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1 Introduction

Investigating obstacle problems for elastic rods we are sometimes confronted with the question
to look for a solution which has a prescribed shape along some part of it. In the simplest case
the rod is enforced to be straight along some contact area (cf., e.g., Gastaldi & Kinderlehrer [3]).
Motivated by such applications we study straight configurations of elastic rods in this paper.
More precisly, as in the case of frictionless contact, we consider equilibrium configurations of
planar rods which are enforced to be straight by special external forces that are orthogonal to
the straight axis.

The reader might have in mind the mostly used Euler elastica (or simplifications of it), which
neglects shear, extension, and thickness, and our subject appears to be very boring, since in that
case only the trivial solution is straight, and even a school boy would not spend some attention to
such a triviality. However, based on the Cosserat theory which describes planar deformations of
nonlinearly elastic rods that can bend, strech, and shear and which takes into acccount an exact
two- or three-dimensional geometry, the problem becomes much more subtle. In contrast to the
more primitive models, we shall obtain an interesting richness of structure of this appearently
simple problem.

An important observation for our general rod theory, which does not neglect thickness, is that
we must say more precisely what we mean by a straight configuration. A Cosserat rod describes
a “slender” two- or three-dimensional elastic body and, by the nontrivial interaction of flexure,
shear, and extension, originally parallel material curves of the rod do not remain parallel under
deformations in general. Thus some special material curve which we want to be straight in the
deformed configuration has to be selected. Usually this will be some curve of centroids or a certain
boundary curve. The last case is from particular interest for contact problems with a straight
obstacle.

After introducing the underlying Cosserat theory for planar rods in Section 2, we show in
Section 3 how the problem of straight configurations can be reduced to a second order system
of ordinary differential equations. Based on some basic transformation rules for the reference
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curve we also discuss some alternative approaches. In Section 4 we restrict our attention to the
case where the system of differential equations is autonomous, and we investigate its qualitative
properties by phase plane analysis. Depending on the special choice of the constitutive law and
of the external reactions as, e.g., terminal loads and weight, we verify a very rich behavior of
straight equilibrium configuration. In Section 5 we finally apply our abstract results to some
special examples. This way we illuminate a number of interesting effects which cannot be verified
within an unshearable rod model.

2 Rod theory

In this section we formulate the Cosserat or director theory describing planar deformations of
nonlinearly elastic rods which can bend, stretch and shear. For a more comprehensive presentation
the reader is referred to Antman [2] and Schuricht [4].

Geometry of deformation. Let {i, j,k} be a fixed right-handed orthonormal basis in R3.
We consider a slender three-dimensional body B that is symmetric with respect to the {i, j}-plane
and we study deformations that preserve this symmetry. The deformed rod is identified with the
region occupied by its intersection with the {i, j}-plane. A configuration of the rod is described
by a pair of absolutely continuous vector-valued functions {r(·), b(·)}, lying in the {i, j}-plane,
and we assume that the position field p of the deformed material points has the form

p(s, ζ) = r(s) + ζb(s) for (s, ζ) ∈ Ω, (2.1)

where
Ω ≡ {(s, ζ)| s ∈ [0, L], h−(s) ≤ ζ ≤ h+(s)}.

We interprete r as the deformed configuration of some material curve in the body B, the so-called
base curve (e.g., the curve of centroids or a suitable boundary curve). The director b(s) is a unit
vector which describs the orientation of the cross-section at s. We interpret s as length parameter
and ζ as thickness parameter. h± are given bounded functions such that h−(s) ≤ 0 ≤ h+(s) and
h−(s) < h+(s).

We introduce a ≡ −k × b and the angle θ from i to a such that

a = cos θ i + sin θ j, b = − sin θ i + cos θ j. (2.2)

Hence a configuration can be alternatively described by a pair {r(·), θ(·)}.
We define the strains ξ ≡ (ν, η, µ) for a configuration by

r′ = νa + ηb, µ ≡ θ′,

By the absolute continuity of r(·) and θ(·), the strains must be integrable functions on [0, L].
With r0 ≡ r(0), θ0 ≡ θ(0) we have the representation

r(s) = r0 +
∫ s

0

[
(ν cos θ − η sin θ)i + (ν sin θ + η cos θ)j

]
dτ,

θ(s) = θ0 +
∫ s

0
µ dτ.
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The natural undeformed state of the rod is called its reference configuration. Corresponding
variables are identified by a superposed circle and, usually, it is assumed that

◦
ν = 1,

◦
η = 0, i.e.,

◦
r ′ =

◦
a . (2.3)

This expresses that the cross-sections are orthogonal to the base curve and that s is the arc-length
of the base curve. For an originally straight rod we obviously have that

◦
µ= 0.

The requirement that deformations be locally orientation-preserving can be expressed by the
condition that

ν(s) > V (µ(s), s) for s ∈ [0, L], (2.4)

where
V (µ, s) ≡

{
h+(s)µ for µ ≥ 0,

h−(s)µ for µ ≤ 0.

Forces and equilibrium conditions. We identify subbodies B̆ ⊂ B with the corresponding
subset Ω̆ ⊂ Ω. In particular we define

ΩI ≡ {(τ, ζ) ∈ Ω| τ ∈ I} for I ⊂ [0, L] , Ωs ≡ Ω[s,L] .

The material of Ω[s,L] exerts the resultant force and the resultant couple

n(s) ≡ N(s)a(s) + H(s)b(s) and m(s) ≡ M(s)k ,

respectively, on the material of Ω[0,s[ for s ∈ ]0, L]. For technical convenience we set

n(0) ≡ 0 , m(0) ≡ 0 . (2.5)

All other external forces acting at the body may be described by a finite vector-valued Borel
measure f on Ω, i.e., f(Ω̆) lies in the {i, j}-plane and assigns the resultant force to subbodies
which correspond to Borel sets Ω̆ ⊂ Ω. It produces the induced couple

lf(Ω̆) ≡
∫

Ω̆

(
p(s, ζ)− r(s)

)
× df(s, ζ) =

∫
Ω̆

ζb(s)× df(s, ζ) .

All external couples different from m and lf may correspond to a finite vector-valued Borel measure
l on Ω where l(Ω̆) is orthogonal to the {i, j}-plane. Using the distribution functions

f(s) ≡
∫

Ωs

df(τ, ζ) , l(s) ≡
∫

Ωs

dl(τ, ζ) , lf (s) ≡
∫

Ωs

dlf(τ, ζ) ,

we can formulate the equilibrium equations for the rod

n(s) − f(s) = 0 for s ∈ [0, L] ,

m(s) −
∫ L

s
r′(τ)× n(τ) dτ − lf (s) − l(s) = 0 for s ∈ [0, L] .

