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Introduction

In this paper we are interested in regularity results to obstacle problems for shearable nonlinearly

elastic rods. We work with the geometrically exact Cosserat theory for planar deformations which

describes rods that can suffer not only flexure but also extension and shear and it involves general

nonlinear constitutive relations. This is a consistent intrinsically one-dimensional theory which,

however, allows a geometrically exact interpretation in a two- or three-dimensional setting.

The most obstacle problems studied in the literature are carried out for much simpler models

neglecting shear, extension, and thickness and are restricted to small deformations. By these

simplifications the set of admissible deformations is usually convex and the problem leads to a

variational inequality. This is, meanwhile, a widely investigated subject where the results essen-

tially rest on monotonicity and convexity arguments (cf., e.g., Fichera [6], Frehse [7], Hlaváček,

Haslinger, Nečas & Lov́ı̌sek [8], Lewy & Stampacchia [11], Kikuchi & Oden [9], Kinderlehrer &

Stampacchia [10], Rodrigues [12] and references therein). For more realistic models, however, a

simple observations shows that even “nice” obstacles where the elastic body can move within a

convex set do not correspond to a convex set of admissible deformations in a suitable function

space. Thus we have to recognize that the theory of variational inequalities is unsuitable for that

purpose.

We readily see that an obstacle brings a nonsmooth nonlinearity in the problem. But we

cannot expect that the classical smooth analysis combined with the roughest nonsmooth tool,

namely the variational inequality, is able to describe subtle nonsmooth effects. In particular the

structure of the most interesting term describing the contact reactions, which fills the gap between

inequality and equality, is not considered in the variational inequality. Therefore it seems to be

necessary and natural to study obstacle problems by refined nonsmooth methods. In Schuricht

[13] for the very large class of obstacles having Lipschitz boundary a more general nonsmooth
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variational approach to obstacle problems for Cosserat rods is given and, using Clarke’s general-

ized gradients, the Euler-Lagrange equations can be derived. This provides more structure and

shows as a regularity result that the reactions in frictionless contact are normal, in a generalized

sense, to the boundary of the obstacle. This is usually a hypotheses in contact problems.

Motivated by these general variational results, in this paper we derive regularity results which

are valid not only in the variational case. As we will see we obtain interesting qualitative differ-

ences between shearable and unshearable materials. This in particular allows a natural description

of contact effects observed in experiments with soft shearable materials which was not possible

in the unshearable context.

An introduction to the Cosserat theory for planar deformations is given in Section 1. In

Section 2 we first formulate a general contact condition for frictionless contact inspired by previous

variational results. Then we derive a refined contact condition which roughly expresses that the

contact reactions are both normal to the boundary of the obstacle and to the boundary of the

deformed rod. This refined condition seems reasonable also from the mechanical point of view.

Both contact conditions are formulated by means of generalized gradients of certain distance

functions and provide a powerful tool for a more detailed investigation of special situations in the

rest of the paper. The case of an isolated active contact point where a concentrated force occurs

is considered in Section 3. Here we obtain a discontinuity in the strains. In particular a rod

with an originally smooth boundary will have a corner in the deformed shape which is impossible

in the unshearable case. We furthermore discuss the question why it is reasonable to consider

contact with sharp corners, though the direction of the contact force is not uniquely determined

by the geometry in that case, instead of using a smooth approximation of the obstacle. Section

4 is devoted to obstacles having a C1-boundary. We show that the reactions are continuous at

contact points for shearable materials, i.e., even at isolated contact points concentrations cannot

occur. This is, however, wrong in the unshearable case. Obstacles with C2-boundary are studied

in Section 5. Here we obtain that the contact reactions even have a continuous line density along

the contact curve. In Section 6 we illuminate some qualitative differences in regularity between

shearable and unshearable materials which show that shear causes new effects that cannot be

neglected for soft materials. In the appendix we give a short introduction to Clarke’s generalized

gradients sufficient for the understanding of this paper.

Let us finally mention that the results of Schuricht [13] or Degiovanni & Schuricht [5] and

of this paper provide a rigorous approach to a very large class of obstacle problems, i.e., we

start with general existence results and without further hypotheses about the nature of contact

reactions and the smoothness of the solutions we obtain general regularity results.

Notation. We denote by clA, intA, Ac, and ∂A the closure, the interior, the complement,

and the boundary of the set A. coneA := cl {tu|u ∈ A, t ≥ 0} is the closed cone hull of A. The

function distA(·) assigns the distance to the set A to each point. For a locally Lipschitz continuous

function f : X → R Clarke’s generalized gradient at u is denoted by ∂f(u) and the generalized

directional derivative by f0(u; v). For a function f defined on the real line f(s±) stands for
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the limit from the right and from the left, respectively, at s. Lp denotes the Lebesgue space of

p−integrable functions and BV the space of functions of bounded variation on a corresponding

set. The scalar product on Rn is expressed by a · b.

1 Rod theory

In this section we formulate the Cosserat or director theory describing planar deformations of

nonlinearly elastic rods which can bend, stretch and shear. The presented version involves gen-

eral forces and exact geometry as needed in obstacle problems. Though we sometimes argue

from a higher dimensional point of view it is a consistent one-dimensional theory in the mathe-

matical sense. However, it allows an exact two- or three-dimensional interpretation. For a more

comprehensive presentation the reader is referred to Antman [1] and Schuricht [13].

Geometry of deformation. Let {i, j,k} be a fixed right-handed orthonormal basis in R3.

We consider a slender three-dimensional body B that is symmetric with respect to the {i, j}-
plane and we restrict our studies to deformations that preserve this symmetry. Let us identify

the deformed body B with the region occupied by its intersection with the {i, j}-plane. We assume

that the position p of the deformed material points can be given in the form

p(s, ζ) = r(s) + ζb(s) for (s, ζ) ∈ Ω, where (1.1)

Ω := {(s, ζ) ∈ R2 : s ∈ [0, L], ζ ∈ [h1(s), h2(s)]}.

Here r(·), b(·) are vector-valued mappings lying in the {i, j}-plane. r(·) can be interpreted as the

deformed configuration of some material curve in the body B, the so-called base curve (e.g., the

curve of centroids or a suitable boundary curve), and b(s) is a unit vector, called the director

at s, describing the orientation of the cross-section at s. We understand s as length parameter

and ζ as thickness parameter. h1, h2 are given real functions on [0, L] which we assume to be

continuous and

h1(s) < h2(s) for all s ∈ [0, L].

Usually it is even supposed that h1(s) ≤ 0 ≤ h2(s) on [0, L] which ensures that the base curve

belongs to the rod and excludes reversed orientation along this curve under condition (1.2) below.

But this is not necessary in general.

Thus we can describe a planar configuration of a rod by a pair (r(·),b(·)) of vector-valued

functions which are defined on [0, L] and which are assumed to be absolutely continuous. We set

a := −k× b and by θ we denote the angle from i to a such that

a = cos θ i + sin θ j, b = − sin θ i + cos θ j.

Hence a configuration can be described alternatively by a pair (r(·), θ(·)). With the obvious choice

of θ (modulo 2π) the absolute continuity of θ(·) is implied by the absolute continuity of b(·).
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Let us decompose vector-valued functions with respect to the natural basis {a,b}. We set

r′ = νa + ηb, µ := θ′.

