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Weyertal 86–90
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1 Introduction

In nature we observe that bodies can touch but not penetrate each other,
since interpenetration of matter is impossible. In particular, deformable bod-
ies can exhibit self-contact as, e.g., if we step on a beer can or if an electrical
cord forms knots and wraps around itself. It turns out that the mathematical
treatment of this simple physical phenomenon is surprisingly difficult.

In the bio-sciences there is rapidly growing interest in a variety of prob-
lems which display the effect of self-contact as an inherent feature. For
instance, the supercoiling of DNA (i.e., when the double helix wraps around
itself) and knotting phenomena cause self-touching of the molecule. This
mechanism controls certain biochemical processes in the cell and is of spe-
cial interest in structural molecular biology (see [5], [6], [7], [18], [31], [25]).
There are also molecular configurations resembling the centreline of ideal
knots which may be described as maximally tightened knotted ropes touch-
ing themselves “everywhere” (see [13]). On a completely different length scale
multicellular bacterial macrofibres of Bacillus subtilis form a highly twisted
helical structure exhibiting self-contact, which seems to be an advantageous
configuration of self-organization in the cell population (see [16],[28]). Macro-
scopic examples are knotted metal wires with isolated contact points or with
several regions of line contact. Interestingly certain helical shapes observed in
nature coincide with optimal configurations of closely packed strings, which
also serve as model for the structure of folded polymeric chains (see [15],[27]).

The previous examples have the common feature that they can be mod-
eled as long slender elastic tubes or rods deforming in space where the con-
straint prohibiting interpenetration cannot be neglected. In particular, spe-
cial side conditions and topological constraints enforce the tubular surface
to touch itself. Based on the Cosserat theory, describing deformations of
nonlinearly elastic rods in space that can undergo flexure, extension, shear,
and torsion, the existence of energy minimizing configurations for that class
of problems is shown in [11],[30] and [22]. In the present paper we derive
the Euler-Lagrange equation and further regularity results as necessary con-
ditions for energy minimizing rods without interpenetration and subjected
to topological constraints where we restrict our investigation to inextensible
unshearable rods. Starting with solutions whose existence is proved in par-
ticular in [11], no additional hypothetical assumptions on the regularity of
the rod or on the position and direction of the contact forces are made. It
should be emphasized that such a rigorous derivation of variational equations
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in nonlinear elasticity taking into account self-contact has never been done
before. Furthermore, notice that most investigations on contact problems in
the literature are based on comparably simple mechanical models enjoying
nice convexity properties and thus being accessible by variational inequali-
ties. These in turn, however, do not contain any explicit term describing the
contact reaction. In our more general situation, on the other hand, one can-
not hope for such convexity properties but, by employing nonsmooth tools
more subtle than convex analysis, we are able to derive the explicit contact
term as a Lagrange multiplier which provides additional structural informa-
tion about the contact reactions. Moreover this allows us to obtain further
regularity properties of the minimizing configuration. In particular, we rig-
orously obtain from our analysis that contact forces are directed normally
to the lateral surface of the rod — a physically natural fact which is usually
invoked as hypotheses into the theory.

The underlying mathematical structure for the description of deformed
configurations of an elastic rod is that of a framed curve. Here a base curve,
interpreted as centreline of a tube of uniform radius, is associated with an
orthonormal frame at each point, reflecting the orientation of the cross sec-
tion attached to that point. The main difficulty in posing an appropriate
variational problem modeling the previous examples is to find a mathemat-
ically precise and analytically tractable formulation of the condition that
the tube not pass through itself, which is often referred to as the excluded
volume constraint. On the one hand, the method used in [22] delivers very
general existence results, but it seems to be unsuitable for the derivation of
the Euler-Lagrange equation. The method used in [11], on the other hand,
provides a geometrically exact condition for self-avoidance and correspond-
ing existence results for the smaller class of unshearable rods, but, as we
will see in this paper, the Euler-Lagrange equation can be derived rigorously,
i.e., without hypothetical regularity assumptions for the energy minimizer.
Here the excluded volume constraint, which expresses global injectivity for
the mapping assigning the deformed position to each material point of the
rod, is mathematically transferred to the centreline as a bound on its global
curvature. This is a nonlocal quantity whose inverse, the global radius of
curvature, was introduced by Gonzalez and Maddocks [10] in the context of
ideal knots. Since this notion is not restricted to smooth curves (as is the
case, e.g., for the classical normal injectivity radius), global curvature turns
out to be appropriate for the direct methods in the calculus of variations.
Let us mention that the use of repulsive potentials along the centreline of the
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rod to model self-avoidance (as an alternative to our geometrically exact ex-
cluded volume constraint) leads to non-trivial analytical and computational
difficulties (see [9], [17], [29]). For an appropriate description of self-contact
problems for rods, we take into account also topological restrictions for the
framed curve as a given knot class for the centreline and a prescribed link
between the centreline and a curve on the lateral boundary of the rod.

The mathematical challenge for deriving the Euler-Lagrange equations in
the present context lies in the fact that global curvature furnishes a nons-
mooth nonconvex side condition of the variational problem. Thus, standard
arguments leading to variational inequalities are not applicable (see [14]).
Furthermore it would be desirable to obtain explicit structural information
about the contact forces, which remains hidden when using variational in-
equalities. It turns out that, similar to the treatment of contact between
nonlinearly elastic bodies and rigid obstacles (see [19], [20], [21]), Clarke’s
calculus of generalized gradients of locally Lipschitz continuous functionals
is the key to succeed (see [4]). It provides a general Lagrange multiplier rule
applicable to our situation, and suitable tools to evaluate the structure of
the Lagrange multiplier corresponding to the nonsmooth excluded volume
constraint. The resulting Euler-Lagrange equation stated in Theorem 4.1
contains an explicit contact term and corresponds to the mechanical equilib-
rium condition of the rod theory, at least if certain transversality conditions
detecting the physically relevant cases are satisfied. This way we recover in
particular apparently obvious mechanical properties of frictionless contact
forces in a mathematically rigorous way.

