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Abstract

We consider initial value problems for ordinary differential equations with a
measurable right-hand side containing parameters in general metric spaces. We
prove existence and uniqueness of solutions and the continuous dependence of
the solution on the initial data and the parameters under weak assumptions
on the right-hand side. In the case where the parameters belong to a normed
linear space we show that the solution depends differentiably on the parameters
and initial values. These generalizations of classical results in the theory of
ordinary differential equations have applications in optimal control theory and
other variational problems with nonholonomic constraints.

AMS Classification: 34A12, 34A34

Introduction

In nature, engineering and economics many processes are governed by systems of
ordinary differential equations of the form

(1) ẋ = f(t, x(t), λ) on I ⊂ IR, x(τ) = ξ ,

where the right-hand side f depends on certain parameters λ. In addition to the
fundamental questions concerning existence and uniqueness of solutions of the initial
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value problem (1), the continuous dependence of the solution x(t; τ, ξ, λ) on the
initial data (τ, ξ) and the parameters λ is a central issue in the applications. Due
to inaccuracies of practically all measurements in the Sciences, the investigation of
how a solution of a differential system depends on the data and parameters is of
great importance.

Usually one is interested in the solution of the initial value problem (1) in its
own, however, an ordinary differential equation such as (1) may also occur as part of
a more comprehensive problem, e.g., as a nonholonomic constraint for a variational
problem, which is a typical situation in optimal control theory. It may also happen
that derivatives of x with respect to initial values and parameters enter explicitely
the Euler–Lagrange equations of a variational problem as will be described at the end
of this introduction. Hence for a variety of applications it turns out to be necessary
to study the differentiability properties of the solution x(t; τ, ξ, λ) with respect to
initial values and parameters.

The dependence of solutions of ordinary differential systems (1) on parameters
is extensively treated in the literature in the case where f is a smooth function in
all of its variables, and where the parameter λ belongs to some subset Λ of the
Euclidean space IRn, see e.g. the monograph by Walter, [6]. In many applications,
however, the function t 7→ f(t, x, λ) is merely measurable and the parameter space
may be some infinite dimensional function space. For this more general case only
results concerning continuous dependence on parameters can be found in the lit-
erature, whereas the differentiable dependence on parameters is investigated only
for parameter sets Λ ⊂ IRn and smooth right-hand sides, (cf. the appendix in the
treatise of Hestenes [3]). With the present paper we want to close this gap.

In Section 1 we treat the continuous dependence of solutions x(t; τ, ξ, λ) on the
initial data and parameters (τ, ξ, λ). Section 2 is concerned with the differentiable
dependence on initial values and parameters (ξ, λ). The main results are stated as
Theorem 1.1 and Theorem 2.1 in Sections 1.1 and 2.1, respectively. The proofs
can be found in Sections 1.2 and 2.2. In both cases we proceed basically as in the
smooth case, i.e. we replace the ordinary differential system (1) with an equivalent
integral equation and look for a solution in a suitable Banach space by means of
Banach’s fixed point theorem. However, the proofs are much more technical than in
the smooth case because of our weak assumptions on f .

Lemma 1.2 in Section 1.2 presents a result which can basically be found in
Hestenes [3], where it is, however, not completely correctly stated. Hestenes consid-
ers compact subsets S ⊂ IR × IRn with elements (t, x), where each slice of S with
t = const. is convex. One argument in the proof is based on the erroneous conclusion
that for each sufficiently small δ > 0 also the δ-neighbourhood Bδ(S) of S has only
convex slices t = const. Our counterexample in the appendix demonstrates that this
is not true in general.
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Let us finally mention that we were led to questions concerning the parameter de-
pendence of solutions of ordinary differential equations in the course of investigating
mechanical problems. In particular, we are interested in the mechanical behaviour
of DNA-molecules which can be modeled as elastic rods. Using a general rod theory
we are able to describe self-contact phenomena of such long slender molecules by a
rigorous variational approach. Here, ordinary differential equations of the form (1)
occur naturally as side conditions in the variational problem, and the differentiable
dependence of the solution on parameters is needed to derive the Euler–Lagrange
equations, [2],[5]. The problem of self-contact in elasticity could not be treated
rigorously before.

Notation: We use the standard notation BR(x) for open balls with radius
R > 0 and center x, where x is a point in a metric space X. If for an open, bounded
set Ω contained in Ω0 ⊂ X also its closure Ω is contained in Ω0, then we simply
write Ω ⊂⊂ Ω0. The space of continuous functions defined on X with values in a
metric space Y will be denoted by C0(X, Y ). In addition, if X and Y are normed
linear spaces, we define Ck(X, Y ) to be the space of functions from X to Y whose
k-th derivative exists and is continuous on X. L1(I, Y ) is the space of integrable
Y -valued functions on some interval I ⊂ IR with respect to the one-dimensional
Lebesgue-measure, and we write L1(I, IR) = L1(I).

Acknowledgements. We would like to express our gratitude both to the Max-
Planck-Institut für Mathematik in den Naturwissenschaften in Leipzig and to the
Sonderforschungsbereich 256 in Bonn for generously supporting our research.

1 Local existence, uniqueness and continuous depen-
dence of the solution

1.1 Formulation of the result

Consider the initial value problem

(2) ẋ(t) = f(t, x(t), λ), x(τ) = ξ ∈ IRn,

where λ ∈ Λ is a parameter in a metric space Λ. Here, the function f maps Ω0 × Λ
into IRn, where Ω0 is a region in IR × IRn.

Our hypotheses on the right-hand side of (2) are: For any ω = (τ, ξ) ∈ Ω0

there is δ = δ(ω) > 0, and there are measurable functions Mω,Kω, such that the
cylinder Cδ(ω) := Bδ(τ)× Bδ(ξ) is contained in Ω0, and Mω,Kω ∈ L1(Bδ(τ)) with
the following properties:
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(f1) For every x ∈ Bδ(ξ) ⊂ IRn and λ ∈ Λ the function f(., x, λ) is measurable on
Bδ(τ) ⊂ IR with

(3) |f(t, x, λ)| ≤ Mω(t) for a.e. t ∈ Bδ(τ).

Note that this implies that f(., x, λ) ∈ L1(Bδ(τ), IRn) for all x ∈ Bδ(ξ), λ ∈ Λ.

(f2) For every x, y ∈ Bδ(ξ) ⊂ IRn and for each λ ∈ Λ one has

(4) |f(t, x, λ)− f(t, y, λ)| ≤ Kω(t)|x− y| for a.e. t ∈ Bδ(τ).

(f3) For each x ∈ Bδ(ξ), λ0 ∈ Λ

(5) lim
λ→λ0

∫
Bδ(τ)

|f(s, x, λ)− f(s, x, λ0)| ds = 0.

Using standard arguments one can easily check that the conditions (f2) and (f3)
follow from the following stronger condition, where we assume that Λ ⊂ V is an open
subset of some normed linear space V , compare with slightly stronger condition (f5)
in Section 2.1:

(f4) f(t, ., λ) is differentiable on Bδ(ξ) for a.e. t ∈ Bδ(τ) and for each λ ∈ Λ.
Moreover f(t, x, .) is Fréchet–differentiable on Λ for a.e. t ∈ Bδ(τ) and for
each x ∈ Bδ(ξ). There is a function Pω ∈ L1(Bδ(τ)), such that

(6) |fx(t, x, λ)|+ ‖fλ(t, x, λ)‖L(V,IRn) ≤ Pω(t)

for all λ ∈ Λ, x ∈ Bδ(ξ), and for a.e. t ∈ Bδ(τ).

We consider open bounded subsets Ω ⊂⊂ Ω0 with the property that there is some
δΩ > 0, such that

(7) Ω and Bδ(Ω) are x-convex for all 0 < δ < δΩ.

A set S ⊂ IR × IRn is convex in x or x-convex, if for all pairs (t, x), (t, y) ∈ S the
straight line segments [(t, x), (t, y)] lie in S, compare Hestenes [3, p.377]. Moreover
we choose Ω for simplicity in such a way, that

(8) J := {t ∈ IR : (t, x) ∈ Ω for some x ∈ IRn} is an open interval.