We call ξ := (ν, η, µ) the strains of a configuration. By the absolute continuity of r(·), θ(·)
the strains must be integrable functions on [0, L]. The question of further regularity will be

the subject of our investigation. For given strains ν(·), η(·), µ(·), r0 ∈ R2, and θ0 ∈ R, we can

represent a configuration by

r(s) = r0 +
∫ s

0

[
(ν cos θ − η sin θ)i + (ν sin θ + η cos θ)j

]
dτ,

θ(s) = θ0 +
∫ s

0
µ dτ.

The natural undeformed state of the rod will be called reference configuration and all correspond-

ing variables are identified by a superposed circle. We assume that

◦
ν = 1,

◦
η = 0, i.e.,

◦
r ′ =

◦
a .

This expresses that the cross-sections are orthogonal to the base curve and that s is the arc-

length of the base curve in the reference configuration. An originally straight rod is obviously

characterized by
◦
µ= 0.

The requirement that deformations be locally orientation-preserving can be expressed by the

condition that

ν(s) > V (µ(s), s) for s ∈ [0, L], where V (µ, s) :=
{

h2(s)µ for µ ≥ 0,

h1(s)µ for µ ≤ 0.
(1.2)

Observe that V (·, s) is convex for all s. The curvature κ of a sufficiently smooth deformed base

curve r(·) is given by

κ =
Φ′

‖r′‖
=

r′ × r′′

‖r′‖3
· k

where Φ denotes the angle from i to r′ measured counter-clockwise.

Forces and equilibrium conditions. In consistency with the geometrical description of

configurations let us identify subbodies B̆ ⊂ B with the corresponding subset Ω̆ ⊂ Ω. In particular

we define

ΩI := {(τ, ζ) ∈ Ω : τ ∈ I} for I ⊂ [0, L].

For a given configuration, the material of Ω[s,L] exerts across section s a resultant force n(s) and

a resultant couple m(s) on the material of Ω[0,s). Naturally we have

n(0) = 0 and m(0) = 0. (1.3)

We suppose that all forces other than n acting at the body can be described by a finite vector-

valued Borel measure

Ω̆ 7→ f(Ω̆)
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assigning the resultant force to subbodies Ω̆ ⊂ Ω. f is called external force. It causes the induced

couple of f given by

lf(Ω̆) :=
∫

Ω̆

(
p(s, ζ)− r(s)

)
× df(s, ζ) =

∫
Ω̆

ζb(s)× df(s, ζ)

(recall (1.1)). Analogously we assume that all couples different from m and lf can be given by a

finite vector-valued Borel measure

Ω̆ 7→ l(Ω̆)

which we call external couple. For our planar theory we can suppose that all forces lie in the

{i, j}-plane and that all torques and couples are orthogonal to this plane. Thus we can introduce

the so-called stress resultants Ξ := (N,H, M) by

n = N a + H b , m = M k .

A configuration of the rod is in equilibrium if the resultant force and the resultant torque

about the origin vanish for each part of the rod. Using the distribution functions

f(s) :=
∫

Ω[s,L]

df(τ, ζ), l(s) :=
∫

Ω[s,L]

dl(τ, ζ),

lf (s) :=
∫

Ω[s,L]

dlf(τ, ζ) =
∫

Ω[s,L]

ζb(τ)× df(τ, ζ) .

this is equivalent to the equilibrium conditions in integral form

n(s) − f(s) = 0 for s ∈ [0, L],

m(s) −
∫ L

s
r′(τ)× n(τ) dτ − lf (s) − l(s) = 0 for s ∈ [0, L] .

Observe that by (1.3) the resultant external force and the resultant couple of all external actions

must vanish for the whole body.

Constitutive relations. The material of the rod is taken to be elastic, i.e., there exist

continuous constitutive functions Ξ̂ = (N̂ , Ĥ, M̂) dependent on (ν, η, µ, s) such that the stress

resultants are determined by the strains through

N = N̂(ν, η, µ, s), H = Ĥ(ν, η, µ, s), M = M̂(ν, η, µ, s) (1.4)

or, equivalently, in vector notation Ξ = Ξ̂(ξ, s). The domain of definition D(Ξ̂) is obviously

restricted by (1.2). As a consequence of the Strong Ellipticity Condition we can assume that

ξ → Ξ̂(ξ, s) is strictly monotone for each s, i.e.,(
Ξ̂(ξ2, s)− Ξ̂(ξ1, s)

)
· (ξ2 − ξ1) > 0 for ξ1 6= ξ2

where (ξ1, s), (ξ2, s) ∈ D(Ξ̂). Observe that this is equivalent with the positive-definiteness of the

Jacobian Ξ̂ξ in the case where Ξ̂(·, s) is smooth. The infinity conditions

N̂(ν, η, µ, s) →
{

+∞
−∞

}
as ν →

{
+∞

V (µ, s)

}
,
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Ĥ(ν, η, µ, s) → ±∞ as η → ±∞,

M̂(ν, η, µ, s) → ±∞ as µ approaches its positive and negative

extremes of the region (1.2),

ensure that extreme strains are accompanied by extreme reactions. Since we have chosen the

natural undeformed state as reference configuration, we have that

Ξ̂(
◦
ξ, s) = Ξ̂(1, 0,

◦
µ, s) = 0 for all s ∈ [0, L] .

The monotonicity and infinity conditions for Ξ̂ support a global implicit function theorem

which ensures a unique solution of (1.4), i.e., we can find continuous functions ξ̂ = (ν̂, η̂, µ̂) such

that

ν = ν̂(N,H, M, s), η = η̂(N,H, M, s), µ = µ̂(N,H, M, s). (1.5)

Furthermore Ξ → ξ̂(Ξ, s) is also strictly monotone and inherits analog infinity conditions from

Ξ̂ (cf. Antman [1]).

The material is said to be hyperelastic if there exists a stored energy function (ν, η, µ, s) →
W (ν, η, µ, s) with the property that

N̂ = Wν , Ĥ = Wη, M̂ = Wµ.

We call a rod unshearable if the material is constrained in such a way that always η = 0.

We get such a theory from the introduced Cosserat theory by simply defining η̂ = 0 in (1.5). In

this case, however, H is a Lagrange multiplier corresponding to this material constraint and it

is not determined constitutively (cf. Antman [1]). Moreover the mapping Ξ → ξ̂(Ξ, s) is not

strictly monotone anymore. In this sense we can consider unshearable rods as singular limit case

of shearable materials. As we will see the loss of strict monotonicity causes interesting qualitative

differences in regularity for shearable and unshearable materials. A first simple observation shows

that
r′

‖r′‖
= a on [0, L] (1.6)

is always continuous, i.e., the direction of the tangent cannot jump for an unshearable rod.

For the rest of this paper we agree that we speak about the shearable case as long as nothing

else is stated.

2 Obstacle problems

We define an obstacle O as a nonempty closed subset of R2. For our regularity investigations we

consider the very rich class O of obstacles O 6= ∅ which are the closure of an open set and which

have a Lipschitz boundary, i.e., ∂O is locally the graph of a Lipschitz function. As analytical

tool we introduce the distance function

d(q) := distOcq − distOq for q ∈ R2. (2.1)
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The obstacles O ∈ O have the properties that

Oc = int ( clOc ) 6= ∅ ,

and

d(q) = 0 implies 0 /∈ ∂d(q) (2.2)

where ∂d(·) denotes Clarke’s generalized gradient for locally Lipschitz continuous functionals

(cf. the Appendix for a short introduction or Clarke [4]). This way we exclude certain singular

cases which would bother our analysis by technicalities (for some discussion of the difficulties see

Schuricht [13]).