In contrast to most treatments for contact problems, our approach al-
lows us to conclude higher regularity properties for energy minimizing states
of (unshearable inextensible) rods exhibiting self-contact without hypothet-
ical smoothness assumptions, but merely based on the smoothness of the
data. If the density of the elastic energy is strictly convex and sufficiently
smooth, then the moments, the first derivatives of the frame field, and the
second derivatives of the centreline of the rod in equilibrium have to be Lip-
schitz continuous, cf. Corollaries 4.3 and 4.5. This, in particular, excludes
concentrated contact moments and answers a long standing open question
in the engineering community. Our regularity results including the explicit
structural information about contact forces may turn out quite useful for nu-
merical computations, where a thorough understanding of contact sets and
contact forces seems crucial, see [6].

In Section 2 the reader is introduced to the Cosserat theory of nonlin-
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early elastic rods to an extent necessary for the purposes of this paper. In
particular, the theory is specialized to materials where shear and extension
can be neglected and to rods where all cross sections are circular with the
same radius. But, in generalization to usual treatments, we have to consider
forces as vector-valued measures in order not to invoke a priori structural
restrictions for contact forces that, e.g., can indeed have concentrations.

Section 3 is devoted to geometric and topological constraints to be in-
voked in our rod problems. First we describe the excluded volume constraint
in terms of the global curvature, which guarantees global injectivity of the
deformation mapping, see Lemma 3.1. For that we review the definition of
global curvature and its basic properties. Then the formulation of topolog-
ical constraints such as a given knot class for the centrecurve and a given
link class for a framed curve is introduced using the notion of isotopy and
the Gaussian linking number, where we employ an analytic formula for the
latter avoiding topological degree theory. We extend this concept to the case
where the frame field is not closed as a curve in SO(3). This way we are
able to distinguish the infinitely many equilibrium states having the same
boundary conditions but differ in knotting and linking (number of rotations
of the frame around the centreline).

In Section 4 we state a general variational problem for nonlinearly elastic
rods subjected to the geometric excluded volume constraint, to topologi-
cal restrictions, and to boundary conditions. Then we formulate the Euler-
Lagrange equation for that problem, a number of structural properties for
contact forces which may occur in the case of self-touching, and further reg-
ularity results for the moments and the shape of the rod. In particular we
consider the case of a quadratic elastic energy which is important for various
applications.

Section 5 contains all the proofs. In Section 5.1 we prove Theorem 4.1 and
Corollary 4.2 in several steps. First we show that the topological properties
(knot class and link type) of the minimizing solution are stable under small
perturbations in an appropriate space of variations. Furthermore we remove
some redundancies in the side conditions. This way we obtain a reduced vari-
ational problem without topological constraints, a solution of which is given
by the solution of the original problem, see Lemma 5.4. We then claim that a
nonsmooth Lagrange multiplier rule is applicable to the reduced variational
problem. In order to prove this claim we have to compute the derivative of
the energy (Lemma 5.6), the derivatives of the functionals occurring in the
boundary conditions (Lemma 5.7), and the generalized gradient of a func-
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tional involving the global curvature (Lemma 5.10). The Euler-Lagrange
equation then follows. Analyzing the properties of the contact forces and
certain transversality conditions we finish the proof of Theorem 4.1. The
remaining regularity assertions in Corollaries 4.3–4.6 are verified in Section
5.2.

In Appendix A we provide the quite technical computation of the deriva-
tive of the mapping assigning the frame vectors to certain shape variables of
the rod. Analytically this means to determine the derivative of a solution
of an ordinary differential equation with respect to a parameter in a Banach
space. A short summary of the relevant facts regarding Clarke’s calculus of
generalized gradients can be found in Appendix B. Here we present a variant
of a nonsmooth chain rule adapted to our application.

Notation. We use x · y to denote the standard Euclidean inner product
of x and y in R3, and | · | to denote the (intrinsic) distance between two
points in R3 or in some parameter set J ⊂ R depending on the context. To
denote the enclosed (smaller) angle between two non-zero vectors x and y
in R3 we use <)(x, y) ∈ [0, π]. The distance between a point x ∈ R3 and a
subset Σ ⊂ R3 will be denoted by dist(x, Σ) and the diameter of Σ will be
denoted by diam(Σ). For any δ > 0 we define open neighbourhoods of x and
Σ by

Bδ(x) = {y ∈ R3 | |y − x| < δ}, Bδ(Σ) = {y ∈ R3 | dist(y, Σ) < δ}.

The interior of a set Σ will be denoted by intΣ. For Sobolev spaces of
functions on the interval [0, L], whose weak derivatives up to order m are p-
integrable we use the standard notation Wm,p([0, L]), and the class of func-
tions of bounded variation is denoted by BV ([0, L]). For general Banach
spaces X with dual space X∗ we denote the duality pairing on X∗ × X by
〈., .〉X∗×X .

2 Rod theory

In this section we provide a brief introduction to the special Cosserat the-
ory which describes the behaviour of nonlinearly elastic rods that can un-
dergo large deformations in space by suffering flexure, torsion, extension,
and shear. General nonlinear constitutive relations appropriate for a large
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class of applications can be taken into account. Though mathematically one-
dimensional, this theory allows a mechanically natural and geometrically
exact three-dimensional interpretation of deformed configurations which is
of particular importance for problems where contact occurs. In this paper
we restrict our attention to rods where shear and extension can be neglected.
This special case can be obtained from the general theory by a simple mate-
rial constraint. For a more comprehensive presentation we refer to Antman
[3, Ch. VIII].

Kinematics. We assume that the position p of the deformed material
points of a slender cylindrical elastic body can be described in the form

(1) p(s, ξ1, ξ2) = r(s) + ξ1d1(s) + ξ2d2(s) for (s, ξ1, ξ2) ∈ Ω,

where the parameter set Ω is given by

(2) Ω := { (s, ξ1, ξ2) ∈ R3 | s ∈ [0, L], (ξ1)2 + (ξ2)2 ≤ θ2}.

Here, r : [0, L] → R3 describes the deformed configuration of the centreline of
the body. d1(s), d2(s) are orthogonal unit vectors describing the orientation
of the deformed cross section at the point r(s) ∈ [0, L]. We interpret s as
length parameter and ξ1, ξ2 as thickness parameters of the rod. With

d3 := d1 ∧ d2

we get a right-handed orthonormal basis {d1, d2, d3} at each s ∈ [0, L], whose
vectors are called directors, and which can be identified with an orthogonal
matrix D = (d1|d2|d3) ∈ SO(3) (the right-hand side denotes the matrix with
columns d1, d2, d3). A deformed configuration of the rod is thus determined
by functions r : [0, L] → R3 and D : [0, L] → SO(3), where it is reasonable
to consider r ∈ W 1,q([0, L], R3) and D ∈ W 1,p([0, L], R3×3), p, q ≥ 1.