Remark. In the appendix we present an example of a bounded open set Ω, such
that Ω and even Ω are x-convex, but such that there is no δΩ, such that (7) holds.
Hence the reasoning in Hestenes [3, p.377] under the weaker assumption that only
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Ω is x-convex, contains a gap, see our proof of Lemma 1.2. Note that if the set Ω is
convex, then Bδ(Ω) is convex (hence also x-convex) for all δ > 0.

Now we are in the position to formulate a local existence and uniqueness theorem
for an initial value problem of the form (2) including the continuous dependence on
parameters λ ∈ Λ and initial data (τ, ξ) ∈ Ω.

Theorem 1.1. Let f satisfy (f1)-(f3) (or (f1) and (f4)), and let Ω ⊂⊂ Ω0 be an
open, bounded set, such that (7) and (8) hold. Then there exists a constant ρ > 0,
such that for each w = (τ, ξ, λ) ∈ Ω × Λ there is a unique solution x = x(t; τ, ξ, λ)
on Bρ(τ) of the initial value problem

(9) ẋ(t) = f(t, x(t), λ), x(τ) = ξ.

Moreover, x depends continuously on the initial data and the parameter, i.e., for
any fixed τ∗ ∈ J, one has

x ∈ C0(Bρ(τ∗)× Ω∗ × Λ, IRn)

where Ω∗ := {(τ, ξ) ∈ Ω : τ ∈ Bρ(τ∗)}.

Note that for each (τ, ξ) ∈ Ω0 one can choose an open, bounded convex set Ω ⊂⊂ Ω0

containing (τ, ξ). Hence also (7) holds for all δ > 0, in particular for all δ > 0, such
that Bδ(Ω) ⊂ Ω0. Thus, Theorem 1.1 gives a local statement for each (τ, ξ) ∈ Ω0.
Note also that the radius ρ in Theorem 1.1 does not depend on (τ, ξ, λ), but merely
on Ω and f.

1.2 Proofs

First we will see that, since Ω ⊂⊂ Ω0 satisfies (7) and is bounded, we can find
integrable functions M,K, and a constant δ > 0 all independent of the point ω ∈ Ω,
such that (f1)–(f3) hold uniformly with M,K in place of Mω,Kω. This result can
be found in Hestenes [3, p.377], but for completeness we will give a proof here. As
pointed out above we actually need the assumption (7) on Ω, which is stronger than
just x-convexity of Ω or Ω, see our example in the appendix.

Lemma 1.2. In addition to the assumptions (f1)–(f3), let Ω ⊂⊂ Ω0 be an open,
bounded set, such that (7) and (8) hold. Then there is a number δ > 0, such that
Bδ(Ω) ⊂ Ω0, and there are functions M,K ∈ L1(IR), such that

|f(t, x, λ)| ≤ M(t) for a.e. t ∈ Bδ(J),(10)
|f(t, x, λ)− f(t, y, λ)| ≤ K(t)|x− y| for a.e. t ∈ Bδ(J),(11)
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for each λ ∈ Λ and all x, y ∈ IRn with (t, x), (t, y) ∈ Bδ(Ω). Furthermore, for
(τ, x) ∈ Ω one has

(12) lim
λ→λ0

∫
Bδ(τ)

|f(s, y, λ)− f(s, y, λ0)| ds = 0

for any y ∈ Bδ(x), λ0 ∈ Λ.

Note that {t ∈ IR : (t, x) ∈ Bδ(Ω) for some x ∈ IRn} = Bδ(J).

Proof. For given ω = (τ, ξ) ∈ Ω consider the concentric cylinders Cδ(ω)(ω),
Cδ(ω)/2(ω), Cδ(ω)/4(ω) ⊂ Ω0, such that (f1)-(f3) hold on Cδ(ω)(ω). Then

(13) Ω ⊂
⋃
ω∈Ω

Bδ(ω)/4(ω),

and according to the theorem of Heine-Borel there is a finite number of points
ωi = (τi, ξi) ∈ Ω, i = 1, . . . , N, such that for δi := δ(ωi)

(14) Ω ⊂
N⋃

i=1

Bδi/4(ωi).

Take 0 < 4δ < min{δ1, . . . , δN , 4δΩ}, where δΩ is the constant in condition (7). Then

(15) Bδ(Ω) ⊂
N⋃

i=1

Bδi/2(ωi),

since for ω ∈ Bδ(Ω) there is ω∗ ∈ Ω, such that |ω − ω∗| < δ. Then by (14) we find
i∗ ∈ {1, . . . , N}, such that |ω∗ − ωi∗ | < δi∗/4, which implies

|ω − ωi∗ | ≤ |ω − ω∗|+ |ω∗ − ωi∗ | < δ + δi∗/4 ≤ δi∗/2.

Let Mi := Mωi ,Ki := Kωi ∈ L1(Bδi
(τi)) for i ∈ {1, . . . , N} be the functions

of our hypotheses. Extending these finitely many functions to all of IR by 0 and
denoting these extensions by M̃i, K̃i, i = 1, . . . , N, we can define

(16) M :=
N∑

i=1

M̃i, K :=
N∑

i=1

K̃i on IR.

Since 0 ≤ M̃i(t) ≤ M(t), we immediately verify (10). Indeed, for (t, x) ∈ Bδ(Ω)
we find by (15) some i ∈ {1, . . . , N} with (t, x) ∈ Bδi/2(ωi) ⊂ Bδi

(ωi), hence by
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assumption (f1) |f(t, x, λ)| ≤ Mi(t), unless t belongs to the null-set excluded in (f1).
In that case we ignore that point. To be more precise, let J0 :=

⋃N
i=1{t ∈ Bδ(τi) :

(3) or (4) does not hold }, then we obtain (10) for all t ∈ Bδ(J)− J0. Note that J0

has measure zero as the finite union of null-sets.
To show (11) take (t, x), (t, y) ∈ Bδ(Ω) with t ∈ Bδ(J) − J0. If |x − y| < δ, we

are done, since then by (15) we find i ∈ {1, . . . , N}, such that (t, x) ∈ Bδi/2(ωi), in
particular x ∈ Bδi/2(ξi) ⊂ IRn. But then y ∈ Bδi

(ξi), since δ ≤ δi/4, and (f2) on
Bδi

(ξi) implies the desired estimate (11) for K as defined in (16). If |x − y| ≥ δ,
however, take k ∈ IN , such that |x − y| < kδ. Setting yj := y + (j/k)(x − y) for
j = 0, . . . , k, we obtain

(17) y0 = y, yk = x, |yj − yj−1| = |x− y|/k < δ.

The set Bδ(Ω) is x-convex, since δ < δΩ, hence all the points (t, yj), j = 0, . . . , k, are
contained in Bδ(Ω). For each j ∈ {1, . . . , k} one can find ij ∈ {1, . . . , N} by (15),
such that (t, yj) ∈ Bδij

/2(ωij ), hence by (17) (t, yj−1) ∈ B3δij
/4(ωij ), since δ < δij/4.