We speak about an obstacle problem when the deformation of the rod is restricted by a given

obstacle O, i.e., when the admissible deformations are constrained by

p(s, ζ) ∈ cl(Oc) for all (s, ζ) ∈ Ω

or, equivalently,

d(p(s, ζ)) ≤ 0 on Ω .

The orientation-preserving condition (1.2) ensures that deformed configurations of the rod

correspond to open mappings (s, ζ) → p(s, ζ) on int Ω, i.e., images of open sets are open. This

remains true if (1.2) only holds a.e. on [0, L], as met for the solutions verified by general existence

assertions (cf. Schuricht [13]). This implies the reasonable condition that the rod can touch an

obstacle only with boundary points, i.e., points corresponding to ∂Ω. We say that a configuration

has regular contact if each cross-section has at most one contact point with the obstacle. We

restrict our attention to such configurations in order to exclude the uninteresting cases where the

behavior is governed by the constraints.

For the investigation of contact problems it is convenient to decompose the external force f

and the external couple l such that

f = fc + fe, lf = lfc + lfe , l = lc + le,

where the subscript “c” refers to contact reactions and “e” to other external reactions. In analogy

to the previous section we define the distribution functions fc(·), fe(·), lfc(·), lfe(·), lc(·), le(·).
Observe that all these functions belong to BV(0, L), because they are distributions of finite Borel

measures (cf. Benedetto [3]). This also implies that for these functions the limits from the left and

the right exist at every point. The equilibrium equations then readily imply the same property

for the functions m and n.

That we get a reasonable obstacle problem we have still to say something about the nature of

contact reactions. Otherwise we could take any deformation of the rod and define the force and

moment necessary to balance the system as contact reaction. However it is clear that an obstacle
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cannot balance all reactions. Thus we have to invoke some reasonable restrictions which we claim

to do for frictionless contact.
Note. Let us shortly discuss the situation. There are essentially to ways to study obstacle problems.

In the hyperelastic case we can minimize the total energy under certain side conditions which is widely done

in the literature. In the most cases simple models are used and the existence of generalized solutions, which satisfy

some variational inequality, is verified. There are, however, no satisfactory results where the qualitative properties

as, e.g., the direction of the contact force, are rigorously derived from such variational inequalities. On the one

hand the models used are usually too primitive to describe the situation satisfactorily and, on the other hand,

additional smoothness assumptions, which cannot be verified in general, have to be imposed to get some structure

assertion about the contact reaction.

The second way to handle obstacle problems is to invoke some structural restriction for the contact reactions as

hypotheses into the equilibrium conditions and then to solve the problem. Here the structural restrictions are usually

motivated by experience as, e.g., that the tangential reactions vanish in frictionless contact. Such investigations are,

however, mostly restricted to very special situations. Often only obstacles with smooth boundary can be handled

or special techniques for corners are used. Sometimes additional assumptions as, e.g., the rough location of the

contact region, are prescribed.

From the mathematical point of view both approaches have their justification. It is however unsatisfactorily

that we usually cannot verify rigourously the equivalence between both. This is probably caused by the fact that

the mostly used models and the analytical tools as, e.g., variational inequalities do not have enough structure. In

Schuricht [13] a rigorous variational approach to general obstacle problems for Cosserat rods is presented where

this gap can be closed for frictionless contact. The Euler-Lagrange equations of the variational problem, which

are derived by tools of nonsmooth analysis, coincide with the equilibrium conditions and provide some natural

structure of the contact reactions for the very large class of obstacles having Lipschitz boundary. We use these

results as basis for our further regularity investigations.

Motivated by the results in Schuricht [13] for the hyperelastic case we formulate the

General contact condition. The contact force fc for frictionless contact has the form

fc(Ω̆) = −
∫

Ω̆
d∗(s, ζ) dρ(s, ζ) for all Borel sets Ω̆ ⊂ Ω (2.3)

where ρ is a finite real non-negative Borel measure on Ω supported on the contact set

Ωc := {(s, ζ) ∈ Ω| d(p(s, ζ)) = 0}

and

(s, ζ) → d∗(s, ζ) ∈ ∂d(p(s, ζ)) (∂ w.r.t. d(·))

is a ρ-integrable mapping on Ω (∂ denotes Clarke’s generalized gradient, cf. Appendix). The

corresponding induced contact couple lfc is given by

lfc(Ω̆) = −
∫

Ω̆
ζb(s)× d∗(s, ζ) dρ(s, ζ) for Borel sets Ω̆ ⊂ Ω .

The pure contact couple lc has to vanish, i.e.,

lc(Ω̆) = 0 for Borel sets Ω̆ ⊂ Ω .

This general contact condition expresses that contact reactions only occur at points where

the rod touches the obstacle, that in some sense the corresponding forces are directed normal
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to the boundary ∂O (cf. Appendix), and that no pure contact couple can occur. This is some

generalization of the usual contact condition in problems with smooth boundary ∂O where the

tangential components of contact reactions are assumed to vanish. In the following we claim to

derive stronger properties for d∗ and ρ in general and in special situations.

Since contact and other external reactions correspond to finite measures, the stress resultants

must be bounded by the equilibrium conditions, i.e., for a solution of the obstacle problem there

is a constant c > 0 such that

‖Ξ(s)‖ ≤ c for s ∈ [0, L].

The boundedness of the continuous function ξ̂ on compact sets implies that

ξ(·) ∈ L∞(0, L)

(observe that the strains are determined only up to a set of measure zero). Thus r, θ are Lipschitz

continuous. For homogeneous materials we have that

ess inf
s∈[0,L]

(
ν(s)− V (µ(s))

)
> 0

(see also Schuricht [13]).

We now want to motivate a refined condition for the direction of d∗. Let us consider the

hyperelastic case and let p be an equilibrium state of the rod with regular contact which corre-

sponds to a minimzer of the energy subjected to the obstacle O. Assume that we have contact

at the point q0 := p(s0, ζ0) ∈ ∂O for some (s0, ζ0) ∈ ∂Ω with s0 ∈]0, L[. By

Bp := {q ∈ R2|q = p(s, ζ), (s, ζ) ∈ Ω}

we denote the closed set occupied by the deformed points according to the state p. For some

small closed ball Bq0 around q0 we define the new obstacle Õ

Õ := O ∪
(
cl(Bc

p) ∩Bq0

)
.

We do not study the question whether Õ ∈ O. But we readily see that the rod respects also

the obstacle Õ. Because p has regular contact with O, it also has regular contact with Õ for

sufficiently smallBq0 (observe s0 ∈]0, L[). Obviously the same arguments are true for all obstacles

Ŏ with

O ⊂ Ŏ ⊂ Õ . (2.4)

If we take the usual case where the external reactions fe and le depend at most on the deformation

p but not on the shape of the obstacle, then p corresponds also to a minimzer of the energy

subjected to any of these Ŏ, since the set of admissible deformations becomes smaller by O ⊂ Ŏ.

Thus the above formulated general contact condition can be derived at least for all Ŏ ⊂ O
satisfying (2.4). In analogy to (2.1) we define

dŎ(q) := distŎcq − distŎq for q ∈ R2 (2.5)
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and we introduce the class of obstacles

OO,p := {Ŏ ∈ O| O ⊂ Ŏ ⊂ cl(Bc
p)} .

