covering of the set Ic ⊂ [0, L] of all contact
parameters sc of u with open sets I(sc) which we can assume to be open intervals. Obviously
Ic is compact and we can select a finite open covering {Īi}l

i=1. For a sufficiently small number
ε0 > 0, we get a new open covering {Ĩi}l

i=1 of Ic if we cut off at the ends of each Īi an interval
of length ε0. We use these coverings for regularity arguments below.
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6.2 Differentiability of the stored energy

Let us now investigate the differentiability of the modified energy Ĕs in the spaces Vk.
For

4
v∈ V0

k and
4
u∈ Vk, we get that

4
v +t

4
u∈ V0

k for t ∈ R sufficiently small and, with the
notation gradW := (Wν ,Wη,Wµ),

Ĕs(
4
v +t

4
u)− Ĕs(

4
v)

t
=

∫ L

0

[∫ 1

0
gradW̆ [

4
v +τt

4
u](s) dτ

]
·
(
4
ν (s),

4
η (s),

4
µ (s)

)T
ds. (6.13)

Observing (6.8), (6.10), (6.11), we can apply the Lebesgue Dominated Convergence Theorem
and compute (cf. also Zeidler [48, p. 1018]),

〈Ĕ′
s(
4
v),

4
u〉 =

d

dt
Ĕs(

4
v +t

4
u)

∣∣∣
t=0

=
∫ L

0

d

dt
W̆ [

4
v +t

4
u](s)

∣∣∣
t=0

ds

=
∫
Ik

W̆ν [
4
v](s)

4
ν (s) + W̆η[

4
v](s)

4
η (s) + W̆µ[

4
v](s)

4
µ (s) ds. (6.14)

We readily verify that the convergence of the derivative as t → 0 is uniform with respect to
‖
4
u ‖∞ and, consequently, Ĕ′

s(·) exists as a Fréchet derivative on a neighborhood of the origin
in the space Vk. Let us now choose a sequence

4
vi 7→

4
v in V0

k . Then

‖Ĕ′
s(
4
vi)− Ĕ′

s(
4
v)‖k = max

4
u∈Vk,‖

4
u‖∞≤1

|〈Ĕ′
s(
4
vi)− Ĕ′

s(
4
v),

4
u〉|

≤
∫
Ik

∣∣∣W̆ν [
4
vi](s)− W̆ν [

4
v](s)

∣∣∣ +
∣∣∣W̆η[

4
vi](s)− W̆η[

4
v](s)

∣∣∣ +

+
∣∣∣W̆µ[

4
vi](s)− W̆µ[

4
v](s)

∣∣∣ ds. (6.15)

Since the strong convergence in L∞ implies convergence a.e. and by the smoothness hypothesis
for W , we can again use the Dominated Convergence Theorem to see the continuity of the
derivative Ĕ′

s(·) near the origin in Vk. Clearly, for
4
u∈ Vk

〈Ĕ′
s(0),

4
u〉 =

∫
Ik

Wν [u](s)
4
ν (s) + Wη[u](s)

4
η (s) + Wµ[u](s)

4
µ (s) ds. (6.16)

6.3 Differentiability of the potential energy

We proceed with the differentiability of the modified potential energy on V. With v = u+
4
v we

have
Ĕp(

4
v) = −

∫
Ω

p[v](z) · df(z) = −
∫

Ω

(
r[v](s) + ζb[v](s)

)
· df(s, ζ) (6.17)

for
4
v∈ V (recall (1.50)).
Obviously, Ĕp(·) is the sum of a linear continuous function in r and a linear continuous

function in b and one easily verifies that r[·], b[·] are continuously differentiable by (1.13),
(1.14), (1.5). Therefore, Ĕp(·) is continuously Fréchet differentiable on V and, consequently, also
on the subspaces Vk.
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Let us now compute this derivative at 0 ∈ V. Using (1.13), (1.14), for
4
u∈ V and t ∈ R we

get

Ĕp(t
4
u) = −

∫
Ω

r[u + t
4
u](s) · df(s, ζ)−

∫
Ω

ζb[u + t
4
u](s) · df(s, ζ)

= −
∫

Ω

[
r0 + t

4
r0 +

∫ s

0

(
ν(τ) + t

4
ν (τ)

)
a
(
θ[µ + t

4
µ, θ0 + t

4
θ0](τ)

)
+

(
η(τ) + t

4
η (τ)

)
b
(
θ[µ + t

4
µ, θ0 + t

4
θ0](τ)

)
dτ

]
· df(s, ζ)

−
∫

Ω
ζb

(
θ[µ + t

4
µ, θ0 + t

4
θ0](s)

)
· df(s, ζ) (6.18)

where
θ[µ + t

4
µ, θ0 + t

4
θ0](s) = θ0 + t

4
θ0 +

∫ s

0
( µ(τ) + t

4
µ (τ) ) dτ. (6.19)

Equation (1.5) tells us that ∂a/∂θ = b and ∂b/∂θ = −a. Consequently

〈Ĕ′
p(0),

4
u〉

= −
∫

Ω

4
r0 · df(s, ζ) −

∫
Ω

∫ s

0

(
4
ν (τ)a(θ[µ, θ0](τ))+

4
η (τ)b(θ[µ, θ0](τ))

)
dτ · df(s, ζ)

−
∫

Ω

∫ s

0

[(
ν(τ)b(θ[µ, θ0](τ))− η(τ)a(θ[µ, θ0](τ))

)(4
θ0 +

∫ τ

0

4
µ (ω)dω

)]
dτ · df(s, ζ)

+
∫

Ω
ζa(θ[µ, θ0](s))

( 4
θ0 +

∫ s

0

4
µ (ω) dω

)
· df(s, ζ). (6.20)

