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Abstract

Many different physical systems, e.g. super-coiled DNA molecules, have been success-
fully modelled as elastic curves, ribbons or rods. We will describe all such systems as
framed curves, and will consider problems in which a three dimensional framed curve
has an associated energy that is to be minimized subject to the constraint of there
being no self-intersection. For closed curves the knot type may therefore be specified a
priori. Depending on the precise form of the energy and imposed boundary conditions,
local minima of both open and closed framed curves often appear to involve regions of
self-contact, that is, regions in which points that are distant along the curve are close
in space. While this phenomenon of self-contact is familiar through every day expe-
rience with string, rope and wire, the idea is surprisingly difficult to define in a way
that is simultaneously physically reasonable, mathematically precise, and analytically
tractable. Here we use the notion of global radius of curvature of a space curve in a
new formulation of the self-contact constraint, and exploit our formulation to derive
existence results for minimizers, in the presence of self-contact, of a range of elastic
energies that define various framed curve models. As a special case we establish the
existence of ideal shapes of knots.

Mathematics Subject Classification (2000): 49J99, 53A04, 57M25, 74B20, 92C40

1 Introduction

The basic question we address is the existence of curves that minimize one of a variety of
prescribed elastic energies, all subject to the topological constraint that some tube sur-
rounding the curve does not intersect itself. Elastic curves subject to this type of constraint
provide a model for physical objects that exhibit self-contact, such as those illustrated in
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Figure 1: Images of four different physical systems exhibiting the phenomenon of self-
contact of a tube-like object: (a) an image of the bacteria B. subtilis (courtesy of M.J.
Tilby [28]), (b) an electron-micrograph of a DNA fragment (courtesy of A. Stasiak [27]),
(c) a photograph of a knotted metal wire loop (actually a ‘Jumping Knot’ of J. Langer,
with the apple included for scale and enhanced three-dimensionality), (d) a numerically
computed ideal shape of a trefoil knot (image generated by smoothing data of [16]).

Figure 1. Figure 1a is an image of a bacterium which appears to exhibit extended regions
of self-contact between nearly helical segments and circular arcs. Figure 1b is an electron-
micrograph of a DNA fragment which, after drying onto a planar substrate, exhibits a
small overhand knot and regions of both point and extended self-contact. Figure 1c is a
photograph of a knotted metal wire loop which apparently exhibits three regions of line
contact. And Figure 1d illustrates a numerically computed ideal shape of a knotted closed
loop which exhibits self-contact along its entire length (see Section 5 for further explana-
tion of this problem). Perhaps the most familiar example of all is the tightly coiled, helical
cord used on many telephones. The objective of this article is to develop a mathemati-
cally precise model of the phenomenon of self-contact of such tubular objects, which we
describe as framed curves, and to use this characterization to demonstrate the existence
of minimizers, in appropriate function spaces, for various elastic energies, all subject to
our self-contact constraint.

For our purposes, the dominant feature in all four of the examples depicted in Figure 1
is the phenomenon of self-contact of a physical object that has the geometrical properties
of a tube. When such a tube is described by its centreline curve, points of self-contact
on the tubular surface correspond to pairs of points along the centreline that are close in
space, but not necessarily close in arclength. The condition that the tube not pass through
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itself, or self-intersect, is transferred to the centreline curve; in particular, the centreline
is kept suitably far from self-intersection.

There are various ways to prevent a curve from self-intersecting. One intuitive me-
chanical approach is to introduce explicit repulsive forces between pairs of points along
the curve; for example, a repulsive force which is inversely proportional to some power
of the pairwise Euclidean distance. Such forces certainly discourage self-intersection, and
can even be made to prevent it, but they typically need to be regularized in some way to
account for points immediately adjacent in arclength. The necessity for this regularization
can lead to non-trivial mathematical and computational difficulties (see for example [10],
[22], [31]). Natural choices for repulsive forces may be available depending on the detailed
physics of the system, for example electrically charged polymers such as DNA, and the
study of discretized curves subject to these types of forces has been the subject of several
investigations (see for example [24], [32]).

An alternative, purely geometrical, way to prohibit self-intersections of a curve can
also be considered. Supposing that the curve is the centreline of a solid tube of uniform
diameter, the physical volume occupied by the tube material keeps the curve from self-
intersecting at a global level, and also restricts how tightly the curve can bend at a local
level. Such a model certainly seems pertinent for the macroscopic wire example illustrated
in Figure 1c, where the hard surface of the wire touches itself. For the bacterium shown in
Figure 1a it is possible to imagine that both the local and global effects of self-avoidance
are active at different places. In this viewpoint the obstruction to self-intersection is purely
geometrical; the finite volume of the tube imposes a constraint on the configuration of the
centreline curve. This condition is typically referred to as an excluded volume, hardcore
or steric constraint in the polymer physics literature; the estimation of its effects on the
statistical properties of polymer chains is a classic problem that has been studied within
the context of piece-wise linear chain models [8]. Various forms of a geometric excluded
volume constraint have also been used specifically in the mechanical modelling of DNA,
for example [4], [6], [29]. The geometrical notion of self-avoidance also lies at the heart of
the study of ideal shapes of knotted curves as discussed for example in [2], [16] and [21].

In this article we present a new mathematical characterization of the geometric ex-
cluded volume constraint, and study the set of admissible curves that it defines. Moreover,
we prove the existence of minimizers within our admissible set for a range of curve ener-
gies pertinent to modelling physical systems such as those illustrated in Figure 1. Such
existence results are of independent mathematical interest, but in addition they indicate
that a particular mathematical formulation of a physical model is well-posed, and they
also contribute to the efficient design of associated numerical algorithms by providing a
priori information on the regularity of the solutions that are being sought.

While the geometric excluded volume constraint is physically appealing and intuitively
clear, it is surprisingly difficult to formulate in an analytic way that is sufficiently tractable
for existence studies. We believe the concept from differential geometry of normal injec-
tivity radius (see, for example, [7, p. 271]) to be the only prior, precise definition of the
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self-avoidance condition for curves that have not been discretized in some way. Both the
global and local properties of the excluded volume constraint are captured in the idea of
the normal injectivity radius, which can be outlined as follows. At each point along a
sufficiently smooth curve γ one constructs a circle in the normal plane to the curve, cen-
tred on the curve and of constant radius along the curve. For a sufficiently small radius,
the tubular envelope of these circles will be smooth. The normal injectivity radius, here
denoted Inj[γ], is then the smallest radius at which the envelope develops a singularity.
The first singularity may be local, when the radius of the circle equals the local radius
of curvature of the curve, or non-local, when two circles centred on non-adjacent points
touch.

For a physical tube of uniform radius θ > 0, the excluded volume constraint on its
centreline γ can then be expressed as the lower bound Inj[γ] ≥ θ. That is, the normal
injectivity radius of the centreline must be at least as large as the radius of the tube,
and equality is achieved when the tube is in self-contact, or is locally bent as severely as
allowed. For example, in Figure 1c, the geometrical self-avoidance condition for a tube
of uniform small radius seems to be an excellent physical approximation for modelling
self-contact of the wire. In the configuration shown, the centreline satisfies Inj[γ] = θ

because the tube actually achieves self-contact at a number of distinct points. If the wire
were to be mildly deformed so as to avoid self-contact, then the centreline would satisfy
Inj[γ] > θ, but then the configuration would presumably no longer minimize the elastic
energy of bending and twisting of the wire.

For our objective of deriving existence results, the difficulty with the classic definition
of normal injectivity radius is that it is implicit, i.e. only given through a geometrical
construction, and it has no apparent, simple analytic representation. We therefore extend
to a class of curves γ sufficiently large to obtain existence results, the observation of [12]
that for sufficiently smooth curves γ the normal injectivity radius Inj[γ] can be given an
alternative characterization in terms of a quantity called global radius of curvature. Our
most general definition of global radius of curvature is deferred until Section 2, but the
central ideas can be explained within the context of curves γ that are twice differentiable,
and which have only transversal crossings (i.e. wherever the curve intersects itself the two
tangent vectors are distinct). For such curves we define

∆[γ] := inf
x,y,z∈γ

x6=y 6=z 6=x

r(x, y, z) (1)

where r(x, y, z) denotes the radius of the unique circle through the three distinct points x,
y and z. Then it is straightforward to argue, as in [12], that the infimum in (1) corresponds
to one of three cases: (i) In the limit, all three points in a minimizing sequence coalesce at
a point ζ at which the radius of curvature is minimal along the curve, the limiting circle
is the osculating circle at ζ, and ∆[γ] is the radius of curvature at ζ. (ii) In the limit,
two points coalesce to a point ζ1 with the third converging to a different point ζ2, and
the circle is tangent to the curve at both ζ1 and ζ2, with both tangents orthogonal to the
chord ζ1 − ζ2. In other words, ∆[γ] is half of the distance between a pair of points (ζ1, ζ2)
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of closest approach. This possibility of a pair of points of closest approach includes the
case in which the curve γ has a transversal self-intersection, for then there is a sequence
of circles whose radius approaches zero, i.e. ∆[γ] = 0. (iii) Or, for open curves, there are
various other possibilities involving an end-point. Given these remarks it is then apparent
that, neglecting any end-point effects, ∆[γ] = Inj[γ]. In particular, cases (i) and (ii) are
just the two possible ways, local and global, in which the normal injectivity radius can be
achieved.

In fact for each point x ∈ γ we may define the global radius of curvature function

ρG(x) = inf
y,z∈γ

x6=y 6=z 6=x

r(x, y, z). (2)

Then the contact set can be interpreted as points x at which the global radius of curvature
achieves its minimal value, i.e. the infimum defined in (1). For example, in Figure 1d, a
(numerical discretization) of a tube of uniform radius and prescribed knot type has been
made as short as possible, that is, the knot has been made very tight. Such a configuration
is called an ideal shape of the knot [16]; a mathematically precise, defining property is that
the arclength of the centreline γ is minimal amongst curves of the prescribed knot type
when subject to the excluded volume constraint ∆[γ] ≥ θ. In Figure 1d the tube is
(up to computational tolerance) everywhere in self-contact, so that the global radius of
curvature is constant, which satisfies a necessary condition for ideality derived in [12].
(The numerics indicate that the usual local radius of curvature on this ideal shape is far
from being constant.)

One of the main objectives of the present article is to extend appropriately the def-
initions (1) and (2) to curves γ that are not a priori smooth, and thereby to obtain an
analytic characterization of normal injectivity radius in a manner that is largely indepen-
dent of curve regularity. This objective is achieved in Section 2. More precisely, working
in the space of closed curves γ with a parameterization in W 1,q (q ≥ 1) we find that the
constraint

∆[γ] ≥ θ > 0 (3)

actually implies the existence of an arclength parameterization in W 2,∞ (or equivalently
C1,1) for γ, and that the set of curves satisfying (3) is closed under weak convergence in
W 1,q (q > 1). Consequently, by standard direct methods we obtain existence of constrained
minimizers for a variety of physically pertinent energies, including those arising in the usual
elastic rod theories, and the integral of squared curvature on curves of prescribed arclength.
Moreover, for closed curves in the set (3), knot types (along with a prescribed link in the
case of framed curves) are also preserved under weak convergence, which implies existence
of constrained minimizers for each type.

The presentation is structured as follows. In Section 2 we define global radius of
curvature precisely, and develop properties of the constraint set (3) as discussed above. In
Section 3 we introduce the concept of a framed curve and establish an abstract existence
theorem for minimizers of a general class of energy functions defined on framed curves
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lying in weakly closed sets. This result can be applied to many models involving elastic
strings and rods because we show that link classes and typical boundary conditions for
framed curves are weakly closed. In Sections 4 and 5 we specialize the general result to
some particular models and boundary conditions. In Section 4 we consider the closed
configurations of a wide class of elastic rods, that, for example, provide a model of the
system illustrated in Figure 1c. Specifically, we establish the existence of constrained
minimizers of the elastic energy within each prescribed knot and link class. In Section
5 we consider the ideal knot problem underlying Figure 1d, and establish the existence
of C1,1 curves minimizing arclength within each knot class subject to the constraint (3).
Proofs of all of our results are deferred, without further comment, until Section 6.

2 Global curvature and weak closure

Here we introduce for a rather general space curve γ the global radius of curvature func-
tions ρG and ∆, and the tubular neighbourhood Bθ of radius θ > 0. We study various
implications of the constraint ∆[γ] ≥ θ and show that it provides a geometrically ex-
act model for the excluded volume constraint on γ imposed by Bθ when considered as a
material tube. To avoid discussion of many special cases associated with end-points, we
consider only closed curves. However, many of the results carry over to the open case. As
some of the arguments justifying our claims are quite lengthy, we present here a detailed
development and explanation of our conclusions, but all proofs are deferred to Section 6.

2.1 Preliminaries

Throughout our developments we consider the set G of continuous closed curves γ : Ī → R3

that possess a Lipschitz continuous arclength parameterization Γγ : SL → R3. Here
I = (a, b) is an interval, L ≥ 0 denotes the length of γ and SL is the circle with perimeter
L; in particular, SL

∼= R/L · Z. To simplify notation, we mostly omit the subscript γ and
agree that Γ, Γk, Γ̃ correspond to γ, γk, γ̃ and so on. In our analysis we will also consider
the Sobolev spaces W 1,q(I, R3) with q ≥ 1, and we note that closed curves in these spaces
are also in G. In particular, every curve γ ∈ W 1,q(I, R3) has bounded variation and one
can find a Lipschitz continuous arclength parameterization (see [11, vol.II, p. 255]).

A curve γ ∈ G will be called simple if it has no self-intersections, that is, if its arc-
length parameterization Γ : SL → R3 is injective. Otherwise, the curve γ will be called
non-simple. In this case there exist pairs s, t ∈ SL (s 6= t) for which Γ(s) = Γ(t). Any
such pair will be called a double point of γ.