The generalized gradient clearly only depends on the local behavior of a function. Hence it is

equivalent to evaluate ∂dŎ(p(s0, ζ0)) either for all Ŏ ∈ O satisfying (2.4) or for all Ŏ ∈ OO,p.

Since p(s0, ζ0) was an arbitrarily choosen contact point, we can formulate the

Refined contact condition. fc and lc satisfy the general contact condition given above and, in

addition,

d∗(s, ζ) ∈
⋂

Ŏ∈OO,p

cone
(
∂dŎ(p(s, ζ))

)
for (s, ζ) ∈ supp ρ ⊂ Ωc with s ∈]0, L[ , (2.6)

where supp denotes the support of ρ.

Observe that we have to use the closed cone hull on the right hand side, because in the general

contact condition a positive Lagrange multiplier is invoked into the measure ρ which could be

different for different Ŏ. Roughly speaking, the obstacle Ŏ ∈ OO,p where ∂dŎ(p(s, ζ)) spans the

smallest cone gives the most detailed information about the direction of the contact force. Of

course such a refinement can also be derived for points (s, ζ) ∈ Ωc with s = 0 or s = L. The

restriction to regular contact, however, causes some technicalities which we do not wont to carry

out here.

This refined condition for the direction of the contact force expresses some combined normality

both with respect to the obstacle and with respect to the deformed shape of the rod. Let us discuss

three typical cases where we assume that q0 = p(s0, ζ0) with s0 ∈]0, L[ is some a point of an

equilibrium state p.

Case 1. Let there exist two different half spaces H1,H2 ⊂ R2 and a small closed ball Bq0

around q0 such that

(O ∩Bq0) ⊂ (Hi ∩Bq0) ⊂ (cl(Bc
p) ∩Bq0) for i = 1, 2 .

Then, formally, d∗(s0, ζ0) = 0 by (2.6) and this gives a contradiction between the general contact

condition and the regularity of d(·) according to (2.2). We however see that (2.3) and (2.6) have

to hold only on supp ρ. Thus we conclude that (s0, ζ0) 6∈ supp ρ in our case, i.e., there is no

contact reaction at the contact point q0 = p(s0, ζ0) (cf. Fig. 1).

In the next two cases we consider certain regular situations. A real locally Lipschitz continuous

functional is called regular at some point in the sense of Clarke if all directional derivatives exist

in the classical sense and equal Clarke’s generelized directional derivatives at that point.

Case 2. Assume that cl(Bc
p) ⊂ O and let there exist a half space H ⊂ R2 with q0 ∈ ∂H and

a small closed ball Bq0 around q0 such that

(Ŏ ∩Bq0) ⊂ (H ∩Bq0) for all Ŏ ∈ OO,p ,
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Fig. 1. There can be no contact reac-

tion at the contact point.

Fig. 2. The dashed cone, which is normal to

the shape of the deformed rod, describes the

possible directions of the contact force.

and assume that −dcl(Bc
p) is regular at q0 in the sense of Clarke. Then (2.6) is equivalent with

d∗(s0, ζ0) ∈ cone
(
∂dcl(Bc

p)(q0)
)

(cf. Fig. 2).

Case 3. Assume that cl(Bc
p) ⊂ O and let there exist a half space H ⊂ R2 with q0 ∈ ∂H and

a small closed ball Bq0 around q0 such that

(Ŏc ∩Bq0) ⊃ (H ∩Bq0) for all Ŏ ∈ OO,p ,

and assume that dO is regular at q0 in the sense of Clarke. Then (2.6) is equivalent to

d∗(s0, ζ0) ∈ cone
(
∂dO(q0)

)
(cf. Fig. 3). The proof of Cases 2+3 is given below.

Fig. 3. The dashed cone, which is normal to the obstacle,

describes the possible directions of the contact force.

The last two cases express the rough idea of the refined contact condition that the admissible

obstacle which is locally the “closest to a half-space” gives the best condition for d∗(s0, ζ0). But

11



if, e.g., −dcl(Bc
p) highly oscillates and is not regular at q0, then the assertion of Case 2 must not

be true and the statement “closest to a half-space” cannot be taken in the sense of set inclusions.

Let us still mention that convex Lipschitz functionals are always regular in the sense of Clarke.

For nonsmooth concave functionals this is, however, wrong in general. This explains why it is

reasonable to demand regularity of −dcl(Bc
p) instead of dcl(Bc

p) in Case 2.

While Case 2 and Case 3 look reasonable also from the mechanical point of view, Case 1

is a little surprising. Remember, however, that it is derived under the assumption about the

equilibrium state to be a local minimizer of the energy, which expresses some kind of stability.

A contact reaction at q0 in this case, however, should be highly unstable (cf. Fig. 1). Moreover

observe that a “highly unstable” saddle point can disappear by making the admissible set smaller.

Without carrying out this aspect in full detail we merely want to conclude from this argumentation

the rough rule that the refined contact condition can be used in problems where we look for

“reasonable stable” and “reasonable saddle” solutions. If this is too restrictive, then we should

work with the general contact condition only.

Proof of Cases 2+3. In Case 2 we obviously have that dcl(Bc
p)(q) ≥ dŎ(q) on Bq0 for any

Ŏ ∈ OO,p. Thus for any w ∈ R2

(
−dcl(Bc

p)

)0
(q0;w) = lim

t↓0

−dcl(Bc
p)(q0 + tw)

t

≤ lim inf
t↓0

−dŎ(q0 + tw)
t

≤
(
−dŎ

)0
(q0;w) .

This readily implies that

∂
(
−dcl(Bc

p)

)
(q0) ⊂ ∂

(
−dŎ

)
(q0) .

Since ∂(−f)(u) = −∂f(u) for any locally Lipschitz functional f , we obtain the assertion.

In Case 3 we use that dO(q) ≤ dŎ(q) on Bq0 for Ŏ ∈ OO,p and we conclude analogously. 2

3 Concentrated contact reactions

In this section we study the consequences of concentrated contact reactions which, e.g., occur

at corners of the obstacle. Furthermore we discuss a macroscopic and a microscopic view to the

contact with sharp corners.

We assume that there is some isolated contact point q0 = p(s0, ζ0) ∈ ∂O with non-vanishing

contact reaction and that this is the only contact point with the obstacle O for all cross-sections

corresponding to a neighborhood of s = s0. We call such a point q0 an isolated active contact

point. Obviously (s0, ζ0) ∈ ∂Ω. That the behavior is not dominated by reactions different from

the obstacle we impose the hypothesis that

(H1) fe, lfe , and le are continuous at s = s0.

An isolated non-vanishing contact reaction at exactly one point p(s0, ζ0) means that the mea-

sure fc must have a concentration at (s0, ζ0) and the induced couple lfc can have a corresponding
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concentration. By the equilibrium equations we have that

ñ0 := n(s0+)− n(s0−) 6= 0, m(s0+)−m(s0−) = ζ0b(s0)× ñ0,

where n(s0±) and m(s0±) denote the one-sided limits at s0. We will see in the next section

that this situation can only occur at contact points where either the boundary ∂O near q0 or the

corresponding function h1 or h2 near s0 is not smooth, i.e., roughly speaking, either ∂O has a

corner at q0 or the boundary of the rod in the reference configuration, which is identified with

∂Ω, has a corner at (s0, ζ0).