Observe that (2.5) just implies that the external reaction exerted on the whole rod has to vanish.
An important external force is weight. Let %(s, ζ) > 0 be an integrable mass density of the

rod and let g = g1i + g2j be the acceleration of gravity. Then the corresponding entries f and
lf for the rod theory are

f(s) = g

∫ L

s
%0(τ) dτ , lf (s) = −k

∫ L

s

(
g1 cos ϑ(τ) + g2 sinϑ(τ)

)
%1(τ) dτ , (2.6)
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where

%i(τ) =
∫ h+(τ)

h−(τ)
ζi%(τ, ζ) dζ , i = 1, 2.

Constitutive functions. The material of the rod is taken to be elastic, i.e., there exist
constitutive functions Ξ̂ = (N̂ , Ĥ, M̂) depending on (ν, η, µ, s) such that the stress resultants are
determined by the strains through

N = N̂(ν, η, µ, s) , H = Ĥ(ν, η, µ, s) , M = M̂(ν, η, µ, s) . (2.7)

The domain of definition is restricted by (2.4). To avoid technicalities we adopt the usual restric-
tion that ξ → Ξ̂(ξ, s) is continuously differentiable for all s. Since the shape of a configuration is
not influenced by a change of the strains ξ(·) on a set of measure zero, the constitutive relations
in (2.7) can provide the correct resultant reactions at best at almost every cross-section s.

As a consequence of the Strong Ellipticity Condition we require that the Jacobian Ξ̂ξ(ξ, s)
is strictly positive definite for all ξ and all s. Consequently ξ → Ξ̂(ξ, s) is strictly monotone
for each s. The natural condition that extreme strains are accompanied by extreme reactions is
ensured by the infinity conditions

N̂(ν, η, µ, s) →
{

+∞
−∞

}
as ν →

{
+∞

V (µ, s)

}
,

Ĥ(ν, η, µ, s) → ±∞ as η → ±∞ ,

M̂(ν, η, µ, s) → ±∞ as µ approaches its positive and negative

extremes of the region (2.4).

In general we have the symmetry properties that

N̂(ν, ·, µ, s), M̂(ν, ·, µ, s) are even, Ĥ(ν, ·, µ, s) is odd. (2.8)

The additional symmetry conditions that

N̂(ν, η, ·, s), Ĥ(ν, η, ·, s) are even, M̂(ν, η, ·, s) is odd (2.9)

are satisfied for an originally straight rod with respect to the base curve of centroids.
The strict monotonicity of Ξ̂(·, s) and the coercivity condition that

‖Ξ̂(ξ, s)‖ → ∞ as ‖ξ‖ → ∞ or ν − V (µ, s) → 0 , (2.10)

which is slightly stronger than the above infinity conditions, support a global implicit function
theorem which ensures a unique solution of (2.7), i.e., there exist functions ξ̂ = (ν̂, η̂, µ̂) such that

ν = ν̂(N,H, M, s) , η = η̂(N,H, M, s) , µ = µ̂(N,H, M, s) . (2.11)

The mapping Ξ → ξ̂(Ξ, s) is also strictly monotone and inherits analog infinity, smoothness, and
symmetry properties of Ξ̂. Henceforth we simply assume that (2.7) and (2.11) are equivalent.
We readily also obtain equivalent sets of constitutive functions of the form

N = N̆(ν, η,M, s) , H = H̆(ν, η,M, s) , µ = µ̆(ν, η,M, s) , (2.12)
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or
ν = ν̆(N,H, µ, s) , η = η̆(N,H, µ, s) , M = M̆(N,H, µ, s) , (2.13)

which again have properties analogous to the original constitutive functions.
A material is called hyperelastic if there exists a stored energy function Ŵ depending on

(ν, η, µ, s) such that
N̂ = Ŵν , Ĥ = Ŵη , M̂ = Ŵµ .

Usually the natural growth condition that

Ŵ (ν, η, µ, s) → ∞ as ‖ξ‖ → ∞ or ν − V (µ, s) → 0

is adopted for hyperelastic materials. With

W̆ (ν, η,M, s) ≡ Ŵ (ν, η,−µ̆(ν, η,M, s), s) + Mµ̆(ν, η,M, s)

we get an alternative stored energy function such that

N̆ = W̆ν , H̆ = W̆η , µ̆ = W̆M ,

and we naturally invoke that

W̆ (ν, η,M, s) → ∞ as ‖(ν, η,M)‖ → ∞ or ν → 0 . (2.14)

We say that we have a material without shear instabilities if(
νĤ(ν, η, µ, s)− ηN̂(ν, η, µ, s)

)
η > 0 for all (ν, η, µ, s) with η 6= 0 .

This condition just prevents the appearance of shear instabilities as described by Antman (cf.
Antman [2]).

Transformation of the base curve. The presented formulation of the rod theory obviously
depends on the choice of a special reference curve. In a forthcoming paper it will be shown that
we obtain an equivalent formulation of the rod theory by a transformation of the base curve of
the form

r∗(s∗(s)) = r(s) + hb(s) .

Here h ∈ R is some constant with sups∈[0,L] h−(s) ≤ h ≤ infs∈[0,L] h+(s), and s∗(·) is an absolutely

continuous mapping such that s′∗(s) = 1−h
◦
µ (s) a.e. on [0, L]. Identifying all values with respect

to the new base curve by a subscript ‘∗’, we have the following transformation rules

a∗ = a, b∗ = b, ϑ∗ = ϑ,

ν∗ =
ν − hµ

1− h
◦
µ

, η∗ =
η

1− h
◦
µ

, µ∗ =
µ

1− h
◦
µ

,

N∗ = N, H∗ = H, M∗ = M + hN.

The constitutive functions transform correspondingly.
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3 Straight configurations

3.1 Formulation of the problem

Let us now study deformed equilibrium configurations of the rod where the base curve s → r(s) is
enforced to be straight by suitable external forces. Note that, in contrast to unshearable models
where the cross-sections are always supposed to remain orthogonal to the base curve, this does
not imply that all other curves s → r(s) + ζb(s) with ζ 6= 0 are straight. This fact makes our
appearently simple problem nontrivial and interesting. To be precise we assume that we have
some mechanism which enforces the base curve to be straight by exerting a distributed force along
this straight base curve and that force be directed orthogonal to the straight axis. We could, e.g.,
imagine that we remove all material points in a cylindrical neighborhood of the base curve of
the rod, put a rigid wire into this hole, and neglect friction between the rod and that wire. This
way the rigid wire exerts suitable contact forces to the rod such that it remains straight. If the
base curve is some boundary curve, then we model the situation where the rod is in frictionless
contact with a straight obstacle.

