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Abstract

We study in detail the notion of global curvature defined on rec-
tifiable closed curves, a concept which has been successfully applied
in existence and regularity investigation regarding elastic self-contact
problems in nonlinear elasticity. A bound on this purely geometric
quantity serves as an excluded volume constraint to prevent selfinter-
sections of slender elastic bodies modeled as elastic rods. Moreover,
a finite global curvature characterizes simple closed curves, whose arc
length parameterizations possess a Lipschitz continuous tangent field.
The investigation of local and non-local properties of global curvature
motivates, in particular, an extended definition of local curvature at
any point of a rectifiable loop. Finally we show how a bound on global
curvature can be used to define topological constraints such as a given
knot type for closed loops or a prescribed linking number for closed
framed curves, suitable to describe, e.g., supercoiling phenomena of
biomolecules.

Mathematics Subject Classification (2000): 53A04, 57M25, 74K10,
74M15, 92C40

1 Introduction

An elastic string, rope or wire being deformed in space cannot penetrate
itself. It is surprisingly difficult to provide a mathematically precise and
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analytically tractable formulation for this physically evident phenomenon
of self-avoidance, also called the excluded volume constraint. While most
investigations in elasticity neglect this effect, it becomes crucial to exclude
interpenetration in order to describe the physically relevant solutions, for
instance, when dealing with closed knotted configurations where self-contact
is to be expected.

In many situations the deformed state of a slender ring-shaped elastic
body can be idealized as the tubular neighbourhood of a closed centrecurve.
The excluded volume constraint is transferred to the centreline mathemati-
cally as a bound on the global curvature. This is a nonlocal quantity whose
inverse, the global radius of curvature, was introduced by Gonzalez and Mad-
docks [11] in the context of ideal shapes of knots. Since this notion is not
restricted to smooth curves (as is the case, e.g., for the classical normal
injectivity radius), a bound on the global curvature is accessible by varia-
tional methods. In addition, the global curvature carries important infor-
mation about the geometrical object. For example, we will prove here that
a bounded global curvature characterizes the set of simple rectifiable loops,
whose arc length parameterizations have a Lipschitz continuous tangent, see
Theorem 2.1. This furnishes a remarkable equivalence between a purely ge-
ometric concept and analytic properties of closed space curves. Moreover,
the relation between the pointwise global curvature function to the classi-
cal local curvature for smooth curves motivates our geometric definition of
generalized local curvature at arbitrary points on curves that are merely rec-
tifiable. To account for sophisticated topological constraints occurring in
applications we consider framed curves, which are curves associated with an
orthonormal frame at each point. A bound on the global curvature ensures
that the linking number between the centrecurve and a curve generated by
the frame is well-defined. The linking number allows us to identify the me-
chanically relevant solutions, which is important, for instance, to account
for supercoiling phenomena of biomolecules modeled as elastic rods. The
geometrically exact condition of bounded global curvature turns out to be
suitable for the direct methods in the calculus of variations to prove existence
results for highly nonlinear problems, see [12],[19]. Moreover, in contrast to
alternative approaches, e.g., using repulsive potentials, where the necessary
regularization can lead to serious mathematical and computational difficul-
ties (see [9],[14],[18]), the geometrically exact condition of bounded global
curvature allows us to derive the Euler-Lagrange equations including con-
tact terms for minimizing elastic rods without shear and extension, see [16].
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It should be emphasized that a rigorous derivation of variational equations
in nonlinear elasticity taking into account self-contact has never been done
before.

Crucial for all these applications is a thorough understanding of the purely
geometric concept of global curvature. It is the objective of this paper to
present a comprehensive investigation of this notion, both extending previous
results in [12] and providing new and detailed analytical information about
global curvature partly used in [16].

After defining the global curvature functions in Section 2 we present the
central regularity result, Theorem 2.1. Part (ii) states that the tangent cone,
as defined in geometric measure theory, reduces to a one-dimensional linear
subspace at those points of a rectifiable loop, where the global curvature is
finite. Part (iii) contains the remarkable fact that finite global curvature
characterizes simple curves whose arc length parameterization possesses a
Lipschitz continuous tangent field with Lipschitz constant equal to the global
curvature. Geometrically, the global radius of curvature is the radius of the
largest open ball that can be rotated tangentially about any point on the
rectifiable loop without intersecting it, see part (iv) of Theorem 2.1.

Then the different cases of approaching the limit in the definition of the
curvature functions are investigated, reflecting the local and nonlocal prop-
erties of global curvature. In particular, Theorem 2.3 (i) shows how the
pointwise global curvature is related to the classical local curvature where
the latter exists. This motivates the definition of the generalized local curva-
ture at any point of a rectifiable loop, which turns out to be bounded from
above by the approximate limes superior of |Γ′′| at that point (in the sense of
geometric measure theory), and which equals |Γ′′| a.e., see Proposition 2.4.
An alternative characterization of global curvature is given in Lemma 2.5.
Specifically the geometric statement of Proposition 2.6 and the analytic in-
formation contained in Lemma 2.7 about the set of parameters, where global
curvature is achieved, is essential for computing the structure of the contact
term in the Euler-Lagrange equations in [16].

The excluded volume constraint in terms of global curvature is discussed
in Section 3. Curves with finite global curvature K possess a tubular neigh-
bourhood of uniform radius K−1, where the next-point projection onto the
curve is single-valued and continuous, Proposition 3.1. Also the reverse state-
ment is true, which constitutes a purely geometric justification for adopting
the notion of global curvature as an excluded volume constraint. Further-
more, global injectivity for deformations of unshearable elastic rods is equiva-
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lent to a finite bound on the global curvature of the centreline (Theorem 3.2).
This means that a bound on the global curvature serves as an exact excluded
volume constraint for unshearable rods also in the mechanical context.

Section 4 deals with functional properties of global curvature considered
as a quantity defined on the space of rectifiable closed loops, and its role
when dealing with topological constraints such as a given knot or link class.
We prove in Lemma 4.1 that a bound on global curvature furnishes a closed
condition with respect to uniform convergence, which is a sharpened version
of [12, Lemma 4]. Proposition 4.2 states that isotopy classes, identifying the
knot type for the centreline, are stable with respect to the C0-topology on
the set of loops with uniformly bounded global curvature. Thus the pull-
tight phenomenon of small knots in the limit, not detected by the uniform
topology alone, is excluded by an additional uniform upper bound on the
global curvature. The closedness of isotopy classes of rectifiable loops with
uniformly bounded global curvature follows easily, see Theorem 4.3. In con-
trast to, and supplementing the upper semicontinuity of the global radius
of curvature proved in [4], we show that global curvature is continuous with
respect to C1,1-convergence of the arc length parameterizations (Theorem
4.4). This turns out to be quite useful when dealing with perturbations of a
minimizer of a mechanical variational problem in order to derive the Euler-
Lagrange equations in [16]. The Gaussian linking number is invoked via an
analytic formula (avoiding topological degree theory) to define link classes
for framed curves, which enables us to treat the case where the curve of the
assigned orthonormal frames is not closed in SO(3). With this notion we
are able to distinguish the infinitely many components in the set of framed
curves having the same boundary conditions, but where the number of rota-
tions of the frame around the centreline differs. This distinction is necessary
to select the correct solution in applications where supercoiling phenomena
lead to a variety of configurations even for closed unknotted centrecurves. In
Lemma 4.5 and Theorem 4.6 it is proved that a given link class constitutes
a weakly closed condition and is stable with respect to small perturbations.

The proofs of all results are presented in Section 5.
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Notation. We use x ·y to denote the standard Euclidean inner product of
x and y in R3, and |· | to denote the (intrinsic) distance between two points in
R3 or in some parameter set J ⊂ R depending on the context. To denote the
enclosed (smaller) angle between two non-zero vectors x and y in R3 we use
<)(x, y) ∈ [0, π]. The distance between a point x ∈ R3 and a subset Σ ⊂ R3

will be denoted by dist(x, Σ), the diameter of Σ will be denoted by diam(Σ).
For any δ > 0 we define open neighbourhoods of x and Σ by

Bδ(x) = {y ∈ R3 | |y − x| < δ} and Bδ(Σ) = {y ∈ R3 | dist(y, Σ) < δ}.

The interior of a set Σ will be denoted by intΣ and its boundary by ∂Σ.
The space of continuous functions on the closure of the interval I = (a, b)
will be denoted by C0(Ī), and Ck,1(Ī), k = 0, 1, 2, . . . , is the space of k-
times continuously differentiable functions whose k-th derivative is Lipschitz
continuous on Ī. For Sobolev spaces of functions, whose weak derivatives up
to order m are p-integrable, we use the standard notation Wm,p(I). Notice
that Ck,1(Ī) ∼= W k+1,∞(I). The mean value integral of an integrable function
f over a set E will be denoted by

∫
−

E
f := |E|−1

∫
E

f .

Acknowledgments. Both authors were supported by the Max-Planck In-
stitute for Mathematics in the Sciences in Leipzig and the Sonderforschungs-
bereich 256 at the University of Bonn. The second author enjoyed the hos-
pitality of the Forschungsinstitut für Mathematik at the ETH Zürich during
the spring term 2001.

2 Global curvature for rectifiable loops

We consider the set L of continuous and rectifiable closed curves γ : Ī → R3,
with arc length parameterization Γγ : SL → R3. Here I = (a, b) is an open
interval, L = L(γ) :=

∫
I
|dγ| ≥ 0 denotes the length of γ, and SL is the circle

with perimeter L, which corresponds to the interval [0, L] with identified
endpoints, i.e., SL

∼= R/(L · Z). The intrinsic distance on SL and also the
Euclidean distance in R3 will be denoted by | . |. In some instances we will
need to use an ordering on the parameter set SL to speak of inequalities
between parameters s1, s2 ∈ SL, and to consider one-sided limits. For this
we tacitly assume that s1, s2 ∈ (0, L), where, for instance, s1 < s2 is well-
defined. To treat parameters near the endpoints s = 0, s = L we simply shift
the interval.
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To simplify notation, we mostly omit the subscript γ and agree that Γ, Γk

correspond to γ, γk and so on. According to [10, vol.II, p.255] this arc length
parameterization Γ is Lipschitz continuous, i.e. of class C0,1([0, L], R3). Note
that, by Rademacher’s Theorem, Γ possesses a weak derivative Γ′ a.e. on
[0, L] and C0,1([0, L], R3) ∼= W 1,∞([0, L], R3).

For a closed curve γ ∈ L the global radius of curvature ρG[γ](s) at the
point s ∈ SL is defined as

(1) ρG[γ](s) :=

{
inf σ,τ∈SL\{s}

σ 6=τ

R(Γ(s), Γ(σ), Γ(τ)), if L > 0,

0, if L = 0,

where R(x, y, z) ≥ 0 is the radius of the smallest circle containing the points
x, y, z ∈ R3. For collinear but distinct points x, y, z we set R(x, y, z) to be
infinite. When x, y and z are non-collinear (and thus distinct) there is a
unique circle passing through them and

(2) R(x, y, z) =
|x− y|

|2 sin[<)(x− z, y − z)]|
=

|x− y|

2
∣∣∣ x−z
|x−z| ∧

y−z
|y−z|

∣∣∣ .

If two points coincide, however, say x = z or y = z, then there are many
circles through the three points and we take R(x, y, z) to be the smallest
possible radius namely the distance |x−y|/2. We should point out that with
this choice the function R(x, y, z) fails to be continuous at points, where
at least two of the arguments x, y, z, coincide. Notice nevertheless that, by
definition, R(x, y, z) is symmetric in its arguments. In Lemma 2.2 below we
will see that ρG[γ](s) is always finite for closed curves. In the case of smooth
curves that have no or only transversal crossings, our definition of ρG agrees
with that in [11], but it is different for curves with double covered regions.
In particular, at parameters s, where Γ is not injective, our definition leads
to ρG[γ](s) = 0, whereas this is not necessarily the case according to the
definition in [11], see also the discussion in [12].

The global radius of curvature of γ is defined as

(3) R[γ] := inf
s∈SL

ρG[γ](s).

The global curvature of γ at s ∈ SL is given by

(4) κG[γ](s) := sup
σ,τ∈SL\{s}

σ 6=τ

1

R(Γ(s), Γ(σ), Γ(τ))
,
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which, of course, can take the value +∞. In analogy to R[γ] we define the
global curvature of γ by

(5) K[γ] := sup
s∈SL

κG[γ](s).

Notice that for the global radius of curvature R[γ] and for the global
curvature K[γ] we can also write

R[γ] = inf
s,σ,τ∈SL
s 6=σ 6=τ 6=s

R(Γ(s), Γ(σ), Γ(τ)),(6)

K[γ] = sup
s,σ,τ∈SL
s 6=σ 6=τ 6=s

1

R(Γ(s), Γ(σ), Γ(τ))
.(7)

We will see in Lemma 2.2 that R[γ] ∈ [0,∞) and hence (by the identity
(9) below) K[γ] ∈ (0,∞] for γ ∈ L. If in addition, γ ∈ L has an injective and
smooth1 arc length parameterization, we infer from Theorem 2.1, part (iii),
below that both R[γ] and K[γ] have values in (0,∞).

As an immediate consequence of the definitions of κG and ρG we observe
for γ ∈ L, that

κG[γ](s) =
1

ρG[γ](s)
,(8)

K[γ] =
1

R[γ]
,(9)

where we tacitly understand that the terms on the left-hand sides become
infinite if the denominators on the right vanish.

The curve γ is said to be simple if its arc length parameterization Γ :
SL → R3 is injective. Otherwise there exist s, t ∈ SL (s 6= t) for which
Γ(s) = Γ(t). Any such pair will be called a double point of Γ.

In part (iii) of the following central regularity result Theorem 2.1 it is
shown that the condition of finite global curvature K[γ] identifies curves
with a C1,1-arc length parameterization without double points. On the other
hand, however, there are simple curves γ ∈ L with infinite global curvature
K[γ], e.g., curves with corner points.

1It suffices that the corresponding arc length parameterization Γ is of class C1,1.
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Theorem 2.1. Let γ ∈ L with arc length parameterization Γ : SL → R3.

(i) If Γ has a double point at the pair s, t ∈ SL (s 6= t), then ρG[γ](s) =
ρG[γ](t) = 0.

(ii) At every point s ∈ SL where ρG[γ](s) > 0, Γ possesses a geometric unit
tangent T (s) satisfying

(10) T (s) := lim
σ↓s
σ 6=s

Γ(σ)− Γ(s)

|Γ(σ)− Γ(s)|
= − lim

τ↑s
τ 6=s

Γ(τ)− Γ(s)

|Γ(τ)− Γ(s)|
.

In addition, at points s0 ∈ SL, where Γ is differentiable, one has

(11) Γ′(s0) = T (s0).

(iii) K[γ] < ∞ if and only if γ is simple and Γ ∈ C1,1([0, L], R3) ' W 2,∞([0, L], R3).

In particular, if K[γ] is finite, then

(12) |Γ′(s1)− Γ′(s2)| ≤ K[γ]|s1 − s2| ∀s1, s2 ∈ SL,

i.e., Γ′ has Lipschitz constant K[γ]. Thus (11) is true for all s0 ∈ SL,
if K[γ] < ∞.