Proposition 3.1 Let (H1) be satisfied and the equilibrium state p of the rod may have an isolated

active contact point at q0 = p(s0, ζ0). Then there exist λ > 0 and d0 ∈ ∂d(p(s0, ζ0)) (63 0) such

that

n(s0+)− n(s0−) = −λd0 , m(s0+)−m(s0−) = −λζ0b(s0)× d0 . (3.2)

Moreover the strains ξ(s) = ξ̂(Ξ(s), s) have a finite jump at s = s0. If, in particular, (s0, ζ0) lies

on the base curve, then the tangent r′(·) has a finite jump at s = s0.

Remark 3.3

(1) The above condition for d0 is based on the general contact condition and can be still

strengthened by the refined contact condition taking into account the shape of the deformed rod.

However the direction of the concentrated force will not be uniquely determined by the geometry

of the obstacle and the deformed rod in general. This would be only the case, roughly speaking, if

either ∂O or ∂Bp is smooth near q0. But, by the regularity results below, this cannot be expected

in general at an isolated active contact point. Furthermore observe that Case 1 of the previous

section is impossible in that situation.

(2) The fact that the direction of the contact reaction is not uniquely determined by the

geometry raises the expectation that solutions are not uniquely determined. Even more we have

to expect a whole continuum of solutions for problems where contact with a sharp corner occurs.

However we do not pause to study this effect in more detail, because it is behind the scope of

this paper.

(3) The proof of the proposition essentially uses the strict monotonicity of the constitutive

functions. Hence the assertion is not valid in the unshearable case. In Section 6 we will even show

that the strains of an unshearable rod are continuous under a concentrated contact reaction, i.e.,

we have a qualitative difference to the shearable case.

(4) Sometimes the opinion arises that sharp corners do not occur in the real world, i.e., at

least at a microscopic level we could sufficiently well approximate a sharp corner by a smooth

boundary. Then, by the regularity results shown in the next section, such “nasty” things like

concentrated forces where the direction is not even determined by the geometry cannot happen.

However, the microscopically smoothened corner leads to a resultant contact force balanced by

cross-sections in a very small neighborhood of s0 only. But this looks like a concentrated force from

13



a macroscopic point of view and it in fact satisfies the same contact condition as the concentrated

force corresponding to the sharp corner. The essential point now is that for the smoothened

problems we must expect that the solutions and the corresponding resultant forces depend very

sensitive on the special smooth approximation. On the other hand we do not know where the

contact and the essential reactions at the smoothened corner really take place. Thus, at the

end, a microscopic smoothening does not give more information than the macroscopic view at

the sharp corner. Since we have sufficient nonsmooth tools today, it seems to be more efficient

to attack such problems directly by nonsmooth arguments instead of a detour over a smooth

approximation. Moreover it can be even useful and natural sometimes to approximate a “smooth

corner” by a sharp one.

Proof of Proposition 3.1. The existence and the structure of the jump of n and m at s = s0 is

a consequence of the equilibrium condition, the general contact condition, and (H1). The strict

monotonicity of the constitutive function Ξ → ξ̂(Ξ, s0) and the continuity of x̂i then imply a

finite jump of ξ at s = s0. If (s0, ζ0) lies on the base curve, then ζ0 = 0. Thus M(·) is continuous

at s0 by (3.2) and the strict monotonicity of Ξ → ξ̂(Ξ, s0) implies a jump of r′(·) at s0. 2

4 Contact with a C1 - obstacle

In the next two sections we claim to illuminate the regularity of contact reactions in the case of

obstacles with smooth boundary.

Let us assume that

p0 := p(s0, ζ0) ∈ O for some s0 ∈ ]0, L[, ζ0 ∈ [h1(s0), h2(s0)].

We call p0 a contact point for the section s0. Clearly p0 ∈ ∂O and, without loss of generality, we

have that ζ0 = h1(s0). We suppose that the boundary ∂O is of class C1 near p0, i.e., ∂O locally

coincides with a continuously differentiable curve

σ → c(σ), ‖c′(σ)‖ = 1 on ]σ1, σ2[, c(0) = p0

where σ1 < 0 < σ2.

To prevent that the behavior is dominated by singularities which are not caused by the obstacle

we assume sufficient smoothness for all external reactions different from the obstacle and for the

geometry of the rod. More precisely we invoke the hypotheses
(H1) fe, lfe , and le are continuous at s = s0.

(H2) h1 is continuously differentiable near s = s0.

Theorem 4.1 Let (H1), (H2) be satisfied. Assume that ξ = (ν, η, µ) ∈ (L1[0, L])3 corresponds

to an equilibrium configuration with regular contact where p0 is a contact point according to

s0 ∈ ]0, L[. Let ∂O be of class C1 near p0. Then the contact force fc and the induced couple lfc

have no concentration at (s, ζ) = (s0, ζ0), i.e., the distribution functions fc and lfc are continuous

at s = s0. Moreover the force n and the couple m are continuous at s = s0.
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Remark 4.2

(1) Theorem 4.1 is essentially based on the strict monotonicity of the constitutive functions

and, therefore, it does not hold in the unshearable case. In Section 6 it will be shown that

unshearable rods can have concentrated reactions in contact with arbitrarily smooth obstacles.

This is again a qualitative difference to the shearable case. It is due, roughly speaking, to the

stiffness of the unshearable material, while the richer structure of the shearable material allows

the rod to snuggle up smoothly to the boundary ∂Ω.

(2) If h′1 is not continuous, then in the simplest case the boundary of the undeformed rod has

a corner. This obviously can cause an isolated active contact point even with a smooth obstacle.

Arguing as in the previous section we see that this gives a concentrated reaction and therefore

also a discontinuity in the strains.

(3) Let us mention that the proof of the Theorem only uses the general contact condition.

Corollary 4.3 Under the assumptions of Theorem 4.1 we have that ν, η, µ are continuous at

s = s0, i.e., r′ and θ′ are continuous at s = s0.

Proof of Theorem 4.1. Since fc and lfc are distribution functions of finite Borel measures, we

have that fc, lfc ∈ BV[0, L]. By (H1) and the forcebalance we get n ∈ BV[0, L]. Hence n is

Lebesgue measurable and bounded (cf. Benedetto [3, Prop. 4.4]). Therefore r′ × n is integrable

and the momentbalance implies that m ∈ BV[0, L]. Thus the one-sided limits

n±0 := n(s0±), m±
0 := m(s0±), fc(s0±), lfc(s0±)

exist (cf. Benedetto [3, Prop. 4.4]). We introduce the further notation

N±
0 := n±0 · a(s0), H±

0 := n±0 · b(s0), M±
0 := m±

0 · k .

By the continuity of the constitutive function ξ̂ there exist also the one-sided limits of the strains

(ν±0 , η±0 , µ±0 ) := lims→s0± ξ̂(Ξ(s), s) where

ν±0 = ν̂(N±
0 ,H±

0 ,M±
0 , s0), η±0 = η̂(N±

0 ,H±
0 ,M±

0 , s0), µ±0 = µ̂(N±
0 ,H±

0 ,M±
0 , s0) .

Using the forcebalance, basic properties of measures, (2.3), and the fact that the considered

configuration has regular contact we obtain that

ñ := n+
0 − n−0 = fc(s0+)− fc(s0−)

= lim
n→∞

−fc(Ω[s0− 1
n

,s0+ 1
n

[) = −fc(
∞⋂

n=1

Ω[s0− 1
n

,s0+ 1
n

[ )

= −fc(Ω[s0,s0]) = d∗(s0, h1(s0)) ρ(s0, h1(s0)) . (4.4)

Analogously,

m̃ := m+
0 −m−

0 = −lfc(Ω[s0,s0])

= h1(s0)b(s0)× d∗(s0, h1(s0)) ρ(s0, h1(s0)) = h1(s0)b(s0)× ñ .
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Hence

M̃ := m̃ · k = h1(s0)
(
k× b(s0)

)
· ñ = −h1(s0)a(s0) · ñ .