It is convenient to decompose the external force according to

f = fp + fu

where fp is some prescribed known force as, e.g., weight and fu is the unknown force which is
necessary to enforce the base curve to be straight. Accordingly we define the distribution functions
fp, fu, lfp , and lfu . Since fu acts along the base curve, the couple lfu vanishes and, thus, lfu is
identical zero. We restrict our considerations to cases where fp = fp(s) is a prescribed function
depending at most on s and where there exist functions l̄fp , l̄ depending on (ϑ, s) such that

l′fp
(s) = l̄fp(ϑ(s), s) , l′(s) = l̄(ϑ(s), s)

for all s ∈ ]0, L[ along solutions. This way we cover, e.g., the case of a general inhomogeneous
weight distribution and of general terminal loads (cf. Section 2).

Without loss of generality we assume that the base curve be parallel to the i-axis. Then we
can describe our restriction for the rod by the conditions

r′(s) · j = 0 , fu(s) · i = 0 for all s ∈ [0, L] .

By (2.2) and the balance of forces this is equivalent to

N cos ϑ−H sinϑ = fp · i , ν sinϑ + η cos ϑ = 0 . (3.1)

Using the constitutive relations (2.12), we obtain that

N̆(ν, η,M, s) cos ϑ− H̆(ν, η,M, s) sinϑ = fp(s) · i (3.2)

ν sinϑ + η cos ϑ = 0 . (3.3)

We claim to solve this system for each fixed (ϑ, M, s). By ν > 0 the second equation obviously
excludes cos ϑ = 0 (recall (2.4)). Thus, by the periodicity in ϑ, we can restrict our attention to

ϑ ∈ ]− π
2 , π

2 [ .
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Hence the system is equivalent to the single equation

ϕ̆(ν, ϑ,M, s) ≡ N̆(ν,−ν tanϑ, M, s) cos ϑ− H̆(ν,−ν tanϑ, M, s) sinϑ = fp(s) · i . (3.4)

By the strict positive definiteness of ∂(N̆,H̆,µ̆)
∂(ν,η,M) , we obtain that

ϕ̆ν = N̆ν cos ϑ− N̆η tanϑ cos ϑ− H̆ν sinϑ + H̆ tanϑ sinϑ

=
1

cos ϑ

(
N̆ν N̆η

H̆ν H̆η

)(
cos ϑ

sinϑ

)
·

(
cos ϑ

sinϑ

)
> 0 .

Hence ϕ̆(·, ϑ,M, s) is increasing. Below we show that

ϕ̆(ν, ϑ,M, s) →
{

+∞
−∞

}
as ν →

{
+∞
0

}
(3.5)

under some mild additional constitutive assumptions which exclude certain singular cases. This
implies the existence of a unique solution

ν = ν̃(ϑ, M, s) , η = η̃(ϑ, M, s) ≡ −ν̃(ϑ, M, s) tan ϑ

of the system (3.2), (3.3). By the Implicit Function Theorem and our smoothness assumption
for the constitutive rules, the functions ν̃(·, ·, s), η̃(·, ·, s) are continuously differentiable for all
s ∈ [0, L]. Let us set

Ñ(ϑ, M, s) ≡ N̆(ν̃(ϑ, M, s), η̃(ϑ, M, s),M, s) ,

H̃(ϑ, M, s) ≡ H̆(ν̃(ϑ, M, s), η̃(ϑ, M, s),M, s) ,

µ̃(ϑ, M, s) ≡ µ̆(ν̃(ϑ, M, s), η̃(ϑ, M, s),M, s) .

The functions Ñ , H̃, and µ̃ are also continuously differentiable with respect to (ϑ, M). By the
symmetry condition (2.8) we easily verify that

ν̃(·,M, s), µ̃(·,M, s), Ñ(·,M, s) are even, η̃(·,M, s), H̃(·,M, s) are odd. (3.6)

Moreover, η̃(ϑ, M, s) and H̃(ϑ, M, s) have the opposite sign of ϑ.
Using the balance of moments we obtain the equilibrium equations for straight configurations

M ′ = −ν̃(ϑ, M, s)H̃(ϑ, M, s) + η̃(ϑ, M, s)Ñ(ϑ, M, s) + l̃(ϑ, s) (3.7)

ϑ′ = µ̃(ϑ, M, s) (3.8)

where
l̃(ϑ, s) ≡

(
l̄fp(ϑ, s) + l̄(ϑ, s)

)
· k .

We readily see that, up to a translation along the i-axis, a solution {ϑ(·),M(·)} of the system
(3.7), (3.8) uniquely provides a straight equilibrium configuration of the rod where the unknown
external force fu, which acts along the reference curve, is given by

fu(s) = n(s)− fp(s)

= Ñ(ϑ(s),M(s), s) a(ϑ(s)) + H̃(ϑ(s),M(s), s) b(ϑ(s))− fp(s) on [0, L] . (3.9)
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In the next section we study qualitative properties of the system (3.7), (3.8) for the autonomous
case.

Justification of (3.5). For this reason we adopt the growth condition that∣∣∣∣∣
(

N̆(ν, η,M, s)
H̆(ν, η,M, s)

)
·

(
ν

η

)∣∣∣∣∣ ≥ c(M, s)(ν2 + η2) (3.10)

where c(M, s) > 0 is a constant which can depend on M and s. This is a slightly stronger
condition than (2.10). Furthermore we exclude certain singular cases by demanding that

lim inf
τ→∞

η̂(−τ, τ cot ϑ, M, s) ≡ ε(ϑ, M, s) > 0 (3.11)

for ϑ ∈ ]0, π
2 [ , M ∈ R , s ∈ [0, L]. Below we show that this condition is always satisfied for

hyperelastic materials, which is the mechanically most important case.
(3.10) readily implies that

|ϕ̆(ν, ϑ,M, s)| =
cos ϑ

ν

∣∣∣N̆(ν,−ν tanϑ, M, s)ν − H̆(ν,−ν tanϑ, M, s)ν tanϑ
∣∣∣

≥ c(M, s) ν (1 + tan2 ϑ) cos ϑ .

Since ϕ̆(·, ϑ,M, s) is increasing,

ϕ̆(ν, ϑ,M, s) → +∞ as ν → +∞ .