(iv) For θ > 0 let Dθ(z, z
′) denote the open planar disk in R3 of radius θ

centred at z ∈ R3 perpendicular to z′ ∈ R3\{0}. Let s ∈ SL be given
with ρG[γ](s) > 0 and geometric tangent T (s) as in (ii). Set

C(s, θ) = ∂Dθ(Γ(s), T (s)) and M(s, θ) =
⋃

z∈C(s,θ)

Bθ(z).

Then

(a) Γ(SL) ∩M(s, ρG[γ](s)) = ∅.

(b) Suppose K[γ] < ∞, and let ϑ > 0 be a given constant. Then the
following holds:

Γ(SL) ∩M(s, ϑ) = ∅ for all s ∈ SL ⇐⇒ K[γ] ≤ ϑ−1.
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Remarks. 1. Let Tan (γ(Ī), Γ(s)) denote the tangent cone of γ(Ī) at
the point Γ(s) in the sense of Federer [7, Sec. 3.1.21]. Then (ii) implies that

Tan (γ(Ī), Γ(s)) = {λT (s) : λ ∈ R}

for every s ∈ SL with ρG[γ](s) > 0. In other words, the tangent cone reduces
to a 1-dimensional linear subspace at points with positive global radius of
curvature.

2. The necessary condition for K[γ] to be finite in part (iii), which was
shown in [12, Lemma 2], implies that the second derivative Γ′′(s) of Γ exists
for a.e. s ∈ SL, since C1,1([0, L], R3) is isomorphic to the Sobolev space
W 2,∞([0, L], R3). Thus (12) actually implies

(13) ‖Γ′′‖L∞ ≤ K[γ] =
1

R[γ]
.

3. Item (iv)(a) of the above result implies that an open ball of radius
ρG[γ](s) placed tangent at the point Γ(s) may be rotated around the tangent
vector Γ′(s) without intersecting the curve. On the other hand, if K[γ] > ϑ−1,
then there is a point on the curve about which a similar rotation of a ball
of radius ϑ could not be effected without intersecting the curve, according
to part (iv)(b). Thus R[γ] is the radius of the largest open ball that can be
rotated tangentially about every point of a curve γ without intersecting it.

The technical and lengthy proof of Theorem 2.1 as well as all the other
proofs are deferred to Section 5. In the following lemma we provide bounds
on R[γ] and K[γ] in terms of simple geometric quantities of the curve γ.

Lemma 2.2. Let γ ∈ L with length L(γ) = L. Then

R[γ] ≤ ρG[γ](s) ≤ diam (γ(Ī))

2
≤ L

4
for all s ∈ SL,(14)

K[γ] ≥ κG[γ](s) ≥ 2

diam (γ(Ī))
≥ 4

L
for all s ∈ SL.(15)

The next theorem clarifies if and how the infima and suprema in (1),(3),(4)
and (5) are realized on a closed curve. Later this will lead to the definition
of generalized local curvature for rectifiable loops that are not necessarily
differentiable, and also to an alternative characterization of global curvature
in terms of the radius of a circle uniquely determined by two points and one
tangent.
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Theorem 2.3. (i) For every γ ∈ L with arc length parameterization Γ ∈
C1,1([0, L], R3), there exists at least one parameter s ∈ SL, such that
either

(16) R[γ] = ρG[γ](s) and K[γ] = κG[γ](s),

or there is a sequence (sj, σj, τj) → (s, s, s) with sj 6= σj 6= τj 6= sj for
all j ∈ N, such that

R[γ] = lim
j→∞

R(Γ(sj), Γ(σj), Γ(τj)) and(17)

K[γ] = lim
j→∞

1

R(Γ(sj), Γ(σj), Γ(τj))
.(18)

Moreover, if in the second alternative (17), (18), the parameter s ∈ SL

is a Lebesgue point of Γ′′, and if there is a constant c > 0, such that

(19) max{|τj−s|, |σj−s|, |sj−s|} ≤ c max{|τj−sj|, |τj−σj|, |sj−σj|}

for all j ∈ N, then

R[γ] = ρG[γ](s) = |Γ′′(s)|−1 and(20)

K[γ] = κG[γ](s) = |Γ′′(s)|,(21)

where Γ′′ is the precise representative in the sense of [6, p.46].

(ii) Let γ ∈ L with R[γ] > 0, and let s ∈ SL. Then there exists a sequence
(σj, τj) → (σ, τ) in SL×SL with s 6= σj 6= τj 6= s for all j ∈ N satisfying

ρG[γ](s) = lim
j→∞

R(Γ(s), Γ(σj), Γ(τj)),(22)

κG[γ](s) = lim
j→∞

1

R(Γ(s), Γ(σj), Γ(τj))
,(23)

such that either

(a) s = σ = τ, or

(b) s 6= σ = τ.

Remarks. 1. The different options in Theorem 2.3 can occur simultane-
ously, as can, e.g., be seen for the planar circle. Here, at every point the local
curvature and the global curvature coincide, i.e., the different limit cases in
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(i) and (ii) hold simultaneously at every point due to the high degree of sym-
metry of the circle. Another interesting example is that of a stadium curve,
which consists of two parallel straight line segments of equal length and dis-
tance d connected by two planar half circles of radius d/2. These curves have
constant local curvature κ = 0 along the line segments and κ = 2/d along the
half circles, i.e., curvature jumps. The global curvature, however, is equal to
2/d and (16) holds everywhere along the curve. Stadium curves appear also
in the examples of ideal C1,1-links considered in [3] and [4].

2. If s = sj for infinitely many j ∈ N in (17),(18), then (16) holds true,
too. Notice also that (19) holds (and therefore (20) and (21) as well) in the
particular case, when s = sj for all j ∈ N, where s ∈ SL is a Lebesgue point
of Γ′′.

3. Statement (ii) says, roughly speaking, that the infimum in the defini-
tion of ρG[γ](s) as well as the supremum in κG[γ](s) cannot exclusively be
achieved by two distinct parameters σ, τ ∈ SL. Consequently, the infimum in
(6) and the supremum in (7) cannot exclusively be achieved by three distinct
parameters s, σ, τ ∈ SL. Moreover, due to the symmetry of R(., ., .) a third
feasible option (c), namely s = σ 6= τ , does not occur exclusively, that is,
without option (b) at the same time. Observe, however, that R might not
be continuous at the limit point (s, σ, τ).

4. Notice that the assumption R[γ] > 0 is equivalent to demanding that
γ possesses an injective arc length parameterization of class C1,1 according
to Theorem 2.1, (iii).

In case (ii)(a) of Theorem 2.3 the value ρG[γ](s) expresses a local property
of the curve at s ∈ SL, which coincides with the classical local radius of
curvature of γ ∈ L at s if γ is smooth.2 For curves γ ∈ L which are only
continuous and rectifiable in general, this observation motivates the following
definition of the generalized local radius of curvature ρ[γ](s) of γ ∈ L at
s ∈ SL as

(24) ρ[γ](s) := lim inf
(τj ,σj)→(s,s)

s 6=τj 6=σj 6=s

R(Γ(s), Γ(τj), Γ(σj)).

Analogously, we define the generalized local curvature of γ ∈ L at s ∈ SL as

(25) κ[γ](s) := lim sup
(τj ,σj)→(s,s)

s 6=τj 6=σj 6=s

1

R(Γ(s), Γ(τj), Γ(σj))
.

2This can easily be verified by expanding Γ about s when calculating the term
R(Γ(s),Γ(σj),Γ(τj)) in (22) in case (a) for j large, see also Lemma 5.2 in Section 5.
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Note that for γ ∈ L, both ρ[γ] and κ[γ] can take values in [0,∞], and that

(26) ρ[γ](s) ≥ ρG[γ](s) and κ[γ](s) ≤ κG[γ](s) for all s ∈ SL.

Proposition 2.4. Let Γ : SL → R3 be the arc length parameterization of a
simple curve γ ∈ L with Γ ∈ C1,1([0, L], R3). Then

(i) κ[γ](s) ≤ ap lim supσ→s |Γ′′(σ)| for all s ∈ SL.

(ii) κ[γ](s) = |Γ′′(s)| = ρ[γ](s)−1 for a.e. s ∈ SL.

Here, ap lim sup denotes the approximate limes superior as defined, e.g. in
[6, p. 47]. Suppose we have the local bound |Γ′′(σ)| ≤ κ0 for a.e. σ in some
open subinterval J ⊂ SL, then, according to (i), κ[γ](σ) ≤ κ0 for all σ ∈ J .
The essence of part (ii) is that for curves γ ∈ L with finite global curvature
(hence γ simple and Γ ∈ W 2,∞ by Theorem 2.1 (iii)), we can identify κ[γ]
with |Γ′′| a.e. on [0, L], and from (13) we infer

(27) ‖κ[γ]‖L∞ = ‖Γ′′‖L∞ ≤ K[γ] for all γ ∈ L with K[γ] < ∞.

In the light of this inequality, we say for curves γ with K[γ] < ∞, that
the global curvature K[γ] is locally not attained if and only if

(28) ‖Γ′′‖L∞ < K[γ].

Curves with this property are considered in Proposition 2.6 and Lemma
2.7 below and they play an essential role in [16], where the Euler-Lagrange
equations for energy minimizing rods are derived.

For γ ∈ L with finite global curvature the alternative (b) in part (ii)
of Theorem 2.3 expresses a nonlocal property of the curve. It motivates a
different characterization of K[γ] which is analytically more tractable. Let
x, y, z ∈ R3 be such that the vectors x−y and z are linearly independent. By
P we denote the plane spanned by x− y and z. Then there is a unique circle
contained in P through x and y, and tangent to z in the point y. We denote
the radius of that circle by r(x, y, z) and set r(x, y, z) := ∞, if x − y and z
are collinear. Using elementary geometric arguments r can be computed as

(29) r(x, y, z) =
|x− y|

2
∣∣∣ x−y
|x−y| ∧

z
|z|

∣∣∣ ,
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which shows that r(x, y, z) is continuous on the set of triples (x, y, z) with the
property, that x−y and z are linearly independent. But it fails to be contin-
uous at points, where, e.g., x and y coincide. Recall that for curves γ with
K[γ] < ∞, part (iii) of Theorem 2.1 says, that the corresponding arc length
parameterization Γ possesses a Lipschitz continuous unit tangent field Γ′ on
[0, L]. Hence, for every pair (s, σ) ∈ SL × SL, the radius r(Γ(s), Γ(σ), Γ′(σ))
is well defined, and we obtain the following identities for ρG, κG,R and K:

Lemma 2.5. Let γ ∈ L be such that K[γ] < ∞, then at least one of the
following statements (A),(B) is true:

(A)

ρG[γ](s) = inf
σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)) and

κG[γ](s) = sup
σ∈SL
σ 6=s

1

r(Γ(s), Γ(σ), Γ′(σ))
,

(B)

ρG[γ](s) = inf
σ∈SL
σ 6=s

r(Γ(σ), Γ(s), Γ′(s)) = ρ[γ](s) and

κG[γ](s) = sup
σ∈SL
σ 6=s

1

r(Γ(σ), Γ(s), Γ′(s))
= κ[γ](s).

If for s ∈ SL part (ii)(b) of Theorem 2.3 holds, then alternative (A) above is
true.

In addition,

R[γ] = inf
s,σ∈SL

s 6=σ

r(Γ(s), Γ(σ), Γ′(σ)) ,(30)

K[γ] = sup
s,σ∈SL

s 6=σ

1

r(Γ(s), Γ(σ), Γ′(σ))
.(31)

Because of the representation of K[γ] as a supremum in (31) the following
set A[γ], where the global curvature K[γ] is attained, is of particular interest.

(32) A[γ] := {(s, σ) ∈ [0, L]× [0, L] : K[γ] =
1

r(Γ(s), Γ(σ), Γ′(σ))
},

and one can show
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Proposition 2.6. Let γ ∈ L be such that K[γ] < ∞. If (s, σ) ∈ A[γ], then
s 6= σ. If, in addition, K[γ] is locally not attained, then

|Γ(s)− Γ(σ)| = 2R[γ], and(33)

Γ′(s) · (Γ(s)− Γ(σ)) = Γ′(σ) · (Γ(s)− Γ(σ)) = 0(34)

for all (s, σ) ∈ A[γ].

Note that also Γ(s) 6= Γ(σ) for (s, σ) ∈ A[γ], if K[γ] is finite. The set A[γ] can
be empty, e.g., in the case when γ parameterizes a regular ellipse, where the
local curvature κ[γ] is maximal and equal to K[γ] at exactly the two vertices.
In other words, for an ellipse, K[γ] is attained exclusively locally. On the
other hand, if γ describes a circle, one has A[γ] = [0, L]× [0, L]\ diagonal.

For curves γ ∈ L such that K[γ] is locally not attained in the sense defined
in (28), we have the following characterization of K[γ] as a maximum over
pairs of parameters in a well defined compact subset of [0, L] × [0, L] away
from the diagonal.

Lemma 2.7. Let γ ∈ L with K[γ] < ∞ such that K[γ] is locally not attained,
and set

η(γ) :=
1−R[γ] · ‖Γ′′‖L∞

‖Γ′′‖L∞
,(35)

Q = Q[γ] := {(s, σ) ∈ [0, L]× [0, L] : L− η(γ) ≥ s− σ ≥ η(γ)}.(36)

Then

(i) 0 < η(γ) < L/(2π),

(ii) A[γ] ∩Q 6= ∅, i.e.,

K[γ] = max
(s,σ)∈Q

1

r(Γ(s), Γ(σ), Γ′(σ))
,

(iii)

K[γ] >
1

r(Γ(s), Γ(σ), Γ′(σ))
for all (s, σ) ∈ [0, L]2\Q.

Note that the upper bound on η(γ) in (i) can be improved to L/(4π), if γ
is non-trivially knotted by virtue of the Fáry-Milnor Theorem on the total
curvature of knotted curves [13].
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The significance of Lemma 2.7 is that r(Γ(s), Γ(σ), Γ′(σ)) is continuously
differentiable on a small neighbourhood of Q, which is a crucial ingredient
for the analysis in applications involving a bound on K as a constraint for
variational problems, cf. [16].

3 Excluded volume constraint

Theorem 2.1, part (iv), establishes the fact that if a curve γ ∈ L has global
curvature bounded by some constant θ−1, then γ is restricted on how tightly
it can bend locally, by the inequality κ[γ](s) ≤ K[γ] ≤ θ−1 for a.e. s ∈ I, and
on how close it can come to self-intersection globally. The interplay of local
and global effects is strongly connected to the excluded volume constraint,
which says that some tube surrounding the curve γ as a centreline, does not
intersect itself.

To make this physically intuitive condition mathematically precise, we re-
call that for curves γ ∈ L with K[γ] < ∞ we have a well-defined continuous
tangent field Γ′. Thus we can speak of planar disk-shaped cross-sections of
uniform size perpendicular to Γ′ along the curve. The excluded volume con-
straint then consists of the condition that two different cross-sections do not
intersect, which locally translates into a bound on the (local) curvature, and
globally into a restriction on how close different curve points can approach
each other in space.

One mathematical notion to describe such a constraint would be the
normal injectivity radius from differential geometry, which, however, requires
a certain amount of smoothness of the centreline γ, compare, e.g. [5]. In [11]
it is shown that for smooth simple curves γ the normal injectivity radius
coincides with R[γ]. Proposition 3.1 below shows that the condition K[γ] ≤
θ−1 models in a geometrically exact way the excluded volume constraint for
the tubular neighbourhood of γ ∈ L of uniform radius θ > 0. An alternative
characterization of the excluded volume constraint involving global injectivity
of a deformation mapping will be discussed afterwards.