In the special case of an inextensible unshearable rod we assume that s is
the arc length of the deformed centrecurve r(·) and that the deformed cross
sections are orthogonal to the base curve, i.e.,

(3) r′(s) = d3(s) for all s ∈ [0, L],

(note that |d3(s)| = 1). Thus, by d3 ∈ W 1,p([0, L], R3), we even have that
r ∈ W 2,p([0, L], R3). (Observe that d3(·) is continuous and admits derivatives
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a.e. on [0, L].) Specifying [11, Lemma 6] to that case we see, that each such
configuration uniquely corresponds to shape and placement variables

w = (u, r0, D0) with u ≡ (u1, u2, u3),

in the space
Xp

0 := Lp([0, L], R3)× R3 × SO(3),

such that

d′k(s) =
[ 3∑

i=1

ui(s)di(s)
]
∧ dk(s) for a.e. s ∈ [0, L], k = 1, 2, 3,

D(0) = D0,

r(s) = r0 +

∫ s

0

d3(τ) dτ.

(4)

The function u is called the strain and fixes the shape of the rod while
(r0, D0) determine its spatial placement. We use the notation p[w], r[w],
etc. to indicate that the values are calculated for w = (u, r0, D0) ∈ Xp

0 .
Notice that Xp

0 is a subset of the Banach space

Xp := Lp([0, L], R3)× R3 × R3×3.

By wo := (uo, r0, D0) we identify the relaxed (stress-free) reference con-
figuration. Note that r[wo] need not be a straight line.

We demand that the map p preserve orientation in the sense that

(5) det

[
∂p(s, ξ1, ξ2)

∂(s, ξ1, ξ2)

]
> 0 for a.e. (s, ξ1, ξ2) ∈ Ω,

which, due to the special form of p, is equivalent to

(6)
1

θ
≥
√

(u1)2 + (u2)2 = | r′′| a.e. on [0, L]

(cf. [11]). Here, |r′′| is the local curvature of the base curve r(.), since r is
parameterized by arc length. It can be shown that inequality (6) ensures local
injectivity of p(.) on intΩ, (argue as in the proof of [22, Prop. 3.1]). Note, on
the other hand, that global injectivity of p(.) on intΩ, which prevents inter-
penetration of the elastic body, is an important and natural requirement in
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continuum mechanics. While this condition is neglected in many treatments
in elasticity, its consideration is a major objective of our investigation here.

In this paper we are particularly interested in configurations where the
rod is closed to a ring, i.e., we assume that

(7) r(0) = r(L), d3(0) = d3(L),

and call it a closed configuration. Notice that the centreline r is closed in
the C1-sense, i.e., the curve and its tangent closes up at the end points. For
the rod this can be rephrased by saying that the cross sections at the end
points coincide, but the directors d1(0), d2(0), may be different from d1(L)
and d2(L), respectively.

Forces and equilibrium conditions. In contact problems as consid-
ered in the present work, contact forces may occur, which are possibly concen-
trated, e.g., at some isolated point. Thus we need a more general approach
for the treatment of forces than usual (for a more detailed discussion see
Schuricht [19]). In particular, we can not assume integrable force densities
in general. We identify subbodies of the rod with corresponding subsets of
Ω. In particular, we set

(8) ΩJ := {(s, ξ1, ξ2) ∈ Ω : s ∈ J } for J ⊂ [0, L], and Ωs := Ω[s,L].

For a given configuration, the material of Ωs exerts a resultant force n(s)
and a resultant couple m(s) across section s on the material of Ω[0,s). This
definition does not make sense for s = 0, but it is convenient to set

(9) n(0) := 0 and m(0) := 0.

We assume that all forces other than n acting on the body can be described
by a finite vector-valued Borel measure

(10) Ω′ 7→ f(Ω′),

assigning the resultant force to subbodies which correspond to Borel sets
Ω′ ⊂ Ω. We call f the external force. It generates the induced couple of f

given by

(11) lf(Ω
′) :=

∫
Ω′

[ξ1d1(s) + ξ2d2(s)] ∧ df(s, ξ1, ξ2).
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Analogously we assume that all couples different from m and lf can be given
by a finite vector-valued Borel measure

(12) Ω′ → l(Ω′),

which we call the external couple.
A configuration of the rod is in equilibrium if the resultant force and the

resultant torque about the origin vanish for each part of the rod. In terms
of the distribution functions

f(s) :=

∫
Ωs

df(σ, ξ1, ξ2), l(s) :=

∫
Ωs

dl(σ, ξ1, ξ2),(13)

lf (s) :=

∫
Ωs

dlf(σ, ξ1, ξ2) =

∫
Ωs

[ξ1d1(σ) + ξ2d2(σ)] ∧ df(σ, ξ1, ξ2),(14)

these requirements are equivalent to the equilibrium conditions in integral
form

n(s)− f(s) = 0 for s ∈ [0, L],(15)

m(s)−
∫ L

s

r′(σ) ∧ n(σ) dσ − lf (s)− l(s) = 0 for s ∈ [0, L].(16)

Notice that the resultant force and the resultant couple of all external actions
for the whole body must vanish by (9). For sufficiently smooth external forces
and moments we obtain the classical form of the equilibrium conditions by
differentiating (15), (16).

Constitutive Relations. We assume that the material of the rod is
elastic, which means that there is a constitutive function m̂, such that m is
determined by the strain through

(17) m(s) = m̂(u(s), s),

where m̂ is usually assumed to be continuously differentiable in u. Note that
(17) can provide the correct values of m only a.e. on [0, L], if the strains
are discontinuous as, e.g., in the case where concentrated forces or couples
are present (cf. [19]). Let us mention that the resultant force n cannot be
determined by a constitutive function in the unshearable inextensible case -
it rather enters the theory as a Lagrange multiplier.
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The material is called hyperelastic if there is a stored energy density W :
R3 × [0, L] → R ∪ {+∞}, such that

(18) m̂(u, s) =
3∑

i=1

Wui(u, s)di(s).

The total stored energy of the rod is given by

(19) Es(u, v) =

∫ L

0

W (u(s), s) ds.