Let us now show that ϕ̆(ν, ϑ,M, s) → −∞ as ν → 0. For ϑ = 0 this easily follows from our
basic infinity conditions for the constitutive functions stated in Section 2. By the symmetry (2.8)
we thus can restrict our attention to ϑ ∈ ]0, π

2 [ . Let us fix (ϑ, M, s). We consider the sets

Ar ≡ {(N,H)|N < −r, |H| < |N | cot ϑ} , r > 0 ,

which are open in R2. Since ξ̂(·, s) is an homeomorphism, the images

A†r ≡ {(ν, η)| ν = ν̂(N,H, M, s), η = η̂(N,H, M, s), (N,H) ∈ Ar} , r > 0 ,

are open in the (ν, η)−plane. By (3.11) there exist sequences rn →∞, νn → 0 such that

(νn,−νn tanϑ) ∈ A†rn
.

To see this we assume, for contradiction, that there is some large r > 0 such that |η| 6= ν tanϑ

for all (ν, η) ∈ A†r with ν < 1
r . By the growth properties of N̆(·, η,M, s) and with ηr ≡ 1

2r tanϑ

we then could choose 0 < νr < 1
2r such that Nr ≡ N̆(νr, ηr,M, s) < −2r. Since we had choosen

r > 0 large, we can suppose that η̂(Nr,−Nr cot ϑ, M, s) > 1
2ε(ϑ, M, s) and ηr < 1

2ε(ϑ, M, s).
By the monotonicity of H̆(ν, ·,M, s), we get that Hr ≡ H̆(νr, ηr,M, s) < |Nr| cot ϑ. Hence
(Nr,Hr) ∈ Ar and (νr, ηr) ∈ A†r. For H ∈ [0,Hr] the points (ν̂(Nr,H, M, s), η̂(Nr,H, M, s))
form a contiuous curve in A†r containing the point (ν̂(Nr, 0,M, s), 0). Since |ηr| > νr tanϑ and
0 < ν̂(Nr, 0,M, s) tan ϑ, there exists some H0 ∈ ]0,Hr[ such that η0 = ν0 tanϑ where ν0 ≡
ν̂(Nr,H0,M, s) and η0 ≡ η̂(Nr,H0,M, s). By the monotonicity of η̂(Nr, ·,M, s) we readily see

8



that ν0 < 1
r . But this contradicts our above assumption. Using the symmetry of η̂ in H we finally

obtain the existence of our desired sequences.
Consequently, with

Nn ≡ N̂(νn,−νn tanϑ, µ̆(νn,−νn tanϑ, M, s), s) = N̆(νn,−νn tanϑ, M, s)

Hn ≡ Ĥ(νn,−νn tanϑ, µ̆(νn,−νn tanϑ, M, s), s) = H̆(νn,−νn tanϑ, M, s)

we obtain that (Nn,Hn) ∈ Arn and Nn → −∞ by the definition of Arn . We must even have
that |Hn| < |Nn| cot ϑ̄ for some ϑ̄ ∈ ]ϑ, π

2 [ and all large n ∈ N. Otherwise, by the monotonicity of
η̂(N, ·,M, s) and with the notation ηn ≡ −νn tanϑ,

|ηn| = η̂(Nn, |Hn|,M, s) ≥ η̂(Nn, |Nn| cot ϑ̄, M, s) for all ϑ̄ ∈ ]ϑ, π
2 [ , n large.

This gives a contradiction by (3.11) (with ϑ̄ instead of ϑ) and by ηn → 0. With δ ≡ cot ϑ−cot ϑ̄ >

0 we thus obtain that
Nn cos ϑ−Hn sinϑ < Nnδ sinϑ .

By Nn → −∞ and the monotonicity of ϕ̆(·, ϑ,M, s) we finally get that

ϕ̆(ν, ϑ,M, s) → −∞ as ν → −∞ .

But this justifies (3.5).

Sketch that (3.11) holds true in the hyperelastic case. For fixed (ϑ, M, s) with ϑ ∈ ]0, π
2 [ we

suppose that, in contrary to (3.11), there exists a sequence τn →∞ such that

ηn ≡ η̂(−τn, τn cot ϑ, M, s) → 0 . (3.12)

Obviously ηn > 0 for all n ∈ N. Assume that

νn ≡ ν̂(−τn, τn cot ϑ, M, s) → ν0 > 0

(at least for a subsequence). Then, by the continuity of the constitutive functions, −τn =
N̆(νn, ηn,M, s) must converge to a finite value. But this contradicts τn → ∞. If νn → ∞,
then we easily obtain a contradition to the monotonicity of ξ̂(·, s). Thus

νn → 0 .

Let us introduce the level sets

ωn ≡ {(ν, η)| W̆ (ν, η,M, s) ≤ W̆ (νn, ηn,M, s)} .

By (2.14), W̆ (νn, ηn,M, s) →∞ as n →∞. Thus, at least for a subsequence,

ωn ⊂ ωn+1 ,
⋃
n∈N

ωn = {(ν, η)| ν > 0} .

Hence there exists some large n0 ∈ N such that the line ` : σ → (σ, 1 + σ tanϑ), σ ∈ R,
intersects the interior of ωn0 . Obviously −τn = W̆ν(νn, ηn,M, s) and τn cot ϑ = W̆η(νn, ηn,M, s).
Consequently, (−τn, τn cot ϑ) is an outer normal of ωn at (νn, ηn) and it is also normal to `. By
the convexity of W̆ (·, ·,M, s) the level sets ωn are convex and we readily see that ηn > 1 for all
n > n0. But this contradicts (3.12) and, hence, (3.11) must be satisfied.
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3.2 Discussion of alternative formulations

Let us discuss some alternative ways to derive equilibrium conditions for straight configurations
of rods in this section.

Instead of (2.12) we could employ (2.11) for the solution of (3.1). We then get

ν̂(H tanϑ + β(ϑ, s),H, M, s) sinϑ + η̂(H tanϑ + β(ϑ, s),H, M, s) cos ϑ = 0

where β(ϑ, s) ≡ fp(s) · i/ cos ϑ. By similar arguments as above we obtain a unique solution
H̄(ϑ, M, s). This then again leads to a system of ordinary differential equations for (ϑ, M) which
should be identical with (3.7), (3.8).

In our previous considerations we always studied the case where the reference curve is enforced
to be straight. However, sometimes it seems to be favorable to formulate the problem with respect
to the curve of centroids, where the constitutive functions enjoy additional symmetry properties,
though a different material curve is enforced to be straight. This situation naturally occurs in
contact problems where a boundary curve of the rod is in contact with a straight obstacle. For
this more general approach we choose some fixed h ∈ R such that h ∈ [h−(s), h+(s)] for all
s ∈ [0, L] and we demand that

p(s, h) · j =
(
r(s) + hb(s)

)
· j = 0 , fu(s) · i = 0 on [0, L].