Since all terms are integrable, we can apply Fubini’s Theorem. Writing θ(·) instead of θ[µ, θ0](·),
we obtain

〈Ĕ′
p(0),

4
u〉 = −

4
r0 ·

∫
Ω

df(s, ζ)

−
∫ L

0

[ (
4
ν (τ)a(θ(τ))+

4
η (τ)b(θ(τ))

)
·
∫

Ωτ

df(s, ζ)
]

dτ

−
4
θ0

∫ L

0

[ (
ν(τ)b(θ(τ))− η(τ)a(θ(τ))

)
·
∫

Ωτ

df(s, ζ)
]

dτ

−
∫ L

0

4
µ (ω)

[∫ L

ω

(
ν(τ)b(θ(τ))− η(τ)a(θ(τ))

)
·
∫

Ωτ

df(s, ζ) dτ
]

dω

+
4
θ0

∫
Ω

ζa(θ(s)) · df(s, ζ)

+
∫ L

0

4
µ (ω)

[ ∫
Ωω

ζa(θ(s)) · df(s, ζ)
]

dω. (6.21)

Recalling (1.31), (1.32), the orthogonality of a,b and changing variables, we obtain

〈Ĕ′
p(0),

4
u〉 = −

4
r0 ·f(0) −

∫ L

0

(
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
· f(s) ds

−
∫ L

0

4
µ (s)

[∫ L

s
( r′(τ)× f(τ) ) · k dτ + lf (s) · k

]
ds

−
4
θ0

[ ∫ L

0
( r′(τ)× f(τ) ) · k dτ + lf (0) · k

]
. (6.22)
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6.4 Generalized gradient of the obstacle condition

We now determine the generalized gradient of the functional ğ0 on the space V by applying
Proposition 5.10. With v = (ν̌, η̌, µ̌, ř0, θ̌0), we have by (1.1), (1.5), (1.13), (1.14) that

p[v](s, ζ) = ř0 +
∫ s

0

(
ν̌(τ)a(θ[µ̌, θ̌0](τ)) + η̌(τ)b(θ[µ̌, θ̌0](τ))

)
dτ + ζb(θ[µ̌, θ̌0](s)). (6.23)

p[·](·) is continuous on (u+V)×Ω and the mapping v 7→ p[v](s, ζ) is continuously differentiable
on u + V for all (s, ζ) ∈ Ω. Consequently the mapping (

4
v, (s, ζ)) 7→ p̆[

4
v](s, ζ) := p[u+

4
v](s, ζ)

is continuous on V × Ω and
4
v 7→ p̆[

4
v](s, ζ) has a derivative p̆v[

4
v](s, ζ) on V for all (s, ζ) ∈ Ω. A

straightforward computation yields the continuity of p̆v[·](·) on V × Ω where

p̆v[0](s, ζ)
4
u =

4
r0 +

∫ s

0

[
4
ν (τ)a(θ(τ))+

4
η (τ)b(θ(τ)) + r′⊥(τ)

(4
θ0 +

∫ τ

0

4
µ (ω)dω

)]
dτ

− ζa(θ(s))
( 4

θ0 +
∫ s

0

4
µ (τ)dτ

)
for all

4
u∈ V. (6.24)

Here again θ(·) stands for θ[µ, θ0](·) and r′⊥(·) := ν(·)b(θ(·))− η(·)a(θ(·)).
Clearly, d defined in (4.5) is Lipschitz continuous with constant 1. Therefore ğ0 is locally

Lipschitz continuous on V by Lemma 5.9. Hence the generalized gradient ∂ğ0(·) exists on V
and can be characterized by Proposition 5.10. If g∗ ∈ ∂ğ0(0), then there exist a mapping
(s, ζ) 7→ d∗(s, ζ) ∈ ∂d(p[u](s, ζ)) and a probability Borel measure ρ supported on the set
Ω̆g0 := {(s, ζ) ∈ Ω : ğ0(0) = d(p̆[0](s, ζ))} such that d∗(s, ζ) · p̆v[0](s, ζ)

4
u is ρ-integrable and

〈g∗,
4
u〉 =

∫
Ω

d∗(s, ζ) · p̆v[0](s, ζ)
4
u dρ(s, ζ). (6.25)

Observe that d∗, ρ depend on g∗, but let us suppress this dependence. Moreover, Ω̆g0 is equal
to the contact set Ωu if ğ0(0) = 0 (cf. (4.20)) and obviously ‖d∗(s, ζ)‖ ≤ 1 on Ω. Substituting
(6.24) into (6.25), we get

〈g∗,
4
u〉 =

∫
Ω

d∗(s, ζ) ·
[
4
r0 +

∫ s

0

(
4
ν (τ)a(θ(τ))+

4
η (τ)b(θ(τ))

)
dτ

]
dρ(s, ζ)

+
∫

Ω
d∗(s, ζ) ·

[∫ s

0
r′⊥(τ)

( 4
θ0 +

∫ τ

0

4
µ (ω)dω

)
dτ

]
dρ(s, ζ)

−
∫

Ω
d∗(s, ζ) · a(θ(s))ζ

( 4
θ0 +

∫ s

0

4
µ (τ)dτ

)
dρ(s, ζ). (6.26)

Let us choose
4
u∈ V such that

4
ν (s) =

4
η (s) =

4
µ (s) = 0 on [0, L] and

4
θ0= 0. Then we get

that d∗(s, ζ)·
4
r0 is ρ-integrable for all

4
r0∈ span {i, j}. But this implies that d∗(s, ζ) itself is

ρ-integrable. Since all other terms in the integrand in (6.26) are also integrable, we can invoke
Fubini’s Theorem. By straightforward computations, we obtain

〈g∗,
4
u〉 =

4
r0 ·

∫
Ω

d∗(τ, ζ)dρ(τ, ζ)