For our analysis we assume that

(W1) W (., s) is continuously differentiable on R3 for a.e. s ∈ [0, L],

(W2) W (u, .) is Lebesgue-measurable on [0, L] for all u ∈ R3.

The Strong Ellipticity Condition in nonlinear elasticity enforces W (., s)
to be convex, i.e., the matrix

∂m̂

∂u

has to be positive definite. It is reasonable to require that the energy density
W approaches ∞ under complete compression of the material, i.e.,

(20) W (u, v, s) →∞ as
1

θ
−
√

(u1)2 + (u2)2 → 0.

Due to severe analytical difficulties for regularity investigations connected
with such a degeneracy we will neglect this condition in our treatment and
focus on energy densities that are sufficiently smooth.

In the following we assume that there are no prescribed external couples
l and, for simplicity, that the given external force depends only on the coor-
dinates (s, ξ1, ξ2), but not on the configuration p[w], and denote this special
force by fe in contrast to general external forces f introduced in (10).

Then fe is conservative and has the potential energy

Ep(w) := Ep(p[w]) := −
∫

Ω

p[w](s, ξ1, ξ2) · dfe(s, ξ
1, ξ2)

= −
∫

Ω

[r[w](s) + ξ1d1[w](s) + ξ2d2[w](s)] · dfe(s, ξ
1, ξ2).(21)
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This way we can cover external forces such as weight or prescribed termi-
nal loads. However, in our investigation later, we also consider self-contact
forces which do depend on the configuration p[w]. But such forces do not
enter our analysis through the potential energy, but occur naturally as La-
grange multipliers of some constrained variational problem. In particular, we
are going to derive the Euler-Lagrange equation for energy minimizing con-
figurations subjected to an analytical condition preventing interpenetration
and to topological constraints described in the next section.

3 Constraints

Global injectivity. In [11] an analytical condition ensuring global injectiv-
ity of the mapping p is introduced by means of the global radius of curvature
– a nonlocal geometric quantity for curves that goes back to Gonzalez, Mad-
docks [10], and which is further analyzed in [24]. Note that elements (r, D)
determining a configuration of a rod are referred to as framed curves in the
geometric context of [11] and [24]. We are going to recall the definition of
the global radius of curvature, present the related notion of global curvature
and its important properties that our analysis later is based on.

Recall that throughout our developments we exclusively deal with cen-
trelines r : [0, L] → R3 parameterized by arc length, and with closed con-
figurations, see (7). Therefore it will often be useful to identify the interval
[0, L] with the circle SL

∼= R/(L · Z). The curve r is said to be simple if
r : SL → R3 is injective. Otherwise there exist s, t ∈ SL (s 6= t) for which
r(s) = r(t). Any such pair will be called a double point of r.

For a closed curve r : SL → R3 the global radius of curvature ρG[r](s) at
s ∈ SL is defined as

(22) ρG[r](s) := inf
σ,τ∈SL\{s}

σ 6=τ

R(r(s), r(σ), r(τ)),

where R(x, y, z) ≥ 0 is the radius of the smallest circle containing the
points x, y, z ∈ R3. For collinear but pairwise distinct points x, y, z we
set R(x, y, z) to be infinite. When x, y and z are non-collinear (and thus
distinct) there is a unique circle passing through them and

(23) R(x, y, z) =
|x− y|

|2 sin[<)(x− z, y − z)]|
.
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If two points coincide, however, say x = z or y = z, then there are many
circles through the three points and we take R(x, y, z) to be the smallest
possible radius namely the distance |x−y|/2. We should point out that with
this choice the function R(x, y, z) fails to be continuous at points, where at
least two of the arguments x, y, z, coincide. Notice nevertheless that, by
definition, R(x, y, z) is symmetric in its arguments.

The global radius of curvature of r is defined as

(24) R[r] := inf
s∈SL

ρG[r](s).

If R[r] > 0, then r is simple, and r ∈ C1,1 ∼= W 2,∞, see [11, Lemma 2],1 i.e.,
r has a Lipschitz continuous tangent field r′. Furthermore,

(25) ‖r′′‖L∞ ≤ 1

R[r]
.

Moreover, R[r] equals the radius of the largest open ball placed tangent to
r(SL) at any point r(s), that can be rotated around the tangent vector r′(s)
without intersecting the curve r(SL), [11, Lemma 3]. This geometric prop-
erty gives an intuitive idea why deformed rods with a centreline r satisfying
R[r] ≥ θ, might have no self-intersections. The following result confirms that
unshearable inextensible rods with such a positive lower bound on the global
radius of curvature are indeed globally injective. A more general version for
unshearable extensible rods covering the following Lemma can be found in
[11, Lemma 7].

Lemma 3.1. Consider a closed configuration (r[w], D[w]) ∈ W 2,p × W 1,p,
p ≥ 1, for w ∈ Xp

0 , and suppose that R[r[w]] > 0. Then p[w]|int (Ω) :
int (Ω) → R3 is globally injective iff R[r[w]] ≥ θ > 0.

For our further analysis it is necessary to work with the notion of global
curvature investigated in detail in [24], which has better regularity properties
than the global radius of curvature. The global curvature of r at s ∈ SL is
defined as

(26) κG[r](s) := sup
σ,τ∈SL\{s}

σ 6=τ

1

R(r(s), r(σ), r(τ))
.

1Even more is true: R[r] > 0 if and only if r ∈ C1,1 and simple, see [24].
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Notice that κG[r](.) can take values in (0,∞]. In analogy to R[r] we define
the global curvature of r by

(27) K[r] := sup
s∈SL

κG[r](s).

It is immediate consequence of the definitions that

κG[r](s) =
1

ρG[r](s)
, for all s ∈ SL ,(28)

K[r] =
1

R[r]
.(29)

In light of (25) together with (29) we say for curves r with R[r] > 0, that
the global curvature K[r] is locally not attained iff

(30) ‖r′′‖L∞ < K[r].