Now (f2) implies for all λ ∈ Λ

|f(t, x, λ)− f(t, y, λ)| ≤
k∑

j=1

|f(t, yj , λ)− f(t, yj−1, λ)|

≤
k∑

j=1

Kij (t)|yj − yj−1|

≤ K(t)
k∑

j=1

|yj − yj−1|

=
(17)

K(t)
k∑

j=1

|x− y|/k = K(t)|x− y|,

which proves (11).
Now, (14) implies that for (τ, x) ∈ Ω we can find i ∈ {1, . . . , N} such that (τ, x) ∈

Bδi/4(ωi), where ωi = (τi, ξi) ∈ Ω. Since δ < δi/4 one obtains Bδ((τ, x)) ⊂ Bδi/2(ωi),
i.e., Bδ(x) ⊂ Bδi/2(ξi) and Bδ(τ) ⊂ Bδi/2(τi). Thus we can apply (5) to get

lim
λ→λ0

∫
Bδ(τ)

|f(s, y, λ)− f(s, y, λ0)| ds

≤ lim
λ→λ0

∫
Bδi/2(τi)

|f(s, y, λ)− f(s, y, λ0)| ds = 0

for all y ∈ Bδ(x) ⊂ Bδi/2(ξi). 2
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For a subinterval J∗ ⊂ Bδ(J) let D0(J∗, IRn) be the space of piecewise continuous
functions x on J∗ with

(18) graphx := {(t, x(t)) : t ∈ J∗} ⊂ Bδ(Ω)

equipped with the norm given by supJ∗ |x(.)|. Here δ > 0 is the constant appearing
in Lemma 1.2. We introduce the integral expression

E(x, y, λ, µ) :=
∫

J∗
|f(s, x(s), λ)− f(s, y(s), µ)| ds(19)

for x, y ∈ D0(J∗, IRn), λ, µ ∈ Λ. By (11), for all x, y ∈ D0(J∗, IRn), λ ∈ Λ,

(20) 0 ≤ E(x, y, λ, λ) ≤ sup
J∗

|x(.)− y(.)|
∫

J∗
K(s) ds.

Lemma 1.3. (i) Let x ∈ C0(J∗, IRn)∩D0(J∗, IRn), then f(., x(.), λ) ∈ L1(J∗, IRn)
for each λ ∈ Λ. Moreover, if λ0 ∈ Λ, then

(21) lim
λ→λ0

∫
J∗
|f(s, x(s), λ)− f(s, x(s), λ0)| ds = 0.

(ii) For given x ∈ D0(J∗, IRn), λ0 ∈ Λ, ε > 0, there exists σ = σ(x, λ0, ε) > 0, such
that

(22) Bσ(x) ⊂ D0(J∗, IRn), Bσ(λ0) ⊂ Λ,

and such that for all y, z ∈ Bσ(x), λ ∈ Bσ(λ0) one has the inequality

(23) E(y, z, λ, µ) < ε.

Proof. Approximate x with a sequence of step functions {xk} ⊂ D0(J∗, IRn) in
the L∞-sense. Apply (11) now for λ ∈ Λ for each k ∈ IN to get

(24) |f(t, xk(t), λ)− f(t, x(t), λ)| ≤ K(t)|xk(t)− x(t)| for a.e. t ∈ J∗.

Since for a.e. t ∈ J∗ we have K(t) < ∞, we get the pointwise limit

lim
k↗∞

f(t, xk(t), λ) = f(t, x(t), λ) for a.e. t ∈ J∗.

Since xk is a step function, we have that f(., xk(.), λ) is measurable for every k ∈ IN .
Indeed, the image xk(J∗) consists of finitely many points in IRn. Look at the set
XB := {x ∈ IRn : f(t, x, λ) ∈ B} for some Borel set B ∈ B(IRn), where B(IRn)
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denotes the Borel algebra of IRn. We find that XB∩xk(J∗) is finite, hence measurable.
Since xk is measurable, we know that

{t ∈ J∗ : xk(t) ∈ XB} = {t ∈ J∗ : xk(t) ∈ XB ∩ xk(J∗)} ∈ B(IR)

Hence also the set {t ∈ J∗ : f(t, xk(t), λ) ∈ B} is in the Borel algebra B(IR), which
is what we needed to prove that f(., xk(.), λ) is measurable.

As a pointwise limit of measurable functions we obtain f(., x(.), λ) as a measur-
able function for each λ ∈ Λ. Since by (10) f(., x(.), λ) is bounded by M ∈ L1(IR),
we get that f(., x(.), λ) ∈ L1(J∗, IRn).

Statement (21) follows from (23) for y = z = x, since ε > 0 can be chosen
arbitrarily small.

To prove (23), let ε > 0 be given. Select a step function x∗ ∈ D0(J∗, IRn) such
that supJ∗ |x(.) − x∗(.)| < ε/(8γ) for some positive constant γ >

∫
J∗ K(s) ds. Then

apply (20) to get

(25) E(x, x∗, µ, µ) < ε/8 for all µ ∈ Λ.

Since x∗ is a step function with graphx∗ ⊂ Bδ(Ω), we may apply (12) to find
σ = σ(x, λ0, ε) > 0, such that

(26) E(x∗, x∗, λ, λ0) < ε/4 for all λ ∈ Bσ(λ0) ⊂ Λ

and also Bσ(x) ⊂ D0(J∗, IRn), Bσ(λ0) ⊂ Λ, i.e., such that (22) holds.
Now we use

E(x, x, λ, λ0) ≤ E(x, x∗, λ, λ) + E(x∗, x∗, λ, λ0) + E(x∗, x, λ0, λ0)
<

(25),(26)
ε/8 + ε/4 + ε/8 = ε/2 for all λ ∈ Bσ(λ0).(27)

Diminish σ if necessary to have also σ < ε/(4γ). For y, z ∈ Bσ(x), λ ∈ Bσ(λ0) we
conclude with (20),(22) and (27)

E(y, z, λ, λ0) ≤ E(y, x, λ, λ) + E(x, x, λ, λ0) + E(x, z, λ0, λ0)
≤ ε/4 + ε/2 + ε/4 = ε.

2

For J∗ ⊂ Bδ(J) let Ω∗ := {(τ, ξ) ∈ Ω : τ ∈ J∗}, where Ω is as before. We define
the function space

(28) C0
J∗ := {x ∈ C0(J∗ × Ω∗ × Λ, IRn) : ‖x‖∞ < ∞},
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where

(29) ‖x‖∞ := sup
(t,w)∈J∗×Ω∗×Λ

|x(t, w)| for x ∈ C0(J∗ × Ω∗ × Λ, IRn).

It is well known that (C0
J∗ , ‖.‖∞) is in fact a Banach space, see e.g. Dunford-

Schwartz [1, Lemma I.4.18, Corollary I.7.7].
From now on we focus on functions x ∈ C0

J∗ , such that

(30) graphx(., w) = {(t, x(t, w)) : t ∈ J∗} ⊂ Bδ(Ω) for all w ∈ Ω∗ × Λ,

and we define the operator A on such functions x as

(31) Ax(t, w) := ξ +
∫ t

τ
f(s, x(s, w), λ) ds for (t, w) = (t, τ, ξ, λ) ∈ J∗ × Ω∗ × Λ.

Lemma 1.4. (i) Ax ∈ C0
J∗ for all x ∈ C0

J∗ satisfying (30).

(ii) If |J∗| is so small that

(32)
∫

J∗
K(s) ds ≤ 1/2,

then

(33) ‖Ax1 −Ax2‖∞ ≤ 1
2
‖x1 − x2‖∞

for all x1, x2 ∈ C0
J∗ satisfying (30).

Proof. Let x ∈ C0
J∗ , such that (30) holds. For (t, w) = (t, τ, ξ, λ) and (t′, w′) =

(t′, τ ′, ξ′, λ′) in J∗ × Ω∗ × Λ, we estimate

|Ax(t, w)−Ax(t′, w′)|

≤ |ξ − ξ′|+
∣∣ ∫ t

τ
f(s, x(s, w), λ) ds−

∫ t′

τ ′
f(s, x(s, w′), λ′) ds

∣∣
≤ |ξ − ξ′|+

∣∣ ∫ t

τ
f(s, x(s, w), λ) ds− f(s, x(s, w′), λ′) ds

∣∣
+

∣∣ ∫ τ ′

τ
f(s, x(s, w′), λ′) ds

∣∣ +
∣∣ ∫ t

t′
f(s, x(s, w′), λ′) ds

∣∣
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≤ |ξ − ξ′|+
∫

J∗
|f(s, x(s, w), λ)− f(s, x(s, w), λ′)| ds

+
∫

J∗
|f(s, x(s, w), λ′)− f(s, x(s, w′), λ′)| ds

+
∣∣ ∫ τ ′

τ
f(s, x(s, w′), λ′) ds

∣∣ +
∣∣ ∫ t

t′
f(s, x(s, w′), λ′) ds

∣∣
≤ |ξ − ξ′|+ E(x(., w), x(., w), λ, λ′) + E(x(., w), x(., w′), λ′, λ′)(34)

+
∣∣ ∫ τ ′

τ
M(s) ds

∣∣ +
∣∣ ∫ t

t′
M(s) ds

∣∣.
For any given ε > 0 we find some η = η(ε, t, w) > 0, such that by (23) the right-hand
side of (34) is less than 5ε for |ξ − ξ′| < η, λ′ ∈ Bη(λ) ⊂ Λ, τ ′ ∈ Bη(τ) ∩ J∗ and
t′ ∈ Bη(t) ∩ J∗. Note that we also use the continuity of x to get x(., w′) sufficiently
close to x(., w) in D0(J∗, IRn). This concludes the proof of (i).