+
∫ L

0

[ (
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
·
∫

Ωs

d∗(τ, ζ) dρ(τ, ζ)
]

ds

+
∫ L

0

4
µ (s)

[∫ L

s

(
r′⊥(τ) ·

∫
Ωτ

d∗(ω, ζ) dρ(ω, ζ)
)
dτ −

∫
Ωs

ζd∗(τ, ζ) · a(θ(τ)) dρ(τ, ζ)
]
ds
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+
4
θ0

∫ L

0

(
r′⊥(τ) ·

∫
Ωτ

d∗(ω, ζ) dρ(ω, ζ)
)

dτ

−
4
θ0

∫
Ω

ζd∗(τ, ζ) · a(θ(τ)) dρ(τ, ζ) (6.27)

where Ωs := {(τ, ζ) ∈ Ω : τ ∈ [s, L]}. For Borel sets Ω̆ ⊂ Ω,

Ω̆ 7→ f̃c(Ω̆) :=
∫

Ω̆
d∗(τ, ζ) dρ(τ, ζ) (6.28)

defines a vector-valued Borel measure on Ω supported on the set Ω̆g0 (cf. Benedetto [10, p.
171]). As we shall see, for some g∗ ∈ ∂ğ0(0) and a suitable real number λ0 ≥ 0, the measure
−λ0f̃c describes the contact force exerted by the obstacle. In analogy with (1.31), (1.32), set

f̃c(s) :=
∫

Ωs

df̃c(τ, ζ) =
∫

Ωs

d∗(τ, ζ) dρ(τ, ζ), (6.29)

l̃fc(s) :=
∫

Ωs

ζb(τ)× df̃c(τ, ζ) =
∫

Ωs

ζb(τ)× d∗(τ, ζ) dρ(τ, ζ). (6.30)

The identities in (6.29), (6.30) are simple consequences of measure theory (cf. Bauer [9, p. 110]
for (6.30)). Recalling the orthogonality a⊥b and r′⊥r′⊥, we finally get

〈g∗,
4
u〉 =

4
r0 · f̃c(0) +

∫ L

0

(
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
· f̃c(s) ds

+
∫ L

0

4
µ (s)

[∫ L

s
( r′(τ)× f̃c(τ) ) · k dτ + l̃fc(s) · k

]
ds

+
4
θ0

[∫ L

0
( r′(τ)× f̃c(τ) ) · k dτ + l̃fc(0) · k

]
. (6.31)

Note that this differential has the same structure as (6.22).
We now consider the regularity of ğ0 in the subspaces Vk for the case that ğ0(0) = 0 and

k ∈ N is sufficiently large. More precisely, we suppose that the Lebesgue measure of [0, L] \ Ik

is smaller than ε0. The support of the measure ρ belongs to the set Ω̆g0 which is equal to Ωu

in our case (cf. (4.20)). Therefore the set of all s ∈ [0, L] with the property that (s, ζ) lies
in the support of ρ for some ζ, which we call s-support of ρ, is contained in the set Ic of all
contact parameters of u. Since ρ is a probability measure, the support and the s-support must
be nonempty. Thus there exists a largest point s̃ in the s-support and, clearly, s̃ ∈ Ic. From the
covering {Ĩi}l

i=1 of Ic we can choose some Ĩi containing s̃. Now observe that Ĩi ⊂ Īi and that
(4.8) is fulfilled with Īi instead of I(sc).

Let us first assume that 0 6∈ Īi. Then we can find an interval Ĩ ⊂ Īi of length ε0 having
s̃ as the right boundary point. Using the properties of the integral defining f̃c we obtain that
f̃c(s) = 0 for s > s̃ and from d∗(s, ζ) ∈ ∂d(p[u](s, ζ)), we obtain

f̃c(s) ∈ ρ([s, s̃]) co {∂d(q)|d(q) = 0, q = p[u](τ, ζ) for some (τ, ζ) ∈ Ω[s,s̃]} for s ≤ s̃. (6.32)

Then (4.8) implies
f̃c(s) 6= 0 on Ĩ. (6.33)
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Since we have chosen k ∈ N large, the Lebesgue measure of Ĩ ∩ Ik is positive. We take
4
u∈ Vk

with
4
r0= 0,

4
θ0= 0,

4
µ (s) = 0 on Ik, with

4
ν (s) = a(θ(s)) · f̃c(s),

4
η (s) = b(θ(s)) · f̃c(s) for s ∈ Ik ∩ Ĩ, (6.34)

and with
4
ν (s) =

4
η (s) = 0 otherwise. Hence (recall (6.9))

〈g∗,
4
u〉 =

∫
Ĩ

χk(s) ‖f̃c(s)‖2 ds > 0 . (6.35)

We now suppose that 0 ∈ Īi. By similar arguments we get that f̃c(0) 6= 0. Taking
4
u∈ Vk

with
4
ν,

4
η,

4
µ,

4
θ0 equal to zero and

4
r0= f̃c(0), we have

〈g∗,
4
u〉 = ‖f̃c(0)‖2 > 0. (6.36)

Condition (6.35) and (6.36) imply that g∗ 6= 0 and, consequently,

0 6∈ ∂ğ0(0) if ğ0(0) = 0 in the space Vk for k large. (6.37)

6.5 Differentiability of the concentrated side condition

By arguments analogous to (6.23), (6.24), we obtain the continuous differentiability of

4
v 7→ p̆[

4
v](sj , ζj) := p[u+

4
v](sj , ζj) and

4
v 7→ θ̆[

4
v](sj) := θ[u+

4
v](sj) (6.38)

on V for j = 1, . . . , n. Using Fubini’s Theorem and the notation χ̆j(s) defined in (4.26), we get
the differentials

p̆v[0](sj , ζj)
4
u =

4
r0 +

∫ sj

0

[
4
ν (τ)a(θ(τ))+

4
η (τ)b(θ(τ)) + r′⊥(τ)