Differentiation of the first equation with respect to s gives that (r′−hµa) ·j = 0. By the balance
of forces the previous conditions thus imply

N cos ϑ−H sinϑ = fp(s) · i , ν sinϑ + η cos ϑ− hµ sinϑ = 0 . (3.13)

Using the constitutive functions (2.11) we obtain

ϕ1 ≡ N cos ϑ−H sinϑ− fp(s) · i = 0 , (3.14)

ϕ2 ≡ ν̂(N,H, M, s) sinϑ + η̂(N,H, M, s) cos ϑ− hµ̂(N,H, M, s) sinϑ = 0 . (3.15)

We are looking for a solution N?(ϑ, M, s), H?(ϑ, M, s) of this system. By (2.4) the case cos ϑ = 0
can be excluded, i.e., we can again restrict our attention to ϑ ∈ ]− π

2 , π
2 [ . That we can apply the

Implicit Function Theorem we have to study

det
(

∂(ϕ1, ϕ2)
∂(N,H)

)
=

(
ν̂N − hµ̂N ν̂H − hµ̂H

η̂N η̂H

)(
sinϑ

cos ϑ

)
·

(
sinϑ

cos ϑ

)
.

Unfortunately, for h 6= 0 we cannot expect that this expression is different from zero for all
(ϑ, M, s) in general. (Note that the expression is always positive for h = 0 by the monotonicity of
the constitutive functions.) This means that, in contrast to (3.2), (3.3), given values (ϑ, M, s) do
not uniquely determine the force vector (N,H) through (3.14), (3.15). Hence we cannot reduce
the problem to equilibrium conditions in terms of (ϑ, M) in analogy to (3.7), (3.8). Similar
difficulties arise if we would use the constitutive functions (2.12) in (3.13). Then we would need
that (

N̆ν H̆ν

N̆η H̆η

)(
cos ϑ

− sinϑ

)
·

(
cos ϑ

− sinϑ

)
− h sinϑ

(
N̆ν H̆ν

N̆η H̆η

)(
cos ϑ

− sinϑ

)
·

(
µ̆η

−µ̆ν

)
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does not equal zero, which also cannot be expected in general.
Recalling the formulas for the transformation of the base curve we could suspect that it is

awkward to describe the problem in terms of (ϑ, M), since M changes under this transformation.
Though (ϑ, M) are natural from the physical point of view for typical initial or boundary value
problems, let us try to formulate the problem in terms of (ϑ, µ) which is independent of the special
base curve. For this reason we adopt the constitutive functions (2.13) in (3.13) which gives

ϕ3 ≡ N cos ϑ−H sinϑ− fp(s) · i = 0 (3.16)

ϕ4 ≡ ν̆(N,H, µ, s) sinϑ + η̆(N,H, µ, s) cos ϑ− hµ sinϑ = 0 . (3.17)

We readily get

det
(

∂(ϕ3, ϕ4)
∂(N,H)

)
=

(
ν̆N ν̆H

η̆N η̆H

)(
sinϑ

cos ϑ

)
·

(
sinϑ

cos ϑ

)
> 0 .

Thus, under some reasonable growth conditions, we would obtain a unique solution N [(ϑ, µ, s),
H[(ϑ, µ, s) and, similar as before, we could define

M [(ϑ, µ, s) ≡ M̆(N [(ϑ, µ, s),H[(ϑ, µ, s), µ, s) , ν[(ϑ, µ, s) ≡ ν̆(. . .) , η[(ϑ, µ, s) ≡ η̆(. . .) .

That we can write down the equilibrium equations we have to observe that, for h 6= 0, the
unknown force fu gives a nonvanishing contribution lfu to the balance of moments (remember
that fu is supposed to act along the straight axis). Let us assume that fu and lfu are smooth on
]0, L[ , which is reasonable at least in the case where the constitutive functions are smooth with
respect to s (cf. Schuricht [5]). We then have that

lfu(s) =
∫

Ωs

ζb(τ)× dfu(τ, ζ) = −h

∫ L

s
b(τ)× f ′u(τ) dτ .

(3.9) implies that

l′fu
= hb×

(
n′ − f ′p

)
= hb×

(
(N ′ − µH)a− f ′p

)
= −h

(
N [

ϑϑ′ + N [
µµ′ + N [

s − µH[ − f ′p · a
)
k ≡ l̄fu(ϑ, ϑ′, µ, µ′, s) .

Using ϑ′ = µ, the balance of moments reads as

d
dsM

[(ϑ, ϑ′, s) = −ν[(ϑ, ϑ′, s)H[(ϑ, ϑ′, s) + η[(ϑ, ϑ′, s)N [(ϑ, ϑ′, s)

+l̃(ϑ, s) + l̄fu(ϑ, ϑ′, ϑ′, ϑ′′, s) · k .

This is a quasi-linear second order ordinary differential equation for ϑ. The coefficient of ϑ′′ is

M̆NN [
µ + M̆HH[

µ + M̆µ + hN [
µ .

Again we cannot expect that this term is different from zero in general and, thus, we encounter
similar difficulties as in the previous approach. Furthermore we do not have a function providing
µ in terms of (ϑ, M) which would raise serious problems in formulating initial or boundary value
problems where certain values of M are prescribed.
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Now one could ask whether the intrinsic coordinates (ν, η) and (N,H) are convenient for a
problem where we invoke a constraint with respect to the fixed {i, j}-system. For this reason let
us introduce the decompositions

r = xi + yj , n = Ai + Bj .

We redily see that

ν = ν](x′, y′, ϑ) ≡ x′ cos ϑ + y′ sinϑ , η = η](x′, y′, ϑ) ≡ −x′ sinϑ + y′ cos ϑ .

By A = N sinϑ + H cos ϑ, B = N cos ϑ −H sinϑ, and (2.7), we obtain constitutive relations of
the form

A = A](x′, y′, ϑ′, ϑ, s) , B = B](x′, y′, ϑ′, ϑ, s) , M = M ](x′, y′, ϑ′, ϑ, s) .

The constraints (3.13), which have a very simple form in this formulation, then lead to the
equation

B](x′, hϑ′ sinϑ, ϑ′, ϑ, s)− fp(s) · i = 0 .

A straightforward computation shows that

B]
x′ =

(
N̂ν N̂η

Ĥν Ĥη

)(
cos ϑ

− sinϑ

)
·

(
cos ϑ

− sinϑ

)
> 0 .