To prove (33) choose x1, x2 ∈ C0
J∗ satisfying (30). In particular, x1(., w),

x2(., w) ∈ D0(J∗, IRn). Now we conclude

|Ax1(t, w)−Ax2(t, w)| ≤ E(x1(., w), x2(., w), λ, λ)

≤ sup
s∈J∗

|x1(., w)− x2(., w)|
∫

J∗
K(s) ds by (20)

≤ 1
2
‖x1 − x2‖∞ by (32).

Taking the supremum over all (t, w) ∈ J∗ × Ω∗ × Λ on the left gives the desired
estimate (33). 2

Proof of Theorem 1.1 . Let δ > 0,M,K ∈ L1(IR) as in Lemma 1.2. Fix any
τ∗ ∈ J. We choose ρ ∈ (0, δ) so small that∫

Bρ(τ∗)
K(s) ds <

1
2

,(35) ∫
Bρ(τ∗)

M(s) ds <
δ

2
.(36)

Set

J∗ := Bρ(τ∗)(37)
Ω∗ := {(τ, ξ) ∈ Ω : τ ∈ J∗}(38)

C∗ := {y ∈ C0
J∗ : graph y(., w) ⊂ Bδ/2(Ω) for all w ∈ Ω∗ × Λ}.(39)
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Obviously, C∗ is closed in C0
J∗ .

By (10),(11), (35) and (36) we obtain for all y, z ∈ C∗ and all (t, w) = (t, τ, ξ, λ) ∈
J∗ × Ω∗ × Λ∣∣ ∫ t

τ
f(s, y(s, w), λ) ds−

∫ t

τ
f(s, z(s, w), λ) ds

∣∣ <
‖y − z‖∞

2
,(40)

∣∣ ∫ t

τ
f(s, y(s, w), λ) ds

∣∣ <
δ

2
.(41)

We now fix any x1 ∈ C∗ and define a sequence {xk} ⊂ C∗ ⊂ C0
J∗ by

x1(t, w) := x1,(42)
xk(t, w) := Axk−1(t, w) for all (t, w) ∈ J∗ × Ω∗ × Λ.(43)

Clearly x1 ∈ C∗. If xk−1 ∈ C∗ for k ≥ 2, then xk ∈ C0
J∗ by Lemma 1.4 (i). Further-

more, by (31) and (41) one has

|xk(t, w)− ξ| =
∣∣ ∫ t

τ
f(s, xk−1(s, w), λ) ds

∣∣ <
δ

2

for all (t, w) = (t, τ, ξ, λ) ∈ J∗ × Ω∗ × Λ. Since (τ, ξ) ∈ Ω∗, we get xk ∈ C∗ ⊂ C0
J∗

for all k ∈ IN . By (35) and because C∗ is a closed subset of C0
J∗ , the contraction

property (33) together with the Banach Fixed Point Theorem leads to a fixed point
x ∈ C0

J∗ of the equation x = Ax, i.e.,

(44) x(t, w) = x(t; τ, ξ, λ) = ξ +
∫ t

τ
f(s, x(s, w), λ) ds

for all (t, w) ∈ J∗ × Ω∗ × Λ.
Obviously t 7→ x(t; τ, ξ, λ) solves (9) on Bρ(τ∗) for arbitrary (τ, ξ, λ) ∈ Ω∗×Λ. In

particular, t 7→ x(t; τ∗, ξ, λ) provides a solution of (9) on Bρ(τ∗) for any (τ∗, ξ, λ) ∈
Ω × Λ. On the other hand, (t, τ, ξ, λ) 7→ x(t; τ, ξ, λ) is continuous on J∗ × Ω∗ × Λ,
where J∗ = Bρ(τ∗), i.e.,

x ∈ C0(Bρ(τ∗)× Ω∗ × Λ, IRn).

It remains to show uniqueness. Let t 7→ y(t) also be a solution of (9) for given
w∗ = (τ∗, ξ, λ) ∈ Ω∗×Λ in a small open neighbourhood J̃ ⊂ J∗ of τ∗. By continuity
one finds that graph y ⊂ Bδ/2(Ω). for sufficiently small J̃ , because (τ∗, ξ) ∈ Ω∗. Since
y satisfies the integral equation as (44) for τ = τ∗ on J̃ , we get by (11) and (35)

|x(t; τ∗, ξ, λ)− y(t)| ≤
∫ t

τ∗
|f(s, x(s, w∗), λ)− f(s, y(s), λ)| ds

≤ 1
2

sup
s∈J̃

|x(s, w∗)− y(s)| for all t ∈ J̃ .

12



Taking the supremum also on the left-hand side leads to

x(t, w∗) = y(t) for all t ∈ J̃ ,

and we get uniqueness on J̃ . But this is in fact sufficient for uniqueness on all of
Bρ(τ∗), since we have constructed a solution for each initial value (τ, ξ), which is
locally unique. 2

2 Differentiability properties of the solution

2.1 Formulation of the result

We again consider the system of differential equations

(1) ẋ(t) = f(t, x(t), λ), x(τ) = ξ ∈ IRn,

but now we are interested in the differentiable dependence of the solution on ξ ∈ IRn

and λ ∈ Λ. While in Section 1 Λ was a metric space, we assume here that Λ is a open
subset of a normed linear space V. In addition, we extend our set of assumptions
(f1)–(f3) on the right-hand side f of (2): For any ω = (τ, ξ) ∈ Ω0 there is a constant
δ = δ(ω) > 0 such that Cδ(ω) := Bδ(τ) × Bδ(ξ) ⊂ Ω0, and such that the following
properties hold:

(f5) f(t, ., .) is continuously Fréchet–differentiable on Bδ(ξ)×Λ for a.e. t ∈ Bδ(τ).
There is a function Pω ∈ L1(Bδ(τ)), such that

(45) |fx(t, x, λ)|+ ‖fλ(t, x, λ)‖L(V,IRn) ≤ Pω(t)

for all λ ∈ Λ, x ∈ Bδ(ξ), and for a.e. t ∈ Bδ(τ).

(f6) There is a function Qω : Bδ(τ)× IR → IR, such that

(Q1) Qω(., s) ∈ L1(Bδ(τ)) for all s ∈ IR,

(Q2) Qω(t, .) is monotone for a.e. t ∈ Bδ(τ),

(Q3) Qω(t, s) → 0 for s → 0 for a.e. t ∈ Bδ(τ),

and such that

|fx(t, x, λ)− fx(t, y, λ)|+ ‖fλ(t, x, λ)− fλ(t, y, λ)‖L(V,IRn)(46)

≤ Qω(t, |x− y|)

for all λ ∈ Λ, x, y ∈ Bδ(ξ), and for a.e. t ∈ Bδ(τ). Here ‖.‖L(V,IRn) denotes the
usual operator norm on the space of linear mappings from V to IRn.
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As in Section 1.1 one can easily check that (f6) follows from the following stronger
condition

(f6∗) f(t, ., .) is twice differentiable on Bδ(ξ) × Λ for a.e. t ∈ Bδ(τ). There is a
function Rω ∈ L1(Bδ(τ)), such that

(47) ‖D2f(t, x, λ)‖ ≤ Rω(t)

for all λ ∈ Λ, x ∈ Bδ(ξ), and for a.e. t ∈ Bδ(τ). Here D2f denotes the operator
consisting of all second (Fréchet–) derivatives of f .