( 4
θ0 +

∫ τ

0

4
µ (ω)dω

) ]
dτ

− ζja(θ(sj))
( 4

θ0 +
∫ sj

0

4
µ (τ)dτ

)
=

4
r0 +

∫ L

0
χ̆j(s)

(
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
ds

+
∫ L

0

4
µ (s)

[∫ L

s
χ̆j(τ)r′⊥(τ) dτ − χ̆j(s)ζja(θ(sj))

]
ds

+
4
θ0

[∫ L

0
χ̆j(s)r′⊥(s) ds − ζja(θ(sj))

]
, (6.39)

θ̆v[0](sj)
4
u =

4
θ0 +

∫ L

0
χ̆j(s)

4
µ (s) ds. (6.40)

Now it is easy to see that ği(·) is continuously differentiable on V. In the notation of (4.24),
(4.25), we obtain

〈ğ′i(0),
4
u〉 =

m∑
j=1

p∗ij ·
4
r0 +

m∑
j=1

p∗ij ·
∫ L

0
χ̆j(s)

(
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
ds

+
m∑

j=1

p∗ij ·
[∫ L

0

4
µ (s)

(∫ L

s
χ̆j(τ) r′⊥(τ) dτ − χ̆j(s)ζja(θ(sj))

)
ds

]
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+
4
θ0

m∑
j=1

p∗ij ·
[∫ L

0
χ̆j(s) r′⊥(s) ds − ζja(θ(sj))

]
+

4
θ0

m∑
j=1

θ∗ij +
m∑

j=1

θ∗ij

∫ L

0
χ̆j(s)

4
µ (s) ds. (6.41)

We define

f̃i(s) :=
m∑

j=1

χ̆j(s)p∗ij , l̃f̃i
(s) :=

m∑
j=1

χ̆j(s)ζjb(θ(sj))× p∗ij , l̃i(s) := k
m∑

j=1

χ̆j(s)θ∗ij (6.42)

for s ∈ [0, L], i = 1, . . . , n. Obviously f̃i, l̃f̃i
, l̃i are step functions with jumps (at most) at s = sj .

Observing that a,b are orthogonal, for
4
u∈ V we get

〈ğ′i(0),
4
u〉 =

4
r0 · f̃i(0) +

∫ L

0

(
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
· f̃i(s) ds

+
∫ L

0

4
µ (s)

[ ∫ L

s
( r′(τ)× f̃i(τ) ) · k dτ + l̃f̃i

(s) · k + l̃i(s) · k
]

ds

+
4
θ0

[ ∫ L

0
( r′(τ)× f̃i(τ) ) · k dτ + l̃f̃i

(0) · k + l̃i(0) · k
]
. (6.43)

Let us investigate the linear independence of the derivatives ğ′1(0), . . . , ğ′n(0) with respect to
the subspaces Vk. For this purpose we assume that there are real numbers λ̄i, i = 1, . . . , n with

0 =
n∑

i=1

λ̄i 〈ğ′i(0),
4
u〉 for all

4
u∈ Vk. (6.44)

If we choose special variations with
4
µ= 0,

4
θ= 0, then (6.43) implies that

0 =
n∑

i=1

λ̄if̃i(s) a.e. on Ik and 0 =
n∑

i=1

λ̄if̃i(0). (6.45)

Since f̃i are step functions, (6.45) must be valid for all s ∈ [0, L] if k ∈ N is large. Observing
(6.42) and (4.26), we then get

n∑
i=1

λ̄ip∗ij = 0, j = 1, . . . ,m, and, thus,
n∑

i=1

λ̄ĩlf̃i
(s) = 0 for s ∈ [0, L]. (6.46)

We now choose variations with
4
r0 = 0,

4
ν =

4
η = 0. From (6.43), (6.44) with the same arguments

as above, we obtain

0 =
n∑

i=1

λ̄ĩli(s) · k for all s ∈ [0, L]. (6.47)

Recalling (6.42) and (6.46) we have

0 =
n∑

i=1

λ̄ip∗ij , 0 =
n∑

i=1

λ̄iθ
∗
ij for all j = 1, . . . ,m. (6.48)

By assumption (4.7) and Banach’s Closed Range Theorem all λ̄i must be zero (cf. Zeidler [46,
p. 777]). This means that, with respect to the space Vk, the gradients

ğ′i(0), i = 1, . . . , n, are linearly independent for large k ∈ N. (6.49)
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6.6 Euler-Lagrange equations

Let us now study the modified problem (6.4) – (6.6) in some space Vk instead of V. As we have
seen, we can drop condition (6.6) in this case, 0 ∈ Vk is a solution, and all functionals occurring
in our analysis are Lipschitz continuous or even continuously differentiable near this solution
with respect to the space Vk for k ∈ N large. Thus we can apply the Lagrange Multiplier Rule
from Proposition 5.3, i.e., there exist real numbers λk

E ≥ 0, λk
0 ≥ 0, λk

1, . . . , λ
k
n, not all zero, with

the property that

0 ∈ λk
EĔ′(0) + λk

0∂ğ0(0) +
n∑

i=1

λk
i ğ
′
i(0) (6.50)

where λk
0 = 0 if ğ0(0) < 0. This yields the existence of a gradient g∗k0 ∈ ∂ğ0(0) such that

0 = λk
E〈Ĕ′(0),

4
u〉 + λk

0〈g∗k0 ,
4
u〉 +

n∑
i=1

λk
i 〈ğ′i(0),

4
u〉 for all

4
u∈ Vk. (6.51)

The gradient g∗k0 corresponds to a probability measure ρk and a ρ-measurable function d∗k on
Ω with ‖d∗k(·, ·)‖ ≤ 1. According to (6.28), (6.29), (6.30), we define f̃

k
c , f̃k

c and l̃kfc
.