We use 〈·, ·〉 to denote the standard Euclidean inner product in R3, and | · | to denote
the (intrinsic) distance between two points in R3 or SL depending on the context. To
denote the angle between two non-zero vectors u and v in R3 we use <)(u, v) ∈ [0, π]. The
distance between a point x ∈ R3 and a subset Σ ⊂ R3 will be denoted by dist(x,Σ) and the
diameter of Σ will be denoted by diam(Σ). For any r > 0 we define open neighbourhoods
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of x and Σ by

Br(x) = {y ∈ R3 | |y − x| < r} and Br(Σ) = {y ∈ R3 | dist(y, Σ) < r}.

When Σ is the image of a curve γ ∈ G, or equivalently its corresponding arclength
parameterization Γ : SL → R3, we call Br(Σ) = Br(Γ(SL)) the tubular neighbourhood of γ

with radius r > 0. We say that Br(Γ(SL)) is non-self-intersecting or regular if the closest-
point projection map ΠΓ : Br(Γ(SL)) → Γ(SL) is single-valued and continuous. That is
to say, for any x ∈ Br(Γ(SL)) there is exactly one s(x) ∈ SL such that ΠΓ(x) := Γ(s(x))
satisfies

dist(x,Γ(SL)) = |Γ(s(x))− x|,

and ΠΓ(x) is a continuous function of x ∈ Br(Γ(SL)). For further justification of this
notion of non-self-intersecting see the discussion following Lemmas 3 and 7.

2.2 Global radius of curvature functions

Motivated by, but also modifying, the analysis presented in [12], we define the global
radius of curvature functions ρG and ∆ for space curves γ as follows.

Definition 1 Consider a curve γ ∈ G with arclength parameterization Γ(s), s ∈ SL. Then
the global radius of curvature of γ at the point Γ(s) is given by

ρG[γ](s) :=

inf{R(Γ(s),Γ(σ),Γ(τ)) | σ, τ ∈ SL\{s}, σ 6= τ }, if L > 0,

0, if L = 0,
(4)

and we denote its infimum by

∆[γ] := inf
s∈SL

ρG[γ](s). (5)

Here R(x, y, z) ≥ 0 is the radius of the smallest circle containing x, y and z. When x, y

and z are non-collinear (and thus distinct) there is a unique circle passing through them
and

R(x, y, z) =
|x− y|

|2 sin[<)(x− z, y − z)]|
. (6)

When x, y and z are collinear and distinct there is no circle passing through all three points
and we define R(x, y, z) to be infinite, but if two points coincide, say x = z or y = z, then
there are many circles through the three points and we take R(x, y, z) to be the smallest
possible radius namely the distance |x − y|/2. With this choice the function R(x, y, z)
is not continuous at double points. Notice nevertheless that, by definition, R(x, y, z) is
symmetric in its arguments.

The difference between the global radius of curvature function ρG[γ] introduced in [12]
and the one presented above is as follows. In [12], the function R(x, y, z) is considered
directly only for distinct points x, y and z in the image of γ, and the various coalescent
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cases are considered as limits as the points move along the image of γ. Then in the
case of smooth curves that are either simple or have only transversal crossings, R(x, y, z)
is well-defined and continuous in any of the limits x → y etc., because the direction of
approach along the curve singles out a unique limiting value of R(x, y, z). However, the
case of parameterized curves with double-covered regions is problematic. For example,
in the definition of [12], a single-covered and a double-covered circle of radius one each
have a global radius of curvature one everywhere. In contrast, in Definition 1 above, the
infimum is over distinct arclength parameters s, σ and τ in SL and y(σ) = z(τ) is an
allowed competitor provided σ 6= τ . Then a double-covered circle of radius one has a
global radius of curvature zero everywhere (while a single-covered circle still has global
radius of curvature one everywhere). In particular, with Definition 1 we have the following

Lemma 1 If γ has a double point at the pair s, t ∈ SL (s 6= t), then ρG[γ](s) = ρG[γ](t) =
0. If ∆[γ] > 0, then γ is simple.

When a closed curve γ is both smooth and simple, the functions ρG[γ] and ∆[γ] are
known to be related to the standard local radius of curvature ρ[γ], and to the thickness
or normal injectivity radius Inj[γ] of γ as defined, for example, in [2] and [7, p. 271]. In
particular, one has 0 ≤ ρG[γ](s) ≤ ρ[γ](s) for all s ∈ SL (L > 0) and ∆[γ] = Inj[γ], [12].
In this case ∆[γ] > 0 is the radius of the thickest smooth tube that can be centred on γ

as discussed in Section 1. In the following developments we generalize this result to the
case where γ may be non-smooth.

2.3 Regularity results

Here we examine various implications of the condition ∆[γ] ≥ θ > 0 where θ is a given
constant. Our first result is:

Lemma 2 1 Let γ ∈ G and ∆[γ] ≥ θ > 0 for some constant θ. Then the corresponding
arclength parameterization Γ has a Lipschitz continuous tangent Γ′ with Lipschitz constant
θ−1, i.e., Γ ∈ C1,1(SL, R3) and

|Γ′(s1)− Γ′(s2)| ≤ θ−1|s1 − s2| ∀s1, s2 ∈ SL. (7)

Thus a positive lower bound on ∆[γ] imposes a certain amount of regularity on the curve
γ. In particular, while an arbitrary curve γ ∈ G may not even admit a continuous unit
tangent field, those curves satisfying ∆[γ] ≥ θ > 0 are guaranteed to admit a Lipschitz
continuous unit tangent field. The existence of this field will play a central role in many
of the following arguments.

Our second result establishes the fact that if a curve γ ∈ G satisfies ∆[γ] ≥ θ > 0,
then γ is restricted on how tightly it can bend locally, and on how close it can come to
self-intersection globally.

1We are grateful to T. Ilmanen who first suggested to us that a result of this nature should be available.
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Lemma 3 Consider γ ∈ G such that ∆[γ] > 0 and let Γ ∈ C1,1(SL, R3) denote its corre-
sponding arclength parameterization. For a given constant θ > 0 let Dθ(z, z′) denote the
open planar disk of radius θ centred at z ∈ R3 perpendicular to z′ ∈ R3\{0} and for any
s0 ∈ SL let

C(s0, θ) = ∂Dθ(Γ(s0),Γ′(s0)) and M(s0, θ) =
⋃

z∈C(s0,θ)

Bθ(z).

Then

(i) Γ(SL) ∩M(s0, θ) = ∅ for all s0 ∈ SL iff ∆[γ] ≥ θ,

(ii) diam(Γ(SL)) ≥ 2θ if ∆[γ] ≥ θ,

(iii) Bθ(Γ(SL)) is regular iff ∆[γ] ≥ θ,

(iv) ΠΓ has the property Π−1
Γ (Γ(s0)) ∩ Bθ(Γ(SL)) = Dθ(Γ(s0),Γ′(s0)) if Bθ(Γ(SL)) is

regular.

Item (i) of the above result implies that if ∆[γ] ≥ θ, then an open ball of radius
θ placed tangent at any point Γ(s0) may be rotated around the tangent vector Γ′(s0)
without intersecting the curve. On the other hand, if ∆[γ] < θ, then there is a point on
the curve about which a similar rotation of such a ball could not be effected. Thus ∆[γ]
is the radius of the largest ball that can be rotated tangentially about every point of a
curve γ without intersecting it. The proof of item (i) actually shows that a stronger, local
version of this result holds; namely, Γ(SL) ∩ M(s0, ρ0) = ∅ if ρ0 := ρG[γ](s0) > 0. The
above interpretations also suggest that the inequality ∆[γ] ≥ θ imposes a lower bound on
the overall size of γ, which is the essence of item (ii).

Items (iii) and (iv) imply that the regularity of the tubular neighbourhood Bθ(Γ(SL))
is equivalent to the condition ∆[γ] ≥ θ, and that Bθ(Γ(SL)) is the envelope of disjoint disks
Dθ(Γ(s0),Γ′(s0)). Since each point x ∈ Bθ(Γ(SL)) is in a unique disk Dθ(Γ(s0),Γ′(s0))
normal to the curve, we deduce that Bθ(Γ(SL)) has the structure of a uniform tube of
radius θ centred on γ. Moreover, according to item (iii), any tubular neighbourhood of
radius larger than ∆[γ] would fail to have this structure. Thus the condition ∆[γ] ≥ θ

provides a geometrically exact model for the excluded volume constraint on γ imposed by
the tubular neighbourhood Bθ(Γ(SL)) when considered as a material tube. This idea will
be developed further in Section 3.

2.4 Weak closedness results

Here we study various implications of the condition ∆[γ] ≥ θ > 0 for closed curves γ in the
Sobolev spaces W 1,q(I, R3), q ∈ (1,∞). Notice that, because such curves are also in G, a
positive lower bound on ∆[γ] retains its interpretation as an excluded volume constraint.

Our first result states that, as a subset of W 1,q(I, R3), the set of closed curves satisfying
∆[γ] ≥ θ > 0 is weakly closed.
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Lemma 4 Let {γn} ⊂ W 1,q(I, R3), q ∈ (1,∞), be a sequence of closed curves such that
γn ⇀ γ ∈ W 1,q(I, R3) and

∆[γn] ≥ θ, ∀n ∈ N (8)

for some constant θ > 0. Then γ is a closed curve and

∆[γ] ≥ θ. (9)

This result will be particularly useful when studying energy functionals defined on closed
curves in W 1,q(I, R3). In particular, it suggests that standard direct methods may be used
to establish the existence of constrained minimizers.

In our applications we will consider energy functionals defined on closed curves in a
fixed isotopy class or knot type in the following sense.

Definition 2 Two continuous closed curves K1,K2 ⊂ R3 are isotopic, denoted as K1 '
K2, if there are open neighbourhoods N1 of K1, N2 of K2, and a continuous mapping
Φ : N1×[0, 1] → R3 such that Φ(N1, τ) is homeomorphic to N1 for all τ ∈ [0, 1], Φ(x, 0) = x

for all x ∈ N1, Φ(N1, 1) = N2, and Φ(K1, 1) = K2.

Roughly speaking, two curves are in the same isotopy class if one can be continuously
deformed onto the other. The next result states that, as a subset of W 1,q(I, R3), the set
of closed curves in any fixed isotopy class satisfying ∆[γ] ≥ θ > 0 is weakly closed.

Lemma 5 Let the sequence {γn} ⊂ W 1,q(I, R3) ∩ G, q ∈ (1,∞), satisfy

(i) γn(Ī) ' γ1(Ī), ∀n ∈ N,

(ii) ∆[γn] ≥ θ > 0, ∀n ∈ N,

(iii) γn ⇀ γ ∈ W 1,q(I, R3) as n →∞.

Then γ(Ī) ' γ1(Ī).

Thus, the excluded volume constraint ∆[γn] ≥ θ > 0 prevents a change in knot type along
weakly convergent sequences. The construction of the isotopy map Φ between γ and γn

for n sufficiently large is based on the fact that the corresponding projection onto the
image of γn restricted to γ is bijective. This result is important for the study of energy
functionals defined on closed, knotted curves in W 1,q(I, R3). In particular, it may be used
to establish the existence of constrained minimizers among curves of a fixed knot type.

3 Framed curves and general existence result

Here we introduce the notion of a framed curve (γ, D), where D is a field of orthonormal
frames along a space curve γ, as a geometric model for physical objects such as those
illustrated in Figure 1. Then we discuss interpretations of the excluded volume constraint
∆[γ] ≥ θ > 0 and establish a general existence result concerning the minima of energy
functionals defined on framed curves subject to this constraint. In Sections 4 and 5 we
apply our result to models of elastic rods and strings, which can be interpreted as framed
curves with particular energy functionals. Again proofs are deferred to Section 6.
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3.1 Preliminaries

By a framed curve (γ, D) we mean a curve γ : Ī → R3 equipped with a frame field
D : Ī → SO(3), where D(s) = (d1(s)|d2(s)|d3(s)) consists of three orthonormal column-
vectors di(s) (i = 1, 2, 3) for each s ∈ Ī = [a, b]. We view the function D as a frame field
defined along γ. Thus, the right-handed orthonormal frame D(s) is attached to the point
γ(s). By a closed framed curve we mean a framed curve (γ, D) such that γ is closed and
d3(a) = d3(b). For our analysis we find it convenient to work with the Sobolev spaces
W 1,q(I, R3) and W 1,p(I, R3×3) with q, p ≥ 1, where γ ∈ W 1,q and D ∈ W 1,p. As before,
closed curves in W 1,q are also in G.

A framed curve (γ, D) ∈ W 1,q × W 1,p may be uniquely determined from shape and
placement variables w = (u, v, γ0, D0) ∈ Xp,q

0 with u = (u1, u2, u3) and v = (v1, v2, v3) via
the equations

d′k(s) =
[ 3∑

i=1

ui(s)di(s)
]
∧ dk(s) for a.e. s ∈ I, k = 1, 2, 3,

γ′(s) =
3∑

k=1

vk(s)dk(s) for a.e. s ∈ I,

γ(a) = γ0, D(a) = D0,

(10)

where Xp,q
0 := Lp(I, R3)× Lq(I, R3)× R3 × SO(3), which is a proper subset of the corre-

sponding Banach space Xp,q := Lp(I, R3)× Lq(I, R3)× R3 × R3×3. The functions ui and
vi may be identified as the components, in the moving frame {di}, of the Darboux vector
for the frame field D(s) and the tangent vector for the curve γ(s). Notice that u and v

describe the shape of a framed curve whereas γ0 and D0 describe its spatial placement.
The following result will be fundamental to our developments.