In the next theorem we formulate the differentiability properties of the solution
x = x(t; τ, ξ, λ) of (2) with respect to the initial value ξ ∈ IRn and the parameter
λ ∈ Λ for any fixed τ ∈ J, where, as in Section 1,

J := {t ∈ IR : (t, x) ∈ Ω for some x ∈ IRn}

is an open interval by choice of an open, bounded set Ω ⊂⊂ Ω0 with the properties
(7) and (8). We use the notation

Ξ(τ) := {ξ ∈ IRn : (τ, ξ) ∈ Ω}.

Theorem 2.1. Let Ω ⊂⊂ Ω0 be open and bounded, such that (7) and (8) hold, and
let f satisfy (f1),(f5),(f6). Then there exists a constant ρ > 0, such that for each
τ ∈ J, ξ ∈ Ξ(τ) and λ ∈ Λ there is a unique solution x = x(t; ξ, λ) on Bρ(τ) of the
initial value problem

(9) ẋ(t) = f(t, x(t), λ), x(τ) = ξ.

Moreover, x is continuously differentiable with respect to the initial value and the
parameter, more precisely

x ∈ C1(Bρ(τ)× Ξ(τ)× Λ, IRn).

For notational convenience we write w = (ξ, λ) ∈ Ξ(τ)× Λ. The Fréchet–derivative
of x with respect to w will be denoted by Dwx.

Corollary 2.2. Under the assumptions of Theorem 2.1 one has

(48) Dwx(t, w)v = ζ +
∫ t

τ
[fx(s, x(s, w), λ)Dwx(s, w)v + fλ(s, x(s, w), λ)µ] ds

for all v = (ζ, µ) ∈ IRn × V. Moreover, ẋ is Fréchet–differentiable with respect to
w ∈ Ξ×Λ and Dwx is differentiable with respect to t a.e. on Bρ(τ), and one obtains

(49)
d

dt
Dwx(t, w)v = Dw(

d

dt
x(t, w))v

for all v ∈ IRn × V , w ∈ Ξ× Λ and for a.e. t ∈ Bρ(τ).
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Remarks. 1. The careful reader will ask why the theorem does not treat the
dependence of x on the initial time τ. The classical case where f is continuously
differentiable in all variables tells us that the partial derivative xτ (t; τ, ξ, λ) is a sum
containing the term f(τ, ξ, λ), see e.g., Walter [6, p.154]. The function f , however, is
not continuous but merely measurable in τ in our situation. For simplicity we have
omitted the formulation of our differentiability results in that generality, instead we
refer the interested reader to Hestenes [3, pp. 390–397] for results in that direction.

2. If the set of parameters Λ ⊂ V is compact (or locally compact), then one can
omit (f6) in Theorem 2.1, since a continuous function is uniformly continuous on a
compact set.

2.2 Proofs

As in Section 1.2 we can prove a global version of (45) for open, bounded subsets
Ω ⊂⊂ Ω0 satisfying (8). Since we will not need a global version of (46), condition
(7) is not necessary for proving the following Lemma.

Lemma 2.3. In addition to (f5),(f6) assume that Ω ⊂⊂ Ω0 is an open and bounded
set, such that (8) holds. Then there is a number δ0 > 0 with Bδ0(Ω) ⊂ Ω0, such that
f(t, ., .) is continuously Fréchet–differentiable on {x ∈ IRn : (t, x) ∈ Bδ0(Ω)}×Λ for
a.e. t ∈ Bδ0(J). Moreover, there is a function P ∈ L1(IR), such that

(50) |fx(t, x, λ)|+ ‖fλ(t, x, λ)‖L(V,IRn) ≤ P (t)

for all λ ∈ Λ, for a.e. t ∈ IR, such that (t, x) ∈ Bδ0(Ω).

Remark. Note that (50) together with the continuity of fx, fλ imply that
fx(., x(.), λ) ∈ L1(J∗, IRn) and fλ(., x(.), λ) ∈ L1(J∗, L(V, IRn)) for any subinterval
J∗ ⊂ J , x ∈ D0(J∗, IRn) and any λ ∈ Λ, where D0(J∗, IRn) is the space of piecewise
continuous functions x on J∗ with

(51) graphx := {(t, x(t)) : t ∈ J∗} ⊂ Bδ0(Ω).

In fact, one may argue exactly as in the proof of Lemma 1.3 (i), using (50) and the
continuity of fx, fλ instead of (10) and (11).

Proof of Lemma 2.3 . We proceed analogously to the proof of Lemma 1.2 using
a finite covering as in (14),(15). For given ω = (τ, ξ) ∈ Ω consider the concentric
cylinders Cδ(ω)(ω), Cδ(ω)/2(ω), Cδ(ω)/4(ω) ⊂ Ω0, such that (f5),(f6) hold on Cδ(ω)(ω).
Then

(52) Ω ⊂
⋃
ω∈Ω

Bδ(ω)/4(ω),
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and according to the theorem of Heine-Borel there is a finite number of points
ωi = (τi, ξi) ∈ Ω, i = 1, . . . , Ñ , such that for δi := δ(ωi)

(53) Ω ⊂
Ñ⋃

i=1

Bδi/4(ωi).

Then one obtains

(54) Bδ0(Ω) ⊂
Ñ⋃

i=1

Bδi/2(ωi)

for δ0 := min{δ1, . . . , δÑ}/4. In order to show (50) take the function P ∈ L1(IR)
defined as

P (t) :=
Ñ∑

i=1

P̃i(t),

where P̃i := Pωi on Bδ(ωi)(τi) and P̃i := 0 on IR − Bδ(ωi)(τi). The continuity of
fx(t, ., .) and fλ(t, ., .) being a pointwise property follows from (46). 2

As in Section 1.2 we consider a subinterval J∗ ⊂ Bδ∗(J) for δ∗ := min{δ, δ0},
where δ and δ0 are the positive constants in Lemma 1.2 and Lemma 2.3, respectively.
We fix a parameter τ∗ ∈ J∗ and consider the slice Ξ∗ := Ξ(τ∗). Let us define the
function spaces

C0
J∗ := {x ∈ C0(J∗ × Ξ∗ × Λ, IRn) : ‖x‖∞ < ∞},(55)

C0
J∗,L := {X ∈ C0(J∗ × Ξ∗ × Λ, L(IRn × V, IRn)) : ‖X‖∞ < ∞},(56)

C1
J∗ := {x ∈ C0

J∗ : Dwx ∈ C0
J∗,L},(57)

where we used the norms

‖x‖∞ := sup
(t,w)∈J∗×Ξ∗×Λ

|x(t, w)| for x ∈ C0(J∗ × Ξ∗ × Λ, IRn),(58)

‖X‖∞ := sup
(t,w)∈J∗×Ξ∗×Λ

‖X(t, w)‖L(IRn×V,IRn)(59)

for X ∈ C0(J∗ × Ξ∗ × Λ, L(IRn × V, IRn)).

Recall that for w = (ξ, λ) ∈ Ξ∗ × Λ

‖X(t, w)‖L(IRn×V,IRn) := sup
‖v‖IRn×V ≤1

|X(t, w)v|
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for v = (ζ, µ) ∈ IRn × V with

‖v‖IRn×V := |ζ|+ ‖µ‖V .

We introduce the norm

(60) ‖x‖1,∞ := ‖x‖∞ + ‖Dwx‖∞ on C1
J∗ .

Lemma 2.4. The spaces (C0
J∗ , ‖.‖∞), (C0

J∗,L, ‖.‖∞) and (C1
J∗ , ‖.‖1,∞) are Banach

spaces.