In view of (6.16), (6.22), (6.31), (6.43), equation (6.51) yields the following weak form of the
Euler-Lagrange equations

0 = λk
E

∫
Ik

W̆ν [0](s)
4
ν (s) + W̆η[0](s)

4
η (s) + W̆µ[0](s)

4
µ (s) ds

− λk
E

4
r0 · f(0) − λk

E

∫
Ik

(
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
· f(s) ds

− λk
E

∫
Ik

4
µ (s)

[∫ L

s
( r′(τ)× f(τ) ) · k dτ + lf (s) · k

]
ds

− λk
E

4
θ0

[ ∫ L

0
( r′(τ)× f(τ) ) · k dτ + lf (0) · k

]
+ λk

0

4
r0 · f̃k

c (0) + λk
0

∫
Ik

(
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
· f̃k

c (s) ds

+ λk
0

∫
Ik

4
µ (s)

[∫ L

s
( r′(τ)× f̃k

c (τ) ) · k dτ + l̃kfc
(s) · k

]
ds

+ λk
0

4
θ0

[∫ L

0
( r′(τ)× f̃k

c (τ) ) · k dτ + l̃kfc
(0) · k

]
+

4
r0 ·

n∑
i=1

λk
i f̃i(0) +

∫
Ik

(
4
ν (s)a(θ(s))+

4
η (s)b(θ(s))

)
·
( n∑

i=1

λk
i f̃i(s)

)
ds

+
∫
Ik

4
µ (s)

n∑
i=1

λk
i

[ ∫ L

s
( r′(τ)× f̃i(τ) ) · k dτ + l̃f̃i

(s) · k + l̃i(s) · k
]

ds

+
4
θ0

n∑
i=1

λk
i

[ ∫ L

0
( r′(τ)× f̃i(τ) ) · k dτ + l̃f̃i

(0) · k + l̃i(0) · k
]

for all
4
u∈ Vk.(6.52)

Set

f̃k
s (s) :=

n∑
i=1

λk
i f̃i(s), l̃k

f̃s
:=

n∑
i=1

λk
i l̃f̃i

, l̃ks(s) :=
n∑

i=1

λk
i l̃i(s) for s ∈ [0, L]. (6.53)
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We remark that f̃k
s , l̃k

f̃s
, l̃ks are again step functions with jumps at most at s = sj , j = 1, . . . ,m.

Remembering that W̆ν [0](·) = Wν [u](·), etc., we obtain the following Euler-Lagrange equations
a.e. on Ik

0 = λk
EWν [u](s) − λk

Ea(θ(s)) · f(s) + λk
0a(θ(s)) · f̃k

c (s) + a(θ(s)) · f̃k
s (s), (6.54)

0 = λk
EWη[u](s) − λk

Eb(θ(s)) · f(s) + λk
0b(θ(s)) · f̃k

c (s) + b(θ(s)) · f̃k
s (s), (6.55)

0 = λk
EWµ[u](s) − λk

E

∫ L

s
( r′(τ)× f(τ) ) · k dτ − λk

Elf (s) · k

+ λk
0

∫ L

s
( r′(τ)× f̃k

c (τ) ) · k dτ + λk
0 l̃

k
fc

(s) · k

+
∫ L

s
( r′(τ)× f̃k

s (τ) ) · k dτ + l̃k
f̃s

(s) · k + l̃ks(s) · k, (6.56)

0 = − λk
Ef(0) + λk

0 f̃
k
c (0) + f̃k

s (0), (6.57)

0 = − λk
E

∫ L

0
( r′(τ)× f(τ) ) · k dτ − λk

Elf (0) · k + λk
0

∫ L

0
( r′(τ)× f̃k

c (τ) ) · k dτ

+ λk
0 l̃

k
fc

(0) · k +
∫ L

0
( r′(τ)× f̃k

s (τ) ) · k dτ + l̃k
f̃s

(0) · k + l̃ks(0) · k. (6.58)

Using the notation from (4.11) we can reformulate (6.54), (6.55) as

0 = λk
En[u](s) − λk

Ef(s) + λk
0 f̃

k
c (s) + f̃k

s (s) a.e. on Ik. (6.59)

Suppose that λk
E = 0. By (6.50), the case that λk

i = 0 for all i = 1, . . . , n can be excluded,
because λk

0 = 0 if ğ0(0) < 0 and 0 6∈ ∂ğ0(0) if ğ0(0) = 0 (cf. (6.37)). If not all λk
i are zero, then

(6.49) and the discussion surrounding it imply that either f̃k
s (s) or l̃ks(s) is not identical zero.

Since f̃k
s and l̃ks are step functions, one of them must have a non-zero jump at some sj . Equation

(6.59) tells us that
0 = λk

0 f̃
k
c (s) + f̃k

s (s) a.e. on Ik (6.60)

in this case. If f̃k
s is not identical zero, then λk

0 f̃
k
c must have a non-zero jump at some sj . This is

a contradiction, since sj is not a contact parameter and the support of ρk only contains points
(s, ζ) where s is a contact parameter. If f̃k

s is identical zero, then λk
0 = 0 by (6.60), because

f̃k
c (s) cannot be identically zero on Ik by (4.8) and the fact that ρk is a probability measure (cf.

(6.29)). Furthermore l̃k
f̃s

is identical zero in this case (cf. (6.45), (6.46)). Equations (6.56) and

(6.58) with λk
E = 0 then give

0 = l̃ks(s) for all s ∈ [0, L], (6.61)

i.e., f̃k
s and l̃ks are both identically zero. As we have seen, this is impossible by our regularity

assumptions. Consequently we must have λk
E > 0 and, without loss of generality, we can take

λk
E = 1.