Lemma 6 To each framed curve (γ, D) ∈ W 1,q×W 1,p, p, q ≥ 1, we can associate a unique
w = w(γ, D) ∈ Xp,q

0 determined by (10). Conversely, to each w ∈ Xp,q
0 we can associate a

unique framed curve (γ, D) = (γ[w], D[w]) ∈ W 1,q ×W 1,p such that (10) holds.

3.2 Interpreting the excluded volume constraint

There are generally two distinct tubes that can be associated with a closed framed curve
(γ, D) and a constant θ > 0. One tube is defined by the neighbourhood Bθ(Γ(SL)) as
considered in Section 2. Another tube is defined by p(Ωθ), where p : Ωθ → R3 is the map

p(σ, ξ1, ξ2) = γ(σ) + ξ1d1(σ) + ξ2d2(σ) (11)

and Ωθ is the straight cylinder given by

Ωθ := { (σ, ξ1, ξ2) ∈ R3 | σ ∈ [a, b), ξ2
1 + ξ2

2 < θ2}.

The excluded volume constraint ∆[γ] ≥ θ prevents the tube Bθ(Γ(SL)) from self-
intersecting. However, as a model for a physical object, it is the points of p(Ωθ) that
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are naturally identified with material points, and the excluded volume constraint should
guarantee the global injectivity of the mapping p : Ωθ → R3. Along these lines we have
the following

Lemma 7 Consider a closed framed curve (γ, D) ∈ W 1,q × W 1,p, p, q ≥ 1, and let w =
(u, v, γ0, D0) ∈ Xp,q

0 be its shape and placement variables determined by (10). Suppose
that ∆[γ] > 0 and v = (0, 0, v3) with v3 > 0. Then p : Ωθ → R3 is globally injective iff
∆[γ] ≥ θ > 0.

The condition v = (0, 0, v3) with v3 > 0 implies that the frame field D is adapted to γ

in the sense that d3(s) is (positively) parallel to γ′(s). In this case, p(Ωθ) may be identified
with Bθ(Γ(SL)) and the result follows from the regularity of Bθ(Γ(SL)) as discussed in
Section 2. Thus, when v = (0, 0, v3) with v3 > 0, the condition ∆[γ] ≥ θ > 0 provides an
exact excluded volume constraint for the material tube p(Ωθ). When v is not of this form,
the condition ∆[γ] ≥ θ > 0 is not an exact excluded volume constraint for p(Ωθ). Notice
that p(Ωθ) itself is not a uniform tube of radius θ if v1 or v2 is non-zero.

3.3 Energy functionals and existence of minimizers

For framed curves (γ, D) = (γ[w], D[w]) with w ∈ Xp,q
0 we consider energy functionals of

the form
E(γ[w], D[w]) = E(w) :=

∫
I
W (u(s), v(s), s) ds (12)

where W : R3 × R3 × I → R is a specified function. The basic question we shall address
is the existence of framed curves (γ, D) that minimize E(w) subject to the excluded
volume constraint ∆[γ] ≥ θ > 0 and other more typical side conditions, such as boundary
conditions etc. In particular, we consider the problem of finding w∗ ∈ C ⊂ Xp,q

0 that
satisfy

E(w∗) = inf
w∈C

E(w) (13)

where C is a specified subset of Xp,q
0 . Our main result is contained in the following

Theorem 1 Let 1 < p, q < ∞ and suppose that

(W1) W (·, ·, s) is continuous and convex for a.e. s ∈ I,

(W2) W (u, v, ·) is Lebesgue-measurable on I for all (u, v) ∈ R3 × R3,

(W3) there are constants c1, c2 ≥ 0 and a function g ∈ L1(I), such that

W (u, v, s) ≥ c1|u|p + c2|v|q + g(s)

for all (u, v) ∈ R3 × R3 and for a.e. s ∈ I.

Furthermore, assume that the set C ⊂ Xp,q
0 is nonempty and weakly closed in Xp,q and

that there is some constant c ≥ 0 such that |γ0| ≤ c for all (u, v, γ0, D0) ∈ C. Then there
is a minimizer w∗ ∈ C of (13) if one of the following conditions holds:
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(i) c1, c2 > 0,

(ii) c1 > 0, and there is some v̂ ∈ R3 such that v ≡ v̂ for all w = (u, v, γ0, D0) ∈ C,

(iii) c2 > 0 and there is some û ∈ R3 such that u ≡ û for all w = (u, v, γ0, D0) ∈ C.

Assumptions (W1)-(W3) are standard for direct methods in the calculus of variations,
and are met by a wide class of functions W that arise in applications. Thus, the above
result reduces the existence problem to proving the weak closedness in Xp,q of the subset
C ⊂ Xp,q

0 ⊂ Xp,q. Here C represents those framed curves that satisfy the constraint
∆[γ] ≥ θ > 0 along with any other prescribed side conditions. We remark that this
general existence result remains valid when a potential energy with at most linear growth
is added to the energy functional E(w).

3.4 Typical side conditions and weak closedness

Here we examine the weak closedness of typical side conditions that enter into the subset
C of Theorem 1. Our main result in this direction is:

Lemma 8 Let 1 < p, q < ∞ and consider a sequence {wn} ⊂ Xp,q
0 that converges weakly

to w ∈ Xp,q ,i.e., wn ⇀ w in Xp,q. Then w ∈ Xp,q
0 and

Dn → D in C0(Ī , R3×3), γn → γ in C0(Ī , R3), (14)

Dn ⇀ D in W 1,p(I, R3×3), γn ⇀ γ in W 1,q(I, R3), (15)

where γn := γ[wn], γ := γ[w], Dn := D[wn], D := D[w].

Thus, if a sequence of shape and placement variables wn converges weakly in Xp,q, then
the corresponding sequence of framed curves (γn, Dn) converges uniformly in C0 × C0,
and also weakly in W 1,q ×W 1,p.

We can now provide two prototypes of weakly closed sets that will be useful in our
applications.

Lemma 9 Let K(s) ⊂ R3×R3 be a closed convex set for a.e. s ∈ I and let F : C0(Ī , R3)×
C0(Ī , R3×3) → R be a continuous mapping. Then the sets

(i) C1 := { (u, v, γ0, D0) ∈ Xp,q | (u(s), v(s)) ∈ K(s) for a.e. s ∈ I }

(ii) C2 := {w ∈ Xp,q
0 |F (γ[w], D[w]) = 0 }

are weakly closed in Xp,q (p, q > 1).

The sets C1 and C2 are typical in applications involving elastic rods and strings as
will be considered in Sections 4 and 5. Sets of the type C1 may be considered within the
context of rods to ensure that contiguous cross-sections do not locally intersect each other
and that orientation is locally preserved under deformation (see [1, Ch.VIII.6]). Sets of
type C2 may be considered to prescribe pointwise conditions on both rods and strings,
e.g., boundary conditions for γ and D. For example, we will consider framed curves where

13



γ is closed and the frames D(a) and D(b) differ by a prescribed rotation. Notice that
the above result remains valid if the equality in the definition of C2 is replaced by an
inequality. Sets of this type arise in problems with rigid obstacles, where the material
tube p(Ωθ) is constrained to lie in a closed region of R3, and in problems with unilateral
boundary conditions. Such obstacle problems for Cosserat rods are studied in [25],[26].

Fixing the endpoint conditions for the frame D, for example specifying D(a) = D(b) =
D0, does not entirely determine the total amount of twist or link. In fact, any framed
curve (γ, D) whose frame D turns an integer multiple of 2π about the curve γ satisfies the
above boundary condition. In order to identify link classes of framed curves we make the
following

Definition 3 Two continuous mappings D1, D2 : [a, b] → SO(3) with D1(a) = D2(a) and
D1(b) = D2(b) are called homotopic, denoted D1 ∼ D2, if there is a continuous mapping
Ψ : [a, b]× [0, 1] → SO(3), such that

Ψ(·, 0) = D1(·) and Ψ(·, 1) = D2(·) on [a, b],

Ψ(a, ·) = D1(a) and Ψ(b, ·) = D1(b) on [0, 1].

Roughly speaking, two frame fields D1 and D2 are homotopic if for a given curve γ, the
framed curves (γ, D1) and (γ, D2) generate ribbons with the same link. The next result
states that the set of frame fields in any fixed homotopy class define weakly closed subsets.

Lemma 10 Let {wn} ⊂ Xp,q
0 with wn ⇀ w in Xp,q (p, q > 1) and assume that

Dn := D[wn] ∼ D[w1], ∀n ∈ N. (16)

Then w ∈ Xp,q
0 and D := D[w] ∼ D[w1].

Thus, for rods and ribbons one can expect to find elastic energy minimizers in each link
class. The construction of the homotopy map between D and D1 is based on the fact that
elements close to the identity in SO(3) can be represented by rotation vectors.

4 Applications to elastic rods

4.1 Rod theory

In this section we outline the special Cosserat theory which describes the behaviour of
elastic rods that can undergo large deformations in space by suffering flexure, torsion,
extension and shear. For a more comprehensive presentation see, for example, Antman [1,
Ch. VIII].

4.1.1 Kinematics

We suppose that each configuration of an elastic rod can be modelled by a framed curve
(γ, D) ∈ W 1,1 × W 1,1 together with a map p : Ωθ → R3 as defined in Section 3. In
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particular, we identify the material rod with the tube p(Ωθ). Under this identification the
curve γ(σ) describes the rod centreline and the frame field D(σ) describes the orientation
of the rod cross-sections. The cross-section attached to a point γ(σ) on the centreline is
spanned by {d1(σ), d2(σ)} and is parameterized by (ξ1, ξ2). Thus, the particular form of
Ωθ given in Section 3 models a rod with circular cross-sections of radius θ. Notice that
cross-sections are not necessarily always orthogonal to the centreline γ (which means that
the rod can be sheared), and that σ is not necessarily the arclength parameter for γ (which
means that the rod can be stretched or compressed).

By Lemma 6, a framed curve (γ, D) ∈ W 1,1 × W 1,1 can be uniquely identified with
a set of shape and placement variables (u, v, γ0, D0) ∈ X1,1

0 . Energy functionals for rods
can naturally be expressed in terms of the functions u = (u1, u2, u3) and v = (v1, v2, v3),
which are typically referred to as strains within the context of rod theory. Recall that ui

and vi are the components, in the moving frame {di}, of the Darboux vector for the frame
field D(s) and the tangent vector for the curve γ(s).

We denote a relaxed, or stress-free, reference configuration by (γ̂, D̂) or (û, v̂, γ0, D0),
where the functions (û, v̂) are prescribed material parameters. There is little loss of gen-
erality in assuming, by convention, that σ is actually the arclength parameter for this
reference centreline γ̂, and moreover that cross-sections in this reference configuration are
orthogonal to γ̂, so that v̂ := (0, 0, 1). Nevertheless notice that γ̂ need not be a straight
line, because û need not be zero.

It is reasonable to demand that the map p : Ωθ → R3 describing a material rod
be globally injective. Indeed, this is the essence of the self-contact or excluded volume
constraint studied in this article. Necessary and sufficient conditions for global injectivity
are given in Lemma 7 for a particular class of deformations. It is also reasonable to demand
that the map p preserve orientation in the sense that

det
[
∂p(σ, ξ1, ξ2)
∂(σ, ξ1, ξ2)

]
> 0 for a.e. (σ, ξ1, ξ2) ∈ Ωθ, (17)

which actually guarantees that p is locally (but not globally) injective. Because of the
specific form of our domain Ωθ, we deduce that (17) is equivalent to the following set of
conditions on the strains:

v3 > 0 and v3 ≥ θ
√

u2
1 + u2

2 a.e. on I (18)

(see Antman [1, Ch. VIII.6] for related conditions pertaining to more general domains).
Below we discuss how these local conditions are related to the conditions in Lemma 7.
Notice that (18) is often replaced by the single necessary condition

v3 > 0 a.e. on I. (19)

4.1.2 Constitutive models

We consider elastic rods whose material response can be described by a stored energy
density function W , depending on (u, v, σ), that is convex in (u, v) and which satisfies
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certain growth conditions as discussed in Section 3. The total elastic energy of the rod is
given by

E(u, v) :=
∫

I
W (u(σ), v(σ), σ) dσ.

An explicit dependence on σ in the energy density W occurs naturally in the case of
inhomogeneous elastic rods, where material properties may vary from one cross-section to
another.

The special case where W is a (shifted) quadratic in (u, v) plays an important role in
various applications:

W (u, v, σ) =
〈
A(σ)

(
u− û

v − v̂

)
,

(
u− û

v − v̂

)〉
, (20)

where A : I → R6×6 is a Lebesgue measurable function such that A(σ) is symmetric,
positive definite for a.e. σ ∈ I, and (û(σ), v̂(σ)) are the reference strains defined above.

The particular case of unshearable rods is defined by the material constraint v :=
(v̂1, v̂2, v3) := (0, 0, v3), i.e. the first two components of v are required to always take
their reference values. Thus the stored energy density W no longer depends upon v1 and
v2. Notice that the constraint v := (0, 0, v3) together with (10) implies γ′ = v3d3, and
that γ′′ generally does not exist even in the weak sense for v3 ∈ L1. However, when the
conditions in (18) are satisfied, we find that the corresponding arclength parameterization
Γ possesses the weak derivative Γ′′ = (u2d1 − u1d2)/v3, which implies that the curvature
κ of γ is given by

κ = |Γ′′| =
√

u2
1 + u2

2

v3
(21)

(see Section 6.3 for details). Hence, for unshearable rods, the conditions in (18) may be
written as

v3 > 0 and ρ ≥ θ a.e. on I (22)

where ρ = 1/κ is the local radius of curvature of γ. Moreover, we find that Γ ∈ W 2,∞

since the second inequality in (22) implies that κ ≤ θ−1. Notice the relation between the
conditions in (22), which are equivalent to preservation of orientation and guarantee local
injectivity, and the conditions in Lemma 7, which guarantee global injectivity. Preservation
of orientation requires that the local radius of curvature be bounded below by the cross-
sectional radius θ, whereas global injectivity requires the stronger condition that the global
radius of curvature be bounded below by θ.