Let us now assume that

ñ 6= 0 . (4.5)

By the strict monotonicity of Ξ → ξ̂(Ξ, s) we obtain with the notation Ξ± := (N±
0 ,H±

0 ,M±
0 )

that

0 <
(
ξ̂(Ξ+, s0)− ξ̂(Ξ−, s0)

)
· (Ξ+ −Ξ−) =


ν+
0 − ν−0

η+
0 − η−0

µ+
0 − µ−0

 ·


ñ · a(s0)

ñ · b(s0)

m̃ · k


=

(
r′(s0+)− r′(s0−)

)
· ñ − (µ+

0 − µ−0 )h1(s0)a(s0) · ñ .

By (4.4) this is equivalent to

0 <
(
r′(s0+)− r′(s0−)− (µ+

0 − µ−0 )h1(s0)a(s0)
)
· d∗0 (4.6)

where d∗0 := d∗(s0, h1(s0)).

Using the fact that the rod respects the obstacle we show below by geometrical arguments

that

±
(
r′(s0±) + h′1(s0)b(s0)− µ±0 h1(s0)a(s0)

)
· d∗0 ≤ 0. (4.7)

But this contradicts (4.6). Thus (4.5) cannot hold and, hence, ñ = 0 and m̃ = 0. This readily

implies the assertion.

Let us still verify (4.7). The boundary ∂O coincides with the smooth curve c(·) near the

contact point p0 = c(0) ∈ ∂O. Obviously −d∗0 is an outer normal of O at p0 and t0 := c′(0) is

the normed tangent of c(·) at the point p0. Clearly

d∗0 · t0 = 0 .

Since the rod respects the obstacle, we can find some neighborhood I0 of s0 and continuous

functions σ̌, γ̌ on I0 such that

p(s, h1(s)) = c(σ̌(s))− γ̌(s)d∗0, γ̌(s) ≥ 0 for s ∈ I0, σ̌(s0) = 0, γ̌(s0) = 0.

Recalling (1.1) we see that

p(s, h1(s))− p(s0, h1(s0)) =
∫ s

s0

(
r′(τ) + h′1(τ)b(θ(τ))− h1(τ)a(θ(τ))µ(τ)

)
dτ . (4.8)

On the other hand for s ∈ I0

p(s, h1(s))− p(s0, h1(s0))
s− s0

· t0 =
σ̌(s)− σ̌(s0)

s− s0

c(σ̌(s))− c(σ̌(s0))
σ̌(s)− σ̌(s0)

· t0

=
σ̌(s)− σ̌(s0)

s− s0

(
1 + o(1)

)
(as s → s0). (4.9)
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Because the integrand in (4.8) is essentially bounded, the left hand side of (4.9) must be bounded

too. Thus
σ̌(s)− σ̌(s0)

s− s0
is bounded for s is a neighborhood of s0. (4.10)

Suppose that there is some δ+ ∈ R such that(
r′(s0+) + h′1(s0)b(s0)− µ+

0 h1(s0)a(s0)
)
· d∗0 = δ+ > 0 . (4.11)

By considerations from the beginning of the proof we readily see that for the integrand in (4.8)

the limit from the right at s0 exists. Hence for s > s0 close enough to s0 we get that

δ+

2
<

p(s, h1(s))− p(s0, h1(s0))
s− s0

· d∗0

=
σ̌(s)− σ̌(s0)

s− s0

c(σ̌(s))− c(σ̌(s0))
σ̌(s)− σ̌(s0)

· d∗0 − γ̌(s)− γ̌(s0)
s− s0

d∗0 · d∗0

=
σ̌(s)− σ̌(s0)

s− s0
o(1) − γ̌(s)

s− s0
‖d∗0‖2 (as s → s0+) . (4.12)

Observing (4.10) and γ̌(s) ≥ 0 the previous inequality yields a contradiction. Therefore (4.11)

must be wrong and (4.7) is verified for “+”. The other case proceeds analogously. Thus the proof

is complete. 2

Proof of Corollary 4.3. The assertion is a simple concequence of the continuity of the constitutive

function ξ̂ and of s → a(s),b(s). 2

5 Contact with a C2 - obstacle

Let us suppose that some connected boundary curve of the rod has contact with the obstacle O.

Since we consider only configurations with regular contact, we can restrict our attention, without

loss of generality, to the case of contact with the bottom curve. More precisely, let there exist

some interval [sl, sr] ⊂]0, L[, sl < sr, such that

p(s, h1(s)) ∈ ∂O for all s ∈ [sl, sr] . (5.1)

The boundary ∂O be of class C2, i.e., in a neighborhood of the contact area the boundary ∂O
coincides with a twice continuously differentiable curve

σ → c(σ), ‖c′(σ)‖ = 1 on ]σ1, σ2[ .

That the behavior is not dominated by singularities different from the contact reactions we

again impose some hypotheses.
(H3) The constitutive function ξ̂ is continuously differentiable in (N,H, M, s).

(H4) fe, lfe , and le are continuously differentiable in a neighborhood of [sl, sr].

(H5) h1 is twice continuously differentiable in a neighborhood of [sl, sr].
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Theorem 5.2 Let (H3) – (H5) be satisfied. Assume that ξ = (ν, η, µ) ∈ (L1[0, L])3 corresponds

to an equilibrium configuration with regular contact satisfying (5.1). Let ∂O be of class C2 in a

neighborhood of the contact area. Then the contact force fc and the induced couple lfc have a

continuous line density along the contact curve {(s, h1(s)) ∈ Ω| s ∈ [sl, sr]}, i.e., the distribution

functions fc and lfc are continuously differentiable on [sl, sr]. Moreover the force n and the couple

m are continuously differentiable on [sl, sr].

Remark 5.3 (1) This theorem also essentially uses the strict monotonicity of the constitutive

functions. Hence, it is not valid for unshearable materials where only continuity of the reactions

in ]sl, sr[ can be expected. Here we again see the qualitative difference in regularity between

shearable and unshearable rods.

(2) In Section 6 we will see at a simple example that a concentrated contact reaction can

occur at the ends of the rod for an arbitrarily smooth obstacle. Therefore it is natural that we

have excluded the cases sl = 0 or sr = L in the theorem.

Corollary 5.4 Under the assumptions of Theorem 5.2 we have that ν, η, µ are continuously

differentiable on [sl, sr], i.e., r and θ are twice continuously differentiable on [sl, sr].

Proof of Theorem 5.2. First we observe that at each contact point p(s, h1(s)) with s ∈ [sl, sr]

the assumptions of Theorem 4.1 are satisfied. Therefore n, m, r′, θ′, the strains (ν, η, µ), and the

stress resultants (N,H, M) are continuous at all s ∈ [sl, sr].

Since the measure fc is supported on the contact set, we merely have to verify the continuous

differentiability of the distribution functions fc and lfc on [sl, sr]. The properties of n and m are

then simple consequences of the equilibrium conditions.