For curves r with R[r] > 0 we have an alternative analytically more
tractable characterization of K[r]. For that let x, y, t ∈ R3 be such that
the vectors x− y and t are linearly independent. By P we denote the plane
spanned by x−y and t. Then there is a unique circle contained in P through
x and y and tangent to t in the point y. We denote the radius of that circle
by r(x, y, t) and set r(x, y, t) := ∞, if x−y and t are collinear. Elementary
geometric arguments show that r may be computed as

(31) r(x, y, t) =
|x− y|

2
∣∣∣ x−y
|x−y| ∧

t
|t|

∣∣∣ ,
which shows that r(x, y, t) is continuous on the set of triples (x, y, t) with
the property that x − y and t are linearly independent. But it fails to be
continuous at points, where, e.g., two of the arguments coincide. Recall that
curves r with R[r] > 0, are of class C1,1. Hence, for every pair (s, σ) ∈
SL×SL, we can look at the radius r(r(s), r(σ), r′(σ)), and in [24] it is shown
that the global curvature K[r] is characterized by

(32) K[r] = sup
s,σ∈SL

s 6=σ

1

r(r(s), r(σ), r′(σ))
, if R[r] > 0.

The following set A[r], where the supremum in (32) is attained, will be
of particular interest when deriving the structure of the contact term in
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the Euler-Lagrange equation in the next section, since it identifies the cross
sections touching each other if K[r] = θ−1.

(33) A[r] := {(s, σ) ∈ [0, L]× [0, L], σ ≤ s : K[r] =
1

r(r(s), r(σ), r′(σ))
}.

By (32) and the definition of r(., ., .), one has s 6= σ for all (s, σ) ∈ A[r], if
R[r] > 0. The condition σ ≤ s in the previous definition (which is not part of
the corresponding definition in [24]) ensures that each pair of touching cross
sections is counted only once. On the other hand, all pairs of touching cross
sections are contained in the set A[r]. To see this we recall from [24] that for
closed curves r with R[r] > 0 and satisfying (30) the identitites

|r(s)− r(σ)| = 2R[r] and(34)

r′(s) · (r(s)− r(σ)) = r′(σ) · (r(s)− r(σ)) = 0(35)

hold for all (s, σ) ∈ A[r]. Consequently, by (31),

r(r(s), r(σ), r′(σ)) = r(r(σ), r(s), r′(s)) = 2R[r]

for (s, σ) ∈ A[r]. Hence, if K[r] = θ−1, θ > 0, all pairs of cross sections
touching each other are indeed detected by A[r], which we call the set of
contact parameters.

For our variational approach in Section 4 we need the following continuity
result for global curvature proved in more generality in [24].

Lemma 3.2. Let L ⊂ C1,1([0, L], R3) be the set of curves r of fixed length
L(r) = L > 0 and parameterized by arc length. Then K[.] (and hence R[.])
is continuous on L.

Topological constraints. We are interested in elastic rods that form a
knot of a prescribed type, which can be described by the closed centreline
lying in a given knot class. To make this precise we introduce the topological
concept of isotopy.

Two continuous closed curves K1, K2 ⊂ R3 are isotopic, denoted as
K1 ' K2, if there are open neighbourhoods N1 of K1, N2 of K2, and a
continuous mapping Φ : N1×[0, 1] → R3 such that Φ(N1, τ) is homeomorphic
to N1 for all τ ∈ [0, 1], Φ(x, 0) = x for all x ∈ N1, Φ(N1, 1) = N2, and
Φ(K1, 1) = K2.
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For simplicity we will frequently write r1 ' r2 instead of r1(SL1) '
r2(SL2) for two closed isotopic curves r1 : SL1 → R3 and r2 : SL2 → R3.
Roughly speaking, two curves are in the same isotopy class if one can be
continuously deformed onto the other.

In [24] the following Lemma concerning C0-perturbations of knotted curves
with a bounded global curvature is shown.

Lemma 3.3. Let r be a rectifiable closed continuous curve satisfying

(36) K[r] ≤ C0

for some fixed constant C0 < ∞. Then there exists ε = ε(r, C0) > 0, such
that for all rectifiable closed continuous curves r̃ with K[r̃] ≤ C0 and

(37) ‖r − r̃‖C0 ≤ ε,

one has r ' r̃.

The statement of the lemma is no longer true if one removes the assumptions
on the global curvature, small knotted regions might pull tight in the uniform
topology.

A pair (r, D) of a curve r and an associated frame field D is said to
be a framed curve. Here we consider framed curves with r(0) = r(L) and
satisfying (3), which we call closed framed curves. If we prescribe the knot
type for the curve r and boundary conditions as, e.g., D(0) = D(L), there are
still infinitely many topologically distinct components in the space of closed
framed curves. Indeed, every full rotation of the pair d1(L), d2(L) within
the cross section respects the boundary conditions, but changes the linking
number between the centreline and the curve r(.) + (θ/2)d1(.), which is a
topological invariant. Since such a change of topological type is accompanied
by an (often drastic) change of the equilibrium configuration for an elastic
rod, we need to prescribe the linking number in order to identify particular
solutions, see also the discussion in [2]. The approach in [11] using the concept
of homotopies in SO(3) distinguishes only two topologically different classes,
since the fundamental group of SO(3) is Z2.

One way to determine the link between two disjoint closed (but not nec-
essarily simple) curves is to compute the Gaussian linking number, which is
usually defined in terms of the topological degree, see, e.g., [26, p. 402]. For a
pair of absolutely continuous disjoint curves, however, there is an analytically
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more convenient formula, which we adopt as definition for the linking num-
ber. For closed curves r1, r2 ∈ W 1,1([0, L], R3) with r1([0, L])∩r2([0, L]) = ∅,
the linking number l(r1, r2) is given by

(38) l(r1, r2) =
1

4π

∫ L

0

∫ L

0

r1(s)− r2(t)

|r1(s)− r2(t)|3
· [r′1(s) ∧ r′2(t)] ds dt.

One can show that l(r1, r2) is integer-valued and stable with respect to
smooth perturbations preserving the non-intersection property.

For a closed framed curve respecting (3) we want to consider the linking
number of the curves r(.) and r(.)+(θ/2)d1(.). The problem here is that the
second curve might not be closed and that the two curves might intersect each
other. The first problem can be solved by closing the curve r(.) + (θ/2)d1(.)
up in a unique way, namely by

(39) βD(s) :=


r(s) + θ

2
d1(s) for s ∈ [0, L],

r(L) + θ
2
[cos(φD(s− L))d1(L) + sin(φD(s− L))d2(L)]

for s ∈ [L, L + 1],

where φD ∈ [0, 2π) is the angle between d1(0) and d1(L), such that φD − π
has the same sign as (d1(0)∧d1(L)) ·d3(0). For technical reasons we identify
r with its trivial extension onto [0, L + 1] according to

(40) r(s) := r(L) for s ∈ [L, L + 1].