Unshearable, inextensible rods are a further specialization. They are defined by the
material constraint v := v̂ := (0, 0, 1), which by (10) yields

γ′=d3 and κ = |γ′′| =
√

u2
1 + u2

2.

Thus, both γ and Γ are arclength parameterizations in this case. The first identity above
implies that γ ∈ W 2,1(I, R3). Furthermore, when the conditions in (18) are satisfied, the
second identity above implies that γ ∈ W 2,∞(I, R3).
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4.2 Existence of minimizers

Here we establish the existence of rod configurations that minimize a prescribed elastic
energy subject to a self-contact or excluded volume constraint. We consider three distinct
classes of rod models: unshearable, inextensible models, general models in which shear
and extension are allowed, and unshearable, extensible models. Motivated by Lemmas
3 and 7, we employ a lower bound on the global radius of curvature as a model for the
excluded volume constraint. This approach is in contrast to those pursued in [10], [22],
[31], where various integral energies are introduced as repulsive potentials, and in [13],
[30].

4.2.1 Unshearable, inextensible models

A configuration (γ[w], D[w]) of an unshearable, inextensible rod is uniquely described by
an element w = (u, v, γ0, D0) ∈ Xp,q

0 where the function v is constrained to take the value
(0, 0, 1). Thus, this class of rods is described by the set

Xp
0 := {w = (u, v, γ0, D0) ∈ Xp,q

0 | v = (0, 0, 1), γ0 = 0, D0 = Id}

where, without loss of generality, we fix γ0 and D0 to eliminate rigid translations and
rotations. Notice that the choice of q is immaterial since the function v ≡ (0, 0, 1) is in Lq

for any q ∈ (1,∞).
The stored energy density W for unshearable, inextensible rods reduces to the form

W (u, σ). We assume that W (·, σ) is continuous and convex for a.e. σ ∈ I, that W (u, ·) is
Lebesgue measurable on I for all u, and that

W (u, σ) ≥ c1|u|p + g(σ) for all u∈R3, for a.e. σ∈I, (23)

where p ∈ (1,∞), c1 > 0, and g ∈ L1(I).
The basic problem we consider is the existence of minimizers for the total elastic energy

functional
E(w) = E(u) =

∫
I
W (u(σ), σ) dσ → Min! , w ∈ Xp

0 (24)

subject to the following side conditions on (γ[w], D[w]):

γ[w](b) = γ0, D[w](b) = D1, (25)

∆[γ[w]] ≥ θ, (26)

γ[w](Ī) ' k, (27)

D[w] ∼ Q. (28)

Here D1 ∈ SO(3) is a given frame which coincides with D0 in its last column, θ > 0 is
a constant that represents the cross-sectional radius of the rod, k is a continuous closed
curve in R3 that represents a given knot class, and Q : Ī → SO(3) with Q(a) = D0,
Q(b) = D1 is a continuous map that represents a given link class (cf. Def. 2 and 3). The
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conditions in (25), together with the assumption on D1, ensure that d3[w](b) = d3[w](a),
and that d1[w](b) and d1[w](a) differ by a given angle. Moreover, these conditions ensure
that γ[w] is closed in the C1-sense since γ′[w](σ) = d3[w](σ) by the constraint on v.

Thus, we seek energy minimizers for non-self-intersecting, unshearable and inextensible
rods of a prescribed knot and link type where the frames D[w](a) and D[w](b) differ by a
prescribed rotation. Our main result in this direction is:

Theorem 2 Let 1 < p < ∞ and assume that (23) holds. Suppose that there is an element
w̃ ∈ Xp

0 satisfying (25)-(28). Then the minimization problem (24)-(28) has a solution
w ∈ Xp

0 , whose corresponding framed curve (γ[w], D[w]) ∈ W 2,p(I, R3) × W 1,p(I, R3×3)
has a centreline with an arclength parameterization Γ ∈ C1,1.

This result establishes the existence of energy minimizers subject to a geometrically exact
excluded volume constraint. The exactness of (26) as a model for excluded volume follows
from Lemma 7 and the condition on v. An important assumption in the theorem is the
existence of a configuration that satisfies all the imposed side conditions; in particular,
the conditions in (26) and (27). For given θ and k, these conditions can be satisfied
by rods of sufficiently large length. According to the remarks following Theorem 1, the
above existence result remains valid when a potential energy with at most linear growth
is added to the total elastic energy. Thus, for example, body forces that do not depend on
the deformed shape of the rod, such as a uniform gravitational field, can also be included.
(See [25] for related problems in which gravitational forces are considered.)

The classic energy involving the integral of the squared curvature (see e.g. [19],[20],[30]),
or in our notation

E =
∫

γ
κ2 ds,

can also be considered. This energy can be viewed as a simple model of an unframed,
elastic, closed curve. (Note that for such unframed curves a prescribed link type has no
obvious meaning.) The weak closure results of Lemma 4 and Lemma 5 allow us to conclude
the existence of a minimizer of each prescribed knot type when our excluded volume
constraint is enforced and the length of the curve is fixed. More precisely, we can consider
curves γ ∈ W 2,2(I, R3) subject to the constraints |γ′(s)| = 1 on Ī, γ(b) = γ(a) = 0,
γ′(a) = γ′(b) = e, ∆[γ] ≥ θ > 0, and γ(Ī) ' k, where e is a given unit vector, and k

represents a given knot type. Since the constraints are closed under weak convergence,
and since (up to a constant factor) the integral of the squared curvature dominates the
W 2,2 norm ‖γ‖ on the admissible set, standard direct methods can be applied.

4.2.2 General models

A configuration (γ[w], D[w]) of a general shearable and extensible rod is uniquely described
by an element w = (u, v, γ0, D0) ∈ Xp,q

0 . We fix γ0 and D0 to eliminate rigid translations
and rotations as before and we consider the class of rods described by the set

X̃p,q
0 := {w = (u, v, γ0, D0) ∈ Xp,q

0 | γ0 = 0, D0 = Id}, p, q ∈ (1,∞).
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We assume that the stored energy density W satisfies conditions (W1)-(W3) of Section 3
with c1, c2 > 0.

The basic problem is the existence of minimizers for the total elastic energy functional

E(w) :=
∫

I
W (u(σ), v(σ), σ) dσ −→ Min!, w ∈ X̃p,q

0 (29)

subject to the following side conditions on (γ[w], D[w]):

γ[w](b) = γ0 , D[w](b) = D1, (30)

∆[γ[w]] ≥ θ, (31)

γ[w](Ī) ' k, (32)

D[w] ∼ Q (33)

where D1, θ, k, and Q are as defined in the previous problem. In the case of a general rod
model the second equation in (30) ensures that d3[w](a) = d3[w](b), but it does not imply
that the tangents of the curve γ[w] are equal at the end points.

Our main result concerning the above problem is:

Theorem 3 Let 1 < p, q < ∞, let (W1)–(W3) be satisfied, and assume that there is some
admissible w̃ ∈ X̃p,q

0 respecting (30)–(33). Then the minimization problem (29)–(33) has
a solution w ∈ X̃p,q

0 , whose corresponding framed curve (γ[w], D[w]) ∈ W 1,q(I, R3) ×
W 1,p(I, R3×3) has a centreline with an arclength parameterization Γ ∈ C1,1.

This result establishes the existence of energy minimizers for general rod models subject to
the constraint (31). However, in this general case, condition (31) is merely an approximate
model for excluded volume as discussed in Section 3. As before, the existence result
remains valid when a potential energy with at most linear growth is added to the total
elastic energy.

4.2.3 Unshearable, extensible models

Theorem 3 also applies in the case of an unshearable, extensible rod defined by v = (0, 0, v3)
(see Section 4.1) provided that we appropriately modify the hypothesis (W3). Specifically,
the growth condition in (W3) should be satisfied for all (u, v3) ∈ R3×R instead of (u, v) ∈
R3 × R3. This case can be interpreted as an intermediate one between the general case
considered immediately above, and the unshearable, inextensible one considered earlier.

For the unshearable, extensible case the condition in (31) is an exact model for excluded
volume provided that v3 > 0 (by Lemma 7). However, v3 > 0 is not a weakly closed
condition in the spirit of Lemma 9, and configurations that satisfy (31) may not necessarily
satisfy v3 > 0. In fact, since the global radius of curvature cannot exceed the local radius
of curvature, we deduce from (21) that (31) implies only the weaker inequality

v3 ≥ θ
√

u2
1 + u2

2 a.e. on I (34)
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in this case of unshearable rods. Thus v3 = 0 is possible for some subset of I, but only
on straight parts of the rod in accordance with (34). Consequently, an unshearable rod
may fail to be globally injective on such parts. On the other hand, mechanically realistic
energy densities should blow up on regions of large compression, i.e.,

W (u, v, s) →∞ as v3 − θ
√

u2
1 + u2

2 → 0 (35)

(cf. Antman [1, Ch. VII.5, VIII]). In the case that this condition holds, we find that
v3 = 0 is possible only on a subset of I with measure zero. Thus (31) together with (35)
would ensure the global injectivity of an unshearable, extensible rod since arcs connecting
two points on the centreline curve with different parameters have positive length. Notice
that energy densities with property (35) satisfy conditions (W1)–(W3) and are covered by
our existence theory.

5 Application to ideal knots

Here we establish the existence of curves of a prescribed knot type that minimize the arc-
length functional subject to a lower bound on the global radius of curvature. By Lemma
3, this lower bound provides a geometrically exact model for the self-contact or excluded
volume constraint imposed on the curve by a tubular neighbourhood of fixed radius. The
basic problem we consider is that of minimizing the functional

L(γ) =
∫

I
|γ′(σ)| dσ → Min!, γ ∈ W 1,q, q ∈ (1,∞), (36)

subject to the conditions

γ(b) = γ(a), ∆[γ] ≥ θ and γ(Ī) ' γ̃(Ī). (37)

Here θ > 0 is a constant and γ̃ ∈ W 1,q is a continuous closed curve that represents the
prescribed knot type and satisfies ∆[γ̃] ≥ θ.

A solution γ of the above problem is called an ideal knot in the sense of [2], [16] and
[21]. In other words, an ideal knot is a non-self-intersecting tube of fixed radius θ > 0
and prescribed knot type with a centreline curve γ of minimal length. Here we establish
an existence result for ideal knots which shows that their centreline curves are always
continuously differentiable. In fact, these curves have arclength parameterizations of class
C1,1, which means that their unit tangent vector fields are Lipschitz continuous.

To employ the general existence result in Section 3, we merely identify a curve γ ∈ W 1,q

with a framed curve (γ, D) ∈ W 1,q×W 1,p where D(s) ≡ D̃. Here D̃ ∈ SO(3) is an arbitrary
fixed frame which plays no role in our developments. Without loss of generality, we fix the
initial point γ(a) = γ0 to eliminate rigid translations. Thus, for the ideal knot problem
we consider framed curves described by the set

Xq
0 := {w = (u, v, γ0, D0) ∈ Xp,q

0 | u = (0, 0, 0), γ0 = 0, D0 = D̃},
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and we seek minimizers of the functional

E(w) :=
∫

I
|v(σ)| dσ → Min!, w = (u, v, γ0, D0) ∈ Xq

0

subject to the conditions

γ[w](b) = γ0, ∆[γ[w]] ≥ θ and γ[w](Ī) ' γ̃(Ī). (38)

In the above form it seems that the ideal knot problem can be treated by Theorem 1
and our investigations about weakly closed sets. However, the energy to be minimized here
has merely linear growth and does not satisfy (W3) for q > 1. Nevertheless by showing
that the minimization of

∫
I |v|

qdσ (q > 1) also provides a curve of minimal length, we are
able to circumvent this difficulty and obtain the following

Theorem 4 For q ∈ (1,∞) the minimization problem defined by (36) and (37) has a
solution γ∗. This curve has an arclength parameterization Γ∗ ∈ C1,1.

This result establishes the existence of ideal knots and shows that their centreline curves
have arclength parameterizations of class C1,1. Similar existence results have been ob-
tained by Kusner and co-workers [17] using ideas related to global radius of curvature.
In addition, Cantarella et.al. [3] have proved that an ideal or tight configuration of an
unknotted 3-component link is achieved by centrelines made up from arcs of circles joined
with straight line segments, i.e. a centreline that is C1,1 and also piecewise smooth, but not
C2 overall. Similarly, numerical data presented in [12] suggest that ideal configurations of
some true (but composite) knots are also not C2. Thus there is some evidence supporting
the conjecture that the regularity established in our existence result above may be quite
sharp.

6 Proofs

In this section we provide proofs for the results described in Sections 2 to 5. We use the
same notation as in the corresponding sections.

6.1 Proofs for Section 2

Proof of Lemma 1 . For the first implication we assume L > 0 and that the pair s, t ∈ SL

(s 6= t) defines a double point of γ (there can be no double points if L = 0). Then, by
definition of ρG[γ] and R(x, y, z), we have

ρG[γ](s) = inf{ R(Γ(s),Γ(σ),Γ(τ)) | σ, τ ∈ SL\{s}, σ 6= τ }
≤ inf{ R(Γ(s),Γ(t),Γ(τ)) | τ ∈ SL\{s, t} }
= inf{ |Γ(s)− Γ(τ)|/2 | τ ∈ SL\{s, t} }
= 0
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and similarly for ρG[γ](t). Thus, if γ is non-simple, then necessarily ∆[γ] = 0, and the
second implication follows. 2

Proof of Lemma 2 .