Proof. For (C0
J∗ , ‖.‖∞) and (C0

J∗,L, ‖.‖∞) we refer to [1] as before. For C1
J∗ take a

Cauchy sequence {xn} ⊂ C1
J∗ , which means that xn → x in C0(J∗ × Ξ∗ × Λ, IRn)

and Dwxn → X in C0(J∗ × Ξ∗ × Λ, L(IRn × V, IRn)). We have to show that the
Fréchet–derivative Dwx exists and satisfies

(61) Dwx = X.

In order to do that, observe that for v ∈ IRn × V with ‖v‖IRn×V sufficiently small,

xn(t, w + v)− xn(t, w) =
∫ 1

0

d

ds
xn(t, w + sv) ds

=
∫ 1

0
Dwxn(t, w + sv) ds v

=
∫ 1

0
[Dwxn(t, w + sv)−X(t, w + sv)] ds v

+
∫ 1

0
X(t, w + sv) ds v

=
∫ 1

0
[Dwxn(t, w + sv)−X(t, w + sv)] ds v

+
∫ 1

0
[X(t, w + sv)−X(t, w)] ds v

+
∫ 1

0
X(t, w) ds v.

Now we estimate

|xn(t, w + v)− xn(t, w)−
∫ 1

0
[X(t, w + sv)−X(t, w)] ds v −

∫ 1

0
X(t, w) ds v|

≤ ‖Dwxn −X‖∞‖v‖IRn×V for all n ∈ IN .
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Going to the limit n →∞ on both sides of this inequality we obtain

x(t, w + v)− x(t, w) = X(t, w)v + o(‖v‖IRn×V ) for ‖v‖IRn×V → 0,

where we used the uniform convergence xn → x in C0(J∗×Ξ∗×Λ, IRn), Dwxn → X
in C0(J∗ × Ξ∗ × Λ, L(IRn × V, IRn)) and the continuity of X. This implies (61). 2

We consider x ∈ C1
J∗ , such that

(62) graph x(., w) = {(t, x(t, w)) : t ∈ J∗} ⊂ Bδ∗(Ω)

for all w = (ξ, λ) ∈ Ξ∗×Λ. Similarly as in (31) we define the operator A on functions
x ∈ C1

J∗ which satisfy (62).

(63) Ax(t, w) := ξ +
∫ t

τ∗
f(s, x(s, w), λ) ds

for all (t, w) = (t, (ξ, λ)) ∈ J∗ × Ξ∗ × Λ. Note that, in contrast to (31), τ∗ is fixed
here.

Lemma 2.5. For all x ∈ C1
J∗ with (62) we have that Ax ∈ C1

J∗, and

DwAx(t, w)v = ζ +
∫ t

τ∗
fx(s, x(s, w), λ)Dwx(s, w)v ds

+
∫ t

τ∗
fλ(s, x(s, w), λ)µds(64)

for all (t, w) ∈ J∗ × Ξ∗ × Λ and v = (ζ, µ) ∈ IRn × V.

Proof. One can show that Ax ∈ C0
J∗ for x ∈ C1

J∗ ⊂ C0
J∗ satisfying (62) by a

reasoning analogous to the proof of Lemma 1.4 (i), by simply fixing τ := τ∗. Let
us now show that Ax ∈ C1

J∗ and that (64) holds. For w = (ξ, λ) ∈ Ξ∗ × Λ and
v = (ζ, µ) ∈ IRn × V we consider the function

α(σ) := Ax(t, w + σv) = ξ + σζ +
∫ t

τ∗
f(s, x(s, w + σv), λ + σµ) ds

for all |σ| so small, that w +σv ∈ Ξ∗×Λ. The assumption (f5) on f implies that the
integrand on the right-hand side is differentiable with respect to σ for a.e. s ∈ J∗,
and we can estimate∣∣ d

dσ
f(s, x(s, w + σv), λ + σµ)

∣∣
=

∣∣fx(s, x(s, w + σv), λ + σµ)Dwx(s, w + σv)v + fλ(s, x(s, w + σv), λ + σµ)µ
∣∣

≤ P (s)(‖Dwx‖∞‖v‖IRn×V + ‖µ‖V ) for a.e. s ∈ J∗, by (50).
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Hence we may apply Zeidler [8, p.1018] to obtain

α′(0) = ζ +
∫ t

τ∗

[
fx(s, x(s, w), λ)Dwx(s, w)v + fλ(s, x(s, w), λ)µ

]
ds

=: DwAx(t, w)v.(65)

Analogously to the previous estimate we get

|DwAx(t, w)v| ≤ |ζ|+
∫ t

τ∗
P (s)(‖Dwx‖∞‖v‖IRn×V + ‖µ‖V ) ds

≤ ‖v‖IRn×V

[
1 + (‖Dwx‖∞ + 1)

∫
J∗

P (s) ds
]
,

which implies that DwAx(t, w) ∈ L(IRn × V, IRn), i.e., that DwAx(t, w) is the
Gâteaux–derivative of Ax(t, .). Below we show the continuity of DwAx(., .) on J∗ ×
Ξ∗×Λ. Hence DwAx(t, w) is the Fréchet–derivative of Ax(t, .) (cf. Zeidler [7, p.137]),
and DwAx ∈ C0

J∗,L. Since Ax ∈ C0
J∗ we conclude that Ax ∈ C1

J∗ .
Let us finally show that DwAx(., .) is continuous on J∗×Ξ∗×Λ. Indeed, taking

sequences (tn, wn) → (t, w) ∈ J∗ × Ξ∗ × Λ one estimates for v = (ζ, µ) ∈ IRn × V :

|DwAx(tn, wn)v −DwAx(t, w)v|
≤ |DwAx(tn, wn)v −DwAx(tn, w)v|+ |DwAx(tn, w)v −DwAx(t, w)v|

≤
∣∣ ∫ tn

τ∗
|fx(s, x(s, wn), λn)Dwx(s, wn)v − fx(s, x(s, w), λ)Dwx(s, w)v| ds

∣∣
+

∣∣ ∫ tn

τ∗
|fλ(s, x(s, wn), λn)µ− fλ(s, x(s, w), λ)µ| ds

∣∣
+

∣∣ ∫ tn

t
|fx(s, x(s, w), λ)Dwx(s, w)v + fλ(s, x(s, w), λ)µ| ds

∣∣
≤

∫
J∗
|fx(s, x(s, wn), λn)− fx(s, x(s, w), λ)|‖Dwx(s, wn)‖L(IRn×V,IRn)‖v‖IRn×V ds

+
∫

J∗
|fx(s, x(s, w), λ)|‖Dwx(s, wn)−Dwx(s, w)‖L(IRn×V,IRn)‖v‖IRn×V ds

+
∫

J∗
|fλ(s, x(s, wn), λn)− fλ(s, x(s, w), λ)|‖µ‖V ds

+
∣∣ ∫ tn

t

[
|fx(s, x(s, w), λ)|‖Dwx(s, w)‖L(IRn×V,IRn)‖v‖IRn×V

+|fλ(s, x(s, w), λ)|‖µ‖V

]
ds

∣∣
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≤ ‖Dwx‖∞‖v‖IRn×V

∫
J∗
|fx(s, x(s, wn), λn)− fx(s, x(s, w), λ)| ds

+‖v‖IRn×V sup
J∗

‖Dwx(., wn)−Dwx(., w)‖L(IRn×V,IRn)

∫
J∗

P (s) ds

+‖µ‖V

∫
J∗
|fλ(s, x(s, wn), λn)− fλ(s, x(s, w), λ)| ds(66)

+(‖Dwx‖∞‖v‖IRn×V + ‖µ‖V ) ·
∣∣ ∫ tn

t
P (s) ds

∣∣ .