Notice that r, βD ∈ W 1,q([0, L + 1], R3), 1 ≤ q ≤ ∞, if r ∈ W 1,q([0, L], R3),
and that r and βD are closed. Demanding the global curvature bound K[r] ≤
θ−1 we ensure that

(41) r([0, L + 1]) ∩ βD([0, L + 1]) = ∅

by Lemma 3.1 and (29). Thus the linking number of a closed framed curve
(r, D) satisfying (3), K[r] ≤ θ−1, r ∈ W 1,1([0, L], R3) and D ∈ W 1,1([0, L], R3×3),
is well-defined by

(42) l(r, D) := l(r, βD).

The following perturbation result for l(r, D) is shown in [24, Theorem 4.6].
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Lemma 3.4. Let (r, D) ∈ W 1,p([0, L], R3) ×W 1,p([0, L], R3×3), p > 1, be a
closed framed curve satisfying (3) and K[r] ≤ θ−1. Then there is ε > 0, such
that l(r̃, D̃) is well-defined and

(43) l(r, D) = l(r̃, D̃)

for all closed framed curves (r̃, D̃) ∈ W 1,p([0, L], R3) × W 1,p([0, L], R3×3)
satisfying

(44) ‖r − r̃‖W 1,p ≤ ε, ‖D − D̃‖W 1,p ≤ ε.

4 Variational problem, Euler-Lagrange equa-

tions and regularity

The variational problem. In this section we state a general variational
problem where we seek energy minimizing closed configuration of elastic rods
that are globally injective and belong to prescribed knot and link classes.
Then we formulate the corresponding Euler-Lagrange equations satisfied by
configurations with minimal energy. Finally we provide regularity results.

For elastic rods determined by elements w = (u, r0, D0) ∈ Xp
0 we consider

stored energy functionals Es of the form (19) where the stored energy density
satisfies (W1),(W2), see Section 2. In addition we consider potential energies
Ep as given in (21). Let D0 = (d01|d02|d03) and D1 = (d11|d12|d13) be given
matrices in SO(3) with equal third column vectors d03 = d13. Furthermore,
let θ > 0 be a given positive constant, r0 ∈ R3 be a given vector, K0 a simple
closed curve in R3, as a representative for a prescribed knot class, and l0 ∈ Z
representing a given link class.

Then we look at the minimization problem

(45) E(w) := Es(w) + Ep(w) → Min! , w ∈ Xp
0

under the constraints

r[w](L) = r0,(46)

D[w](L) = D1,(47)

R[w] ≥ θ,(48)

r[w] ' K0,(49)

l[w] = l0.(50)
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Here and from now on we use the short notation R[w], K[w], A[w], l[w] for
R[r[w]], K[r[w]], A[r[w]] and l[r[w]]. Note that (49) is well-defined because
of the constraint (48).

Geometrically, the boundary conditions (46) and (47) lead to closed con-
figurations (r, D) with a prescribed angle between d1[w](0) and d1[w](L),
and (48) guarantees that deformations are globally injective by Lemma 3.1.
For the derivation of the Euler-Lagrange equations later on we will have to
reformulate the variational problem (45)–(50) with a minimum number of
equations, see Section 5.

The existence of solutions for the variational problem (45)–(50) was proven
in [11, Sec. 4.2.1] under a natural coercivity condition on W but based on the
more restrictive notion of link classes in terms of homotopies in SO(3). By
[24, Lemma 4.5] these results can be extended to link classes as considered
here, see [30].

Euler-Lagrange equations. The basic issues we shall address here are
the derivation of the Euler-Lagrange equations for solutions of the variational
problem described above and the presentation of regularity results for the
minimizing configurations. We impose the standard growth condition on Wu

that

(W3) |Wu(u, s)| ≤ c|u|p + g(s) for a.e. s ∈ [0, L],

where c ≥ 0 is a constant and g ∈ L1([0, L]). This condition excludes en-
ergy densities with the property (20), but it circumvents severe analytical
difficulties caused by energies satisfying (20), and it is still an open problem
in nonlinear elasticity how to handle these energies for regularity considera-
tions. The existence theory, however, covers these more general energies (cf.
[11],[22],[30]).

Theorem 4.1. Suppose W is a stored energy density satisfying (W1)–(W3).
Let w = (u, r0, D0) ∈ Xp

0 be a solution of the variational problem (45)–(50),
such that the global curvature K[w] is locally not attained. Then there exist
Lagrange multipliers λE ≥ 0, f 0 ∈ R3, m0 ∈ R3 and a Radon measure µ on
[0, L]×[0, L] supported in A[w] (cf. (33)), not all zero, such that the following
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Euler-Lagrange equations hold:

0 = λE

[
m̂(u(s), s)−

∫
Ωs

[
ξ1d1[w](t) + ξ2d2[w](t)

]
∧ dfe(t, ξ

1, ξ2)

]
−λE

∫ L

s

d3[w](t) ∧
∫

Ωt

dfe(σ, ξ1, ξ2) dt(51)

+ m0 +

∫ L

s

d3[w](t) ∧ (f 0 − f c(t)) dt for a.e. s ∈ [0, L],

0 = λE

∫
Ω

dfe(t, ξ
1, ξ2),(52)

0 =

∫ L

0

d3[w](t) ∧
[
f 0 − f c(t)− λE

∫
Ωt

dfe(s, ξ
1, ξ2)

]
dt,

−λE

∫
Ω

[ξ1d1[w](t) + ξ2d2[w](t)] ∧ dfe(t, ξ
1, ξ2),(53)

where for τ ∈ [0, L],

f c(τ) :=

∫
Qτ

r[w](s)− r[w](σ)

|r[w](s)− r[w](σ)|
dµ(s, σ),(54)

Qτ := {(s, σ) ∈ [0, L]× [0, L] : σ ≤ τ ≤ s} for τ ∈ [0, L].(55)

(We have used identity (18) in (51).)
Moreover, if R[w] > θ in condition (48), then µ is the zero measure.

In addition, we can choose λE = 1, if one of the following transversality
conditions is satisfied:

(a) p[w] admits an isolated active contact pair, i.e., there is a point (s, σ) ∈
suppµ, and some ε > 0, such that

(56)
[
(Bε(s)× [0, L]) ∪ ([0, L]×Bε(σ))

]
∩ suppµ = (s, σ).