1. Consider a connected subarc A1 := Γ([σ0, σ1]) with fixed endpoints P0 := Γ(σ0) and
P1 := Γ(σ1), and suppose that diam A1 < 2θ and |P1 − P0| < θ/2, which is possible
by choosing |σ1 − σ0| sufficiently small. Let l1 be the lens-shaped intersection of all
open balls of radius θ containing P0 and P1 on their boundaries, i.e.,

l1 :=
⋂

z∈C(P0,P1)

Bθ(z),

where C(P0, P1) := {z ∈ R3 | |z − P0| = |z − P1| = θ}. We claim that

A1 ⊂ l1. (39)

To see this, suppose for contradiction that A1 6⊂ l1 and consider the set

Ξ :=
⋃

z∈C(P0,P1)

Bθ(z). (40)

Then, using the facts that γ is simple (by Lemma 1), diam A1 < 2θ and |P1 −P0| <
θ/2, we deduce that there must be a point P̄ ∈ (A1 ∩ Ξ)\l1. Moreover, we find that

R(P0, P1, P̄ ) =
|P1 − P0|
2 sinα

< θ, where α := <)(P0 − P̄ , P1 − P̄ ). (41)

Since this contradicts the lower bound ∆[γ] ≥ θ we must have A1 ⊂ l1 as claimed.

Notice that there is indeed a point P̄ ∈ (A1 ∩ Ξ)\l1. Otherwise, we would have
diam A1 ≥ 2θ, because any curve in R3\Ξ connecting P0 and P1 must have diameter
at least as large as the great circle on ∂Bθ(z) connecting P0 and P1 outside of l1 for
any of the balls Bθ(z) that generate Ξ. Moreover, since |P1−P0| < θ/2, the portion
of such a great circle has diameter 2θ.

The result in (41) may be seen by considering the intersection of Ξ with the
plane containing the three non-collinear points P0, P1 and P̄ . This intersection
may be described by two overlapping planar disks Dθ(z1) and Dθ(z2) of radius θ,
where ∂Dθ(z1) ∩ ∂Dθ(z2) = {P0, P1}, and we may assume without loss of gener-
ality that P̄ ∈ Dθ(z1)\Dθ(z2). From elementary geometry we recall that, for any
ξ ∈ ∂Dθ(z1)\{P0, P1}, we have θ = |P1 − P0|/(2 sinβ) where β := <)(P0 − ξ, P1 − ξ).
To establish (41), we first suppose that α ∈ (0, π/2). In this case we may choose
ξ ∈ ∂Dθ(z1)\Dθ(z2) such that β ∈ (0, α), i.e., sinβ < sinα, which implies (41). If
we suppose that α ∈ [π/2, π), then we may choose ξ ∈ ∂Dθ(z1) ∩Dθ(z2) such that
β ∈ (α, π), i.e., sinβ < sinα, which also implies (41).
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2. Given σ0, σ1 ∈ SL as above, we next consider a sequence σn ↓ σ0 (n ≥ 1). We
introduce Pn := Γ(σn), An := Γ([σ0, σn]) and the lens-shaped region ln defined by
P0, Pn and θ > 0 as before. Moreover, for each n ≥ 1, we introduce the tangent
cone Tn of ln in P0 as

Tn := {x ∈ R3 | x = λ(q − P0), λ ≥ 0, q ∈ ln }.

Since |Pn − P0| < θ/2 and diam An < 2θ we may use the same argument as in step
1 to conclude

An ⊂ ln, ∀n ∈ N. (42)

Furthermore, by straightforward geometrical arguments we also find

ln+1 ⊂ ln and Tn+1 ⊂ Tn, ∀n ∈ N. (43)

3. Let αn be the opening angle of the cone Tn. Since 0 < |Pn − P0| < θ/2 and

sin(αn/2) =
|Pn − P0|

2θ
(44)

we deduce αn ∈ (0, π/2). Moreover, since |Pn − P0| → 0 we deduce αn → 0 as
n →∞.

4. For each n ≥ 1 we introduce a unit vector

tn := (Pn − P0)/|Pn − P0| ∈ S2,

which is well-defined since σn ↓ σ0 and |Pn − P0| > 0. By definition of the cone Tn

we have tn ∈ Tn, and since Tm ⊂ Tn (m ≥ n) and the opening angles satisfy αn → 0,
we deduce that {tn}n∈N ⊂ S2 is a Cauchy sequence. Therefore we find a vector

tR(σ0) := lim
n→∞

Γ(σn)− Γ(σ0)
|Γ(σn)− Γ(σ0)|

∈ S2.

Notice that tR(σ0) does not depend on the choice of sequence σn ↓ σ0. In fact,
assuming that a different sequence σ′n ↓ σ0 leads to a different unit vector t′R(σ0) 6=
tR(σ0), we arrive at a contradiction. In particular, the mixed sequence {σ′′n} :=
{σ1, σ

′
1, σ2, σ

′
2, . . .} would lead to a Cauchy sequence of unit vectors with no unique

limit. Thus we must have t′R(σ0) = tR(σ0).

5. Given any point σ0 ∈ SL and two sequences σn ↓ σ0 and τk ↑ σ0 we have two
well-defined unit tangent vectors at Γ(σ0); namely, tR(σ0) defined as above and

tL(σ0) := lim
k→∞

Γ(σ0)− Γ(τk)
|Γ(σ0)− Γ(τk)|

∈ S2.

We claim that tR(σ0) = tL(σ0). To see this, assume for contradiction that tR(σ0) 6=
tL(σ0). Consider the lens-shaped regions

lRn :=
⋂

z∈C(P0,Γ(σn))

Bθ(z) and lLk :=
⋂

z∈C(P0,Γ(τk))

Bθ(z)
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and the unit vectors

tk := (Γ(τk)− Γ(σ0))/|Γ(τk)− Γ(σ0)|
tn := (Γ(σn)− Γ(σ0))/|Γ(σn)− Γ(σ0)|.

By the same arguments as in step 1 we deduce that Γ([τk, σ0]) ∩ lRn = ∅ and
Γ([σ0, σn]) ∩ lLk = ∅ for all sufficiently large n, k ∈ N. Thus the angle ϑ ∈ [0, π]
between tR(σ0) and −tL(σ0) satisfies 0 < ϑ < π. Moreover, since

lim
k,n→∞

<)(tk, tn) = ϑ

and
lim

k→∞
Γ(τk) = lim

n→∞
Γ(σn) = Γ(σ0)

we deduce that

lim
k,n→∞

R(Γ(τk),Γ(σn),Γ(σ0)) = lim
k,n→∞

|Γ(τk)− Γ(σn)|
2 sin<)(tk, tn)

= 0,

which contradicts the lower bound ∆[γ] ≥ θ > 0. Thus we must have tR(σ0) = tL(σ0)
as claimed.

6. If σ0 is a parameter where Γ is differentiable, then Γ′(σ0) = tR(σ0) = tL(σ0). This
follows from the fact that, if Γ is differentiable at σ0, then |Γ′(σ0)| = 1 and

Γ(σn)− Γ(σ0) = Γ′(σ0)(σn − σ0) + o(|σn − σ0|)

for any sequence σn ↓ σ0. The result follows since

Γ(σn)− Γ(σ0)
|Γ(σn)− Γ(σ0)|

=
Γ′(σ0)(σn − σ0) + o(|σn − σ0|)

|σn − σ0|
·
[
1− o(|σn − σ0|)

|σn − σ0|

]
and o(|σn − σ0|)/|σn − σ0| → 0 as |σn − σ0| → 0.

7. If Γ is differentiable at σ1, σ2 ∈ SL, then

|Γ′(σ1)− Γ′(σ2)| ≤ |σ1 − σ2|/θ.

To establish this result, we consider first the case when |Γ(σ1) − Γ(σ2)| < θ/2. In
this case we have Γ′(σ1) ∈ T1, and by symmetry Γ′(σ2) ∈ T1, where T1 is the tangent
cone of l1 in Γ(σ1) with opening angle α1 ∈ (0, π/2). Using the fact that

sin(α1/2) = |Γ(σ1)− Γ(σ2)|/2θ

together with the law of cosines we find

|Γ′(σ1)− Γ′(σ2)| ≤
√

2− 2 cos α1

= |Γ(σ1)− Γ(σ2)|/θ ≤ |σ1 − σ2|/θ,
(45)
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as claimed. In the case when |Γ(σ1)−Γ(σ2)| ≥ θ/2 the result is still true. In partic-
ular, the arc [σ1, σ2] ⊂ SL may be divided into subarcs [τi, τi+1] ⊂ SL (i = 1, . . . m)
such that τi are points of differentiability (which is possible since Γ is Lipschitz
continuous and hence differentiable almost everywhere), σ1 = τ1, σ2 = τm+1 and
|Γ(τi) − Γ(τi+1)| < θ/2. Applying (45) to the subarcs [τi, τi+1] and summing yields
the required result.

8. We can now show that Γ ∈ C1,1(SL, R3) and that Γ′ has Lipschitz constant 1/θ.
To begin, we consider first the subset S̃L of SL where Γ is differentiable. Since
S̃L is dense in SL and by (45) the map Γ′ : S̃L → R3 is uniformly continuous, we
deduce that there is a unique uniformly continuous extension V : SL → R3. In
particular, V ∈ C0,1(SL, R3) with Lipschitz constant 1/θ. To see that this implies
Γ ∈ C1,1(SL, R3), let σ0 ∈ SL be given and note that since Γ ∈ C0,1(SL, R3) is
absolutely continuous we have

Γ(σn)− Γ(σ0) =
∫ σn

σ0

Γ′(τ) dτ =
∫ σn

σ0

V (τ) dτ

which implies
Γ(σn)− Γ(σ0)

σn − σ0
=

1
σn − σ0

∫ σn

σ0

V (τ) dτ

for any σn 6= σ0. Since V ∈ C0,1(SL, R3) the limit σn → σ0 is well-defined, i.e.,
Γ′(σ0) exists and

Γ′(σ0) = V (σ0), ∀σ0 ∈ SL.

Thus Γ′ ∈ C0,1(SL, R3) with Lipschitz constant 1/θ. 2

Proof of Lemma 3 .

1. For any fixed s0 ∈ SL and θ > 0 let sn ↓ s0, Pn := Γ(sn), P0 := Γ(s0) and

Cn := C(P0, Pn) := { z∈R3 | |z − P0| = |z − Pn| = θ }.

Notice that Cn is the circle of radius ρn :=
√

θ2 − |Pn − P0|2/4 centred at yn :=
(Pn + P0)/2 and perpendicular to the unit vector (Pn − P0)/|Pn − P0|. We claim
that

distH(Cn, C(s0, θ)) → 0 as n →∞, (46)

where C(s0, θ) is the circle defined in the statement of the lemma and distH(A,B)
denotes the Hausdorff distance [9, p. 183] between two subsets A,B of R3. To
establish this result, we note first that ρn → θ and yn → P0. Moreover, since
∆[γ] > 0, we have by Lemma 2 that (Pn − P0)/|Pn − P0| → Γ′(s0). Thus Cn

converges to a circle of radius θ with centre P0 in the plane perpendicular to Γ′(s0).
Since these properties completely characterize C(s0, θ) the result follows.
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2. The first claim in item (i) is that if ∆[γ] ≥ θ > 0, then Γ(SL) ∩M(s0, θ) = ∅ for all
s0 ∈ SL. To establish this, we consider the sets

Ξn :=
⋃

z∈Cn

Bθ(z)

as in the proof of Lemma 2. We assume for contradiction that there is a point
P̄ ∈ Γ(SL) ∩ M(s0, θ), which implies dist(P̄ , C(s0, θ)) < θ. For n ∈ N sufficiently
large, we deduce from (46) that dist(P̄ , Cn) < θ, which implies P̄ ∈ Ξn, and moreover
we have |P̄−P0| > |Pn−P0|. These observations lead to the result P̄ ∈ Ξn\ln, where

ln :=
⋂

z∈Cn

Bθ(z).

By exactly the same arguments as in the proof of Lemma 2, we arrive at a statement
of the form (41) with P1 replaced by Pn. Since this contradicts the lower bound
∆[γ] ≥ θ the first claim in item (i) must be true.

3. The second claim in item (i) is that if Γ(SL) ∩ M(s0, θ) = ∅ for all s0 ∈ SL, then
∆[γ] ≥ θ. To establish this result, we assume for contradiction that 0 < ∆[γ] < θ

and we consider minimizing sequences sn, σn, τn ∈ SL (sn, σn, τn mutually distinct
for each n) that achieve ∆[γ], i.e.,

∆[γ] = lim
n→∞

R(Γ(sn),Γ(σn),Γ(τn)).

Here Rn := R(Γ(sn),Γ(σn),Γ(τn)) is the radius of the unique circle Hn defined by
the three distinct points Γ(sn), Γ(σn) and Γ(τn). (Recall that Γ is simple by Lemma
1 and has a Lipschitz continuous tangent field by Lemma 2 since ∆[γ] > 0.) Since
SL is compact we may assume that sn → s̄, σn → σ̄ and τn → τ̄ , and without loss
of generality, we have only three kinds of minimizing sequences: (a) s̄, σ̄, τ̄ distinct,
(b) s̄ 6= σ̄ = τ̄ or (c) s̄ = σ̄ = τ̄ . We claim that sequences of type (a) need not be
considered, and those of type (b) and (c) lead to the required contradiction.

To see that sequences of type (a) may be excluded from consideration, we suppose
that ∆[γ] is achieved by distinct parameters s̄, σ̄ and τ̄ , which correspond to three
distinct points on Γ. Let H̄ denote the unique circle defined by these points and Φ̄
the unique sphere that contains H̄ as a great circle. Unless the curve Γ is tangent
to Φ̄ at one of these points, we obtain an immediate contradiction, for otherwise
we may shrink Φ̄ and find three other distinct points that define a circle of radius
smaller than ∆[γ]. Assuming the tangency is at Γ(σ̄), the circle through Γ(s̄) and
tangent to Γ at Γ(σ̄) is on Φ̄, and hence has radius less than or equal to the great
circle radius. Since this circle may be obtained as the limit of a sequence of type
(b), we conclude that ∆[γ] can never exclusively be achieved by a sequence of type
(a).