The set Bδ(γ(Ī)) = Bδ(Γ(SL)) is said to be the tubular neighbourhood of
γ of radius δ > 0, where γ ∈ L has arc length parameterization Γ : SL → R3.
We say that Bδ(Γ(SL)) is non-self-intersecting or regular if the closest-point
projection map ΠΓ : Bδ(Γ(SL)) → Γ(SL) is single-valued and continuous.
That is to say, for any x ∈ Bδ(Γ(SL)) there is exactly one s(x) ∈ SL such
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that ΠΓ(x) := Γ(s(x)) satisfies

dist(x, Γ(SL)) = |Γ(s(x))− x|,

and ΠΓ(x) is a continuous function of x ∈ Bδ(Γ(SL)).

Proposition 3.1. Consider γ ∈ L with K[γ] < ∞ and let Γ ∈ C1,1(SL, R3)
denote its corresponding arc length parameterization. Let θ > 0 be a given
constant and Dθ(z, z

′) be the disk of radius θ centred at z, perpendicular to
z′ 6= 0. Then

(i) Bθ(Γ(SL)) is regular if and only if K[γ] ≤ θ−1,

(ii) ΠΓ has the property Π−1
Γ (Γ(s0)) ∩ Bθ(Γ(SL)) = Dθ(Γ(s0), Γ

′(s0)) for
every s0 ∈ SL, if Bθ(Γ(SL)) is regular.

Items (i) and (ii) imply that the regularity of the tubular neighbourhood
Bθ(Γ(SL)) is equivalent to the condition R[γ] ≥ θ, and that Bθ(Γ(SL)) is the
envelope of disjoint disks Dθ(Γ(s0), Γ

′(s0)). Since each point x ∈ Bθ(Γ(SL))
is in a unique disk Dθ(Γ(s0), Γ

′(s0)) normal to the curve, we deduce that
Bθ(Γ(SL)) has the structure of a uniform tube of radius θ centred on γ.
Moreover, according to item (i), any tubular neighbourhood of radius larger
than R[γ] would fail to have this structure, which strongly justifies the for-
mulation of the excluded volume constraint as a prescribed upper bound on
the global curvature K[γ]. In addition, continuity and compactness proper-
ties of K[.] on certain subsets of L, which are treated in Section 4, turn out
to be valuable in proving various existence results involving elastic rods and
ideal knots, see [12].

The excluded volume constraint for γ ∈ L with arc length parameteri-
zation Γ : SL → R3, can be rephrased in terms of a deformation mapping
p : Ω → R3 defined as

(37) p(s, ξ1, ξ2) = Γ(s) + ξ1d1(s) + ξ2d2(s) for (s, ξ1, ξ2) ∈ Ω,

where Ω is the open3 parameter set given by

Ω := { (s, ξ1, ξ2) ∈ R3 | s ∈ SL, ξ2
1 + ξ2

2 < θ2}.
3Notice that in [16] we consider the closed parameter sets in accordance with the

majority of works on elastic rods, see, e.g., [1].
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Here, Γ : SL → R3 describes the closed centreline of the deformed ring-shaped
body p(Ω), which might be considered as elastic rod, see [1]. d1(s), d2(s) are
orthogonal unit vectors describing the orientation of the deformed cross-
section at s ∈ SL. We interpret s as length parameter and ξ1, ξ2 as thickness
parameters of the rod. With

d3 := d1 ∧ d2

we get a right-handed orthonormal basis {d1, d2, d3} at each s ∈ SL, whose
vectors are called directors, and which can be identified with an orthogonal
matrix D = (d1|d2|d3) ∈ SO(3) (the right-hand side denotes the matrix with
columns d1, d2, d3). We assume that D : SL → SO(3) is continuous and that

(38) Γ′(s) = d3(s) for all s ∈ SL,

which models unshearability for the rod, i.e., cross sections remain orthogonal
to the centreline. The pair (Γ, D), which we call framed curve, uniquely
determines a deformed configuration of the rod.

A closed framed curve is given by the conditions

(39) Γ(0) = Γ(L), d3(0) = d3(L),

which means that the centreline Γ is a closed curve and that the cross-sections
of the rod at s = 0 and s = L coincide.

We have seen above that the constraint K[γ] ≤ θ−1 prevents the tube
Bθ(γ(Ī)) from self-intersecting. However, as a model for a physical object,
it is the points of p(Ω) that are naturally identified with material points,
and the excluded volume constraint should guarantee the global injectivity
of the mapping p : Ω → R3. The following theorem shows that the condition
K[γ] ≤ θ−1 is in fact equivalent to global injectivity of p.

Theorem 3.2. Consider a closed framed curve (Γ, D), where Γ is the arc
length parameterization of γ ∈ L and where D ∈ C0(SL, SO(3)). Suppose
that K[γ] < ∞ and that (38) holds. Then p : Ω → R3 is globally injective if
and only if K[γ] ≤ θ−1.

Condition (38) allows us to identify the deformed rod p(Ω) with Bθ(Γ(SL))
and the result follows from the regularity of Bθ(Γ(SL)) as discussed above.
When Γ′ is not parallel to d3, however, the condition K[γ] ≤ θ−1 does not
imply global injectivity of p and vice versa. Notice that p(Ω) itself is not a
uniform tube of radius θ if Γ′ ·d1 or Γ′ ·d2 is non-zero. An alternative approach
to obtain global injectivity also for this general case is given in [15].
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4 Continuity properties and topological con-

straints

Here we examine the properties of global curvature considered as a functional
on the space L of continuous rectifiable closed curves as well as its impact
on the topological constraint of a given isotopy class on a subset of curves in
L and of a given link class on closed framed curves.

Since one is interested in compactness properties for sequences of loops in
L, compare [12], we are going to analyze the behaviour of the function K[.]
on sequences in L that converge uniformly. Our first result in that direction
states that the set of curves γ ∈ L with bounded length L(γ) ≤ L0 < ∞,
satisfying K[γ] ≤ θ−1 < ∞ is closed with respect to uniform convergence.

Lemma 4.1. Let L0, θ > 0 be fixed. Then the set

F1 := {γ ∈ L : L(γ) ≤ L0 and K[γ] ≤ θ−1}

is closed in C0(Ī , R3), i.e., with respect to uniform convergence.

In order to deal with minimization problems on isotopy (or knot) classes of
closed curves, one has to investigate under which circumstances the isotopy
relation is conserved. This is important for compactness arguments in the
existence theory, see [12], but also for the variational aspects when deriving
the Euler-Lagrange equations, see [16]. For that we recall the definition of
isotopy:

Two continuous closed curves K1, K2 ⊂ R3 are isotopic, denoted as K1 '
K2, if there are open neighbourhoods N1 of K1, N2 of K2, and a continuous
mapping Φ : N1 × [0, 1] → R3 such that Φ(N1, τ) is homeomorphic to N1 for
all τ ∈ [0, 1], Φ(x, 0) = x for all x ∈ N1, Φ(N1, 1) = N2, and Φ(K1, 1) = K2.

Roughly speaking, two curves are in the same isotopy class if one can be
continuously deformed onto the other.

Proposition 4.2. Let γ ∈ L satisfy

(40) K[γ] ≤ θ−1

for some fixed constant θ > 0. Then there exists ε = ε(γ, θ) > 0, such that
for all curves γ̃ ∈ L with K[γ̃] ≤ θ−1 and

(41) ‖γ − γ̃‖C0 ≤ ε,

one has γ(Ī) ' γ̃(Ī).
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The statement of the lemma is no longer true if one removes the assumptions
on the global curvature, small knotted regions might pull tight in the uniform
topology. As an immediate consequence of Proposition 4.2 we get

Theorem 4.3. Let L0, θ > 0 be fixed and K ∈ L be a given simple closed
curve. Then the set

F2 := {γ ∈ L : L(γ) ≤ L0, γ(Ī) ' K,K[γ] ≤ θ−1}

is closed in C0(Ī , R3), i.e., with respect to uniform convergence.

The next theorem provides an important continuity property of K[.] on
some subset of L which is also an essential ingredient for our variational
approach in [16].

Theorem 4.4. Let L∗ ⊂ L be the set of curves γ ∈ L of fixed length L(γ) =
L > 0, with the property that the corresponding arc length parameterization
Γ is of class C1,1([0, L], R3). Then K[.] (and hence R[.]) is continuous on L∗
with respect to convergence of the corresponding arc length parameterizations
in C1,1([0, L], R3).

Cantarella et al. [4] have pointed out that R[.] is merely upper semicontin-
uous with respect to uniform convergence on the space of Lipschitz curves,
and that R[.] can actually jump upwards in a limit even for C1-convergence.
For instance, consider a circle which is approximated in C1 by a sequence of
curves Γn such that ‖Γ′′n‖L∞ →∞.

A closed framed curve satisfying (38) consists of a base curve Γ and
an associated frame field D, both of which can be subjected to topological
restrictions. We have discussed above how to prescribe knot classes for the
base curve incorporating the concept of isotopy. Moreover, if we fix the
rotation between the terminal frames D(0) and D(L) there are still infinitely
many topologically distinct components in the space of closed framed curves
within the same isotopy class for the base curve, which may be seen as follows.

If one prescribes the knot type for the centreline and if one glues together
the terminal frames at s = 0 and s = L such that d3(0) = d3(L) and, for
simplicity, d1(0) = d1(L) hold, one has not entirely fixed the topological type
of the framed curve. Indeed, every full rotation of the pair d1(L), d2(L) within
the cross section respects the boundary conditions, but changes the linking
number between the centrecurve and the curve Γ(.) + (θ/2)d1(.), which is a
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topological invariant. Since such a change of topological type is accompanied
by an (often drastic) change of the equilibrium configuration for an elastic
rod, we need to prescribe the linking number in order to identify particular
solutions, see also the discussion in [2]. The approach in [12] using the concept
of homotopies in SO(3) distinguishes only two topologically different classes,
since the fundamental group of SO(3) is Z2.

One way to determine the link between two disjoint closed (but not nec-
essarily simple) curves is to compute the Gaussian linking number, which is
usually defined in terms of the topological degree, see, e.g., [17, p. 402]. For
a pair of absolutely continuous disjoint curves, however, there is an analyti-
cally more convenient formula, which we adopt as definition for the linking
number. For γ1, γ2 ∈ L ∩ W 1,1(I, R3) with γ1(Ī) ∩ γ2(Ī) = ∅, the linking
number l(γ1, γ2) is given by

(42) l(γ1, γ2) :=
1

4π

∫
I

∫
I

γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3
· [γ′1(s) ∧ γ′2(t)] ds dt.

One can show that l(γ1, γ2) is integer-valued and stable with respect to
smooth perturbations preserving the non-intersection property. Before we
use the linking number to identify topological classes of closed framed curves
we present some general properties.

Lemma 4.5. (i) Let γ1,n, γ2,n ∈ L ∩W 1,q(I, R3), q > 1, n ∈ N, with
γ1,n ⇀ γ1, γ2,n ⇀ γ2 in W 1,q(I, R3), and let

dist (γ1,n(Ī), γ2,n(Ī)) ≥ c for all n ∈ N,(43)

l(γ1,n, γ2,n) = l0 for all n ∈ N,(44)

where c > 0, l0 ∈ Z are given constants. Then l(γ1, γ2) = l0.
(ii) Let γ1, γ2 ∈ L ∩W 1,q(I, R3), q > 1, such that

(45) γ1(Ī) ∩ γ2(Ī) = ∅.

Then there is a constant ε = ε(γ1, γ2) > 0, such that β1(Ī) ∩ β2(Ī) = ∅, and
l(γ1, γ2) = l(β1, β2) for all β1, β2 ∈ L ∩ W 1,q(I, R3) with ‖γi − βi‖W 1,q ≤ ε,
i = 1, 2.

For a closed framed curve respecting (38) we want to consider the linking
number of the curves Γ(.) and Γ(.)+(θ/2)d1(.). The problem here is that the
second curve might not be closed and that the two curves might intersect each
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other. The first problem can be solved by closing the curve Γ(.) + (θ/2)d1(.)
up in a unique way, namely by

(46) βD(s) :=


Γ(s) + θ

2
d1(s) for s ∈ [0, L],

Γ(L) + θ
2
[cos(φD(s− L))d1(L) + sin(φD(s− L))d2(L)]

for s ∈ [L, L + 1],

where φD ∈ [0, 2π) is the angle between d1(0) and d1(L), such that φD − π
has the same sign as (d1(0)∧ d1(L)) · d3(0). For technical reasons we identify
Γ with its trivial extension onto [0, L + 1] according to

(47) Γ(s) := Γ(L) for s ∈ [L, L + 1].

Notice that Γ, βD ∈ W 1,q([0, L + 1], R3), 1 ≤ q ≤ ∞, if Γ ∈ W 1,q([0, L], R3),
and that Γ and βD are closed. Demanding the global curvature bound K[Γ] ≤
θ−1 we ensure that

(48) Γ([0, L + 1]) ∩ βD([0, L + 1]) = ∅

by Theorem 3.2. Thus the linking number of a closed framed curve (Γ, D)
satisfying (38), K[Γ] ≤ θ−1, Γ ∈ W 1,1([0, L], R3) and D ∈ W 1,1([0, L], R3×3),
is well-defined by

(49) l(Γ, D) := l(Γ, βD).

Lemma 4.5 now readily implies the following properties of l(Γ, D), which are
needed to derive existence results along the lines of [12] and to verify the
Euler-Lagrange equations as necessary minimality conditions as carried out
in [16], see also [19].

Theorem 4.6. (i) Let Γn ⇀ Γ in W 1,q([0, L], R3), q > 1, Dn ⇀ D in
W 1,p([0, L], R3×3), p > 1, for a sequence (Γn, Dn) of closed framed
curves respecting (38), K[Γn] ≤ θ−1, and

(50) l(Γn, Dn) = l(Γ1, D1) for all n ∈ N.

Then l(Γ, D) is well-defined and l(Γ, D) = l(Γ1, D1).

(ii) Let (Γ, D) ∈ W 1,q([0, L], R3) ×W 1,p([0, L], R3×3), p, q > 1, be a closed
framed curve satisfying (38). Then there is ε > 0, such that

(51) l(Γ, D) = l(Γ̃, D̃)
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for all closed framed curves (Γ̃, D̃) ∈ W 1,q([0, L], R3)×W 1,p([0, L], R3×3)
satisfying (38) and

(52) ‖Γ− Γ̃‖W 1,q ≤ ε, ‖D − D̃‖W 1,p ≤ ε.

5 Proofs

We will first prove two technical lemmas, which will be quite useful in later
proofs, too. The first one concerns the approximate limes superior and infe-
rior of integrable bounded functions as defined, e.g., in [6, p.47].

Lemma 5.1. Let f ∈ L∞(Ω) for some open set Ω ⊂ Rn and let x ∈ Ω.
Suppose Er ⊂ Br(x) such that there is a constant c with

(53) |Br(x)| ≤ c|Er| for all r > 0.

Then

ap lim inf
z→x

f(z) ≤ lim inf
r→0

∫
−
Er

f(y) dy

≤ lim sup
r→0

∫
−
Er

f(y) dy ≤ ap lim sup
z→x

f(z).(54)

If x is a Lebesgue point of f , then (54) holds with equality everywhere, and
the limes superior and limes inferior may be replaced by the limit.