Thus under some reasonable growth conditions we obtain a solution

x′ = a](ϑ, ϑ′, s) .

To formulate the equilibrium equations we are, however, confronted with the same difficulties as
in the last case.

Our discussion shows that there are serious difficulties in formulating the problem with respect
to a base curve which is different from the curve that is enforced to be straight. In the rest of
this paper we restrict our attention to qualitative investigations of the system (3.7), (3.8) which
gives configurations where the base curve is straight.

4 Qualitative analysis

The qualitative properties of the system (3.7), (3.8) can be very different. They clearly depend
on the prescribed force fp and on the choice of the constitutive functions describing some special
material. In this section we want to demonstrate by phase plane analysis how rich the structure of
this system can be. Here we restrict our attention to a situation where the system is autonomous.

Let us consider homogeneous rods which are straight in the undeformed stress free config-
uration, i.e.,

◦
µ = 0. More precisely, we assume that the constitutive functions and h± do not

explicitely depend on s. That the system (3.7), (3.8) becomes homogeneous, fp · i and l̃ may not
depend explicitly on s at least on ]0, L[ (observe that terminal loads or boundary conditions for
ϑ, which we want to cover, can cause certain discontinuities at the ends). We choose l̄(s) = 0 on
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]0, L[ . This in fact implies that f ′p(s) = gj on ]0, L[ for some constant g ∈ R. Note that we
cover (homogeneous) weight and terminal loads as external prescribed forces with this situation.
As we shall see these cases already create a very rich analysis.

Without danger of confusion we use the same notation as in the previous section and simply
omit the variable s in functions which do not explicitly depend on it in this special case. Thus
we are lead to the autonomous system

M ′ = −ν̃(ϑ, M)H̃(ϑ, M) + η̃(ϑ, M)Ñ(ϑ, M) + l̃(ϑ) (4.1)

ϑ′ = µ̃(ϑ, M) (4.2)

instaed of (3.7), (3.8). The function l̃ has the form

l̃(ϑ) = g sinϑ , for ϑ ∈ ]− π
2 , π

2 [ (4.3)

(cf. (2.6)). Obviously g < 0 is the case of weight which we have in mind if we speak about small
and large weight below. Let us set

κ̃(ϑ, M) ≡ −ν̃(ϑ, M)H̃(ϑ, M) + η̃(ϑ, M)Ñ(ϑ, M) .

The symmetry of ν̃, η̃, Ñ , and H̃ readily implies that κ̃(·,M) is odd. Though κ̃(·,M) is not
increasing in general, it is reasonable to suppose that

κ̃(ϑ, M) → ±∞ as ϑ → ±π
2 (4.4)

for fixed M ∈ R.

Case 1. Let us start with the case where the base curve is a curve of centroids. For phase
plane analysis we first have to determine the stationary points (ϑs,M s) of our system. By the
symmetry (2.9) the condition µ̃(ϑ, M) = 0 is equivalent with M = 0. Thus the stationary points
must satisfy

κ̃(ϑs, 0) = −l̃(ϑs) , M s = 0 .

Since κ̃(·,M) and l̃(·) are odd, (ϑs,M s) = (0, 0) is always a stationary solution. The appearance
of further stationary points, that obviously appear in pairs (±ϑs, 0), essentially depends on the
constitutive functions and on the value of g ∈ R. Fig. 1 and Fig. 2 show some typical cases. Here
the fat (solid and dashed) graphes represent κ̃(ϑ, 0) and the thin graphes provide −l̃(ϑ) = −g sinϑ

(the solid curves correspond to small weight and the dashed curve to large weight). We readily see
that, in the case of small weight, there is only the trivial stationary point for a material without
shear instabilities and there is at least one pair of nontrivial stationary points for materials with
shear instabilities. In the case of large weight we have always at least one pair of nontrivial
stationary points.

To determine the typ of the stationary points, we have to analyze the eigenvalues of the matrix

M(ϑ, M) ≡

(
κ̃M κ̃ϑ + l̃ϑ

µ̃M µ̃ϑ

)
at the stationary points (ϑs,M s) (cf. Amann [1]). Since µ̃(ϑ, 0) = 0 for all ϑ, we get

µ̃ϑ(ϑ, 0) = 0 for all ϑ .
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ϑ ϑ

Fig. 1. Typical cases for materials
without shear instabilities.

Fig. 2. Typical cases for materials
with shear instabilities.

From (3.4) we readily derive that ν̃(ϑ, ·) is even and, thus, also η̃(ϑ, ·), Ñ(ϑ, ·), H̃(ϑ, ·) are even.
Hence ν̃M (ϑ, 0) = η̃M (ϑ, 0) = 0 for all ϑ. Consequently, by the strict monotonicity of µ̆(ν, η, ·),

µ̃M (ϑ, 0) = µ̆ν(. . .)ν̃M (ϑ, 0) + µ̆η(. . .)η̃M (ϑ, 0) + µ̆M (. . .) > 0 . (4.5)

Furthermore κ̃(ϑ, ·) is even and, therefore,

κ̃M (ϑ, 0) = 0 .

Hence the eigenvalues λ of M(ϑ, M) are given by

λ± = ±
√

αβ where α ≡ µ̃M > 0 , β ≡ κ̃ϑ + l̃ϑ .

Consequently we have a saddle for β > 0 and a center for β < 0. By the oddness of κ̃(·, 0) + l̃(·),
both stationary points of a pair (±ϑs, 0) have the same type. Fig. 3 shows some typical phase
portraits for the situations presented in Fig. 1 and Fig 2.

M

ϑ

ϑ

M M

ϑ

Fig. 3a. Material without
shear instability and small
weight.

Fig. 3b. Material without
shear instability and large
weight or material with shear
instability (dashed curve).

Fig. 3c. Material with shear
instability (solid curve) and
small weight.

Case 2. We now analyze the case where the base curve is not necessarily a curve of centroids.
Let us again first look for stationary solutions (ϑs,M s). In contrast to the previous case it is now
not completely obvious whether µ̃(ϑ, M) = 0 has a solution M for each ϑ ∈ ] − π

2 , π
2 [ . Though
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the whole problem cannot be formulated with respect to the curve of centroids (cf. the discussion
in the previous section), we can use the formulas describung a change of the base curve for that
special question. Let us identify all values with respect to the curve of centroids by a subscript
‘∗’. Since we consider homogeneous and originally straight rods, there always exists some h0 ∈ R
such that

r∗(s) = r(s) + h0b(s) on [0, L] .