Obviously there exist some continuous function σ̌ : [sl, sr] → R such that

p(s, h1(s)) = c(σ̌(s)) for s ∈ [sl, sr] . (5.5)

The tangent vector of the bottom curve of the rod is formally given by

t(s) :=
d

ds
p(s, h1(s)) = r′ + h′1b− µh1a . (5.6)

Since the right hand side is continuous, we deduce the existence and continuity of t on [sl.sr].

Thus, by (5.5), σ̌ must be continuously differentiable and

t(s) = c′(σ̌(s)) σ̌′(s) on [sl, sr] .

The structure of fc is given in (2.3) and by the smoothness of the curve c

d(s) := d∗(s, h1(s)) ∈ ∂d(p(s, h1(s)) = {d′(s, h1(s))} for s ∈ [sl, sr] . (5.7)

Clearly d is a normal of the contact curve pointing into the obstacle, it is continuous on [sl, sr],

and d(s) 6= 0.
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We now fix any s0 ∈ [sl, sr] and agree that s → s0 is always to take for s ∈ [sl, sr] only. Since

the curve c is of class C2 and the unit tangent c′(σ̌(s)) is orthogonal to d(s), we get

lim
s→s0

d(s0) ·
t(s)− t(s0)

s− s0

= lim
s→s0

d(s0) ·
c′(σ̌(s))σ̌′(s)− c′(σ̌(s0))σ̌′(s0)

s− s0

= lim
s→s0

d(s0) ·
(c′(σ̌(s))− c′(σ̌(s0))

s− s0
σ̌′(s) +

σ̌′(s)− σ̌′(s0)
s− s0

c′(σ̌(s0))
)

= c′′(σ̌(s0)) σ̌′(s0)2 . (5.8)

On the other hand, using (5.6), we obtain

lim
s→s0

d(s0) ·
t(s)− t(s0)

s− s0

= lim
s→s0

d(s0) ·
(r′(s)− r′(s0)

s− s0
− µ(s)h1(s)a(s)− µ(s0)h1(s0)a(s0)

s− s0

)
+ d(s0) ·

(
h′′1(s0)b(s0) − h′1(s0)µ(s0)a(s0)

)
= lim

s→s0

d(s0) ·
(r′(s)− r′(s0)

s− s0
− h1(s0)a(s0)

µ(s)− µ(s0)
s− s0

)
+ d(s0) ·

(
h′′1(s0)b(s0)− h′1(s0)µ(s0)a(s0)− h′1(s0)µ(s0)a(s0)− h1(s0)µ(s0)2b(s0)

)
.

Since the terms without limit on the right hand side are continuous functions of s0 and since the

right hand side in (5.8) is also continuous as function of s0, the limit

∆1(s0) := lim
s→s0

d(s0) ·
(r′(s)− r′(s0)

s− s0
− h1(s0)a(s0)

µ(s)− µ(s0)
s− s0

)
exists for each s0 ∈ [sl, sr] and ∆1(·) is continuous. Denoting differences like ν(s)− ν(s0) by Mν,

Mη, etc., and Ms := s− s0, we get

lim
s→s0

d(s0) ·
(r′(s)− r′(s0)

Ms

)
= lim

s→s0

d(s0) ·
(ν(s) Ma + η(s) Mb + a(s0) Mν + b(s0) Mη

Ms

)
= d(s0) ·

(
ν(s0)µ(s0)b(s0)− η(s0)µ(s0)a(s0)

)
+ lim

s→s0

d(s0) ·
(a(s0) Mν + b(s0) Mη

Ms

)
.

Therefore

∆2(s0) := lim
s→s0

d(s0) ·
(a(s0) Mν + b(s0) Mη − h1(s0)a(s0) Mµ

Ms

)
exists for each s0 ∈ [sl, sr] and ∆2(·) must be continuous. Using the notation

g(s0) :=
(
d(s0) · a(s0),d(s0) · b(s0),−h1(s0)d(s0) · a(s0)

)
, Mξ := (Mν, Mη, Mµ) ,

and the continuous differentiability of ξ̂ we obtain that

∆2(s0) = lim
s→s0

g(s0) ·
Mξ

Ms
= lim

s→s0

g(s0) ·
ξ̂(Ξ(s), s)− ξ̂(Ξ(s0), s0)

Ms

= lim
s→s0

(
g(s0) · ξ̂Ξ(Ξ(s0), s0) ·

MΞ
Ms

)
+ g(s0) · ξ̂s(Ξ(s0), s0) .
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Hence

∆3(s0) := lim
s→s0

g(s0) ·A(s0) ·
MΞ
Ms

, where A(s0) := ξ̂Ξ(Ξ(s0), s0) ,

must exist at all s0 ∈ [sl, sr] and ∆3(·) is continuous. Recalling the equilibrium conditions we see

that

MΞ =


n(s) · a(s)− n(s0) · a(s0)

n(s) · b(s)− n(s0) · b(s0)

( m(s)−m(s0) ) · k



=


a(s0)· M fc + a(s0)· M fe + n(s)· Ma

b(s0)· M fc + b(s0)· M fe + n(s)· Mb

−
∫ s
s0

(r′ × n) · k dτ + k ·
(
M lfc+ M lfe+ M le

)
 . (5.9)

By the differentiability of fe, lfe , le, a, and b, we conclude that

∆4(s0) := lim
s→s0

g(s0) ·A(s0) ·
1

Ms


a(s0)· M fc
b(s0)· M fc
k· M lfc


exists and that ∆4(·) must be continuous. Because the rod has regular contact, the contact set

Ωc intersected with Ω[sl,sr] coincides with the bottom curve of the rod in that interval. By (2.3)

and (5.7) there exists a real non-negative Borel measure ρ̃ on [sl, sr] such that for s ∈ [sl, sr]

fc(s) = −
∫ L

s
d(τ) dρ̃(τ) − f0 , lfc(s) = −

∫ L

s
h1(τ)b(τ)× d(τ) dρ̃(τ) − l0 (5.10)

where f0 := −
∫
Ω]sr,L]

d∗(τ, ζ) dρ(τ, ζ) and l0 := −
∫
Ω]sr,L]

ζb(τ)×d∗(τ, ζ) dρ(τ, ζ) are fixed vectors

counting for contact reactions on Ω]sr,L]. By the continuity of d we have that

lim
s→s0

M fc∫ s
s0

dρ̃(τ)
= d(s0) , lim

s→s0

M lfc∫ s
s0

dρ̃(τ)
= h1(s0)b(s0)× d(s0)

Thus

∆4(s0) = g(s0) ·A(s0) · g(s0) lim
s→s0

∫ s
s0

dρ̃(τ)

s− s0
.

Since ∆4, g, A are continuous, g 6= 0 (because d 6= 0), and A is positive definite,

∆(s0) := lim
s→s0

∫ s
s0

dρ̃(τ)

s− s0

must exist as continuous function on [sl, sr]. Therefore (5.10) implies that

fc(s) = −
∫ L

s
d(τ)∆(τ) dτ − f0 , lfc(s) = −

∫ L

s
h1(τ)∆(τ)b(τ)× d(τ) dτ − l0 .