Proof. The approximate limes superior of f as z → x ∈ Ω is defined as

a := ap lim sup
z→x

f(z) := inf{s : lim
r↓0

|Br(x) ∩ {f > s}|
|Br(x)|

= 0}.

We may assume that 0 ≤ a < ∞ (otherwise consider f + ‖f‖L∞). Thus for
any ā > a,∫

−
Er

f(y)dy =
1

|Er|

[∫
Er∩{f>ā}

f(y) dy +

∫
Er∩{f≤ā}

f(y) dy

]
=: I + II.(55)
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Then we estimate

I =
1

|Er|

∫
Er∩{f>ā}

f(y) dy

≤ ‖f‖L∞ ·
|Er ∩ {f > ā}|

|Er|

≤
(53)

c‖f‖L∞ ·
|Br ∩ {f > ā}|

|Br|
= o(1) as r → 0,(56)

as well as

II =
1

|Er|

∫
Er∩{f≤ā}

f(y) dy

≤ ā · |Er ∩ {f ≤ ā}|
|Er|

≤ ā.(57)

Inserting (56) and (57) into (55) gives the right inequality in (54). One pro-
ceeds analogously for the left inequality. The last statement follows from the
well-known fact that an integrable function is approximate continuous at all
its Lebesgue points, in which case equality holds everywhere in (54), see [6,
p.48]. 2

The second lemma gives an explicit representation of the circumcircle
radius R of three different points on a curve γ whose arc length parameteri-
zation Γ possesses weak second derivatives.

Lemma 5.2. Let γ ∈ L be simple with arc length parameterization Γ ∈
W 2,1([0, L], R3). For s1, s2, s3 ∈ SL with s1 < s2 < s3, one has

(58) R(Γ(s1), Γ(s2), Γ(s3)) =

∏3
i,k=1
i<k

C(si, sk)

2|A(s1, s2, s3) + (s2 − s1)B(s1, s2, s3)|
,
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where

C(si, sk) := |Γ′(sk) +

si∫
−
sk

∫ t

sk

Γ′′(ω) dω dt|, i 6= k,(59)

A(s1, s2, s3) := Γ′(s2) ∧
∫ 1

0

t

s2+t(s3−s2)∫
−

s2−t(s2−s1)

Γ′′(ω) dω dt,(60)

B(s1, s2, s3) :=

∫ 1

0

t

s2−t(s2−s1)∫
−
s2

Γ′′(ω) dω dt(61)

∧
∫ 1

0

t

s2+t(s3−s2)∫
−

s2−t(s2−s1)

Γ′′(ω) dω dt.

If s ∈ SL is a Lebesgue point of Γ′′, and if sj < σj < τj, with (sj, σj, τj) →
(s, s, s) as j →∞, such that

(62) rj := max{|s− sj|, |s− τj|} ≤ c(τj − sj),

where c > 0 is a constant independent of j, then

(63) lim
j→∞

R(Γ(sj), Γ(σj), Γ(τj)) = |Γ′′(s)|−1.

If |Γ′′(s)| = 0, then (63) means that R(Γ(sj), Γ(σj), Γ(τj)) →∞ as j →∞.

Proof. Let us assume that Γ(si), i = 1, 2, 3, are not collinear. (They are
distinct, since γ is simple and si 6= sk for i 6= k.) Without loss of generality we
assume that |s1−s2| ≤ |s2−s3|, (otherwise we choose a different substitution
to derive (66) below). We consider the expansions

Γ(si)− Γ(sk) =

∫ si

sk

(Γ′(τ)− Γ′(sk)) dτ + (si − sk)Γ
′(sk)

= (si − sk)

Γ′(sk) +

si∫
−
sk

∫ t

sk

Γ′′(ω) dω dt

 ,(64)
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Γ(si)− Γ(sk) =

∫ 1

0

Γ′(sk + t(si − sk)) dt(si − sk)

= (si − sk)

∫ 1

0

[
Γ′(sk) + t(si − sk)

∫ 1

0

Γ′′(sk + σt(si − sk)) dσ

]
dt

= Γ′(sk)(si − sk) + (si − sk)
2

∫ 1

0

t

∫ 1

0

Γ′′(sk + σt(si − sk)) dσ dt.(65)

In particular, substituting ρ(σ) := σ(s1 − s2)/(s3 − s2), we deduce

Γ(s1)− Γ(s2) = Γ′(s2)(s1 − s2)

+(s1 − s2)(s3 − s2)

∫ 1

0

t

∫ s1−s2
s3−s2

0

Γ′′(s2 + tρ(s3 − s2)) dρ dt.(66)

Using (65) and (66) we compute

|(Γ(s1)− Γ(s2)) ∧ (Γ(s3)− Γ(s2))|

=
∣∣∣[Γ′(s2)(s1 − s2) + (s1 − s2)(s3 − s2)

∫ 1

0

t

∫ s1−s2
s3−s2

0

Γ′′(s2 + tρ(s3 − s2)) dρ dt
]

∧
[
Γ′(s2)(s3 − s2) + (s3 − s2)

2

∫ 1

0

t

∫ 1

0

Γ′′(s2 + tρ(s3 − s2)) dρ dt
]∣∣∣

=
∣∣∣Γ′(s2)(s3 − s2)

2(s1 − s2) ∧
∫ 1

0

t

∫ 1

s1−s2
s3−s2

Γ′′(s2 + tρ(s3 − s2)) dρ dt

+(s1 − s2)(s3 − s2)
3

∫ 1

0

t

∫ s1−s2
s3−s2

0

Γ′′(s2 + tρ(s3 − s2)) dρ dt

∧
∫ 1

0

t

∫ 1

s1−s2
s3−s2

Γ′′(s2 + tσ(s3 − s2)) dσ dt
∣∣∣
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With a suitable substitution we get

|(Γ(s1)− Γ(s2)) ∧ (Γ(s3)− Γ(s2))|

=
∣∣∣Γ′(s2)(s3 − s2)(s1 − s2) ∧

∫ 1

0

∫ s2+t(s3−s2)

s2−t(s2−s1)

Γ′′(ω) dω dt

+(s1 − s2)(s3 − s2)

∫ 1

0

∫ s2−t(s2−s1)

s2

Γ′′(ω) dω dt

∧
∫ 1

0

∫ s2+t(s3−s2)

s2−t(s2−s1)

Γ′′(ω) dω dt
∣∣∣

= |s3 − s2||s1 − s2||s3 − s1|
∣∣∣Γ′(s2) ∧

∫ 1

0

t

s2+t(s3−s2)∫
−

s2−t(s2−s1)

Γ′′(ω) dω dt

+(s2 − s1)

∫ 1

0

t

s2−t(s2−s1)∫
−
s2

Γ′′(ω) dω dt ∧
∫ 1

0

t

s2+t(s3−s2)∫
−

s2−t(s2−s1)

Γ′′(ω) dω dt
∣∣∣ .(67)

Inserting (67) and (64) in (2) one verifies (58).

If Γ(si), i = 1, 2, 3, are collinear, then the right-hand side of (2) has van-
ishing denominator, which is then also true for the right-hand side in (58).
That corresponds to an infinite value for R(Γ(s1), Γ(s2), Γ(s3)) in its defini-
tion.

To prove (63) we apply (54) in Lemma 5.1 to the mean value expression
in the term A(sj, σj, τj) as defined in (60) of Lemma 5.2. We set x = s,
f := (Γk)′′, k = 1, 2, 3, replace Er in Lemma 5.1 by the set

Et
j := [σj − t(σj − sj), σj + t(τj − σj)]

and Br by the Brj
(s). For given ε > 0 we choose δ := ε‖Γ′′‖−1

L∞/2. Notice
that (62) implies |Brj

| ≤ c|Et
j|/δ, i.e., condition (53) in Lemma 5.1 for each

t ≥ δ. According to the last statement of Lemma 5.1 we get

lim
j→∞

∫
−
Et

j

Γ′′(ω) dω = Γ′′(s) for all t ∈ [δ, 1].
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Since Γ′′ ∈ L∞([0, L], R3) we may apply the Dominated Convergence Theo-
rem to conclude

lim
j→∞

∫ 1

δ

t

∫
−
Et

j

Γ′′(ω) dωdt = Γ′′(s)

[
1− δ2

2

]
.

Hence there is j0 such that for all j ≥ j0∫ 1

0

t

∫
−
Et

j

Γ′′(ω) dωdt = Γ′′(s)

[
1− δ2

2

]
+ ε

by our choice of δ. Since δ → 0 as ε → 0 we have shown

lim
j→∞

∫ 1

0

t

∫
−
Et

j

Γ′′(ω) dωdt = Γ′′(s)/2,

hence

lim
j→∞

A(sj, σj, τj) = Γ′(s) ∧ Γ′′(s)/2.

Since B is bounded by ‖Γ′′‖2
L∞/4, and the numerator in (58) for s1 = sj, s2 =

σj, s3 = τj, converges to 1 as j → ∞, the claim follows from the fact that
|Γ′(σ)| = 1, i.e., Γ′(σ) ⊥ Γ′′(σ) for all σ ∈ SL. 2

Proof of Theorem 2.1. Part (i) was proved in [12, Lemma 1], and can
be seen as follows: If there are s, t ∈ SL, t 6= s with Γ(s) = Γ(t), then, by
definition of ρG[γ] and R(x, y, z), we have

ρG[γ](s) = inf{ R(Γ(s), Γ(σ), Γ(τ)) | σ, τ ∈ SL\{s}, σ 6= τ }
≤ inf{ R(Γ(s), Γ(t), Γ(τ)) | τ ∈ SL\{s, t} }
= inf{ |Γ(s)− Γ(τ)|/2 | τ ∈ SL\{s, t} }
= 0,

and similarly for ρG[γ](t).

Part (ii) is shown in several steps. For simplicity we set ρ := ρ[γ](s).
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1. Consider a connected subarc A1 := Γ([s, σ1]) with fixed endpoints P0 :=
Γ(s) and P1 := Γ(σ1), s 6= σ1, and suppose that diam A1 < 2ρ and
|P1−P0| < ρ/2, which is possible by choosing |σ1−s| sufficiently small.
Moreover, taking |σ1− s| even smaller if necessary, we can assume that
Γ(τ) 6= Γ(σ1) for all τ ∈ (s, σ1), otherwise we could find a sequence
τi → s with Γ(τi) = Γ(σ1), which would imply that Γ(s) = Γ(σ1). But
Γ(s) is not a double point by virtue of part (i), because ρ > 0.

Let l1 be the lens-shaped intersection of all open balls of radius ρ con-
taining P0 and P1 on their boundaries, i.e.,

(68) l1 :=
⋂

z∈C(P0,P1)

Bρ(z),

where C(P0, P1) := {z ∈ R3 | |z − P0| = |z − P1| = ρ}. We claim that

(69) A1 ⊂ l1.

To see this, suppose for contradiction that A1 6⊂ l1 and consider the set

(70) Ξ :=
⋃

z∈C(P0,P1)

Bρ(z).

Then, using the facts, that the open arc Γ((s, σ1)) does not intersect
Γ(s) or Γ(σ1), that diam A1 < 2ρ and that |P1 − P0| < ρ/2, we deduce
that there must be a point P̄ ∈ (A1∩Ξ)\l1. (Notice that there is indeed
such a point P̄ , otherwise we would have diam A1 ≥ 2ρ, because any
curve in R3\Ξ connecting P0 and P1 must have diameter at least as large
as the great circle on ∂Bρ(z) connecting P0 and P1 outside of l1 for any
of the balls Bρ(z) that generate Ξ. Moreover, since |P1 − P0| < ρ/2,
the portion of such a great circle has diameter 2ρ.)

Now we find that

(71) R(P0, P1, P̄ ) =
|P1 − P0|
2 sin ᾱ

< ρ, where ᾱ := <)(P0− P̄ , P1− P̄ ).

Since this contradicts the definition of ρG[γ](s) = ρ, we must have
A1 ⊂ l1 as claimed.

The result in (71) may be seen by considering the intersection of Ξ with
the plane containing the three non-collinear points P0, P1 and P̄ . This
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intersection may be described by two overlapping planar disks Dρ(z1)
and Dρ(z2) of radius ρ, where ∂Dρ(z1) ∩ ∂Dρ(z2) = {P0, P1}, and we

may assume without loss of generality that P̄ ∈ Dρ(z1)\Dρ(z2). ¿From
elementary geometry we recall that, for any ξ ∈ ∂Dρ(z1)\{P0, P1}, we
have ρ = |P1 − P0|/(2 sin β) where β := <)(P0 − ξ, P1 − ξ). To establish
(71), we first suppose that ᾱ ∈ (0, π/2). In this case we may choose
ξ ∈ ∂Dρ(z1)\Dρ(z2) such that β ∈ (0, ᾱ), i.e., sin β < sin ᾱ, which
implies (71). If we suppose that ᾱ ∈ [π/2, π), then we may choose
ξ ∈ ∂Dρ(z1) ∩ Dρ(z2) such that β ∈ (ᾱ, π), i.e., sin β < sin ᾱ, which
also implies (71).

2. Given s, σ1 ∈ SL as above, we next consider a sequence σn ↓ s (n ≥ 1).
We introduce Pn := Γ(σn), An := Γ([s, σn]) and the lens-shaped region
ln defined by P0, Pn and ρ > 0 in analogy to l1 in step 1. Moreover, for
each n ≥ 1, we introduce the tangent cone Tn of ln in P0 as

Tn := {x ∈ R3 | x = λ(q − P0), λ ≥ 0, q ∈ ln }.

Since |Pn−P0| < ρ/2 and diam An < 2ρ we may use the same argument
as in step 1 to conclude

(72) An ⊂ ln, ∀n ∈ N.

Furthermore, by straightforward geometrical arguments we also find

(73) ln+1 ⊂ ln and Tn+1 ⊂ Tn, ∀n ∈ N.

3. Let αn be the opening angle of the cylindrical cone Tn. Since 0 <
|Pn − P0| < ρ/2 and

(74) sin(αn/2) =
|Pn − P0|

2ρ

we deduce αn ∈ (0, π/2). Moreover, since |Pn − P0| → 0 we deduce
αn → 0 as n →∞.

4. For each n ≥ 1 we introduce a unit vector

tn := (Pn − P0)/|Pn − P0| ∈ S2,
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which is well-defined since |Pn−P0| > 0 for each n ∈ N by part (i). By
definition of the cone Tn we have tn ∈ Tn, and since Tm ⊂ Tn (m ≥ n)
and the opening angles satisfy αn → 0, we deduce that {tn}n∈N ⊂ S2

is a Cauchy sequence. Therefore we find a vector

tR(s) := lim
n→∞

Γ(σn)− Γ(s)

|Γ(σn)− Γ(s)|
∈ S2.

Notice that tR(s) does not depend on the choice of sequence σn ↓ s.
In fact, assuming that a different sequence σ′n ↓ s leads to a different
unit vector t′R(s) 6= tR(s), we arrive at a contradiction. In particular,
the mixed sequence {σ′′n} := {σ1, σ

′
1, σ2, σ

′
2, . . .} would lead to a Cauchy

sequence of unit vectors with no unique limit. Thus we must have
t′R(s) = tR(s). Analogously we can argue for τk ↑ s to find a limit
vector tL with

tL(s) := lim
k→∞

Γ(s)− Γ(τk)

|Γ(s)− Γ(τk)|
∈ S2.