If ∆[γ] < θ is achieved by a sequence of type (b), then there is a circle of radius
δ = ∆[γ] that is tangent to Γ at Γ(σ̄) and contains Γ(s̄) 6= Γ(σ̄). Thus Γ(s̄) ∈
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M(σ̄, δ)\{Γ(σ̄)} ⊂ M(σ̄, θ), which contradicts the hypothesis that Γ(SL)∩M(s0, θ) =
∅ for all s0 ∈ SL.

If ∆[γ] < θ is achieved by a sequence of type (c), we also arrive at a contradiction.
To see this, let pn denote the centre of the circle Hn and without loss of generality
assume sn < σn < τn. Thus

|Γ(sn)− pn| = |Γ(σn)− pn| = |Γ(τn)− pn| = Rn

and Rn → δ < θ where δ = ∆[γ]. By applying the Mean Value Theorem to the
differentiable function f(s) = |Γ(s) − pn|2, s ∈ [sn, σn], we deduce that there exists
s−,n ∈ (sn, σn) such that Γ(s−,n)− pn is perpendicular to Γ′(s−,n). Similarly, there
exists s+,n ∈ (σn, τn) such that Γ(s+,n)− pn is perpendicular to Γ′(s+,n). Following
the same arguments as in the proof of Lemma 2 we must have Γ(s−,n) ∈ l−,n and
Γ(s+,n) ∈ l+,n for n sufficiently large. Here l−,n is the lens-shaped region defined
by Γ(sn), Γ(σn) and δ > 0, and l+,n defined by Γ(σn), Γ(τn) and δ > 0, as in
Lemma 2. Since diam(l±,n) → 0 and Rn → δ < θ it follows that δ±,n := |Γ(s±,n)−
pn| < θ for n sufficiently large, and we may assume that δ−,n ≤ δ+,n. This implies
Γ(s−,n) ∈ M(s+,n, δ+,n)\{Γ(s+,n)} ⊂ M(s+,n, θ), which contradicts the hypothesis
that Γ(SL) ∩M(s0, θ) = ∅ for all s0 ∈ SL. Thus we must have ∆[γ] ≥ θ as claimed.

4. To establish the claim in item (ii) we assume ∆[γ] ≥ θ and we consider any two
points P1 = Γ(s1) and P2 =Γ(s2) (s1, s2 ∈ SL) that realize the diameter, i.e., d :=
diam Γ(SL) = |P1−P2|. Then the function f1(τ) := |P1−Γ(τ)| has a local maximum
at s2, and f2(τ) := |P2 − Γ(τ)| at s1. Since Γ ∈ C1,1(SL, R3) we deduce that the
tangent vectors Γ′(s1) and Γ′(s2) must be perpendicular to the chord Γ(s1)−Γ(s2).
Assuming d < 2θ we arrive at a contradiction to item (i), since then Γ(s1) ∈ M(s2, θ).
Thus we must have d ≥ 2θ as claimed.

5. The first claim in item (iii) is that if ∆[γ] ≥ θ > 0, then the tubular neighbour-
hood Bθ(Γ(SL)) is regular as defined in Section 2.1. To show that the closest-
point projection map ΠΓ is well-defined for x ∈ Bθ(Γ(SL)), we note that if
dist(x,Γ(SL)) = 0, then x = ΠΓ(x) is well-defined since γ is simple by Lemma
1. If 0 < dist(x,Γ(SL)) < θ, then there is at least one point s ∈ SL such that
|x − Γ(s)| = dist(x,Γ(SL)) since Γ(SL) is a compact set. For any such s the dif-
ferentiable function f(t) := |x − Γ(t)|2 has the property f(t) ≥ f(s) := δ2 for all
t ∈ SL where δ < θ. Thus 0 = f ′(s) = 2〈x− Γ(s),Γ′(s)〉. If there were another point
σ ∈ SL with f(σ) = f(s) (s 6= σ) then

Γ(σ) ∈ ∂Bδ(x)\{Γ(s)} ⊂ Bθ(y) ⊂ M(s, θ)

where y := Γ(s) + θ(x − Γ(s))/|x − Γ(s)|, which contradicts item (i). Hence ΠΓ :
Bθ(Γ(SL)) → Γ(SL) given by ΠΓ(x) := Γ(s(x)) for x ∈ Bθ(Γ(SL)) is well-defined.
Assuming for contradiction that ΠΓ is not continuous, we could find a sequence
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xn → x ∈ Bθ(Γ(SL)) and a constant c>0 with |ΠΓ(xn) − ΠΓ(x)| ≥ c. Since Γ(SL)
is compact, we may assume that ΠΓ(xn) → p ∈ Γ(SL) with |p − ΠΓ(x)| ≥ c. Using
the continuity of the distance function dist(·,Γ(SL)) and the uniqueness of s(x) we
obtain

dist(x,Γ(SL)) = |x−ΠΓ(x)| < |x− p| = lim
n→∞

|xn −ΠΓ(xn)|

= lim
n→∞

dist(xn,Γ(SL)) = dist(x,Γ(SL)),

which is a contradiction. Thus ΠΓ is also continuous and the regularity of Bθ(Γ(SL))
is established.

6. The second claim in item (iii) is that if Bθ(Γ(SL)) is regular, then ∆[γ] ≥ θ > 0. To
establish this claim, we assume Bθ(Γ(SL)) is regular which, by definition, implies
that γ is simple. We assume for contradiction that ∆[γ] < θ, which implies there
is a point s0 ∈ SL such that ρG[γ](s0) < θ. Then, by Definition 1, there exist
distinct points s1, s2 ∈ SL different from s0 such that 0 < ρG[γ](s0) ≤ δ < θ where
δ = R(Γ(s0),Γ(s1),Γ(s2)). Moreover, since γ is simple, the points Γ(s0), Γ(s1) and
Γ(s2) are distinct. These points define a unique circle C of radius δ, and we denote
the centre of C by p. Without loss of generality we assume 0 = s0 < s1 < s2 < L and
we consider the disjoint, open subarcs of SL defined by D0 = (s0, s1), E1 = (s1, s2)
and E2 = (s2, s0).

Since |p − Γ(si)| = δ (i = 0, 1, 2) we have dist(p, Γ(SL)) ≤ δ < θ which implies
p ∈ Bθ(Γ(SL)). Moreover, we must have the strict inequality dist(p, Γ(SL)) < δ since
by hypothesis there is a unique s(p) ∈ SL such that dist(p, Γ(SL)) = |p − Γ(s(p))|.
Thus s(p) 6= si (i = 0, 1, 2) and we may assume s(p) ∈ D0.

We next consider the subarc D1 = E1 ∪ {s2} ∪ E2 so that SL = D0 ∪D1 ∪ {s0, s1},
and we consider the line segment between p and Γ(s2), i.e.,

x(α) = (1− α)p + αΓ(s2), α ∈ [0, 1].

This segment has the properties that x(0) = p, x(1) = Γ(s2),

|x(α)− Γ(s2)| < |x(α)− Γ(si)|, 0 < α ≤ 1 (i = 0, 1)

and x(α) ∈ Bθ(Γ(SL)) for 0 ≤ α ≤ 1. To obtain the required contradiction, notice
that

dist(x(α),Γ(SL)) ≤ |x(α)− Γ(s2)|
< |x(α)− Γ(si)| 0 < α ≤ 1 (i = 0, 1),

which implies ΠΓ(x(α)) 6= Γ(si) for 0 < α ≤ 1 (i = 0, 1). However, ΠΓ(x(0)) =
Γ(s(p)) ∈ Γ(D0) and ΠΓ(x(1)) = Γ(s2) ∈ Γ(D1). Thus the image of the line segment
x(α) under the map ΠΓ is disconnected. Since this contradicts the hypothesis that
Bθ(Γ(SL)) is regular we must have ∆[γ] ≥ θ as claimed.
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7. To establish the claim in item (iv) we assume that Bθ(Γ(SL)) is regular. Then for
each x ∈ Bθ(Γ(SL)) there is a unique s = s(x) ∈ SL such that |x − Γ(s)| < θ

and 〈x− Γ(s),Γ′(s)〉 = 0. Notice that for each point x in a given normal disk
Dθ(s0) := Dθ(Γ(s0),Γ′(s0)) the point s0 has these properties, which implies s(x) = s0

for all x ∈ Dθ(s0). Thus ΠΓ(Dθ(s0)) = Γ(s0). Assuming for contradiction that
there is a point y ∈ Bθ(Γ(SL))\Dθ(s0) such that ΠΓ(y) = Γ(s0), we must have
〈y − Γ(s0),Γ′(s0)〉 = 0, which implies y ∈ Dµ(s0)\Dθ(s0) for some µ ≥ θ. However,
for such a point we would have dist(y, Γ(SL)) ≥ θ, which is a contradiction. The
claim follows. 2

Proof of Lemma 4 .

1. The Sobolev embedding W 1,q(I, R3) ↪→ C0,1−1/q(I, R3) implies uniform convergence

γn → γ in C0(I, R3). (47)

Thus the limit curve γ is closed. Because of Lemma 3 and (47) we have
diam(Γ(SL)) ≥ 2θ, hence L > 0 and γ is not a single point.

2. The limit curve γ is simple. If this were not the case, we could find s1, s3 ∈ SL

(s1 6= s3) such that Γ(s1) = Γ(s3), where we may assume without loss of generality
that 0 = s1 < s3 < L. Let D denote the open subarc of SL defined by (s1, s3) of
length |s3−s1| and let E denote the complementary open subarc of length L−|s3−s1|.
Since the curves defined by restricting Γ to D and E each have positive length and
hence positive diameter, we can find a point s2 ∈ D and a point s4 ∈ E such that
Γ(s2) 6= Γ(s4), with each of these points distinct from Γ(s1). These two points may
be found by considering the intersections of Γ(D) and Γ(E) with two spheres of
different diameter centred at Γ(s1).

Assume without loss of generality that 0 = s1 < s2 < s3 < s4 < L, let δ :=
min{ |Γ(s1) − Γ(s2)|, |Γ(s1) − Γ(s4)|, θ} and let a = t1 < t2 < t3 < t4 < b be
parameters such that γ(ti) = Γ(si) (i = 1, . . . , 4). Moreover, let σi ∈ SLn be the arc-
length parameters for ti on γn, i.e., Γn(σi) = γn(ti) and 0 = σ1 < σ2 < σ3 < σ4 < Ln.
Since each curve γn satisfies the hypotheses of Lemma 3 we notice first that ΠΓn is
continuous on Bθ(Γn(SLn)). Moreover, from (47) we deduce that there exists an N

such that |γn(ti)− γ(ti)| < δ/8 for all n ≥ N (i = 1, . . . , 4).

We next consider the line segment

x(α) = αΓn(σ1) + (1− α)Γn(σ3), α ∈ [0, 1].

This segment has the property that dist(x(α),Γn(SLn)) ≤ δ/4, which implies x(α) ∈
Bθ(Γn(SLn)), for all α ∈ [0, 1] and all n ≥ N . Thus we clearly have the strict
inequality

|x(α)−ΠΓn(x(α))| < 3δ/8, ∀α ∈ [0, 1], ∀n ≥ N.
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Since for each n ≥ N we have ΠΓn(x(0)) = Γn(σ3) and ΠΓn(x(1)) = Γn(σ1), but

|Γn(σi)− x(α)| ≥ δ/2, ∀α ∈ [0, 1], (i = 2, 4),

we conclude that the image of the line segment x(α) under the continuous map ΠΓn

cannot be connected. Since this contradicts the continuity of ΠΓn the curve γ must
be simple as claimed.

3. The limit curve γ satisfies the lower bound ∆[γ] ≥ θ. To establish this claim, we
assume for contradiction that there is a point s0 ∈ SL such that ρG[γ](s0) < θ. Then,
by Definition 1 and the fact that γ is simple, there exist distinct points s1, s2 ∈ SL

different from s0 such that

R(Γ(s0),Γ(s1),Γ(s2)) =
|Γ(s2)− Γ(s0)|

2 sinα
< θ (48)

where α := <)(Γ(s0) − Γ(s1),Γ(s2) − Γ(s1)) ∈ (0, π). By (47), we can find three
distinct points Γn(σi) that converge to Γ(si) (i = 0, 1, 2). For sufficiently large n we
thus have

R(Γn(σ0),Γn(σ1),Γn(σ2)) =
|Γn(σ2)− Γn(σ0)|

2 sinαn
< θ

where αn := <)(Γn(σ0)−Γn(σ1),Γn(σ2)−Γn(σ1)) ∈ (0, π). Since this contradicts the
hypothesis ∆[γn] ≥ θ we must have ∆[γ] ≥ θ as claimed. 2

Proof of Lemma 5 . By Lemma 8 we may consider n ∈N so large that ‖γn − γ‖C0 <

θ/2, in particular γ(I) ⊂ Bθ(Γn(SLn)). It suffices to show that the projection Π
Γn|Γ :

Γ → Γn is a bijective mapping for n sufficiently large. In fact, then we can argue as
follows: For z := Γn(σ) and z′ := Γ′n(σ) there is exactly one point p(z) ∈ Γ(SL) such
that z = ΠΓn(p(z)), i.e., p(z) = (Π

Γn|Γ)−1(z). Hence we can look at the planar open
disks Dθ/2(z, z′) and Dθ/2(p(z), z′) of radius θ/2 centred at z ∈ Γn(SLn) and p(z) ∈ Γ(SL)
respectively, perpendicular to z′ and define the open neighbourhoods

Nn :=
⋃

z∈Γn(SLn )

Dθ/2(z, z′) and

Ñn :=
⋃

z∈Γn(SLn )

Dθ/2(p(z), z′).