We now show that the Euler-Lagrange equations hold a.e. on [0, L] instead of merely on
Ik. If there are no obstacles or if g0(u) < 0, then λk

0 = 0 and the step functions f̃k
s , l̃k

f̃s
, l̃ks are

independent of k for large k ∈ N, because Ik ⊂ Ik+1 (cf. Antman [3, Chapter VII.5]). By the
linear independence of the gradients ğ′i(0), arguments similar to those just given imply that the
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multipliers λk
i , i = 1, . . . , n are also independent of k for large k ∈ N. This extends the previous

Euler-Lagrange equations a.e. on [0, L] if g0(u) < 0.
Let us now consider the case that g0(u) = 0, which needs some more effort. We study the

question of whether the Lagrange multipliers λk
i , i = 0, 1, . . . , n, are bounded for k → ∞. We

first assume for contradiction that, at least for a subsequence,

λk
0 →∞ as k →∞. (6.62)

Recall that {Ĩi}l
i=1 is a finite covering of the set Ic of contact parameters with open intervals

and that (4.8) holds with Īi ⊃ Ĩi instead of I(sc). Without loss of generality we can suppose
that no Īi contains any point sj . Set Ωi := {(s, ζ) ∈ Ω| s ∈ Ĩi}. For each k ∈ N there is an
ik ∈ {1, . . . , l} with ρk(Ωik) ≥ 1/l, since ρk is a probability measure with support in ΩIc . By the
finiteness of the number of indices we can assume, at least for a subsequence, that all indices ik

are equal, e.g., to i0 ∈ {1, . . . , l}. We agree that the open interval Ĩi0 coincides with (š1, š2).
Let us start with the case that š1, š2 ∈ (0, L). By Ie

k we denote the subset of Ik where
equality holds in (6.59). We can fix some k0 ∈ N sufficiently large such that the Lebesgue
measure of the sets (0, š1) ∩ Īi0 ∩ Ie

k0
and (š2, L) ∩ Īi0 ∩ Ie

k0
is positive. Since Ik0 ⊂ Ik for all

k > k0, we can find

šk
a, šk

b ∈ Īi0 ∩ Ie
k0
∩ Ie

k with šk
a ∈ (0, š1), šk

b ∈ (š2, L) for k > k0. (6.63)

Obviously the functions f , f̃k0
c and f̃k0

s are bounded on [0, L]. In view of (6.59), there exist
constants cf > 0, ck0 > 0 with

‖f(s)‖ ≤ cf on [0, L], ‖n[u](s)‖ ≤ ck0 on Ie
k0

. (6.64)

Since Īi0 does not contain any sj , it follows that f̃s is constant on Īi0 and (6.59) gives (observe
that λk

E = 1)

0 = n[u](šk
b )− n[u](šk

a)− ( f(šk
b )− f(šk

a) ) + λk
0( f̃k

c (šk
b )− f̃k

c (šk
a) ) (6.65)

and, consequently,

λk
0 ‖ f̃k

c (šk
b )− f̃k

c (šk
a) ‖ ≤ 2ck0 + 2cf for all k > k0. (6.66)

Recall the definition of f̃k
c according to (6.29). With the notation Ωk := {(s, ζ) ∈ Ω|šk

a ≤ s < šk
b},

qk
c := f̃k

c (šk
a)− f̃k

c (šk
b ) =

∫
Ωk

d∗k(τ, ζ) dρk(τ, ζ). (6.67)

We define

Σ := co {∂d(q)| d(q) = 0, q = p[u](τ, ζ) for some (τ, ζ) ∈ ΩĪi0
}, (6.68)

Condition (4.8) implies that 0 6∈ Σ. By the compactness of Σ and a simple separation argument,
there exist a vector q̌ ∈ R2 and a constant cq > 0 with

q̌ · q > cq for all q ∈ Σ. (6.69)
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By (6.67) and the definition of the integral, qk
c belongs to a set Σk which can be recovered from

Σ by scaling with a number ck ≥ ρk(Ωi0) ≥ 1/l > 0. Observing (6.69) we obtain for k → ∞,
that

λk
0 →∞ implies λk

0q̌ · qk
c →∞. (6.70)

This, however, contradicts (6.66), and only the cases š1 ≤ 0 or š2 ≥ L remain.
If š1 ≤ 0 and š2 ∈ (0, L), then we argue as in the previous case with the special choice that

šk
a := 0, and, instead of (6.65), we derive a formula using (6.57) instead of (6.59) at šk

a. This
also leads to a contradiction.

If š2 ≥ L, then we choose šk
a as in the previous cases and replace (6.65) with either (6.59)

at šk
a or with (6.57). Observe that f̃s(šk

a) = 0 in these cases. Then we can argue as before and
again obtain a contradiction. Thus we conclude that

λk
0 is bounded for k ∈ N. (6.71)

Now let Ǐ be an open interval which contains exactly one of the points sj . We first assume
that this sj lies in (0, L). Since sj is not a contact parameter, we can suppose that there are no
contact parameters in Ǐ and, hence, f̃k

c is constant on Ǐ. As in (6.63) we can fix k0 so large that
there exist

šk
a, šk

b ∈ Ǐ ∩ Ie
k0
∩ Ie

k with šk
a < sj < šk

b for k > k0. (6.72)

Equation (6.59) then tells us that

0 = n[u](šk
b )− n[u](šk

a)− ( f(šk
b )− f(šk

a) ) + ( f̃k
s (šk

b )− f̃k
s (šk

a) ). (6.73)