5. We claim that tR(s) = tL(s). To see this, assume for contradiction that
tR(s) 6= tL(s). Consider the lens-shaped regions

lRn :=
⋂

z∈C(P0,Γ(σn))

Bρ(z) and lLk :=
⋂

z∈C(P0,Γ(τk))

Bρ(z),

and the unit vectors

tL,k := (Γ(τk)− Γ(s))/|Γ(τk)− Γ(s)|,
tR,n := (Γ(σn)− Γ(s))/|Γ(σn)− Γ(s)|.

By similar arguments as in step 1 we deduce that

Γ([τk, s]) ∩ lRn = ∅,(75)

Γ([s, σn]) ∩ lLk = ∅(76)

for all sufficiently large n, k ∈ N. In fact, we may take τ1 and σ1 so
close to s such that

(77) Γ(t) 6= Γ(σ) for all t ∈ [τ1, s) and for all σ ∈ (s, σ1].
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Otherwise, by the definition of R(., ., .) we could find sequences ti ↑ s
and σi ↓ s with

R(Γ(s), Γ(ti), Γ(σi)) =
|Γ(s)− Γ(ti)|

2
−→ 0 as i →∞,

contradicting the fact that R(Γ(s), Γ(ti), Γ(σi)) ≥ ρ > 0 for all i ∈ N.
Thus (77) is valid.

To prove (75),(76) we assume for contradiction that for all k ∈ N we
find points Pk ∈ Γ([τk, s)) ∩ lRn , with Pk 6= Γ(s). Note that Pk → Γ(s)
as k → ∞. Then for k sufficiently large one can find a sphere S with
center on the straight line segment connecting Γ(s) and Γ(σn) with
diameter d(S) satisfying

d(S) ≤ |Γ(s)− Γ(σn)|
2

< ρ/4,

and such that S contains Γ(s) and Pk. On the other hand, Γ((s, σn)) ⊂
lRn , and Γ(σ) → Γ(s) as σ ↓ s, hence by connectedness of the arc
Γ((s, σn)) we can find P̄ ∈ Γ((s, σn))∩S with P̄ 6= Γ(s), and with P̄ 6=
Pk by (77). Intersecting the plane E spanned by Γ(s), Pk and P̄ with
S produces a circle C with radius R(C) ≤ d(S)/2 ≤ ρ/4 containing
the three curve points Γ(s), P̄ , Pk, which contradicts the definition of
ρ = ρG[γ](s). This proves (75), and (76) is shown in an analogous way.

Because of (75) and (76) the angle ϑ ∈ [0, π] between tR(s) and −tL(s)
satisfies 0 < ϑ < π. Moreover, since

lim
k,n→∞

<)(tL,k, tR,n) = ϑ

and
lim
k→∞

Γ(τk) = lim
n→∞

Γ(σn) = Γ(s)

we deduce that

lim
k,n→∞

R(Γ(τk), Γ(σn), Γ(s)) = lim
k,n→∞

|Γ(τk)− Γ(σn)|
2 sin <)(tL,k, tR,n)

= 0,

which contradicts the lower bound

R(Γ(s), Γ(σn), Γ(τk)) = R(Γ(τk), Γ(σn), Γ(s)) ≥ ρ > 0.

Thus we must have tR(s) = tL(s) = T (s) as claimed.
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6. If s0 is a parameter where Γ is differentiable, then Γ′(s0) = T (s0). This
follows from the fact that, if Γ is differentiable at s0, then |Γ′(s0)| = 1
and

(78) Γ(σn)− Γ(s0) = Γ′(s0)(σn − s0) + o(|σn − s0|)

for any sequence σn ↓ s0. The result follows since

Γ(σn)− Γ(s0)

|Γ(σn)− Γ(s0)|
=

Γ′(s0)(σn − s0) + o(|σn − s0|)
|σn − s0|

·
[
1− o(|σn − s0|)

|σn − s0|

]
and o(|σn − s0|)/|σn − s0| → 0 as |σn − s0| → 0. This concludes the
proof of (11) and of part (ii).

Part (iii): Let K[γ] < ∞, i.e., R[γ] > 0, then by part (i) γ is simple.
If Γ is differentiable at σ1, σ2 ∈ SL, then

|Γ′(σ1)− Γ′(σ2)| ≤ K[γ]|σ1 − σ2|.

To establish this result, we consider first the case when |Γ(σ1) − Γ(σ2)| <
R[γ]/2. Let l1 be the lens-shaped region as in (68) with ρ, P0, P1 replaced
by R[γ], Γ(σ1), Γ(σ2), respectively. In this case we have Γ′(σ1) ∈ T1, and
by symmetry Γ′(σ2) ∈ T1, where T1 is the tangent cone of l1 in Γ(σ1) with
opening angle α1 ∈ (0, π/2) as defined in the second step of the proof of part
(ii). (Notice that for all s ∈ SL we have ρG[γ](s) ≥ R[γ] > 0 by definition of
R[γ].) Using the fact that

sin(α1/2) = |Γ(σ1)− Γ(σ2)|/2R[γ]

together with the law of cosines we find

|Γ′(σ1)− Γ′(σ2)| ≤
√

2− 2 cos α1

= |Γ(σ1)− Γ(σ2)|/R[γ] ≤ K[γ]|σ1 − σ2|,
(79)

as claimed. In the case when |Γ(σ1)−Γ(σ2)| ≥ R[γ]/2 the result is still true.
In particular, the arc [σ1, σ2] ⊂ SL may be divided into subarcs [τi, τi+1] ⊂ SL

(i = 1, . . . m) such that τi are points of differentiability (which is possible
since Γ is Lipschitz continuous and hence differentiable almost everywhere),
σ1 = τ1, σ2 = τm+1 and |Γ(τi) − Γ(τi+1)| < R[γ]/2. Applying (79) to the
subarcs [τi, τi+1] and summing yields the required result.
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We can now show that Γ ∈ C1,1(SL, R3) and that Γ′ has Lipschitz constant

K[γ]. To begin, we consider first the subset S̃L of SL where Γ is differentiable.

Since S̃L is dense in SL and by (79) the map Γ′ : S̃L → R3 is uniformly
continuous, we deduce that there is a unique uniformly continuous extension
V : SL → R3. In particular, V ∈ C0,1(SL, R3) with Lipschitz constant K[γ].
To see that this implies Γ ∈ C1,1(SL, R3), let σ0 ∈ SL be given and note that
since Γ ∈ C0,1(SL, R3) is absolutely continuous we have

Γ(σn)− Γ(σ0) =

∫ σn

σ0

Γ′(τ) dτ =

∫ σn

σ0

V (τ) dτ,

which implies
Γ(σn)− Γ(σ0)

σn − σ0

=
1

σn − σ0

∫ σn

σ0

V (τ) dτ

for any σn 6= σ0. Since V ∈ C0,1(SL, R3) the limit σn → σ0 is well-defined,
i.e., Γ′(σ0) exists and

Γ′(σ0) = V (σ0), ∀σ0 ∈ SL.

Thus Γ′ ∈ C0,1(SL, R3) with Lipschitz constant K[γ], which finishes the proof
of necessity in part (iii).

Conversely, if γ is simple and Γ ∈ C1,1([0, L], R3), we take a minimal
sequence of triples of distinct parameters sj, σj, τj ∈ SL for R[γ] using the
characterization (6). Taking a subsequence we may assume that

(sj, σj, τj) → (s, σ, τ) ∈ SL × SL × SL,

since SL is compact, and we are going to look at the different possible limit
cases, where we will repeatedly use (9).

Case I. If s 6= σ 6= τ 6= s then also Γ(s) 6= Γ(σ) 6= Γ(τ) 6= Γ(s), since Γ is
simple by assumption. This means that according to the representation (2)

R[γ] = lim
j→∞

R(Γ(sj), Γ(σj), Γ(τj))

=
|Γ(s)− Γ(σ)|∣∣∣ Γ(s)−Γ(τ)

|Γ(s)−Γ(τ)| ∧
Γ(σ)−Γ(τ)
|Γ(σ)−Γ(τ)|

∣∣∣ ,(80)

unless Γ(sj), Γ(σj) and Γ(τj) are collinear for infinitely many j ∈ N, in which
case R[γ] = ∞, i.e., K[γ] = 0. (In fact, the latter cannot occur for closed
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curves γ ∈ L according to Lemma 2.2.) If Γ(sj), Γ(σj) and Γ(τj) are not
collinear, the denominator on the right of (80) is positive and bounded from
above by 2, whereas the numerator does not vanish, since γ is assumed to be
simple, hence R[γ] > 0, i.e., K[γ] < ∞.

Case II. If two but not all of the three parameters s, σ, τ coincide, say
s = σ 6= τ , then we can use (2) again for R(Γ(sj), Γ(σj), Γ(τj)). Before going
to the limit we select a subsequence such that the difference sj − σj has the
same sign for all j. Then by the same argument as in step 6 of the proof for
part (ii), in particular by (78), we obtain

(81) lim
j→∞

Γ(sj)− Γ(σj)

|Γ(sj)− Γ(σj)|
= ±Γ′(s).

Consequently, using the symmetry of R(., ., .),

R[γ] = lim
j→∞

R(Γ(sj), Γ(σj), Γ(τj))

= lim
j→∞

R(Γ(τj), Γ(sj), Γ(σj))

= lim
j→∞

|Γ(τj)− Γ(sj)|

2
∣∣∣ Γ(τj)−Γ(σj)

|Γ(τj)−Γ(σj)| ∧
Γ(sj)−Γ(σj)

|Γ(sj)−Γ(σj)|

∣∣∣
=

|Γ(τ)− Γ(s)|

2
∣∣∣ Γ(τ)−Γ(s)
|Γ(τ)−Γ(s)| ∧ Γ′(s)

∣∣∣ ,(82)

where the denominator is bounded from above by 2, and the numerator is
different from 0 as before, since γ is simple, hence R[γ] > 0 and K[γ] < ∞
in this case.

Case III. If s = σ = τ , we apply Lemma 5.2. Notice that in our situation
Γ′′ ∈ L∞([0, L], R3), and ‖Γ′′‖L∞ > 0, (otherwise Γ′ ≡ const. and γ could not
be closed). So

|A(s1, s2, s3)| ≤ ‖Γ′′‖L∞/2,(83)

|B(s1, s2, s3)| ≤ ‖Γ′′‖2
L∞/4,(84)

|C(si, sk)| ≥ 1− |si − sk|, for i 6= k.(85)

By symmetry of R(., ., .) we may assume that sj < τj < σj for all j ∈ N, and
by (58),(83)–(85) we obtain

(86) R(Γ(sj), Γ(σj), Γ(τj)) ≥
1 + o(1)

‖Γ′′‖L∞ · (1 + o(1))
as j →∞.
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This means that

(87) R[γ] = lim
j→∞

R(Γ(sj), Γ(σj), Γ(τj)) ≥ ‖Γ′′‖−1
L∞ > 0,

i.e., K[γ] < ∞ in this case, which concludes the proof of sufficiency in part
(iii).

Part (iv) (b) was shown in [12, Lemma 3]. To prove (iv) (a), we argue as
follows. Set ρ := ρG[γ](s) > 0 and let sn → s, Pn := Γ(sn), P0 := Γ(s) and

Cn := { z∈R3 | |z − P0| = |z − Pn| = ρ }.

Notice that Cn is the circle of radius ρn :=
√

ρ2 − |Pn − P0|2/4 centred at
yn := (Pn + P0)/2 and perpendicular to the unit vector (Pn − P0)/|Pn − P0|.
We claim that

(88) distH(Cn, C(s, ρ)) → 0 as n →∞,

where C(s, ρ) is the circle defined in the statement of the theorem (for θ =
ρ), and distH(A, B) denotes the Hausdorff distance [7, p. 183] between two
subsets A, B of R3. To establish this result, we note first that ρn → ρ
and yn → P0. Moreover, by part (ii), the only possible limits for (Pn −
P0)/|Pn − P0| as n →∞ are ±T (s). Thus Cn converges to a circle of radius
ρ with centre P0 in the plane perpendicular to T (s). Since these properties
completely characterize C(s, ρ) our claim in (88) follows.

To establish (iv)(a), we consider the sets

Ξn :=
⋃

z∈Cn

Bρ(z)

as in the proof of part (ii). We assume for contradiction that there is a
point P̄ ∈ Γ(SL) ∩ M(s, ρ), which implies dist(P̄ , C(s, ρ)) < ρ. For n ∈ N
sufficiently large, we deduce from (88) that dist(P̄ , Cn) < ρ, which implies
P̄ ∈ Ξn, and moreover we have |P̄ −P0| > |Pn−P0|. These observations lead
to the result P̄ ∈ Ξn\ln, where

ln :=
⋂

z∈Cn

Bρ(z).

By exactly the same arguments as in the proof of part (ii) we arrive at a
statement of the form (71) with P1 replaced by Pn. Since this contradicts
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the definition of ρ = ρG[γ](s) claim (iv)(a) must be true. 2

Proof of Lemma 2.2. Only the second inequality in (14) requires a proof.
(15) follows immediately from (8) and (9). If ρG[γ](s) = 0 the statement is
trivial, so assume that ρ := ρG[γ](s) > 0, which in particular means that
the curve has positive length. Notice that we did not assume that R[γ] > 0,
hence we may not have a tangent of Γ at s. However, the geometric tangent
T (s) exists according to part (ii) of Theorem 2.1, and we may apply part (iv)
(a) of the same theorem to find that the curve Γ does not intersect M(s, ρ).
On the other hand, by (10), Γ intersects the plane E through Γ(s) perpendic-
ular to T (s) transversally. Because Γ(s) is not a double point (ρG[γ](s) > 0),
Γ must intersect this plane in at least one different point Γ(σ) 6= Γ(s), since
γ is closed. Then Γ(σ) ∈ E\M(s, ρ), i.e., |Γ(s) − Γ(σ)| ≥ 2ρ, which proves
the lemma. 2

Proof of Theorem 2.3. It suffices to prove the first relation in (16) and
the identities (17),(20) and (22), since the remaining identities follow from
(8) and (9).

(i) If R[γ] = 0, then we know by Theorem 2.1, part (iii), that γ is not
simple, i.e., there exist t 6= s such that Γ(s) = Γ(t). But then, by Theorem
2.1, part (i), ρG[γ](s) = ρG[γ](t) = 0, thus (i) is trivially true in this case.

If R[γ] > 0, we argue as follows. Taking a minimizing sequence of triples
of distinct parameters sj, σj, τj ∈ SL with R(Γ(sj), Γ(σj), Γ(τj)) → R[γ],
which is possible according to (6), we may assume that (sj, σj, τj) → (s, σ, τ)
as j → ∞ by compactness. Note that R[γ] is bounded by Lemma 2.2 and
that γ is simple, by Theorem 2.1 (iii), hence we may assume that Γ(sj), Γ(σj)
and Γ(τj) are distinct and non-collinear for all j ∈ N.

As in the proof of part (iii) of Theorem 2.1 we distinguish three different
cases.