We can obviously solve (3.2), (3.3) for the case that all entries are taken with respect to the curve
of centroids. This way we get ν̃∗(ϑ∗,M∗), η̃∗(ϑ∗,M∗), and also Ñ∗(ϑ∗,M∗), H̃∗(ϑ∗,M∗). Let us
set

M̃(ϑ) ≡ −h0Ñ∗(ϑ, 0) . (4.6)

Note that M̃(·) is even by the symmetry of Ñ∗(·,M) (cf. (3.6)). Since µ = 0 for M∗ = 0, we can
use the argumentation surrounding (3.14), (3.15) and the transformation formulas for the change
of the base curve to see that

ν̃(ϑ, M̃(ϑ)) = ν̃∗(ϑ, 0) , η̃(ϑ, M̃(ϑ)) = η̃∗(ϑ, 0) ,

Ñ(ϑ, M̃(ϑ)) = Ñ∗(ϑ, 0) , H̃(ϑ, M̃(ϑ)) = H̃∗(ϑ, 0) ,

and that these values correspond to each other according to the transformation formulas. Hence

0 = µ̆∗(ν̃∗(ϑ, 0), η̃∗(ϑ, 0), 0) = µ̆(ν̃(ϑ, M̃(ϑ)), η̃(ϑ, M̃(ϑ)), M̃(ϑ))

= µ̃(ϑ, M̃(ϑ)) , (4.7)

i.e., M̃(ϑ) solves the equation µ̃(ϑ, M) = 0. Let us check whether M̃(ϑ) is a unique solution for
each ϑ. Unfortunately the symmetry arguments used in (4.5) do not apply in this more general
case. But we can argue in a different way. For fixed ϑ ∈ ]− π

2 , π
2 [ and M1,M2 ∈ R we set

νi ≡ ν̃(ϑ, Mi) , ηi ≡ η̃(ϑ, Mi) , µi ≡ µ̃(ϑ, Mi) , Ni ≡ Ñ(ϑ, Mi) , Hi ≡ H̃(ϑ, Mi) ,

i = 1, 2. Since (νi, ηi, Ni,Hi) satisfy (3.1), the vectors (N2 − N1)a(ϑ) + (H2 − H1)b(ϑ) and
(ν2 − ν1)a(ϑ) + (η2 − η1)b(ϑ) are orthogonal. The monotonicity of the constitutive functions
(N̆ , H̆, µ̆) thus implies that N2 −N1

H2 −H1

µ2 − µ1

 ·

 ν2 − ν1

η2 − η1

M2 −M1

 = (µ2 − µ1)(M2 −M1) > 0 .

Therefore, by the arbitrariness of M1, M2, the function µ̃(ϑ, ·) must be strictly increasing for
each ϑ. Hence M̃(ϑ) is the unique solution of the equation µ̃(ϑ, M) = 0 for each ϑ ∈ ] − π

2 , π
2 [ .

Consequently the stationary solutions must satisfy

κ̃(ϑs, M̃(ϑs)) + l̃(ϑs) = 0 , M s = M̃(ϑs) .

By symmetry the stationary points again occur in pairs (±ϑs, M̃(±ϑs)). In particular we always
have the stationary solution (ϑs,M s) = (0, M̃(0)). Observe that M̃(0) 6= 0 in general. In Fig. 1
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and Fig. 2 we can consider the fat (solid or dashed) curve as graph of ϑ → κ̃(ϑ, M̃(ϑ)) in order
to obtain some typical cases for this more general situation.

To determine the type of the stationary points we again have to study the eigenvalues of the
matrix M(ϑs,M s). Using the notation

α ≡ µ̃M , β ≡ κ̃ϑ + l̃ϑ , γ ≡ κ̃M , δ ≡ µ̃ϑ ,

the eigenvalues are given by

λ± =
γ + δ

2
±
√(γ + δ

2

)2
+ αβ .

By the monotonicity of µ̃(ϑ, ·) we can suppose that always α > 0. If β > 0, then λ± ∈ R and we
readily see that λ− < 0 < λ+, i.e., we have a saddle.

The case β < 0 needs some more effort. Recall that M̃(·) is even. Differentiating the identity
µ̃(ϑ, M̃(ϑ)) = 0 we readily obtain that

µ̃ϑ(ϑ, M̃(ϑ)) + µ̃M (ϑ, M̃(ϑ))M̃ϑ(ϑ) = 0 . (4.8)

Let us first consider the stationary point (0, M̃(0)). Obviously δ = µ̃ϑ(0,M s) = 0 by (3.6).
Since κ̃(0,M) = 0 for all M , we easily get that γ = κ̃M (0,M s) = 0. Hence, the stationary
solution (0, M̃(0)) is a center in the case of β < 0.

In contrast to the case of a base curve of centroids, M̃(·) will not be constant in our more
general situation. Thus, by the positivity of µ̃M , equation (4.8) implies that δ = µ̃ϑ 6= 0 for ϑ with
M̃ϑ(ϑ) 6= 0. Since for each ϑ ∈ ]− π

2 , π
2 [ there exists a suitable g ∈ R in (4.3) such that (ϑ, M̃(ϑ))

is a stationary point, we do not have in general that δ = 0 or even γ + δ = 0 at stationary points
with ϑs 6= 0. Thus we obtain the following cases for stationary points with β < 0:

If γ + δ = 0, then it is a center,

if (γ+δ
2 )2 + αβ ≥ 0 and

{
γ + δ > 0,

γ + δ < 0,

}
then

{
λ± > 0 , i.e., it is an unstable node,
λ± < 0 , i.e., it is a stable node,

if (γ+δ
2 )2 + αβ < 0 and

{
γ + δ > 0,

γ + δ < 0,

}
then

{
it is an unstable spiral,
it is a stable spiral.

From the symmetry properties of κ̃, µ̃, l̃, we get that α = µ̃M , β = κ̃ϑ + l̃ϑ are even in ϑ

and γ = κ̃M , δ = µ̃ϑ are odd in ϑ. Consequently, for β 6= 0, the stationary points of the pair
(±ϑs, M̃(±ϑs)) are either both saddles or both centers or we have a stable and an unstable node
or a stable and an unstable spiral. Let us discuss some typical cases.

(i) Material without shear instability and small weight (cf. Fig. 1, solid graph for −l̃). We
have exactly one stationary point where β > 0, i.e., it is a saddle (cf. Fig. 4a).

(ii) Material without shear instability and large weight (cf. Fig. 1, dotted graph for −l̃).
The stationary point (0, M̃(0)) is obviously a center. Moreover we have a pair (±ϑs, M̃(±ϑs)) of
stationary solutions which are both saddles (cf. Fig. 4b).