Note that by (50) the integrands on the right-hand side are all dominated by 2P ∈
L1(J∗), and since fx(s, ., .) and fλ(s, ., .) are both continuous on {x ∈ IRn : (s, x) ∈
Bδ0(Ω)} × Λ, we obtain pointwise for a.e. s ∈ J∗ :

lim
n→∞

|fx(s, x(s, wn), λn)− fx(s, x(s, w), λ)| = 0,

lim
n→∞

|fλ(s, x(s, wn), λn)− fλ(s, x(s, w), λ)| = 0,

where we have also used that x(., wn) → x(., w) as n →∞. After taking the supre-
mum in (66) over all v ∈ IRn × V with ‖v‖IRn×V ≤ 1 we can apply Lebegue’s
Dominated Convergence Theorem to get

‖DwAx(tn, wn)−DwAx(t, w)‖L(IRn×V,IRn)

≤ ‖Dwx‖∞
∫

J∗
|fx(s, x(s, wn), λn)− fx(s, x(s, w), λ)| ds

+sup
J∗

‖Dwx(., wn)−Dwx(., w)‖L(IRn×V,IRn)

∫
J∗

P (s) ds

+
∫

J∗
|fλ(s, x(s, wn), λn)− fλ(s, x(s, w), λ)| ds(67)

+ (‖Dwx‖∞ + 1) ·
∣∣ ∫ tn

t
P (s) ds

∣∣ −→ 0 as n →∞,

by the integrability of P , and since for x ∈ C1
J∗ one has

sup
J∗

‖Dwx(., wn)−Dwx(., w)‖L(IRn×V,IRn) → 0 as n →∞.

2

We define an operator B on C0
J∗ × C0

J∗,L, which assigns to each (x,X) ∈ C0
J∗ ×

C0
J∗,L a mapping

B(x,X) : J∗ × Ξ∗ × Λ −→ L(IRn × V, IRn)
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given by

B(x,X)(t, ξ, λ)v := ζ +
∫ t

τ∗
fx(s, x(s, ξ, λ), λ)X(s, ξ, λ)v ds

+
∫ t

τ∗
fλ(s, x(s, ξ, λ), λ)µds(68)

for v = (ζ, µ) ∈ IRn × V. Note that in fact B(x,X)(t, ξ, λ) ∈ L(IRn × V, IRn) for all
(t, ξ, λ) ∈ J∗ × Ξ∗ × Λ.

Lemma 2.6. (i) B(x,X) ∈ C0
J∗,L for all x ∈ C0

J∗ satisfying (62) and all X ∈
C0

J∗,L, i.e., the mapping (t, ξ, λ) 7→ B(x,X)(t, ξ, λ) is continuous on J∗×Ξ∗×Λ
for each (x,X) ∈ C0

J∗ × C0
J∗,L, where x satisfies (62).

(ii) If, in addition, |J∗| is so small that

(69)
∫

J∗
P (s) ds <

1
2
,

then

(70) ‖B(x,X1)−B(x,X2)‖∞ ≤ 1
2
‖X1 −X2‖∞

for each x ∈ C0
J∗ with (62), and all X1, X2 ∈ C0

J∗,L. Here, ‖.‖∞ is the sup-norm
as defined in (59).

(iii) Let {xk} ⊂ C0
J∗ be a sequence satisfying (62), xk → x ∈ C0

J∗ , such that x
satisfies (62) and X ∈ C0

J∗,L. Then ‖B(xk, X)−B(x,X)‖∞ → 0 as k →∞.

Remark. By Lemma 2.5 we readily see that for all x ∈ C1
J∗ satisfying (62) the

identity
DwAx(t, w)v = B(x,Dwx)(t, w)v

holds for all (t, w) ∈ J∗ × Ξ∗ × Λ, v ∈ IRn × V, or, equivalently,

(71) DwAx = B(x,Dwx).

Proof of Lemma 2.6 . We already realized that B(x,X)(t, ξ, λ) ∈ L(IRn ×
V, IRn) for all (t, ξ, λ) ∈ J∗ × Ξ∗ × Λ, (x,X) ∈ C0

J∗ × C0
J∗,L. The continuity of

the mapping (t, ξ, λ) 7→ B(x,X)(t, ξ, λ) on J∗ × Ξ∗ × Λ can be shown as that of
(t, w) 7→ DwAx(t, w) in the previous proof as long as (x,X) ∈ C0

J∗ × C0
J∗,L with x

satisfying (62).
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For the contraction property (70) we estimate with (50)

|B(x,X1)(t, w)v −B(x,X2)(t, w)v|

≤
∣∣ ∫ t

τ∗
|fx(s, x(s, w), λ)(X1(s, w)−X2(s, w))v| ds

∣∣
≤ ‖X1 −X2‖∞‖v‖IRn×V

∫
J∗

P (s) ds

≤ 1
2
‖X1 −X2‖∞‖v‖IRn×V by (69),

for all (t, w) := (t, ξ, λ) ∈ J∗×Ξ∗×Λ and v ∈ IRn×V. Since B(x,Xj)(t, w) ∈ L(IRn×
V, IRn), j = 1, 2, we can take the supremum over v ∈ IRn × V with ‖v‖IRn×V ≤ 1,
and get

‖B(x,X1)(t, w)−B(x,X2)(t, w)‖L(IRn×V,IRn) ≤
1
2
‖X1 −X2‖∞.

Note that B(x,Xj) ∈ C0
J∗,L for j = 1, 2, hence we can take the supremum over

J∗ × Ξ∗ × Λ on the left-hand side to conclude that (70) holds.
In order to show (iii) we estimate similarly as before

|B(xk, X)(t, w)v −B(x,X)(t, w)v|

≤
∣∣ ∫ t

τ∗
|(fx(s, xk(s, w), λ)− fx(s, x(s, w), λ))X(s, w)v| ds

∣∣
+

∣∣ ∫ t

τ∗
|(fλ(s, xk(s, w), λ)− fλ(s, x(s, w), λ))µ| ds

∣∣
≤ ‖X‖∞‖v‖IRn×V

∫
J∗
|fx(s, xk(s, w), λ)− fx(s, x(s, w), λ)| ds

+‖µ‖V

∫
J∗
|fλ(s, xk(s, w), λ)− fλ(s, x(s, w), λ)| ds.

First we take the supremum over all v ∈ IRn × V with ‖v‖IRn×V to obtain

‖B(xk, X)(t, w)−B(x,X)(t, w)‖L(IRn×V,IRn)

≤ ‖X‖∞
∫

J∗
|fx(s, xk(s, w), λ)− fx(s, x(s, w), λ)| ds

+
∫

J∗
|fλ(s, xk(s, w), λ)− fλ(s, x(s, w), λ)| ds.(72)

Now we use the finite covering (54) to define the sets

Jl := {s ∈ J∗ : (s, x(s, w)) ∈ Bδl
(ωl)} for l = 1, . . . , Ñ .
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Note that since x satisfies (62) we have

J∗ ⊂
Ñ⋃

l=1

Jl.

On each Jl for l = 1, . . . , Ñ , we can apply (46) on the integrands on the right-hand
side of (72) to obtain

‖B(xk, X)(t, w)−B(x,X)(t, w)‖L(IRn×V,IRn)

≤ ‖X‖∞
Ñ∑

l=1

∫
Jl

|fx(s, xk(s, w), λ)− fx(s, x(s, w), λ)| ds

+
Ñ∑

l=1

∫
Jl

|fλ(s, xk(s, w), λ)− fλ(s, x(s, w), λ)| ds

≤ (‖X‖∞ + 1)
Ñ∑

l=1

∫
Jl

Qωl
(s, rk) ds,(73)

where rk := ‖xk − x‖∞. Note that we used the monotonicity property (Q2) for each
Qωi , i = 1, . . . , Ñ . Finally, taking the supremum over J∗ × Ξ∗ × Λ on the left-hand
side we arrive at

‖B(xk, X)−B(x,X)‖∞ −→ 0 as k →∞,

where we have applied Lebegue’s Dominated Convergence Theorem using Qωl
(., 2‖x‖∞),

as integrable majorizing functions for the integrands Qωl
(s, rk), l = 1, . . . , Ñ on the

right-hand side of (73) for sufficiently large k ∈ IN . 2

Proof of Theorem 2.1 . Let δ∗ = min{δ, δ0}, where δ0 > 0, P ∈ L1(IR) as in
Lemma 2.3 and δ > 0 and the functions M,K ∈ L1(IR) as in Lemma 1.2. Fix any
τ∗ := τ ∈ J and choose ρ ∈ (0, δ∗), such that∫