By Lemma 3 we readily see that Nn is just the open θ/2-neighbourhood of Γn(SLn) and
by (49) below Ñn is an open neighbourhood of Γ(SL) at least for large n∈N. In fact, we
can use the same argument as the one at the end of the proof showing that the set Jn

considered there is open for n sufficiently large.
The desired isotopy γ(I) ' γn(I) ' γ1(I) for n sufficiently large is furnished by the

following mapping Φ : Ñn × [0, 1] → R3 defined as

Φ(x, τ) := x + τ
[
ΠΓn(x)− (Π

Γn|Γ)−1(ΠΓn(x))
]

for x∈Ñn, τ∈[0, 1].
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In fact, Φ is continuous with Φ(x, 0) = x for all x ∈ Ñn,Φ(Ñn, 1) = Nn, since Φ(., 1) is
just the translation of the planar disk Dθ/2(p(z), z′) onto Dθ/2(z, z′) for each z∈Γn(SLn).
Moreover, for all p∈Γ(SL)

Φ(p, 1) = p + ΠΓn(p)− (Π
Γn|Γ)−1(ΠΓn(p)) = p + ΠΓn(p)− p = ΠΓn(p),

hence Φ(Γ(SL), 1) ⊂ Γn(SLn) We even get equality, since Π
Γn|Γ is surjective. The contin-

uous inverse Φ−1(., τ) of Φ(., τ) is given by

Φ−1(ξ, τ) := ξ − τ
[
ΠΓn(ξ)− (Π

Γn|Γ)−1(ΠΓn(ξ))
]

for ξ∈Nn, τ∈[0, 1],

since for ξ∈Dθ/2(z, z′) one has by Lemma 3

ΠΓn(ξ) = ΠΓn(ξ − τ
[
ΠΓn(ξ)− (Π

Γn|Γ)−1(ΠΓn(ξ))
]
) = z,

which implies Φ(Φ−1(ξ, τ), τ) = ξ. This way we obtain γ(I) ' γn(I) for n sufficiently large
and by assumption (i) also γ(I) ' γ1(I).

It remains to show that Π
Γn|Γ is bijective for n sufficiently large. We first claim that

for s∈SL

lim
n→∞

|〈Γ′(s),Γ′n(σn)〉| = 1, (49)

where σn∈SLn is the unique parameter such that ΠΓn(Γ(s))=Γn(σn). Assuming (49) is
not true we can find some δ>0 such that for all n0∈N there is n≥n0 such that

|〈Γ′(s),Γ′n(σn(s))〉| ≤ 1− δ. (50)

Taking subsequences if necessary we can assume that

|Γn(σn(s))− Γ(s)| = dist(Γ(s),Γn) ≤ ‖γ − γn‖C0(I,R3) ≤ 1/n. (51)

Let Cn := C(σn(s), θ) be the planar circle of radius θ > 0 centred at Γn(σn(s)) per-
pendicular to Γ′n(σn(s)) as introduced in Lemma 3 (i). For some ε ∈ (0, θ) to be specified
later we look at the set

Mn := M(σn(s), θ − ε) :=
⋃

z∈Cn

Bθ−ε(z),

and observe that
Mn ∩Bε(Γn) = ∅, (52)

since M(σn(s), θ) ∩ Γn(SLn) = ∅ by Lemma 3 (i) applied to γn ∈ G. Furthermore the
corresponding set M := M(s, θ) for Γ at Γ(s) satisfies

M ∩ Γ(SL) = ∅. (53)

But (50) implies that Γ′n(σn(s)) → v∈S2 for n →∞ with

|〈Γ′(s), v〉| ≤ 1− δ (54)
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for some further subsequence. Together with (51) this implies

distH(Cn, Cv) −→ 0 for n →∞, (55)

where Cv is the planar circle of radius θ centred at Γ(s) perpendicular to v and where
distH(., .) is the Hausdorff distance as in the previous proof.

Figure 2: Two-dimensional illustration of the set ∂Br(Γ(s))−M ⊂ Mv.

An elementary geometric argument shows that for α := arccos(1 − δ)∈ (0, π/2], r :=
θ sin(α/2), ε := θ(1− cos(α/2)) and the set

Mv :=
⋃

z∈Cv

Bθ−ε(z)

the relation (∂Br(Γ(s))−M) ⊂ Mv, holds, i.e., dist(y, Cv) < θ−ε for all y ∈ ∂Br(Γ(s))−M.

Now from (55) we infer

dist(y, Cn) < θ − ε for all y ∈ ∂Br(Γ(s))−M for n sufficiently large. (56)

Since γ has no double points (see Lemma 4 and 1) and is a closed continuous curve with
diam(γ(Ī))≥2θ (Lemma 3 (ii)), it must intersect ∂Br−M by (53), say in Γ(s̃) for some
s̃ ∈ SL. This leads to a contradiction, since (51) implies Γ(s̃) ∈Bε(Γn) for n sufficiently
large, but on the other hand by (56) Γ(s̃)∈Mn, i.e. Γ(s̃) 6∈ Bε(Γn) by (52). Hence (49) is
proved.

Now we can show that Π
Γn|Γ is injective for sufficiently large n. Otherwise there

existed infinitely many distinct integers m∈N and pairs of distinct parameters s1m 6= s2m

in SL such that

ΠΓm(Γ(s1m)) = Γm(σm(s1m)) = Γm(σm(s2m)) = ΠΓm(Γ(s2m)).
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Consequently, if m is chosen large enough,

|Γ(s1m)− Γ(s2m)| ≤ |Γ(s1m)−ΠΓm(Γ(s1m))|+ |ΠΓm(Γ(s2m))− Γ(s2m)|
≤ 2‖γ − γm‖ ≤ 2/m. (57)

In addition, we have by the proof of Lemma 3 (iii)

Γ(s1m)− Γ(s2m) ⊥ Γ′m(σm(s1m)). (58)

A simple geometric observation using (49),(57), (58) now shows that Γ(s2m) ∈
M(s1m, θ) for m sufficiently large, contradicting Lemma 3 (i), which is applicable to Γ
by Lemma 4.

Finally we are going to prove that Π
Γn|Γ is surjective. We consider the set Jn :=

{σ ∈SLn |Γn(σ)∈ΠΓn(Γ(SL))} and claim that Jn = SLn for n large enough. Since both
Γ(SL) and Γn(SLn) are compact, there is at least one pair of points (x, xn) ∈ Γ(SL) ×
Γn(SLn) such that xn=ΠΓn(x), hence Jn 6= ∅.

Jn is also closed, because for a convergent sequence σi → σ, σi∈Jn we have a sequence
si ∈ SL with Γn(σi) = ΠΓn(Γ(si)). For a subsequence one has si → s ∈ SL, hence by
continuity we arrive at Γn(σ)=ΠΓn(Γ(s)), i.e. σ∈Jn. In order to show that Jn is open,
we observe by Lemma 3 (iv) that we can rewrite Jn as

Jn = {σ∈SLn |Γn(σ)=ΠΓn(Γ ∩Dθ(Γn(σ),Γ′n(σ))) },

where Dθ(Γn(σ),Γ′n(σ)) denotes the planar disk of radius θ perpendicular to Γ′n(σ) centred
at Γn(σ). Now (49) implies that, for n sufficiently large, Γ intersects Dθ(Γn(σ),Γ′n(σ))
transversely. Consequently, we have Dθ(Γn(σ),Γ′n(σ)) ∩ Γ(SL) 6= ∅ for all σ ∈ SLn

with |σ − σ| sufficiently small and n sufficiently large, since Γ′n is Lipschitz continuous.
Hence Jn is open, which finishes the proof that Jn =SLn , i.e. Π

Γn|Γ is surjective for n

sufficiently large. 2

6.2 Proofs for Section 3

Proof of Lemma 6 . To each framed curved (γ, D) ∈ W 1,q × W 1,p we can associate a
unique w = w(γ, D) ∈ Xp,q

0 given by (10) as follows. The first equation in (10) is obtained
by differentiating the map s 7→ D(s)D(s0)−1 at s = s0 and observing that the tangent
space to the manifold SO(3) ⊂ R3×3 at the identity is the set of skew matrices [14, II,
Ch.17]. The second equation in (10) is just the representation of γ′(s) in the frame D(s).
Solving these two equations for u and v leads to the result

ui =
1
2

3∑
j,k=1

εijk

〈
d′j , dk

〉
and vi =

〈
γ′, di

〉
(i = 1, 2, 3).

Here εijk = 〈ei, ej ∧ ek〉 is the permutation symbol where ei is the standard basis for R3.
Conversely, given w = (u, v, γ0, D0) ∈ Xp,q

0 , the initial value problem (10) for the frame
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field has a unique absolutely continuous solution D = (d1|d2|d3) ∈ W 1,p(I, R3×3), see e.g.,
[15, p. 193] or [33, vol.II, p. 1043]. In addition, since D(s) is continuous and

d

ds
〈dk, dl〉 = 〈

[ 3∑
i=1

uidi

]
∧ dk, dl〉+ 〈dk,

[ 3∑
i=1

uidi

]
∧ dl〉 = 0 a.e. in I,

we deduce that D(s) ∈ SO(3) for each s ∈ I. Notice that standard existence results guar-
antee only a local solution for D(s). However, since orthonormality implies boundedness,
local solutions can be continued to all of [a, b]. Once D(s) is known, the initial value
problem for γ may be solved by quadrature, namely

γ(s) = γ0 +
3∑

k=1

∫ s

a
vk(τ)dk(τ) dτ. 2

Proof of Lemma 7 .

1. Notice first that γ ∈ G and ∆[γ] > 0, hence γ possesses an arclength parameterization
Γ ∈ C1,1(SL, R3) by Lemma 2. Moreover, since |γ′| = |v3| > 0, there is a bijection
between t ∈ [a, b) and s ∈ [0, L). Notice also that, for each fixed t ∈ [a, b), the map
p(t, ·, ·) is injective and that the image of p(t, ·, ·) is the open disk Dθ(Γ(s(t)),Γ′(s(t)))
as considered in Lemma 3.

2. Our first claim is that if ∆[γ] ≥ θ, then p : Ωθ → R3 is globally injective. To
see this, assume for contradiction that p does not have this property. Then there
exists t1, t2 ∈ [a, b) (t1 6= t2), with corresponding arclength parameters s1 6= s2,
such that Dθ(Γ(s1),Γ′(s1)) ∩ Dθ(Γ(s2),Γ′(s2)) 6= ∅. We denote by x any point in
this intersection. Since ∆[γ] ≥ θ we may apply Lemma 3 (iii) to conclude that the
projection ΠΓ : Bθ(Γ(SL)) → Γ(SL) is single-valued, and apply Lemma 3 (iv) to
conclude that ΠΓ(x) = Γ(s1) and ΠΓ(x) = Γ(s2), which is a contradiction. Thus
p : Ωθ → R3 must be globally injective.

3. Our second claim is that if p : Ωθ → R3 is globally injective, then ∆[γ] ≥ θ. To
see this, assume for contradiction that 0 < ∆[γ] < θ and consider any η such
that ∆[γ] < η < θ. Then by Lemma 3 (i) there is a parameter s∗ ∈ SL such that
Γ(SL)∩M(s∗, η) 6= ∅. This implies there is a point z∗ ∈ C(s∗, η) = ∂Dη(Γ(s∗),Γ′(s∗))
such that dist(z∗,Γ(SL)) < η. By compactness, there is a point Γ(s̄) such that
dist(z∗,Γ(SL)) = |z∗ − Γ(s̄)|, and s̄ 6= s∗ since |z∗ − Γ(s̄)| < η. Moreover,
〈z∗ − Γ(s̄),Γ′(s̄)〉 = 0. Since η < θ we have z∗ ∈ Dθ(Γ(s̄),Γ′(s̄)) and also
z∗ ∈ Dθ(Γ(s∗),Γ′(s∗)), which contradicts the global injectivity of p : Ωθ → R3.
Thus ∆[γ] ≥ θ as claimed. 2

Proof of Theorem 1 . Since C 6= ∅ we may assume there is some w̃ ∈ C with E(w̃) < ∞;
otherwise, any w ∈ C will satisfy (13) with infinite energy. Thus, any minimizing sequence
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{wn}n∈N = {(un, vn, γ0,n, D0,n)}n∈N ⊂ C stays bounded in Xp,q since

lim
n→∞

E(wn) = inf
w∈C

E(w) ≤ E(w̃) < ∞.

To see this, notice that condition (W3) guarantees in all three cases (i)-(iii) that ‖un‖Lp

and ‖vn‖Lq are uniformly bounded for all n ∈ N. Moreover, SO(3) is compact in R3×3

and, by assumption, |γ0,n| ≤ c for all n ∈ N.
Since {wn} is bounded and the space Xp,q (p, q > 1) is reflexive, there is a weakly

convergent subsequence wnk
⇀ w∗ ∈ Xp,q. In particular, we have (unk

, vnk
) ⇀ (u∗, v∗) ∈

Lp(I, R3) × Lq(I, R3) and (γ0,nk
, D0,nk

) → (γ0,∗, D0,∗) ∈ R3 × SO(3) as k → ∞. More-
over, w∗ ∈ C because C is weakly closed. Since conditions (W1)-(W3) imply that
E is weakly lower-semicontinuous on Xp,q (see, e.g., [5, Thm.3.4, p. 74]), we deduce
E(w∗) = infw∈C E(w). Thus E attains a global minimum at the point w∗ ∈ C. 2

Proof of Lemma 8 .