(b) p[w] has a curved contact free arc, i.e., there is an open nonempty
interval J ⊂ SL with d3[w] 6≡ const. on J , and such that

(57) r(r[w](s), r[w](σ), r′[w](σ)) > θ for all s ∈ J, σ ∈ [0, L], s 6= σ.
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(c) There is s ∈ [0, L], such that r′′[w](s) exists, and such that

(58) r′′[w](s) 6∈ conv({ρ(r[w](s)− r[w](σ)) : ρ > 0, (s, σ) ∈ suppµ}).

Remarks. 1. Using the notation introduced in (13),(14), we recover from
(51) the integral from of the equilibrium conditions including the contact
term involving fc, if λE = 1. Moreover, (52) and (53) for λE = 1 express the
fact that the resultant force of all external actions must vanish for the whole
rod, whereas the resultant couple of all the external actions for the whole
rod balances the couple induced by the contact action.

2. Observe that the transversality conditions (a) and (c) are only rele-
vant in the case of contact. If R[w] > θ, then we can omit the assumption
that K[w] is locally not attained, and we always have λE = 1. Condition (58)
in (c) excludes certain “clamped” or rigid configurations where one cannot
expect transversality, e.g., as in tightly knotted curves with multiple contact
points everywhere. Coleman et al. constructed initially straight, homoge-
neous inextensible rods furnishing strict local minima for certain quadratic
elastic energies with points and lines of self-contact, see [5]. It is unclear,
however, whether global minimizers obtained by our existence result may
exhibit self-contact everywhere along the curve. Even if this happened to be
the case, it appears to be very unlikely apart from very specific cases that all
contact points violate (58) in condition (c). In view of this we believe that
our transversality conditions (a),(b),(c) cover the generic situation for min-
imizing configurations. Notice that if multiple contact points are excluded,
i.e., if

]{σ ∈ SL\{s} : (s, σ) ∈ suppµ} ≤ 1 for all s ∈ SL,

then (c) says that one has to find only one active contact pair (s, σ) ∈ suppµ,
such that r[w](s)−r[w](σ) is not parallel to r′′[w](s), when the latter exists.

3. Note that A[w] does not contain a certain neighbourhood of the diag-
onal in [0, L]× [0, L], since K[w] is locally not attained. Thus cross sections
touching each other cannot be arbitrarily close to each other in arc length.
We can even find a constant η = η(r) > 0 such that |s − σ| ≥ η for all
(s, σ) ∈ A[w] (cf. Lemma 5.8 in Section 5.1).

4. The measure µ is defined on [0, L]2 and supported on A[w] which is
merely a subset of the triangle {(s, σ) ∈ [0, L]2 : σ < s}. This ensures in
particular that each pair of touching cross sections occurs only once in A[w].
According to (35) proved in Lemma 5.8 in Section 5.1 the vector r[w](s) −
r[w](σ) is perpendicular to the tangent vectors r′[w](s) and r′[w](σ) for all
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(s, σ) ∈ A[w]. This together with part (iv) of the following corollary can be
interpreted mechanically that in the case when R[r] = θ the contact forces
are always perpendicular to the curve r.

For notational convenience we set

(59) F (s, σ) :=
r[w](s)− r[w](σ)

|r[w](s)− r[w](σ)|
for (s, σ) ∈ [0, L]2.

Corollary 4.2. Let f c be as in Theorem 4.1.Then

(i) f c ∈ BV ([0, L], R3) and thus, it is bounded.

(ii) The right and the left limit of f c, denoted by f c(τ±), exists for each
τ ∈ SL, and

[f c](τ) := f c(τ+)− f c(τ−)

= −
∫
{τ}×[0,L]

F (s, σ) dµ(s, σ) +

∫
[0,L]×{τ}

F (s, σ) dµ(s, σ).(60)

(iii) For a.e. τ ∈ [0, L] there is a nonnegative Radon measure µτ on [0, L]
such that

f ′
c(τ) = −

∫ L

0

F (τ, σ) dµτ (σ).

(iv)

(61) [f c](τ) · r′[w](τ) = 0 for all τ ∈ [0, L],

(62) f ′
c(τ) · r′[w](τ) = 0 for a.e. τ ∈ [0, L].

(v) The tangential component τ 7→ f c(τ) · r′[w](τ) is of class W 1,∞([0, L]).

From the Euler-Lagrange equations we can derive further regularity results
for r[w], D[w], and m(s) = m̂(u(s), s).

Corollary 4.3. If all the hypotheses of Theorem 4.1 including one of the
transversality conditions (a), (b) or (c) hold, then m ∈ BV ([0, L], R3). If fe

has an integrable density φe, i.e., if

(63) dfe(t, ξ
1, ξ2) = φe(t, ξ

1, ξ2) dtdξ1dξ2
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with φe ∈ L1(Ω, R3), then m ∈ W 1,1([0, L], R3) with

m′(s) = −d1[w](s) ∧
∫

D

ξ1φe(s, ξ
1, ξ2) dξ1dξ2

− d2[w](s) ∧
∫

D

ξ2φe(s, ξ
1, ξ2) dξ1dξ2(64)

+ r′[w](s) ∧
[
f 0 − f c(s)−

∫ L

s

∫
D

φe(t, ξ
1, ξ2) dξ1dξ2 dt

]
for a.e. s ∈ SL, where D := Bθ(0) ⊂ R2. In particular, if φe is bounded
on Ω, , then m ∈ W 1,∞([0, L], R3). If fe = 0, then m′ ∈ BV ([0, L], R3) in
addition.

Let us point out that (64) is the classical differential form of the equilibrium
equation. Furthermore we note that W 1,1([0, L]) ⊂ C0([0, L]).

Under additional assumptions on the stored energy density W we can
derive higher regularity for the strain u, the centrecurve r[w] and the corre-
sponding frame field D[w]. Instead of (W1)-(W3) we consider W satisfying
(W3) and

(W4) W (., .) is of class C2(R3× [0, L]) with Wuu(u, s) positive definite for all
u ∈ R3 and s ∈ [0, L].

Note that (W4) implies (W1) and (W2). For the following result it actually
suffices to assume a C2-dependence of W with respect to u ∈ R3 and only a
C1-dependence with respect to s ∈ [0, L].