Bρ(τ∗)
K(s) ds <

1
2
,(74) ∫

Bρ(τ∗)
M(s) ds <

δ

2
,(75) ∫

Bρ(τ∗)
P (s) ds <

1
2
.(76)

23



Set

J∗ := Bρ(τ∗),(77)
Ξ∗ := {ξ ∈ IRn : (τ∗, ξ) ∈ Ω} = Ξ(τ∗).(78)

Define C0
J∗ , C

0
J∗,L and C1

J∗ according to (55),(56) and (57), and set

(79) C1∗ := {y ∈ C1
J∗ : graph y ⊂ Bδ/2(Ω)},

(compare also with (37),(38) and (39).) Fix any x1 ∈ C1∗, set xk+1 := Axk, which
implies that xk ∈ C1

J∗ for all k ∈ IN by Lemma 2.5. Moreover, by the same rea-
soning as in the proof of Theorem 1.1 one shows that xk ∈ C1∗ for all k ∈ IN . By
the contraction property (33), which therefore holds on the sequence {xk} by the
definition of C1∗, and the Banach Fixed Point Theorem we obtain

xk → x ∈ C0
J∗ with Ax = x.

For this fixed x the operator B(x, .) on C0
J∗,L is a contraction mapping according to

(70) of Lemma 2.6, hence has also a fixed point X ∈ C0
J∗,L, i.e., B(x,X) = X. Now

set X1 := Dwx1, and consider the sequence Xk+1 := B(xk, Xk) with the xk from
above. Observe that Xk = Dwxk for all k ∈ IN by (71). We claim that

(80) Xk → X inC0(J∗ × Ξ∗ × Λ, L(IRn × V, IRn)).

In fact, we can use (70) and Lemma 2.6 (iii) to get

‖Xk+1 −X‖∞ = ‖B(xk, Xk)−B(x,X)‖∞
≤ ‖B(xk, Xk)−B(xk, X)‖∞ + ‖B(xk, X)−B(x,X)‖∞

≤ 1
2
‖Xk −X‖∞ + βk with βk → 0 for k →∞.(81)

For a given ε > 0 there is a k0 ∈ IN , such that βk ≤ ε/2 for all k ≥ k0. Thus from
(81) we infer for k > k0 + 1

‖Xk+1 −X‖∞ ≤ 1
2
(‖Xk −X‖∞ + ε)

≤ 1
2
(1
2
(‖Xk−1 −X‖∞ + ε) + ε

)
≤ 1

2k−k0+1
‖Xk0 −X‖∞ + ε

k−k0+1∑
i=1

1
2i

≤ 1
2k−k0+1

‖Xk0 −X‖∞ + ε.
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Consequently, ‖Xk+1−X‖∞ ≤ 2ε for k sufficiently large, since the first term on the
right-hand side can be made arbitrarily small choosing k large enough. This finishes
the proof of (80).

Finally we observe that Dwx = X, since C1
J∗ is a Banach space according to

Lemma 2.4. This implies that x is in fact in C1
J∗ . Theorem 1.1 shows that x is the

unique solution of (9) on Bρ(τ∗), which finishes the proof of Theorem 2.1. 2

Proof of Corollary 2.2 . (68),(71) and the fact that Ax = x from the previous
proof imply

Dwx(t, w)v = DwAx(t, w)v = B(x,Dwx)(t, w)v

= ζ +
∫ t

τ
[fx(s, x(s, w), λ)Dwx(s, w)v + fλ(s, x(s, w), λ)µ] ds

for v = (ζ, µ) ∈ IRn × V, which proves (i). Hence, we can differentiate Dwx with
respect to t (a.e. on Bρ(τ)) and obtain

(82)
d

dt
Dwx(t, w)v = fx(t, x(t, w), λ)Dwx(t, w)v + fλ(t, x(t, w), λ)µ

for a.e. t ∈ Bρ(τ) and for v = (ζ, µ) ∈ IRn × V. On the other hand, looking at the
differential system (9) for x = x(t, w), we see that under the conditions (f1)-(f6) on f
together with Lemma 2.3, that ẋ is Fréchet–differentiable with respect to w ∈ Ξ×Λ,
since the right-hand side of (9) is. Computing this Fréchet derivative using the chain
rule one obtains exactly the expression in (82), hence

d

dt
Dwx(t, w)v = Dw(

d

dt
x(t, w))v,

i.e., (49) as claimed. 2

Appendix: A counterexample

We are going to construct an open, bounded x-convex set Ω ⊂ IR3, such that also
its closure Ω is x-convex, with the property that for every δ > 0 sufficiently small
the corresponding δ-neighbourhood Bδ(Ω) fails to be x-convex. This set Ω clearly
violates condition (7). In the following we write x = (ξ, η) ∈ IR2.

Consider the curve γ : (0, 1) → IR3 defined as

γ(t) :=

 t
ξ(t)
η(t)

 :=

 t
t cos φ(t)
t sinφ(t)


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where φ(t) := −2π log3/2 t for t ∈ (0, 1). Then we have

η(t) = 0 and ξ(t) = t for t = 1,
2
3
,
4
9
, . . . ,

2k

3k
, . . . .

For the planar disk Dρ := {(0, ξ, η) ∈ IR3 : ξ2 + η2 < ρ} and for ε > 0 set

Ω(ε) := {(t, ξ, η) ∈ IR3 : t ∈ (0, 1), (t, ξ, η) ∈ γ(t) + Dtε}.

Obviously, Ω(ε) and Ω(ε) are bounded and (ξ, η)-convex. For 0 < ε < 1 the set Ω(ε)
is a spiral, which does not intersect the t-axis, and the closure Ω(ε) intersects the
t-axis only in the origin. It will turn out that for ε > 0 sufficiently small Ω := Ω(ε)
is the desired set.

Given any 0 < δ <
√

2/3 , set t0 :=
√

2δ, and t1 := 3t0/2, hence [t0, t1] ⊂ (0, 1).
We claim that the circle

Ct̃ := {(t̃, ξ, η) : ξ2 + η2 = t̃ 2}, t̃ :=
t0 + t1

2
,

is contained in the δ-neighbourhood of Γ := γ((0, 1)), i.e.,

(83) Ct̃ ⊂ Bδ(Γ) ⊂ Bδ(Ω(ε)) for all ε > 0.

Indeed, if one parametrizes Ct̃ by the mapping c : [t0, t1] → IR3 defined by

σ 7→ c(σ) := t̃(1, cos φ(σ), sinφ(σ)),

one easily checks that

dist (Γ, c(σ)) ≤ |γ(σ)− c(σ)| ≤ δ/2 for all σ ∈ [t0, t1].

Now observe that Γ lies on the boundary of the cone K, whose axis is equal to
the t-axis and which is centered at the origin with opening angle π/4, since |γ(t)−
(t, 0, 0)| = t for all t ∈ (0, 1). Consequently, we have that

(84) Ω(ε) ⊂ ΩK(ε), where ΩK(ε) :=
⋃

(t,ξ,η)∈∂K

(t, ξ, η) + Dtε.

By elementary geometric arguments one can easily deduce (see Figure 1) that

dist ((t, 0, 0),ΩK(ε)) = t sin(arctan(1− ε)).
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Fig. 1.

Since sin(arctan(1− ε)) → 1√
2

as ε → 0, there is some ε0 > 0 such that

sin(arctan(1− ε0)) >
4

5
√

2
.

Thus for t = t̃ = 5t0/4 = 5
√

2δ/4

dist ((t̃, 0, 0),ΩK(ε0)) =
5
4
δ
√

2 sin(arctan(1− ε0)) > δ.

That implies that the point (t̃, 0, 0), which is the center of the circle Ct̃, is not
contained in Bδ(ΩK(ε0)). By (84) we get (t̃, 0, 0) 6∈ Bδ(Ω(ε0)). This together with
(83) shows that Bδ(Ω(ε0) is not (ξ, η)-convex for all δ ∈ (0,

√
2/3).
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