(iii) Material with shear instability (cf. Fig. 2). Obviously the case of the dashed curve
for κ̃(ϑ, M̃(ϑ)) in Fig. 2 leads to the same situation as in Fig. 4b, both for small and large
weight. In the case of the solid curve for κ̃(ϑ, M̃(ϑ)) in Fig. 2 and large weight (dashed graph for
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M

ϑ ϑ

M

Fig. 4a. Material without shear insta-
bility and small weight.

Fig. 4b. Material without shear insta-
bility and large weight.

−l̃), we again obtain the situation of Fig. 4b. For small weight, however, we have 5 stationary
solutions (0, M̃(0)), (±ϑs

1, M̃(±ϑs
1)), (±ϑs

2, M̃(±ϑs
2)) (choose 0 < ϑs

1 < ϑs
2). Clearly (0, M̃(0))

and (±ϑs
2, M̃(±ϑs

2)) are saddles. At (±ϑs
1, M̃(±ϑs

1)) we have that β < 0 and, in general, we have
that γ +δ 6= 0. Fig. 5a shows the case where (−ϑs

1, M̃(−ϑs
1)) is an unstable node and (ϑs

1, M̃(ϑs
1))

is a stable node. In Fig. 5b we have an unstable spiral at (−ϑs
2, M̃(−ϑs

2)) and a stable spiral at
(ϑs

2, M̃(ϑs
2)).

M

ϑ

M

ϑ

Fig. 5a. Material with shear instabil-
ities and small weight. Case with un-
stable and stable node.

Fig. 5b. Material with shear instabil-
ities and small weight. Case with un-
stable and stable spiral.

Observe that in Fig. 1 and Fig. 2 only the simplest possible cases are presented. We clearly
can obtain much more complicated situations in general. In particular we can get the behavior
as in Fig. 5a and Fig. 5b even for materials without shear instabilities.

The above phase plane analysis demonstrates how rich the structure of straight configurations
can be. In the next section we apply our qualitative analysis to special problems.

5 Applications

Let us illuminate the previous qualitative analysis by some typical examples in this section. Here
we restrict our attention to the most important case where the rod is in contact with some straight
obstacle which enforces some lateral boundary curve of the rod to be straight. Thus, without
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loss of generality, we always choose the bottom curve as reference curve (i.e., h0 > 0 in (4.6)).
Furthermore we fix the point r(0) at the origin and apply a terminal load Λi, Λ ∈ R, at the point
r(L). To avoid technicalities we restrict our attention to materials without shear instabilities
which already exhibit interesting effects that are not observable within a nonshearable theory.

Example 1. We start with the case where we neglect weight. Thus the only stationary
solution is (ϑs,M s) = (0, M̃(0)) = (0,−h0Λ) and the phase portrait has the structure as in Fig.
4a. Note that M s < 0 for a streching force, i.e., for Λ > 0. The phase portrait shows us that, for
Λ 6= 0 and for suitable values L, there exist nontrivial solutions of the boundary value problem
M(0) = M(L) = 0 (cf. Fig. 6).

Λ i

Fig. 6. Streched rod without weight.

Example 2. We again neglect weight and, in addition, we choose Λ = 0. Thus the phase
portrait has the structure as in Fig. 4a with (ϑs,M s) = (0, 0). The “initial value problem”
ϑ(L) = 0, M(L) = 0 has obviously the trivial stationary solution ϑ = 0, M = 0. Hence, for a
nontrivial solution with M(L) = 0 we conclude that ϑ(L) 6= 0. On the other hand M(L) = 0
and ϑ(L) 6= 0 imply that M(·) and ϑ(·) cannot change sign along such a solution (observe that
M ′ = κ̃(ϑ, M) has always the same sign of ϑ). Furthermore ϑ(L) 6= 0 readily implies that
η(L) 6= 0 and, hence, H(L) 6= 0. Consequently the straight obstacle must exert a concentrated
force n(L) = nLj 6= 0 to the last right cross-section of the rod if ϑ(L) 6= 0 (cf. Fig. 7a).

Let us now consider a nontrivial solution with M(L) = 0 and ϑ(L) < 0 as shown in Fig. 7a.
Then, from phase plane analysis, we readily see that M(s) > 0 and ϑ(s) < 0 for s ∈ [0, L[ , and
we expect that µ is non-negative along the rod. Obviously n(s) · i = 0 on [0, L] and n(L) 6= 0.
Thus N(L) < 0 and, therefore, M∗(L) = h0N(L) < 0. Since µ has the same sign as M∗, we
conclude that µ(L) < 0. By standard regularity arguments µ(·) is continuous along a solution
and we even get µ(s) < 0 in a small neighborhood of s = L. This unexpected behavior near the
right end is shown in Fig. 7b. In the case of Λ > 0 this effect obviously disappears as long as

(L)n

(L)r’
a

b

M(0)

Fig. 7a. Nontrivial solution with M(L) = 0. Fig. 7b. Unexpected effect.

ϑ(L) is close enough to zero.

Example 3. We now choose Λ = 0, but asssume that the rod is subjected to large weight.
Thus we have essentially the situation of Fig. 4b. However, let us analyze the situation in more
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detail. Obviously ϑ = 0 implies that N = 0 by Λ = 0. Hence M̃(0) = 0, i.e., we have the
trivial stationary solution (ϑs,M s) = (0, 0). Since n(s) · i = 0 along solutions, we readily get
that M s > 0 at the other stationary points. Thus the phase portrait has the structure as in Fig.
8a. We readily see that the boundary value problem M(0) = M(L) = 0 can have different types

ϑ

M

weight

weight

weight

Fig. 8a. Large weight and Λ = 0. Fig. 8b. M(0) = M(L) = 0.

of solutions (at least for suitable values of L). Some typical cases are presented in Fig. 8b (note
that the last variant is not stationary). This behavior presents some new kind of shear instability,
which is different from the kind observed by Antman [2, Chap. IV] under tensil forces. We readily
recognize from our phase plane analysis that some bifurcation takes place by passing from small
to large weight. This obviously also implies a bifurcation for the solutions of the boundary value
problem M(0) = M(L) = 0 with respect to the weight parameter g.

The observed behavior of the rod, which occurs for large weight, can be explained by some
simple well-known physical effect. If we consider a vertical column subjected to its own weight,
then it is known that it buckles as soon as the weight is large enough. Now if we consider our
horizontal rod as an object consisting of a number of vertical columns connected with suitable
springs, then the just described behavior seems to be reasonable from the physical point of view.
Furthermore it appears to be natural that shearing becomes larger under increasing weight.
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