Case I. If s 6= σ 6= τ then we can use (2) to obtain

R[γ] = lim
j→∞

R(Γ(sj), Γ(σj), Γ(τj))

= R(Γ(s), Γ(σ), Γ(τ))

≥ ρG[γ](s) ≥ R[γ],(89)

hence equality holds everywhere, which proves (16) in this case. Observe
that also Γ(s), Γ(σ), Γ(τ) are distinct and non-collinear here.
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Case II. If two but not all of the three parameters coincide, say s = σ 6= τ
we can repeat the calculation that led to (82) in the proof of Theorem 2.1,
part (iii) to obtain

R[γ] = lim
j→∞

R(Γ(sj), Γ(σj), Γ(τj))

=
|Γ(τ)− Γ(s)|

2
∣∣∣ Γ(τ)−Γ(s)
|Γ(τ)−Γ(s)| ∧ Γ′(s)

∣∣∣ .(90)

Notice that Γ is differentiable everywhere, since K[γ] < ∞ now. According
to Theorem 2.1 we may insert in (90)

Γ′(s) = T (s) = lim
tk↓s
tk 6=s

Γ(tk)− Γ(s)

|Γ(tk)− Γ(s)|

to obtain by the definition of ρG[γ](τ)

R[γ] = lim
tk↓s
tk 6=s

|Γ(τ)− Γ(s)|

2
∣∣∣ Γ(τ)−Γ(s)
|Γ(τ)−Γ(s)| ∧

Γ(tk)−Γ(s)
|Γ(tk)−Γ(s)|

∣∣∣
= lim

tk↓s
tk 6=s

R(Γ(τ), Γ(s), Γ(tk))

≥ ρG[γ](τ) ≥ R[γ],

which implies equality, i.e.,(16).
Case III. If s = σ = τ we have (17), which finishes the proof of the first

statement in (i).

In order to apply (63) of Lemma 5.2 in the case when s ∈ SL is a Lebesgue
point of Γ′′ we may assume a fixed ordering, say sj < σj < τj, by taking
subsequences, because we know from (17) that the limit as j → ∞ exists.
Condition (19) then implies (62), hence we infer from (63) and (17) that

(91) R[γ] = |Γ′′(s)|−1.

As pointed out in the first remark following Theorem 2.3, any sequence of
the form (s, σj, τj) → (s, s, s) respects (19) as well. Applying (91) to a
minimizing sequence (s, σj, τj) with

lim
j→∞

R(Γ(s), Γ(σj), Γ(τj)) = ρG[γ](s)
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leads to (20).

(ii) Fix s ∈ SL and take a minimal sequence of pairs (uk, tk) with s 6=
uk 6= tk 6= s realizing the infimum in the definition of ρ := ρG[γ](s), i.e., with

(92) lim
k→∞

R(Γ(s), Γ(uk), Γ(tk)) = ρG[γ](s).

As before by taking a subsequence we can assume that (uk, tk) → (σ, τ) ∈
SL × SL. We are going to distinguish between three different cases.

Case I. s = σ = τ , this is case (a) of the statement of the theorem and
we are done.

Case II. s 6= σ 6= τ . In this case we will show, that γ intersects or
touches non-transversally the unique sphere of radius ρ, which contains the
circumcircle of Γ(s), Γ(σ) and Γ(τ) as a great circle. (Note that Γ(s), Γ(σ)
and Γ(τ) are distinct and non-collinear, since γ is simple (R[γ] > 0) and
because R[γ] is bounded by Lemma 2.2.) In other words, if y ∈ R3 is the
centre of that sphere, then we claim that

(93) [(Γ(s)− y) · Γ′(s)][(Γ(σ)− y) · Γ′(σ)][(Γ(τ)− y) · Γ′(τ)] = 0.

In fact, if (93) were false, we could find a slightly (but strictly) smaller
sphere within the previous one and with center y1 ∈ [y, Γ(s)], which touches
the original sphere in Γ(s) and still contains two other distinct points Γ(σ1),
Γ(τ1) close to Γ(σ) and Γ(τ), respectively. Intersecting this smaller sphere
with the plane through Γ(s), Γ(σ1) and Γ(τ1) gives a circle with radius strictly
smaller than ρ contradicting the definition of ρ = ρG[γ](s), which proves our
claim. (Notice that also Γ(s), Γ(σ1) and Γ(τ1) are non-collinear, hence span
a plane for Γ(σ1) and Γ(τ1) sufficiently close to Γ(σ) and Γ(τ), respectively.)

Now by (93) we know that γ is tangential to the original sphere centred
at y ∈ R3 with radius ρ in at least one of the points Γ(s), Γ(τ), Γ(σ), say in
Γ(τ). Intersecting this sphere with the plane P spanned by the (non-collinear)
vectors Γ(s) − Γ(τ) and Γ′(τ) we obtain a circle C with radius r(C), which
satisfies

(94) ρ ≥ r(C) =
|Γ(s)− Γ(τ)|

2
∣∣∣ Γ(s)−Γ(τ)
|Γ(s)−Γ(τ)| ∧ Γ′(τ)

∣∣∣ = lim
j→∞

R(Γ(s), Γ(τ), Γ(σj)) ≥ ρ,

for a sequence σj → τ as j →∞. This follows from (29) and the calculation
that led to (82) in the proof of Theorem 2.1. Hence we have equality every-
where in (94), which proves that in this situation we have (22) (b) with the
sequence (σj, τj) → (τ, τ) as j →∞, where τj := τ for all j ∈ N.
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Case III. If two but not all of the three parameters s, σ, τ coincide we
have two subcases.

IIIa If τ 6= s = σ (the case σ 6= τ = s can be treated analogously) one
can go to the limit in (92) as in the calculation that led to (82) to get

ρG[γ](s) = lim
k→∞

R(Γ(s), Γ(uk), Γ(tk)) =
|Γ(τ)− Γ(s)|

2
∣∣∣ Γ(τ)−Γ(s)
|Γ(τ)−Γ(s)| ∧ Γ′(s)

∣∣∣ .
By (29), the expression on the right equals the radius of the unique circle C
through Γ(s) and Γ(τ) tangent to Γ in Γ(s). If ∂Bρ(y) is the unique sphere
containing C as a great circle then Bρ(y) ⊂ M(s, ρ) as defined in Theorem
2.1, part (iv), which implies that Γ must also be tangential to ∂Bρ(y) in the
point Γ(τ), i.e., Γ′(τ) · (Γ(τ)− y) = 0. Now we look at the circle C∗ obtained
by intersecting ∂Bρ(y) with the plane spanned by the vectors Γ(s) − Γ(τ)
and Γ′(τ). Then we get for the radius r(C∗) of C∗

ρ ≥ r(C∗) = lim
l→∞

R(Γ(s), Γ(τ), Γ(vl))

≥ ρG[γ](s) = ρ,(95)

for a sequence vl → τ as l →∞. Hence we have equality everywhere, which
implies that we have (22) with (b) with the sequence (vl, τ) converging to
(τ, τ) as l →∞.

IIIb If s 6= τ = σ we are immediately in case (b) of the statement in part
(ii) of the theorem, and we are done, which finishes the proof. 2

Proof of Proposition 2.4. (i) We take a sequence (τj, σj) → (s, s), s 6=
τj 6= σj 6= s, realizing the limes superior in the definition of κ[γ](s), see (25).
If s < τj < σj for infinitely many j ∈ N we apply (54) of Lemma 5.1 to the
mean value expression in the term A(s, τj, σj) as defined in (60) of Lemma
5.2. For that set x = s, replace Er in Lemma 5.1 by the set

Et
j := [τj − t(τj − s), τj + t(σj − τj)],

and Br by Bj := Bσj−s(s) and set f := |Γ′′|. Then for given ε > 0 we choose

(96) δ := ε‖Γ‖−1
L∞/2.
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Notice that according to Lemma 5.1 we can find j0 sufficiently large, such
that for all j ≥ j0 and t ∈ [δ, 1]

(97)

τj+t(σj−τj)∫
−

τj−t(τj−s)

|Γ′′(ω)| dω ≤ ap lim sup
z→s

|Γ′′(z)|+ ε/2,

Combining (96) and (97) we obtain∣∣∣∣∣∣∣
∫ 1

0

t

∫
−
Et

j

Γ′′(ω) dωdt

∣∣∣∣∣∣∣ ≤ ap lim sup
z→s

|Γ′′(z)|+ ε

for all j ≥ j0. Consequently,

κ[γ](s) = lim
j→∞

1

R(Γ(s), Γ(τj), Γ(σj))

=
(58)

lim
j→∞

2|A(s, τj, σj) + (τj − s)B(s, τj, σj)|
C(s, τj)C(s, σj)C(τj, σj)

≤ lim sup
j→∞

2

∫ 1

0

∫
−
Ej

t

|Γ′′(ω)| dω dt

≤ ap lim sup
z→s

|Γ′′(z)|.

Here we have used the fact that |B(s, τj, σj)| ≤ ‖Γ′′‖2
L∞/4 and that C(s, τj),

C(s, σj) and C(τj, σj) converge to 1 as j →∞.
If τj < s < σj for infinitely many j ∈ N, use A(τj, s, σj) and B(τj, s, σj)

instead; all the other possible orderings of an infinite number of the para-
meters s, σj, τj can be treated similarly.

(ii) One simply needs to recall that a.e. point s ∈ SL is a Lebesgue point
of Γ′′, since Γ ∈ C1,1 ' W 2,∞. This means that we can use (63) in Lemma
5.2 for sj = s for all j ∈ N, to replace the limes superior in the definition
of κ[γ](s), (25), by the limit as j → ∞ to obtain (ii). Notice that for the
sequence (τj, σj) → (s, s) with s 6= τj 6= σj 6= s realizing the limes superior
we may assume a fixed ordering (τj < σj < s, or σj < s < τj, etc. for
all j ∈ N) by taking suitable subsequences. Thus Lemma 5.2 is applicable,
because (62) is automatically satisfied if s = sj for all j ∈ N, as pointed out
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in the first remark following Theorem 2.3. 2

Proof of Lemma 2.5. Notice first that it suffices to prove the statements
for ρG and R, the relations for κG, and K follow from (8) and (9).

It is easy to see that the right-hand side of (A) (and (B)) is bounded
from above by diam (γ(Ī))/2, since we may consider the continuously differ-
entiable function, (recall that the assumption K[γ] < ∞ leads to a Lipschitz
continuous tangent field Γ′ by Theorem 2.1),

f(σ) := |Γ(s)− Γ(σ)|2,

bounded by ( diam (γ(Ī)))2. Here s ∈ SL is fixed. Notice that f attains its
maximum on SL by compactness. Let τ ∈ SL be such that f(τ) is maximal.
Then Γ(SL) is tangent to the sphere of radius δ := |Γ(s) − Γ(τ)|/2 centred
at

m :=
Γ(s) + Γ(τ)

2

in the point Γ(τ), since f ′(τ) = 0. Any great circle through Γ(s) and Γ(τ)
and tangent to Γ′(τ) has radius δ ≤ diam (γ(Ī))/2, hence also the infimum
of such radii must have that upper bound.

Taking a minimal sequence {σj} ⊂ SL for the right-hand side of (A), i.e.,
with r(Γ(s), Γ(σj), Γ

′(σj)) tending to the infimum in (A), we find for a given
ε > 0 an index j0 such that for all j ≥ j0

(98) r(Γ(s), Γ(σj), Γ
′(σj)) ≤ inf

σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)) + ε/2.

Since the right-hand side of (A) is finite, the same is true for the left-hand
side of (98) for all j ≥ j0, which means that the vectors Γ(s) − Γ(σj) and
Γ′(σj) are non-collinear for j ≥ j0. Hence we can apply (29). On the other
hand, approximating the left-hand side of (98) for j = j0 as we did to derive
(82), we find for the above ε some t ∈ SL close to σj0 such that

R(Γ(s), Γ(σj0), Γ(t)) ≤ inf
σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)) + ε,

which immediately gives

(99) ρG[γ](s) ≤ inf
σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)).
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Analogously one obtains

(100) ρG[γ](s) ≤ inf
σ∈SL
σ 6=s

r(Γ(σ), Γ(s), Γ′(s)).

For the reverse inequalities we first note that according to (ii) of Theorem
2.3 we can represent ρG[γ](s) as limit as in (22) with two possible cases. In
case (ii)(b) of that theorem we are done, since then by the same calculation
that led to (82),

ρG[γ](s) = r(Γ(s), Γ(τ), Γ′(τ))

≥ inf
σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)).(101)

In case (ii)(a) there is a sequence (σj, τj) → (s, s), such that

(102) ρG[γ](s) = lim
j→∞

R(Γ(s), Γ(σj), Γ(τj)) ≥ ρ[γ](s) ≥
(26)

ρG[γ](s),

by definition of ρ[γ], see (24), hence equality holds.
Remaining in case (ii)(a), we renumber the minimal sequence (σj, τj) →

(s, s) appropriately, so that we can assume that for each j ∈ N

(103) θj := R(Γ(s), Γ(σj), Γ(τj)) ≤ ρG[γ](s) +
1

j
.

Then for fixed j ∈ N,

(104) θ∗j := inf
t∈SL

t6=s,σj

R(Γ(s), Γ(σj), Γ(t)) ≤ θj,

we can choose a minimal sequence tk converging w.l.o.g. to some τ ∗j , such
that

(105) θ∗j = lim
k→∞

R(Γ(s), Γ(σj), Γ(tk)),

where s 6= σj 6= tk 6= s for all k ∈ N. There are three cases in this situation:
Case I. If τ ∗j = σj (6= s), then with the same calculation that led to (82)

before, we obtain

(106) θ∗j = r(Γ(s), Γ(σj), Γ
′(σj)) ≥ inf

σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)),
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and by (103)–(106) we get as j →∞

(107) ρG[γ](s) ≥ inf
σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)).

Case II. If τ ∗j = s (6= σj), then we obtain in the same way as in Case I

(108) ρG[γ](s) ≥ inf
σ∈SL
σ 6=s

r(Γ(σ), Γ(s), Γ′(s)).

Case III. If τ ∗j 6= s 6= σj 6= τ ∗j , then we can go to the limit k → ∞ in
formula (2) for R(., ., .) to obtain θ∗j = R(Γ(s), Γ(σj), Γ(τ ∗j )). Let ∂Bθ∗j

(yj)
be the unique sphere of radius θ∗j containing the unique circumcircle of
Γ(s), Γ(σj), Γ(τ ∗j ) as a great circle. Then we claim that

(109) Γ′(τ ∗j ) ⊥ Γ(τ ∗j )− yj.

This is in fact true, since otherwise we could find Γ(τ̃) with τ̃ close to τ ∗j ,
such that

(110) R(Γ(s), Γ(σj), Γ(τ̃)) < θ∗j ,

which would contradict the definition of θ∗j in (105) as infimum over such
radii. (110) holds for the following reason: Consider the triangle 4 :=
4(Γ(s), Γ(σj), Γ(τ ∗j )). Recall that we are in case (ii) (a) of Theorem 2.3 now,
which means that by taking j sufficiently large from the beginning on we
may assume that |Γ(s)−Γ(σj)| < R[γ]/2, i.e., that the angle α of 4 in Γ(τ ∗j )
is either in (0, π/2) or in (π/2, π). In either case, considering the perturbed
triangle 4̃ := 4(Γ(s), Γ(σj), Γ(τ̃)) for Γ(τ̃) ∈ Bθ∗j

(yj) with τ̃ close to τ ∗j , leads

to (110). In fact, intersecting the plane spanned by Γ(s), Γ(σj), Γ(τ̃) with the
∂Bθ∗j

(yj) gives a circle ∂Dϑ with radius ϑ ≤ θ∗j , and with Γ(τ̃) contained in

the open disk Dϑ. (Notice that, since θ∗j is finite, the points Γ(s), Γ(σj), Γ(τ ∗j )
are non-collinear, which remains true if we replace Γ(τ ∗j ) by Γ(τ̃).) Also the

angle α̃ of 4̃ in Γ(τ̃) is in the same interval as α (either (0, π/2) or (π/2, π)),
for |τ̃ − τ ∗j | sufficiently small. But then

R(Γ(s), Γ(σj), Γ(τ̃)) < R(Γ(s), Γ(σj), ξ) = ϑ ≤ θ∗j

for any comparison point ξ ∈ ∂Dϑ, as one easily checks with (2). Thus we
have shown (110) and hence also (109).
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Now we intersect the plane Pj spanned by the two vectors Γ(s) − Γ(τ ∗j )
and Γ′(τ ∗j ) with ∂Bθ∗j

(yj) to obtain a circle C∗
j through Γ(s) and Γ(τ ∗j ) and

tangent to Γ′(τ ∗j ) with radius r(C∗
j ) ≤ θ∗j . On the other hand, we may write

θ∗j ≥ r(C∗
j ) = r(Γ(s), Γ(τ ∗j ), Γ′(τ ∗j )) ≥ inf

σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)),

which together with (103)–(105) gives the desired inequality

(111) ρG[γ](s) ≥ inf
σ∈SL
σ 6=s

r(Γ(s), Γ(σ), Γ′(σ)).