But this readily gives the continuous differentiability of the the distribution functions fc and lfc

on [sl, sr] and the proof is complete. 2

Proof of Corollary 5.4. Observing that n, m, a, b are continuously differentible, we obtain the

continuity of Ξ′(·) on [sl, sr]. By (H3) we then get the continuous derivative

ξ′(s) = ξ̂Ξ(Ξ(s), s)Ξ′(s) + ξ̂s(Ξ(s), s)

on [sl, sr] and the assertion readily follows. 2
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6 Comparison with the unshearable case

As we already mentioned there is a very interesting qualitative difference in regularity between

shearable and unshearable materials. In some cases unshearable rods have more regularity and

in other cases they have less regularity than shearable ones. This distinction is essentially based

on the lack of strict monotone constitutive functions ξ̂ for unshearable materials. In this section

we want to illuminate this aspect a little more detailed. That the behavior is not dominated by

singularities different from the contact reactions we again assume that all other influences are

smooth enough without specifying this precisely in each special case.

Concentrated contact reaction. Let us first consider the case where the rod has some

isolated active contact point at cross-section s = s0. As we have seen in Section 3 this causes a

discontinuity in the strains in the shearable case. In particular the tangent of the reference curve

passing through that contact point must have a discontinuity.

Let us now study this situation for an unshearable rod which we assume to have constant

thickniss, i.e., h1 and h2 are constant. Clearly there must be a concentrated contact force ñ0, i.e.,

n(·) has a jump of ñ0 at s = s0. However, in contrast to the shearable case, the direction of r′

cannot jump by (1.6). Therefore the boundary of Bp has no corner at the contact point and the

function dcl (Bc
p), defined according to (2.5), is continuously differentiable near that contact point.

Consequently, by the refined contact condition the contact force ñ0 must be directed orthogonal

to r′ or, equivalently, b(s0) and ñ0 are parallel. This readily implies that the induced couple of

ñ0 vanishes. Thus N , M are continuous and H has a jump at s0. In the hyperelastic unshearable

case it is reasonable to assume that ν̂, µ̂ do not depend on H (cf. Antman [1, VIII.15.]). Then

also ν, µ have to be continuous at s0, i.e., r and θ are continuously differentiable at s0. This

readily shows that under an isolated concentrated force an unshearable rod has higher regularity

than a shearable one which is caused, roughly speaking, by the rigidity of the unshearble material.

Contact with a smooth obstacle. Let us now study a special situation where the rod is

partially in contact with a very smooth obstacle. We consider an originally straight rod with

constant thickness h > 0. For technical convenience we choose h1(s) = 0 on [0, L], i.e., we use

the bottom curve as base curve. The obstacle O be a half space and the point r(0) be confined

to slide along a given line orthogonal to ∂O. More precisely we assume that

O = {q ∈ R2|q · j ≤ 0} , r(0) · i = 0 .

Now we apply a force −n0 = −n0j, n0 > 0, and a couple −M0, M0 > 0, at the point r(0) such

that for some s1 ∈]0, L[ the points p(s, 0) have contact with the obstacle for all s ∈ [s1, L] and

all other points of the rod do not touch O (cf. Fig. 4).

Before we start more detailed investigations we provide some basic transformation properties

concerning the base curve which are valid both for shearable and unshearable rods. Though it

is convenient to study the problem with respect to the bottom curve, sometimes it is useful to

argue with respect to the middle curve, because in that case the constitutive functions involve
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−n M0− 0 −n0
−M0

Fig. 4. Fig. 5.

some additional symmetry. Let us mark values with respect to the middle curve by a subscript

“m”. We have h1,m = −h
2 and h2,m = h

2 and, obviously, µm = µ. By an exact derivation from

the 3-dimensional theory it can be shown that M̂m is odd in µm (cf. Antman & Marlow [2]).

Moreover

Mm = M + h
2N . (6.1)

Transformations according to a change of the base curve are investigated more detailed in a

forthcoming paper.

First let us study the problem for the unshearable case. By (1.6) we must have that

θ(s) = 0 and thus µ(s) = 0 on ]s1, L] .

Since the obstacle can balance only forces normal to ∂O, we get

n · i = 0 on [0, L], N(s) = 0 on ]s1, L] .

By (6.1) and the momentbalance we obtain

M(s) = 0 , M ′(s) = 0 and, thus, n(s) = 0 on ]s1, L] .

This means that we always have the trivial solution on ]s1, L]. On the other hand the forcebalance

yields that

n(s) = n0 on [0, s1[ .

This finally tells us that n has a finite jump at s = s1 which corresponds to a concentrated contact

force exerted by the obstacle and balancing the prescribed force −n0 at the left end. Observe that

there is no interaction between rod and obstacle on the interval ]s1, L]. This means that we could

cut the obstacle outside a small neighborhood of the contact point p(s1, 0) without changing the

solution this way (cf. Fig. 5).

We now consider the same problem for a shearable rod. By Theorem 4.1 we do not have a

concentrated reaction at the cross-section s = s0. Theorem 5.2 tells us that the contact force fc
corresponds to a continuous function f̄c(s) on ]0, L[ with fc = 0 on [0, s1[ and fc ≥ 0 on [s1, L]

and possibly a concentrated force nL = nLj, nL ≥ 0, acting at the right end such that

n(s) = nL + j
∫ L

s
f̄c(τ) dτ on [0, L] . (6.2)
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Obviously n(s) = n0 on [0, s1]. In a forthcoming paper we study rod problems where the base

curve is confined to remain straight. The solutions satisfy an ordinary differential equation in

(θ, M) which easily implies that θ(L) = 0 and M(L) = 0 would yield the trivial stress free solution

for the straight part on [s0, L]. This, however, would contradict the forcebalance for our contact

problem and is, therefore, impossible. Hence θ(L) 6= 0 and nL 6= 0. Clearly the moment m has

also a continuous density, i.e., it is continuously differentiable. We must have that f̄c(s) > 0 on

]s1, L[ or at least on a subset with nonzero measure, i.e., there is a nonvanishing contact reaction

along the contact area. This in particular implies that if we cut a part of the obstacle as in Fig.

5, then the solution changes as shown in Fig. 6. Here the free part at the right end corresponds

to a trivial solution glued at the “last” cross-section having contact with the obstacle. This way

M−n − 00

Fig. 6.

we obtain again an interesting qualitative difference in regularity between the shearable and the

unshearable rod.

7 Appendix: Clarke’s generalized gradients

A short introduction to Clarke’s generalized gradients for locally Lipschitz continuous function-

als, which is sufficient for our purposes, is given in this appendix. For a more comprehensive

presentation the reader is refered to Clarke [4].

Let X be a Banach space and f : X 7→ R a locally Lipschitz continuous functional. The

generalized directional derivative f0(u;h) of f at u in the direction h is given by

f0(u;h) := lim sup
v∈X, v→u, t→+0

f(v + th)− f(v)
t

.

We define the generalized gradient ∂f(u) of f at u as the set

∂f(u) := {f∗ ∈ X∗ : 〈f∗, h〉 ≤ f0(u;h) for all h ∈ X}.

∂f(u) is a nonempty, bounded, convex and weak∗-compact subset of X∗. If f is continuously

differentiable near u, then ∂f(u) is the singleton {f ′(u)}. For convex functionals, f0(u;h) is the

usual one-sided directional derivative and ∂f(u) is the subdifferential of convex analysis.
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Let A ⊂ X be nonempty. The normal cone of A at u is given by

NA(u) := cl
( ⋃

λ≥0

λ∂ distA(u)
)

where cl denotes the weak∗-closure. If A is convex, then NA(u) coincides with the cone of normals

as defined in the convex analysis. For u ∈ X with 0 6∈ ∂f(u) let A = {v ∈ X| f(v) ≤ f(u)}. Then

NA(u) ⊂
(⋃

λ≥0 λ∂f(u)
)
. Equality holds under certain regularity.
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