As in (6.66), we obtain

‖ f̃k
s (šk

b )− f̃k
s (šk

a) ‖ ≤ 2ck0 + 2cf for all k > k0. (6.74)

Since f̃k
s is a step function with only one jump in Ǐ at s = sj , (6.74) implies the boundedness

of this jump for all large k. If sj = 0 or sj = L, then we adopt the same ideas as in the proof
of the boundedness of λk

0, i.e., we employ (6.57) in the case of sj = 0 and, for sj = L, we use
(6.59) only at s = šk

a. Thus we finally obtain that

f̃k
s (s) is uniformly bounded for all s ∈ [0, L], k ∈ N. (6.75)

Recalling the definition of f̃k
s we see that

n∑
i=1

λk
i p

∗
ij is uniformly bounded for all j = 1, . . . ,m, k ∈ N. (6.76)

Thus
l̃k
f̃s

is uniformly bounded for all s ∈ [0, L], k ∈ N. (6.77)

Using (6.71), (6.75) and analogous arguments as before, we also get that

l̃ks(s) is uniformly bounded for all s ∈ [0, L], k ∈ N. (6.78)
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Obviously (6.71), (6.75), (6.77), and (6.78) are also valid if g0(u) < 0. Since ρk is a probability
measure and ‖d∗k(·, ·)‖ ≤ 1,

‖f̃k
c (s)‖ ≤ 1 for s ∈ [0, 1], k ∈ N. (6.79)

Observing (6.71), (6.75), (6.77), (6.78), (6.79), we can derive from the Euler-Lagrange equa-
tions (6.56) and (6.59) that n[u](·) and Wµ[u](·) are essentially bounded on [0, L], i.e., there is
a constant κ > 0 such that

‖n[u](s)‖ ≤ κ and |Wµ[u](s)| ≤ κ a.e. on [0, L]. (6.80)

This, however, implies that Ik = [0, L] for all k ∈ N sufficiently large and, consequently, (6.56)
– (6.59) hold a.e. on [0, L] for large k. This means that there exist Lagrange multipliers λ0 ≥ 0,
λ̃i ∈ R, a probability measure ρ̃ and a measurable function d̃∗ such that, with the notation of
(4.12) and with f̃c, f̃c, l̃fc , f̃s, l̃f̃s

, l̃s according to (6.28), (6.29), (6.30), (6.42), (6.53),

0 = n[u](s) − f(s) + λ0f̃c(s) + f̃s(s) a.e. on [0, L], (6.81)

0 = m[u](s) −
∫ L

s
r′(τ)× f(τ) dτ − lf (s) + λ0

∫ L

s
r′(τ)× f̃c(τ) dτ

+ λ0l̃fc(s) +
∫ L

s
r′(τ)× f̃s(τ) dτ + l̃f̃s

(s) + l̃s(s) a.e. on [0, L], (6.82)

0 = − f(0) + λ0f̃c(0) + f̃s(0), (6.83)

0 = −
∫ L

0
r′(τ)× f(τ) dτ − lf (0) + λ0

∫ L

0
r′(τ)× f̃c(τ) dτ + λ0l̃fc(0)

+
∫ L

0
r′(τ)× f̃s(τ) dτ + l̃f̃s

(0) + l̃s(0). (6.84)

Using (6.81) we can reformulate (6.82) and (6.84) as

0 = m[u](s) −
∫ L

s
r′(τ)× n[u](τ) dτ

− lf (s) + λ0l̃fc(s) + l̃f̃s
(s) + l̃s(s) a.e. on [0, L], (6.85)

0 = −
∫ L

0
r′(τ)× n[u](τ) dτ − lf (0) + λ0l̃fc(0) + l̃f̃s

(0) + l̃s(0). (6.86)

With
ρ := λ0ρ̃, d∗ := d̃∗, λi = −λ̃i, i = 1, . . . , n, (6.87)

we introduce fc, fc, lfc , fs, lfs , ls as in (4.17), (4.21), (4.22), (4.23). Obviously

fc = −λ0f̃c, lfc = −λ0l̃fc , fs = −f̃s, lfs = −l̃f̃s
, ls = −l̃s. (6.88)

This way we verify the Euler-Lagrange equations in Theorem 4.10 and the corresponding struc-
ture assertions. As a special consequence of (6.80) we get

ess infs∈[0,L]

(
ν(s)− V (µ(s), s)

)
> 0 (6.89)

and the theorem is proved. ♦

46



P r o o f of Corollary 4.27. We can argue as in the proof of the Theorem until formula
(6.59). In order to get normality, i.e., λk

E 6= 0, under the assumption of the corollary, we use the
fact that f̃k

s can only have a jump at sj0 belonging to Λj0 and, on the other hand, a jump of f̃k
c

at sj0 must lie in a set c0Σj0 for some c0 > 0. Since Λj0 ∩ c0Σj0 = ∅, we can derive that λk
E = 1

as before.
By definition, Σj0 is closed and, by the Lipschitz continuity of d(·), Σj0 is bounded (cf.