Summarizing (99), (100), (101), (107), (108), (111) leads to the first equality
in (A) and (B), respectively. The second equality in (B) was shown in (102).
Notice that ρG[γ](s) = ρ[γ](s) may or may not hold in alternative (A). Tak-
ing the infimum over s ∈ SL on both sides of the equations (A) and (B) gives
(30). 2

Proof of Proposition 2.6. By Lemma 2.2 we have K[γ] > 0. Hence
r(Γ(s), Γ(σ), Γ′(σ)) is finite for all (s, σ) ∈ A[γ], therefore s 6= σ by defi-
nition of r(., ., .).

Let (s, σ) ∈ A[γ]. If (33) is true, then Γ(s), Γ(σ) lie diametrically on the
unique circle C through these points, which is tangential to Γ′(σ) in Γ(σ),
with radius

r(Γ(s), Γ(σ), Γ′(σ)) = K[γ]−1 = R[γ].

Theorem 2.1, part (iv) (b) gives

M(σ,R[γ]) ∩ Γ(SL) = ∅,

which means that in the points Γ(s) and Γ(σ), the curve Γ is tangential to
the unique sphere of radius R[γ] that contains C as a great circle. Now (34)
follows.

It remains to show (33). We start with a technical lemma.

Lemma 5.3. Let ‖Γ′′‖L∞ ≤ l, and assume that Γ(s), Γ(t) ∈ CR where s 6= t,
and where CR is a circle of radius R < l−1 tangential to Γ′(t). Then

(112) |s− t| > 1−Rl

l
.
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Proof. Without loss of generality we may assume s > t, and choose the
coordinate system such that Γ(t) = 0, Γ′(t) = (1, 0, 0), and that the center
of CR is the point (0, 0, R). Then we have the expansions

Γ3(s) =

∫ s

t

Γ3′(τ) dτ =

∫ s

t

(Γ3′(τ)− Γ3′(t)) dτ,

Γ1(s) = Γ1′(t)(s− t) +

∫ s

t

(Γ1′(τ)− Γ1′(t)) dτ,∫ s

t

(Γj ′(τ)− Γj ′(t)) dτ =

∫ s

t

∫ τ

t

Γj ′′(σ) dσdτ,

which immediately gives the estimates

|Γ3(s)| ≤ l|s− t|2/2,(113)

|Γ1(s)| ≥ |s− t| − l|s− t|2/2,(114)

If the right-hand side of (114) is non-positive then

|s− t| ≥ 2

l
>

1−Rl

l
,

and we are done. If on the other hand, the right-hand side of (114) is positive,
we estimate for Γ(s) ∈ CR

R2 ≥ (Γ1(s))2 + (Γ3(s)−R)2

≥ [1−Rl − l|s− t|]|s− t|2 + R2 + l2|s− t|4/4
> R2,

unless the term in brackets is negative, which means

|s− t| > 1−Rl

l
.

2

To prove (33) we assume the contrary, i.e., that for (s, t) ∈ A[γ], P :=
Γ(s), Q := Γ(t), θ := R[γ],

(115) 2ρ := |P −Q| < 2θ.
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Then

m :=
P + Q

2
∈ Bθ(Γ(SL)),

where Bθ(Γ(SL)) is regular according to Proposition 3.1, which is proved
independently. Hence we can look at the continuous projection ΠΓ and con-
clude that ΠΓ(m) 6= P, Q, since |P −m| = |Q−m| = ρ, P 6= Q, since s 6= t,
but the projection ΠΓ(m) is a unique point on Γ. Hence there is a unique
S 6= P, Q, S ∈ Γ(SL) ∩ Bρ(m) with ΠΓ(m) = S. Let ∂Bθ(y) be the sphere
of radius θ containing the unique circle through Γ(s), Γ(t), tangent to Γ′(t)
in Γ(t), as a great circle. Then by Theorem 2.1, part (iv) (b), we know that
S 6∈ Bθ(y) ⊂ M(t, θ).

Case I. Let S 6∈ Bθ(y). The angle of the triangle 4(P, Q, S) in S lies in
(π/2, π), since S ∈ Bρ(m). Consequently,

R(Q, P, S) =
|Q− P |

2| sin <)(Q− S, P − S)|

<
|Q− P |

2| sin <)(Q− S∗, P − S∗)|
= R(P, Q, S∗) ≤ θ,(116)

for any S∗ ∈ ∂Bθ(y) ∩ E∗, S∗ 6= P, Q, where E∗ is the plane spanned by
P, Q, S. (116) contradicts the definition of θ = R[γ].

Case II. If S ∈ ∂Bθ(y), then we claim that we find S̃ ∈ Γ(SL) arbitrarily
close to S with S̃ 6∈ Bθ(y) and apply the argument as in Case I to S̃ in-
stead of S to arrive at a contradiction. To show that S̃ exists, we assume
not, i.e, we assume that for S = Γ(σ) we have Γ(Bδ(σ)) ⊂ ∂Bθ(y), for some
small δ > 0. For (τj, sj) → (σ, σ) one gets R(Γ(σ), Γ(τj), Γ(sj)) ≤ θ, for j
sufficiently large. Hence κ[γ](σ) ≥ θ−1 by (25). This is also true for any
σ̄ ∈ Bδ(σ), which means that ‖Γ′′‖L∞ ≥ θ−1 = K[γ], contradicting the as-
sumption that K[γ] is locally not attained. 2

Proof of Lemma 2.7. (i). By the classical theorem of Fenchel [8] we
have ∫ L

0

|Γ′′(t)| dt ≥ 2π,

which readily implies

‖Γ′′‖L∞ ≥
2π

L
,
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hence

η(γ) ≤ 1−R[γ] · (2π/L)

(2π/L)
<

L

2π
.

On the other hand, η(γ) > 0, since K[γ] is locally not attained, see (28).

(ii)&(iii). We take a maximizing sequence {sj}j∈N ⊂ SL for K[γ] in the
definition (5). In other words, for every ε > 0, we find j0 such that for all
j ≥ j0,

(117) K[γ] ≤ κG[γ](sj) + ε.

Take 0 < ε < K[γ]−‖Γ′′‖L∞ , which is possible by (28). According to Theorem
2.3 (ii) we have two possible cases (a) and (b) for κG[γ](sj) for fixed j ≥ j0.
In case (a) there is a sequence (σk, τk) → (sj, sj) with

κG[γ](sj) = lim
k→∞

1

R(Γ(sj), Γ(σk), Γ(τk))

by (23). We use Proposition 2.4 to conclude that

κG[γ](sj) ≤ lim sup
(tl,ul)→(sj ,sj)

sj 6=tl 6=ul 6=sj

1

R(Γ(sj), Γ(tl), Γ(ul))
= κ[γ](sj) ≤ ‖Γ′′‖L∞ .

Hence by choice of ε we get

K[γ] ≤ ‖Γ′′‖L∞ + ε < K[γ],

which is absurd, hence Case (a) cannot occur.
If on the other hand, Case (b) holds, then we know by the calculation

that led to (82) that

κG[γ](sj) =
1

r(Γ(sj), Γ(τj), Γ′(τj))
=: r−1

j

for some τj 6= sj. Now apply Lemma 5.3 for l = ‖Γ′′‖L∞ , R = rj, which is
applicable since by choice of ε,

r−1
j ≥ K[γ]− ε > ‖Γ′′‖L∞ = l.

We get
|sj − τj| ≥ η(γ) for all j ≥ j0.
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Then we can go to the limit for a subsequence (sj, τj) → (s, τ) in (117) to
get

(118) K[γ] =
1

r(Γ(s), Γ(τ), Γ′(τ))
,

where |s− τ | ≥ η(γ).
This in fact furnishes the proof of (iii), since assuming (118) we can apply

Lemma 5.3 directly to get |s− τ | ≥ η(γ). Recall that for s, τ ∈ SL, the term
|s − τ | denotes the intrinsic distance on SL, whence the other statement,
|s− τ | ≤ L− η(γ) for s, τ ∈ [0, L] is automatically proved as well.

(ii) It remains to show that we can restrict our attention to the set Q as
stated in the Lemma. In fact, if

(119) R[γ] = r(Γ(s), Γ(σ), Γ′(σ)),

for some (s, σ) 6∈ Q (but with |s−σ| ≥ η(γ) as we have just shown), then we
will show that the reversed pair (σ, s) ∈ Q also satisfies (119), which shows
that statement (ii) is true. Indeed, we know by Theorem 2.1, part (iv) (b),
that for θ := R[γ]

(120) M(σ, θ) ∩ Γ(SL) = ∅.

If ∂Bθ(y) is the sphere that contains the circle through Γ(s), Γ(σ) tangent to
Γ′(σ) as a great circle, then (120) implies, that (Γ(s) − y) · Γ′(s) = 0. Thus
we can also look at the circle through Γ(s), Γ(σ) tangent to Γ′(s) with radius
ρ ≤ θ. But (30) actually implies ρ = θ, hence

(121) R[γ] = r(Γ(σ), Γ(s), Γ′(s)).

2

Proof of Proposition 3.1. For completeness of presentation we recall the
proof that was already carried out in [12, Lemma 3].

(i) The first claim is that if R[γ] ≥ θ > 0, then the tubular neigh-
bourhood Bθ(Γ(SL)) is regular as defined above. To show that the closest-
point projection map ΠΓ is well-defined for x ∈ Bθ(Γ(SL)), we note that
if dist(x, Γ(SL)) = 0, then x = ΠΓ(x) is well-defined since γ is simple
by Theorem 2.1. If 0 < dist(x, Γ(SL)) < θ, then there is at least one
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point s ∈ SL such that |x − Γ(s)| = dist(x, Γ(SL)) since Γ(SL) is a com-
pact set. For any such s the differentiable function f(t) := |x − Γ(t)|2
has the property f(t) ≥ f(s) := δ2 for all t ∈ SL where δ < θ. Thus
0 = f ′(s) = 2(x − Γ(s)) · Γ′(s). If there were another point σ ∈ SL with
f(σ) = f(s) (s 6= σ) then

Γ(σ) ∈ ∂Bδ(x)\{Γ(s)} ⊂ Bθ(y) ⊂ M(s, θ)

where y := Γ(s) + θ(x − Γ(s))/|x − Γ(s)|, which contradicts item (iv)(b) of
Theorem 2.1. Hence ΠΓ : Bθ(Γ(SL)) → Γ(SL) given by ΠΓ(x) := Γ(s(x))
for x ∈ Bθ(Γ(SL)) is well-defined. Assuming for contradiction that ΠΓ is not
continuous, we could find a sequence xn → x ∈ Bθ(Γ(SL)) and a constant
c > 0 with |ΠΓ(xn) − ΠΓ(x)| ≥ c. Since Γ(SL) is compact, we may assume
that ΠΓ(xn) → p ∈ Γ(SL) with |p− ΠΓ(x)| ≥ c. Using the continuity of the
distance function dist(·, Γ(SL)) and the uniqueness of s(x) we obtain

dist(x, Γ(SL)) = |x− ΠΓ(x)| < |x− p| = lim
n→∞

|xn − ΠΓ(xn)|

= lim
n→∞

dist(xn, Γ(SL)) = dist(x, Γ(SL)),

which is a contradiction. Thus ΠΓ is also continuous and the regularity of
Bθ(Γ(SL)) is established.

The second claim is that if Bθ(Γ(SL)) is regular, then K[γ] ≤ θ−1. To
establish this claim, we assume Bθ(Γ(SL)) is regular which, by definition,
implies that γ is simple. We assume for contradiction that K[γ] > θ−1,
i.e., R[γ] < θ, which implies that there is a point s0 ∈ SL such that
ρG[γ](s0) < θ. Then, by the Definition of ρG in (1), there exist distinct
points s1, s2 ∈ SL different from s0 such that 0 < ρG[γ](s0) ≤ δ < θ where
δ = R(Γ(s0), Γ(s1), Γ(s2)). Moreover, since γ is simple, the points Γ(s0),
Γ(s1) and Γ(s2) are distinct. These points define a unique circle C of radius
δ, and we denote the centre of C by p. Without loss of generality we assume
0 = s0 < s1 < s2 < L and we consider the disjoint, open subarcs of SL

defined by E0 = (s0, s1), E1 = (s1, s2) and E2 = (s2, s0).

Since |p − Γ(si)| = δ (i = 0, 1, 2) we have dist(p, Γ(SL)) ≤ δ < θ
which implies p ∈ Bθ(Γ(SL)). Moreover, we must have the strict inequal-
ity dist(p, Γ(SL)) < δ since by hypothesis there is a unique s(p) ∈ SL such
that dist(p, Γ(SL)) = |p − Γ(s(p))|. Thus s(p) 6= si (i = 0, 1, 2) and we may
assume s(p) ∈ E0.
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We next consider the subarc E∗ = E1 ∪{s2}∪E2 so that SL = E0 ∪E∗ ∪
{s0, s1}, and we consider the line segment between p and Γ(s2), i.e.,

x(α) = (1− α)p + αΓ(s2), α ∈ [0, 1].

This segment has the properties that x(0) = p, x(1) = Γ(s2),

|x(α)− Γ(s2)| < |x(α)− Γ(si)|, 0 < α ≤ 1 (i = 0, 1),

and x(α) ∈ Bθ(Γ(SL)) for 0 ≤ α ≤ 1. To obtain the required contradiction,
notice that

dist(x(α), Γ(SL)) ≤ |x(α)− Γ(s2)|
< |x(α)− Γ(si)|, 0 < α ≤ 1 (i = 0, 1),

which implies ΠΓ(x(α)) 6= Γ(si) for 0 < α ≤ 1 (i = 0, 1). However,
ΠΓ(x(0)) = Γ(s(p)) ∈ Γ(E0) and ΠΓ(x(1)) = Γ(s2) ∈ Γ(E∗). Thus the
image of the line segment x(α) under the map ΠΓ is disconnected. Since this
contradicts the hypothesis that Bθ(Γ(SL)) is regular we must have K[γ] ≤ θ−1

as claimed.
(ii) We assume that Bθ(Γ(SL)) is regular. Then for each x ∈ Bθ(Γ(SL))

there is a unique s = s(x) ∈ SL such that |x − Γ(s)| < θ and (x −
Γ(s)) · Γ′(s) = 0. Notice that for each point x in a given normal disk
Dθ(s0) := Dθ(Γ(s0), Γ

′(s0)) the point s0 has these properties, which implies
s(x) = s0 for all x ∈ Dθ(s0). Thus ΠΓ(Dθ(s0)) = Γ(s0). Assuming for contra-
diction that there is a point y ∈ Bθ(Γ(SL))\Dθ(s0) such that ΠΓ(y) = Γ(s0),
we must have (y − Γ(s0)) · Γ′(s0) = 0, which implies y ∈ Dµ(s0)\Dθ(s0) for
some µ ≥ θ. However, for such a point we would have dist(y, Γ(SL)) ≥ θ,
which is a contradiction. The claim follows. 2

Proof of Theorem 3.2. Theorem 3.2 was proven in [12, Lemma 7], for
the convenience of the reader we include the proof here as well.