1. Given 1 < p, q < ∞ and {wn} ⊂ Xp,q
0 we are assuming wn ⇀ w in Xp,q where

wn = (un, vn, γ0,n, D0,n) and w = (u, v, γ0, D0). Notice first that, since D0,n ∈
SO(3) ⊂ R3×3 and D0,n → D0 we have D ∈ SO(3). This implies that w ∈ Xp,q

0 as
claimed.

2. In (14) we claim that weak convergence of the shape and placement variables wn

implies convergence in C0 of the framed curves (γn, Dn). To establish this result,
we note first that un ⇀ u in Lp(I, R3) implies there is a constant c > 0 such that
||un||Lp ≤ c < ∞ for all n ∈ N. Let d1,n denote the first column of Dn, d1 the
first column of D, and consider any t1 ∈ (a, b) such that |t1 − a| ≤ (3c)−p∗ where
1/p∗ + 1/p = 1. Then, by continuity, there is a σn ∈ [a, t1] such that

|d1,n(σn)− d1(σn)| = max
τ∈[a,t1]

|d1,n(τ)− d1(τ)|, (59)

and by compactness we can find a subsequence (keeping the index n for convenience)
σn → σ ∈ [a, t1]. From (59) and an integrated version of (10) we obtain

||d1,n − d1||C0([a,t1],R3) = |d1,n(σn)− d1(σn)|

=

∣∣∣∣∣d0
1,n +

∫ σn

a

[
3∑

i=2

ui,n(τ)di,n(τ)

]
∧ d1,n(τ) dτ

−d0
1 −

∫ σn

a

[
3∑

i=2

ui(τ)di(τ)

]
∧ d1(τ) dτ

∣∣∣∣∣
where d0

1,n denotes the first column of D0,n and so on. Expanding the vector prod-
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ucts, rearranging terms and applying the triangle inequality leads to

||d1,n − d1||C0([a,t1],R3) ≤ |d0
1,n − d0

1|

+
∣∣∣∣∫ σn

a
{[u3,n(τ)− u3(τ)]d2(τ) + [u2(τ)− u2,n(τ)]d3(τ)} dτ

∣∣∣∣
+
∣∣∣∣∫ σn

a
{u3,n(τ)[d2,n(τ)− d2(τ)] + u2,n(τ)[d3(τ)− d3,n(τ)]} dτ

∣∣∣∣ .
Since un is bounded in Lp this implies

||d1,n − d1||C0([a,t1],R3) ≤ |d0
1,n − d0

1|

+
∣∣∣∣∫ b

a
{[u3,n(τ)− u3(τ)]d2(τ) + [u2(τ)− u2,n(τ)]d3(τ)} χ[a,σn](τ) dτ

∣∣∣∣
+ |σn − a|1/p∗ ||un||Lp

3∑
i=2

||di,n − di||C0([a,t1],R3),

and by choice of t1 and σn we obtain

||d1,n − d1||C0([a,t1],R3) ≤ |d0
1,n − d0

1|

+
∣∣∣∣∫ b

a
{[u3,n(τ)− u3(τ)]d2(τ) + [u2(τ)− u2,n(τ)]d3(τ)} χ[a,σn](τ) dτ

∣∣∣∣
+

1
3

3∑
i=2

||di,n − di||C0([a,t1],R3)

(60)

where χ[a,σn] is the characteristic function for the interval [a, σn]. By Lebesgue’s
theorem of dominated convergence we have

d2χ[a,σn] → d2χ[a,σ] and d3χ[a,σn] → d3χ[a,σ] in Lp∗(I, R3).

Using this result, together with the facts that un ⇀ u in Lp and d0
1,n → d0

1, we
deduce from (60) that for any ε > 0 there is an N such that

||d1,n − d1||C0([a,t1],R3) ≤
1
3

3∑
i=2

||di,n − di||C0([a,t1],R3) + ε/9, ∀n ≥ N.

Taking further subsequences, we can deduce analogous inequalities for ||di,n −
di||C0([a,t1],R3) (i = 2, 3), which after summation gives

3∑
i=1

||di,n − di||C0([a,t1],R3) ≤
2
3

3∑
i=1

||di,n − di||C0([a,t1],R3) + ε/3

and consequently

3∑
i=1

||di,n − di||C0([a,t1],R3) ≤ ε, ∀n ≥ N. (61)
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This implies convergence on the subinterval [a, t1]. However, we can then consider
any t2 > t1 such that |t2− t1| ≤ (3c)−p∗ , and using di,n(t1) instead of d0

i,n and so on,
we can obtain an estimate analogous to (61) on [t1, t2]. Hence, after finitely many
steps, we cover the interval I = [a, b] and obtain Dn → D in C0(I, R3×3) for some
subsequence.

Continuing with the subsequence of (γn, Dn) found above, we can find for each n a
parameter sn ∈ [a, b] such that

|γn(sn)− γ(sn)| = max
τ∈[a,b]

|γn(τ)− γ(τ)|. (62)

By compactness, we can extract a further subsequence (again indicated by n) such
that sn → s ∈ [a, b]. From (62) and an integrated version of (10) we obtain

||γn − γ||C0(I,R3) = |γn(sn)− γ(sn)|

=

∣∣∣∣∣γ0,n +
∫ sn

a

3∑
k=1

vk,n(τ)dk,n(τ) dτ − γ0 −
∫ sn

a

3∑
k=1

vk(τ)dk(τ) dτ

∣∣∣∣∣ .
Rearranging terms, applying the triangle inequality and employing the characteristic
function for [a, sn] leads to

||γn − γ||C0(I,R3) ≤ |γ0,n − γ0|

+
3∑

k=1

∣∣∣∣∫ b

a
vk,n(τ)[dk,n(τ)− dk(τ)]χ[a,sn] dτ

∣∣∣∣
+

3∑
k=1

∣∣∣∣∫ b

a
[vk,n(τ)− vk(τ)]dk(τ) χ[a,sn] dτ

∣∣∣∣ ,
and since the subsequence Dn converges in C0 we obtain

||γn − γ||C0(I,R3) ≤ |γ0,n − γ0|+ ||Dn −D||C0(I,R3×3) ||vn||L1(I,R3)

+
3∑

k=1

∣∣∣∣∫ b

a
[vk,n(τ)− vk(τ)]dk(τ) χ[a,sn] dτ

∣∣∣∣ . (63)

For each k = 1, 2, 3 we have as before that

dkχ[a,sn] → dkχ[a,s] in Lq∗(I, R3)

where 1/q∗ + 1/q = 1. Thus, we conclude that the right-hand side of (63) converges
to zero as n → ∞. Hence γn → γ in C0(I, R3) for some subsequence. Since the
previous arguments apply to any subsequence of {wn}n∈N ⊂ Xp,q

0 , and the same
limits D and γ are obtained, the whole sequence must satisfy (14) as claimed.

3. In (15) we claim that weak convergence of the shape and placement variables wn

implies weak convergence in W 1,q × W 1,p of the framed curves (γn, Dn). To see
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this, we multiply (10) by an arbitrary element g ∈ Lq∗(I, R3) (1/q∗ + 1/q = 1) and
integrate to obtain∫

I

〈
γ′n(τ), g(τ)

〉
dτ =

∫
I

3∑
k=1

vk,n(τ)〈dk,n(τ), g(τ)〉 dτ. (64)

Since by (14) we have 〈dk,n, g〉 → 〈dk, g〉 in Lq∗(I, R), and by assumption we have
vk,n ⇀ vk in Lq(I, R) for k = 1, 2, 3, we obtain∫

I

〈
γ′n(τ), g(τ)

〉
dτ →

∫
I

〈
γ′(τ), g(τ)

〉
dτ, ∀g ∈ Lq∗(I, R3).

This implies γ′n ⇀ γ′ in Lq(I, R3). Moreover, by (14), we also have γn → γ in
Lq(I, R3). This readily implies that γn ⇀ γ in W 1,q as claimed. By applying the
same reasoning to Dn the result (15) is established. 2

Proof of Lemma 9 . To establish the result for C1, we note first that a sequence
{wn}n∈N ⊂ C1 that converges strongly wn → w in Xp,q contains a subsequence
{wnk

}k∈N ⊂ C1 such that wnk
(s) → w(s) for a.e. s ∈ I. Since K(s) is closed for a.e.

s ∈ I, we have w(s) ∈ K(s) for a.e. s ∈ I, which implies w ∈ C1. Thus C1 is strongly
closed. Furthermore, C1 is convex since K(s) is convex for a.e. s ∈ I. Thus C1 is also
weakly closed [23, Thm 3.12] as claimed. The result for C2 follows directly from Lemma
8. 2

Proof of Lemma 10 . The elements Q ∈ SO(3) can be represented by a vector ξ(Q) ∈ R3

where the direction of ξ(Q) describes the rotation axis and the length of ξ(Q) gives the
rotation angle in [−π, π]. In a neighbourhood of the identity in SO(3), the mapping Q 7→
ξ(Q) ∈ R3 is uniquely defined and continuous as well as the inversion ξ 7→ Q(ξ) ∈ SO(3).
In particular, we have Q(ξ(Q)) = Q, ξ(Id) = 0 ∈ R3 and Q(0) = Id ∈ SO(3). By Lemma
8, we have w ∈ Xp,q

0 and Dn → D in C0, which implies D(a) = Dn(a) and D(b) = Dn(b)
for all n ∈ N since Dn ∼ D1. Furthermore, the continuity of A 7→ A−1 in GL(3) (Cramer’s
Rule) implies that D(s)Dn(s)−1 is continuous in s and uniformly close to the identity for
all n ∈ N sufficiently large. With this in mind, we consider the homotopy map

Ψ(s, τ) := Q(τξ(D(s)Dn(s)−1))Dn(s), s ∈ [a, b], τ ∈ [0, 1].

Notice that Ψ(s, 0) = Dn(s) and Ψ(s, 1) = D(s) for all s∈[a, b], and that Ψ : [a, b]×[0, 1] →
SO(3) is continuous. Moreover, it is straightforward to show that Ψ(a, τ) = Dn(a) and
Ψ(b, τ) = Dn(b) for all τ ∈ [0, 1]. Hence, D ∼ Dn for all n sufficiently large. Since
Dn ∼ D1 for all n ∈ N we conclude that D ∼ D1 as claimed. 2

6.3 Proofs for Section 4

Proof of Equation (21) . Since γ′=v3d3 for the unshearable extensible case, the arclength
of γ is given by

[a, b] 3 t 7→ s(t) :=
∫ t

a
v3(τ) dτ ∈ [0, L].
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This map is strictly monotone by (18), hence invertible. Denoting the inverse function
by τ : [0, L] → [a, b], we form the composition Γ := γ ◦ τ : [0, L] → R3 and compute the
derivatives

Γ′(s) = γ′(τ(s))
d

ds
τ(s) = v3(τ(s))d3(τ(s))

1
v3(τ(s))

= d3(τ(s))

Γ′′(s) = d′3(τ(s))
d

ds
τ(s) = d′3(τ(s))

1
v3(τ(s))

.

From (10) we deduce d′3 = −u1d2 + u2d1, which proves the formulas for Γ′′ and the
curvature κ given in (21). 2

Proof of Theorem 2 . Let C be the subset of elements w ∈ Xp
0 ⊂ Xp,q, q ∈ (1,∞),

that satisfy conditions (25)-(28), which by assumption is non-empty. We claim that C is
weakly closed. To see this, notice that Lemma 9 (ii) applies to condition (25), Lemma 8
and Lemma 4 apply to condition (26), Lemma 5 applies to condition (27) and Lemma 10
applies to condition (28), which establishes the claim. The existence result now follows
from Theorem 1 (ii), which is applicable since conditions (W1)-(W3) are satisfied with
c2 = 0 and γ0 = 0. The regularity statement follows from Lemma 2 by (26) and from
γ′[w] = d3[w] ∈ W 1,p(I, R3). 2

Proof of Theorem 3 . The result follows from Theorem 1 (i) and arguments similar to
those used in the proof of Theorem 2. 2

6.4 Proof of Theorem 4

Let C be the subset of elements w ∈ Xq
0 ⊂ Xp,q that satisfy the conditions in (38). Notice

that C is non-empty by assumption (w̃ = w[γ̃] is in this set), and by Lemmas 9 (ii), 4 and
5, it is also weakly closed. Moreover, for any 1 < q < ∞, notice that the modified energy

Eq(w) :=
∫ b

a
|v(σ)|q dσ

has a minimizer w∗ ∈ C. This follows from Theorem 1 (iii).
We claim that w∗ also minimizes the desired energy E(w). To see this, consider any

w1 ∈ C, let γ1 = γ[w1] be the corresponding curve with arclength parameterization Γ1

and define an auxiliary curve

γ2(τ) := Γ1(L1(τ − a)/(b− a)), τ ∈ [a, b],

where L1 :=
∫ b
a |γ

′
1(σ)| dσ = E(w1). Notice that L1 < ∞ since γ′1 ∈ Lq,

∣∣ d

dτ
γ2(τ)

∣∣ ≡ L1

b− a
=

E(w1)
b− a
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and that w2 = w[γ2] is also in C. Using the definitions of E and Eq, together with Hölder’s
inequality, we have

[E(w∗)]q :=
[∫ b

a
|γ′∗(τ)| dτ

]q

≤ (b− a)q−1

∫ b

a
|γ′∗(τ)|q dτ =: (b− a)q−1Eq(w∗).

Moreover, since w∗ is a minimizer of Eq and |γ′2| = E(w1)/(b− a) is constant, we obtain

[E(w∗)]q ≤ (b− a)q−1Eq(w∗) ≤ (b− a)q−1Eq(w2) = [E(w1)]
q .

Since this inequality holds for arbitrary w1 ∈ C we conclude that w∗ ∈ C is a minimizer
of E as claimed. The regularity statement that Γ∗ ∈ C1,1(SL∗ , R3) follows from Lemma
2. 2
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