Proposition 5.3.1), i.e., Σj0 is compact. Thus we can find a neighborhood U0 of Σj0 such that

Λj0 ∩ U0 = ∅. (6.90)

By Proposition 5.3.3, there must be an open interval Ǐj0 := (sj0 − ε, sj0 + ε), ε > 0, with the
property that

Σ0 := co{∂d(q)| d(q = 0, q = p[u](s, ζ) for some (s, ζ) ∈ ΩǏj0
} ⊂ U0. (6.91)

Otherwise, we would have sequences {(ši, ζ̌i)}∞i=1 ⊂ Ω and {d∗i }∞i=1 ⊂ R2 with

ši → sj0 , d(qi) = 0 for qi := p[u](ši, ζ̌i), (6.92)

d∗i ∈ ∂d(qi) and d∗i 6∈ U0. (6.93)

At least for a subsequence we can assume that

(ši, ζ̌i) → (sj0 , ζj0) ∈ Ω, d∗i → d∗j0 ∈ R2. (6.94)

Consequently,
qi → qj0 := p[u](sj0 , ζj0), d(qj0) = 0. (6.95)

By Proposition 5.3.3, d∗j0 ∈ Σj0 , and this contradicts d∗i 6∈ U0.
Without loss of generality we can assume for the covering that {Īi}l

i=1 of Ic,

sj0 ∈ Īi implies Īi ⊂ Ǐj0 (6.96)

and that each Īi contains at most one of the sj . In order to derive the boundedness of the
multipliers λk

0 and of the step functions f̃k
s , l̃ks , we can argue as in the previous proof. However,

we have to include the case that
sj0 ∈ Ĩi0 = (š1, š2). (6.97)

We again start with š1, š2 ∈ (0, L) and we choose šk
a, š

k
b as in (6.63). Instead of (6.65) we get

0 = n[u](s̃k
b )− n[u](s̃k

a)− ( f(šk
b )− f(šk

a) ) + λk
0( f̃k

c (šk
b )− f̃k

c (šk
a) ) + ( f̃k

s (šk
b )− f̃k

s (šk
a) ) (6.98)

and, consequently,

‖λk
0( f̃k

c (šk
b )− f̃k

c (šk
a) ) + ( f̃k

s (šk
b )− f̃k

s (šk
a) )‖ ≤ 2ck0 + 2cf for all k > k0. (6.99)

Define qk
c as in (6.67) and

qk
s := f̃k

s (šk
a)− f̃k

s (šk
b ), qk := λk

0q
k
c + qk

s . (6.100)
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By (6.90), (6.91), (6.96) and with Σ from (6.68), we have

Σ ⊂ Σ0 ⊂ U0 and Λj0 ∩ Σ = ∅. (6.101)

Since Λj0 is a linear subspace, this implies

0 6∈ Λj0 + Σ := {q ∈ R2| q = qΛ + qΣ, qΛ ∈ Λj0 , qΣ ∈ Σ}. (6.102)

By the closedness of Λj0 and the compactness of Σ, we obtain the closedness of Λj0 + Σ. Hence
we can separate 0 and Λj0 + Σ, i.e., there are a vector q̌ and a constant cq > 0 such that

q̌ · q > cq for all q ∈ Λj0 + Σ (6.103)

and, therefore,

q̌ · qΛ > cq − q̌ · qΣ for all qΛ ∈ Λj0 and some fixed qΣ ∈ Σ. (6.104)

The linearity of the space Λj0 implies that

q̌ · qΛ = 0 for all qΛ ∈ Λj0 . (6.105)

We again have qk
c ∈ ckΣ for some ck ≥ 1/l > 0 and, clearly, qk

s ∈ Λj0 (cf. (6.42) and (6.53)).
Thus

q̌ · qk = q̌ · ( λk
0q

k
c + qk

s ) = λk
0c

kq̌ ·
( 1

ck
qk

c

)
> λk

0c
kcq, (6.106)

i.e.,
λk

0 →∞ implies q̌ · qk →∞. (6.107)

But this contradicts (6.99). The remaining cases š1 ≤ 0 and š2 ≥ L can be handled as in the
proof of the theorem by combining with these arguments. This finally gives the boundedness of
λk

0 for k ∈ N. In view of (6.79), condition (6.99) also implies the uniform boundedness of f̃k
s as in

(6.75). The uniform boundedness of l̃ks as in (6.78) can be obtained again by similar arguments.
At this point we can proceed as in the proof of the theorem, and the corollary is established.

♦

P r o o f of Theorem 4.31. We introduce the functions

N(s) := Wν(ν(s), η(s), µ(s), s), H(s) := Wη(. . .), M(s) := Wµ(. . .). (6.108)

By the strict convexity of W we can find continuous functions ν̂, η̂, µ̂ such that a.e. on [0, L]

ν(s) = ν̂(N(s),H(s),M(s), s), η(s) = η̂(. . .), µ(s) = µ̂(. . .). (6.109)

Since the continuous functions ν̂, η̂, µ̂ are bounded on compact sets, the first assertion is a
consequence of (4.19).

Under the additional assumptions of Theorem 4.31 we have that the functions ν̂, η̂, µ̂ are
independent of s and continuously differentiable as functions of (N̄ , H̄, M̄) ∈ R3. By (4.19),
N(·),H(·),M(·) are essentially bounded by a constant κ. Obviously we can suppose that all
partial derivatives ν̂N , ν̂H , ν̂M , η̂N , . . . are uniformly bounded by a constant κ1 on the compact
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subset of R3 where |N̄ |, |H̄|, |M̄ | ≤ κ. Using the Mean Value Theorem we can hence estimate
for a.e. s1, s2 ∈ [0, L]

|ν̂(N(s2),H(s2),M(s2))− ν̂(N(s1),H(s1),M(s1))|

≤ |ν̂N (Ñ , H̃, M̃)(N(s2)−N(s1))| + |ν̂H(. . .)(H(s2)−H(s1))|

+ |ν̂M (. . .)(M(s2)−M(s1))|

≤ κ1

(
|N(s2)−N(s1)|+ |H(s2)−H(s1)|+ |M(s2)−M(s1)|

)
(6.110)

and analogously for η̂, µ̂. In Remark 4.30 we have seen that the real functions N(·),H(·),M(·)
have bounded variation. Using the above estimates and the identities (6.109), we easily verify
that the bounded variation of N,H, M implies that of ν, η, µ (cf. Benedetto [10], Evans &
Gariepy [19]). ♦
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matematiky 104 (1979) 295–310.
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