Notice that, for each fixed s ∈ SL, the map p(t, ·, ·) is injective and that
the image of p(t, ·, ·) is the open disk Dθ(Γ(s(t)), Γ′(s(t))) as considered in
Proposition 3.1.

Our first claim is that if K[γ] ≤ θ−1, then p : Ω → R3 is globally injec-
tive. To see this, assume for contradiction that p does not have this prop-
erty. Then there exists s1, s2 ∈ SL, s1 6= s2, such that Dθ(Γ(s1), Γ

′(s1)) ∩
Dθ(Γ(s2), Γ

′(s2)) 6= ∅. We denote by x any point in this intersection. Since
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K[γ] ≤ θ−1 we may apply Proposition 3.1 (i) to conclude that the projection
ΠΓ : Bθ(Γ(SL)) → Γ(SL) is single-valued, and apply Proposition 3.1 (ii) to
conclude that ΠΓ(x) = Γ(s1) and ΠΓ(x) = Γ(s2), which is a contradiction.
Thus p : Ω → R3 must be globally injective.

Our second claim is that if p : Ω → R3 is globally injective, then K[γ] ≤
θ−1. To see this, assume for contradiction that θ−1 < K[γ] < ∞, or equiva-
lently, 0 < R[γ] < θ and consider any η such that R[γ] < η < θ. Then by
Theorem 2.1 (iv)(b) there is a parameter s∗ ∈ SL such that Γ(SL)∩M(s∗, η) 6=
∅. This implies there is a point z∗ ∈ C(s∗, η) = ∂Dη(Γ(s∗), Γ

′(s∗)) such
that dist(z∗, Γ(SL)) < η. By compactness, there is a point Γ(s̄) such that
dist(z∗, Γ(SL)) = |z∗ − Γ(s̄)|, and s̄ 6= s∗ since |z∗ − Γ(s̄)| < η. Moreover,
(z∗ − Γ(s̄)) · Γ′(s̄) = 0. Since η < θ we have z∗ ∈ Dθ(Γ(s̄), Γ′(s̄)) and also
z∗ ∈ Dθ(Γ(s∗), Γ

′(s∗)), which contradicts the global injectivity of p : Ω → R3.
Thus K[γ] ≤ θ−1 as claimed. 2

Proof of Lemma 4.1. Let {γi} ⊂ F1 be a sequence with

(122) ‖γi − γ‖C0 → 0 as i →∞.

Since L(γi) ≤ L0 for all i ∈ N, we know that γ ∈ BV (I, R3) ∩ L with length
L(γ) ≤ L0. The remaining part of the proof is identical to the proof (in terms
of R[.] rather than K[.]) of [12, Lemma 4]. One simply needs to check that
the uniform convergence (122) suffices to carry out the arguments in [12, pp.
29,30]. 2

Proof of Proposition 4.2. Assuming the contrary we can find a se-
quence γj → γ in C0(Ī , R3), with K[γj] ≤ K0 for all j ∈ N, i.e., by (9),
R[γj] ≥ K−1

0 for all j ∈ N, such that γ 6' γj for all j ∈ N. This contradicts
the proof of [12, Lemma 5], where under the above conditions an isotopy
mapping is constructed explicitly to get γj ' γ for sufficiently large j ∈ N.
2

Proof of Theorem 4.3. By virtue of Lemma 4.1 it suffices to prove that
for {γi}i∈N ⊂ F2 with

(123) ‖γi − γ‖C0 → 0 as i →∞,
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one has γ(Ī) ' k0. This was shown in [12, Lemma 5] but follows here as
a simple corollary of the stronger result Proposition 4.2. In fact, for i suffi-
ciently large we have condition (41), because of (123), and Lemma 4.1 implies
K[γ] ≤ K0, i.e., assumption (40) in particular. 2

Proof of Theorem 4.4. If R[γ] = 0, then by Theorem 2.1, part (iii),
γ must have a double point, i.e., Γ(s) = Γ(t) for some s 6= t in SL. Then
any sequence {γi} ⊂ L of fixed length L(γi) = L with ‖Γi − Γ‖C0 satisfies
R[γi] → 0 as i → ∞. This is true, because assuming the contrary would
lead to an immediate contradiction to Lemma 4.1. Now assume R[γ] > 0
for some γ ∈ L with length L(γ) = L, hence γ is simple in particular. We
take a sequence of curves γl with arc length parameterizations Γl converging
to Γ in C1,1([0, L], R3), where Γ is the arc length parameterization of γ. We
proceed in several steps.

1. We claim that there is l0, ρ > 0, such that

(124) |Γl(s)− Γl(t)| ≥
|s− t|

2
for all l ≥ l0, |s− t| < ρ.

In fact, expanding Γl about t ∈ SL, we obtain

|Γl(s)− Γl(t)| ≥ |s− t| −
∣∣∣∣∫ s

t

(Γ′l(σ)− Γ′l(t)) dσ

∣∣∣∣
≥ |s− t| −

∣∣∣∣∫ s

t

(Γ′(σ)− Γ′(t)) dσ

∣∣∣∣
− 2‖Γ′l − Γ′‖C0|s− t|.

Choosing first l0 so large that ‖Γl−Γ‖C1 < 1/8 for all l ≥ l0, and then ρ > 0
(depending on the Lipschitz constant K[γ] of Γ′) so small that

|Γ′(t1)− Γ′(t2)| ≤ 1/4 for all |t1 − t2| < ρ,

we arrive at (124). For later purposes we take ρ so small that

(125) ρ ≤ 1

4‖Γ′′‖L∞
.

2. We claim that there are constants d > 0, l1 ≥ l0 such that for all l ≥ l1
and all s, σ ∈ SL with |s− σ| ≥ ρ one has

(126) |Γl(s)− Γl(σ)| ≥ d.
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It suffices to prove the claim for the fixed simple limit curve γ, (with some
constant d = dγ), since then the claim follows from the simple estimate

|Γl(s)− Γl(σ)| ≥ dγ − 2‖Γl − Γ‖C0 ≥ dγ/2

for all |s− σ| ≥ ρ and for all l ≥ l1, with l1 ≥ l0 sufficiently large. Assuming
that (126) is not true for Γ, one finds by compactness (sk, σk) → (s, σ) with
|s− σ| ≥ ρ, as k →∞, with

|Γ(sk)− Γ(σk)| ≤
1

k
.

Hence by continuity of Γ we infer Γ(s) = Γ(σ), i.e., R[γ] = 0, which is
excluded here.

3. Combining (124) and (126) we get for l sufficiently large, that γl is
simple, which by Theorem 2.1, part (iii) implies thatR[γl] > 0 for sufficiently
large l ∈ N.

4. The assumption that

(127) lim
l→∞

K[γl] < K[γ],

will lead to a contradiction. Indeed, then by (27) we have

‖Γ′′l ‖L∞ ≤ K[γ]− ε

for some fixed ε > 0 and l sufficiently large. But due to the convergence
‖Γ− Γl‖C1,1 → 0 as l →∞, we then get

‖Γ′′‖L∞ ≤ K[γ]− ε.

This means that K[γ] is locally not attained, see (28), which implies by
Lemma 2.7, part (ii), that

(128) K[γ] =
1

r(Γ(s), Γ(σ), Γ′(σ))

for some s, σ ∈ SL with |s− σ| ≥ η(γ), where

η(γ) =
1−R[γ] · ‖Γ′′‖L∞

‖Γ′′‖L∞
=

1−R[γ] · (K[γ]− ε)

K[γ]− ε
≥ εR[γ]2 > 0.
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But the right-hand side in (128) may be approximated as

K[γl] ≥
(31)

1

r(Γl(s), Γl(σ), Γ′l(σ))
−→ 1

r(Γ(s), Γ(σ), Γ′(σ))
= K[γ]

contradicting (127).
5. Assuming on the other hand

(129) lim
l→∞

K[γl] > K[γ],

we find ε > 0 and l0 ∈ N such that for all l ≥ l0 (by (27) applied to Γ),

(130) K[γl] ≥ K[γ] + ε ≥ ‖Γ′′‖L∞ + ε.

This together with ‖Γl − Γ‖C1,1 → 0 as l →∞ gives us

(131) K[γl] ≥ ‖Γ′′l ‖L∞ + ε/2

for all l sufficiently large. Hence for all l sufficiently large we know that K[γl]
is locally not attained. Moreover R[γl] is positive, hence K[γl] finite, and
by Lemma 2.7 we conclude that for each such l there exist sl, σl ∈ SL with
|sl − σl| ≥ η(γl) > 0, such that

(132) K[γl] =
1

r(Γl(sl), Γl(σl), Γ′l(σl))
.

We claim that there is a uniform constant c > 0, such that for all l sufficiently
large

(133) η(γl) ≥ c.

Indeed, assuming η(γl) → 0 as l →∞, we get

(134) R[γl]‖Γ′′l ‖L∞ → 1,

since ‖Γ′′l ‖L∞ → ‖Γ′′‖L∞ ∈ (0,∞). (134) together with (9) implies K[γl] →
‖Γ′′‖L∞ contradicting (130), which proves the claim.

By compactness we may assume that sl → s and σl → σ in SL for l →∞,
with |s − σ| ≥ c > 0, by (133), which means that we can go to the limit in
(132) to obtain

lim
l→∞

K[γl] = lim
l→∞

1

r(Γl(sl), Γl(σl), Γ′l(σl))
=

1

r(Γ(s), Γ(σ), Γ′(σ))
≤ K[γ],
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where we used (31) applied to γ to obtain the last inequality. But this
contradicts (129), hence if liml→∞K[γl] exists it must be equal to K[γ].

6. We actually proved with the previous argument that the sequence
{K[γl]}l∈N ⊂ R must be bounded, since otherwise we deduce a contradiction
exactly as we have just done. Hence there exists a convergent subsequence
lk, k ∈ N, with

lim
k→∞

K[γlk ] = K[γ].

By the subsequence principle, the whole sequence must actually converge to
K[γ], since we have proved that if a limit exists it must equal K[γ]. This
proves (sequential) continuity. 2

Proof of Lemma 4.5. (i) The weak convergence implies

(135) γ1,n → γ1 and γ2,n → γ2 in C0(Ī , R3)

as n →∞. Hence we can assume that γ1, γ2 ∈ L ∩W 1,q(I, R3) and by (43)

(136) dist (γ1(Ī), γ2(Ī)) ≥ c.

Thus l(γ1, γ2) is well-defined, and we can estimate

|l(γ1,n, γ2,n − l(γ1, γ2)| ≤∣∣∣∣∫
I

∫
I

(
γ1,n(s)− γ2,n(t)

|γ1,n(s)− γ2,n(t)|3
− γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3

)
· [γ′1,n(s) ∧ γ′2,n(t)] ds dt

∣∣∣∣
+

∣∣∣∣∫
I

∫
I

γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3
· [(γ′1,n(s)− γ′1(s)) ∧ γ′2,n(t)] ds dt

∣∣∣∣
+

∣∣∣∣∫
I

∫
I

γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3
· [γ′1(s) ∧ (γ′2,n(t)− γ2(t)] ds dt

∣∣∣∣(137)

=: In + IIn + IIIn.

We estimate the three terms on the right separately.

In =

∣∣∣∣∫
I

γ′2,n(t) ·
[∫

I

(
γ1,n(s)− γ2,n(t)

|γ1,n(s)− γ2,n(t)|3
− γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3

)
∧ γ′1,n(s) ds

]
dt

∣∣∣∣
≤ sup

s,t∈I

∣∣∣∣ γ1,n(s)− γ2,n(t)

|γ1,n(s)− γ2,n(t)|3
− γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3

∣∣∣∣ ‖γ′1,n‖L1‖γ′2,n‖L1 → 0,(138)
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as n →∞, by (135),(136) and the fact that because of the weak convergence
the W 1,q-norms of γ1,n and γ2,n are uniformly bounded.

IIn =

∣∣∣∣∫
I

γ′2,n(t) ·
[∫

I

γ1(s)− γ2(t)

|γ1(s)− γ2(t)|3
∧ (γ′1,n(s)− γ′1(s)) ds

]
dt

∣∣∣∣
=:

∣∣∣∣∫
I

γ′2,n(t) · ξn(t) dt

∣∣∣∣ ,(139)

where we have denoted the inner integral by ξn(t). By the weak convergence
γ′1,n ⇀ γ′1 in Lq(I, R3), one finds

|ξn(t)| → 0 as n →∞ for all t ∈ I,

hence also

(140) |ξn(t)|q∗ → 0 as n →∞ for all t ∈ I,

where q−1 + q∗−1 = 1. Furthermore, using (136),

|ξn(t)|q∗ ≤ |b− a|
c2q∗

(‖γ′1,n‖
q∗

Lq + ‖γ′1‖
q∗

Lq) ≤ C̃ < ∞;(141)

here C̃ does not depend on n. Thus by Lebesgue’s Dominated Convergence
Theorem we conclude that ξn → 0 in Lq∗ . This together with the weak
convergence γ2,n ⇀ γ2 in W 1,q(I, R3) leads to IIn → 0 as n →∞.

The third term IIIn has the same structure as IIn.

(ii) The embedding W 1,q ↪→ C0,1−(1/q) implies that for ‖γi − βi‖W 1,q suf-
ficiently small one has by (45)

(142) β1(Ī) ∩ β2(Ī) = ∅.

Hence the linking number l(β1, β2) is well-defined. Going back to (138) and
(139) with γi,n replaced by βi, i = 1, 2, one observes that the terms In, IIn
(and analogously IIIn) can be made arbitrarily small by choosing ε sufficiently
small. Notice that by (45) and (142) we can estimate the denominators on
the right-hand side in (138) and (139) from below by some constant and that
the norms ‖β′i‖L1 are bounded by, say 2‖γ′i‖L1 for i = 1, 2, for ε sufficiently
small. 2
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Proof of Theorem 4.6. To apply Lemma 4.5 for γ1,n := Γn, γ2,n :=
Γn + (θ/2)d1,n, γ1 := Γ and γ2 := Γ + (θ/2)d1, we merely need to verify that
hypothesis (43) holds. In fact, part (iv)(b) of Theorem 2.1 implies that

dist (Γn([0, L]), (Γn + (θ/2)d1,n)([0, L])) ≥ θ/2 for all n ∈ N,

since K[Γn] ≤ θ−1 and because (38) was assumed to hold for all n ∈ N. Thus
the first part of Lemma 4.5 implies (i), and part (ii) follows immediately from
the second part of that lemma. 2
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