Corollary 4.4. Let all the hypotheses of Theorem 4.1 including one of the
transversality conditions (a), (b), or (c), be satisfied and, in addition, assume
that W satisfies (W3)–(W4). Then u ∈ BV ([0, L], R3), D[w] ∈ W 1,∞([0, L], R3×3),
D′[w] ∈ BV ([0, L], R3×3), r[w] ∈ W 2,∞([0, L], R3), and r′′[w] ∈ BV ([0, L], R3).

To deduce higher regularity we assume for simplicity that there are no ex-
ternal forces, (instead of assuming higher regularity of fe).

Corollary 4.5. In addition to the hypotheses in Corollary 4.4 assume that
fe = 0. Then u ∈ W 1,∞([0, L], R3), D[w] ∈ W 2,∞([0, L], R3×3) and r[w] ∈
W 3,∞([0, L], R3).
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Note that this last result implies that the curvature |r′′[w]| is Lipschitz con-
tinuous.

If there is a contact free arc, i.e. an interval J ⊂ SL, such that one has
(57), then the standard boot strap arguments for problems without contact
yield higher regularity for u, D, r and m on J , as long as W (., .) and fe are
sufficiently smooth.

The special case where W is a quadratic function in u plays an important
role in various applications:

(65) W (u, s) :=
1

2
C(s)(u(s)− uo(s)) · (u(s)− uo(s)),

where C : [0, L] → R3×3 is a Lebesgue measurable function such that C(σ) is
symmetric with λC

min(σ) ≥ c > 0 for a.e. σ ∈ [0, L], where λC
min(σ) denotes the

smallest eigenvalue of C(σ). The function uo(σ) is the stress-free reference
strain as a prescribed material parameter. In this special situation we have
more detailed regularity information for u and thus also for r[w] and D[w].
For simplicity we assume again that there are no external forces present.

Corollary 4.6. Let fe = 0 and assume that one of the transversality condi-
tions (a), (b) or (c) holds.

(i) If uo ∈ Lr([0, L], R3) and C ∈ L2r([0, L], R3×3) with p ≤ r ≤ ∞, then
u ∈ Lr([0, L], R3). Moreover, D[w] ∈ W 1,r([0, L], R3×3) and r[w] ∈
W 2,r([0, L], R3).

(ii) If uo ∈ W 1,∞([0, L], R3) and C ∈ W 1,∞([0, L], R3×3), then u ∈ W 1,∞([0, L], R3).
Moreover, D[w] ∈ W 2,∞([0, L], R3×3) and r[w] ∈ W 3,∞([0, L], R3).

As before, by virtue of boot strap arguments, one gets higher regularity
of u, D[w], r[w] and m on parts of the rod without contact, if C, uo and fe

are smooth enough.

5 Proofs

5.1 Proof of Theorem 4.1 and and Corollary 4.2

We are going to proceed in several steps, and we always assume that w =
(u, r0, D0) ∈ Xp

0 is a solution of the variational problem (45)–(50) such that
the global curvature K[w] is locally not attained.
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Modified variational problem. First we provide a method to represent
small variations of D0 on the manifold SO(3) by variations in a linear space.

Notice that small perturbations of D0 have the form D0

4

D, where
4

D∈ SO(3)

is close to the identity. Such matrices
4

D can be represented in a unique way

by means of the rotation vector
4
α=

4
α (

4

D) ∈ R3, where the direction of
4
α

describes the rotation axis of
4

D, and the length | 4
α | equals the positively

oriented rotation angle in [0, π). In a neighbourhood of the identity in SO(3),

the mapping
4

D 7→ 4
α (

4

D) is continuous and has a continuous inverse mapping

U in a neighbourhood of the origin in R3. In particular, we have
4
α (Id) =

0 ∈ R3 and U (0) = Id ∈ SO(3). Thus small perturbations of D0 ∈ SO(3)

have the form D0U (
4
α) with

4
α∈ R3,

4
α close to 0 ∈ R3, and we can identify

each slightly perturbed configuration

(u+
4
u, r0+

4
r0, D0

4

D) ∈ Xp
0

with an element

4
w= (

4
u,

4
r0,

4
α) ∈ Lp([0, L], R3)× R3 × R3

by
4

D= U (
4
α).

Since certain arguments in our proof below only work as long as we con-
sider perturbed configurations where the global curvature is locally not at-
tained either, we have to restrict our analysis to variations of the form

(66)
4
w:= (

4
u,

4
r0,

4
α) ∈ L∞([0, L], R3)× R3 × R3 =: Y

instead of taking
4
u∈ Lp([0, L], R3). With the norm

(67) ‖ 4
w ‖Y := ‖ 4

u ‖L∞ + | 4r0 |+ | 4α | for
4
w= (

4
u,

4
r0,

4
α) ∈ Y

(Y, ‖.‖Y ) is a Banach space, whereas the original set Xp
0 is not a linear space.

For notational convenience we introduce the modified energy function

Ĕ(
4
w) := E((u+

4
u, r0+

4
r0, D0U (

4
α))) for

4
w∈ Bδ(0) ⊂ Y,(68)

where Bδ(0) is a small neighbourhood of 0 ∈ Y with δ > 0 not fixed but

sufficiently small. Analogously, we define Ĕs(
4
w), Ĕp(

4
w) , r̆[

4
w], D̆[

4
w], R̆[

4
w],

etc. Note that r̆[0] = r[w], D̆[0] = D[w], etc.
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Now we consider the modified variational problem

(69) Ĕ(
4
w) −→ Min!,

4
w∈ Y,

subjected to

r̆[
4
w](L) = r0+

4
r0,(70)

D̆[
4
w](L) = D1U (

4
α),(71)

R̆[
4
w] ≥ θ,(72)

r̆[
4
w] ' K0,(73)

l̆[
4
w] = l0.(74)

Notice as before that the linking number l̆[
4
w] is well-defined by (42) for

4
w∈ Y,

by (72) and Lemma 3.1. Since L∞([0, L], R3) ↪→ Lp([0, L], R3)

(75)
4
w= 0 is a local minimizer of (69)–(74).

Reduction of the modified problem. It turns out that some of the
constraints of the modified variational problem are redundant which would
imply difficulties in obtaining λE = 1 as we claim in the second part of
Theorem 4.1. Furthermore we will replace Condition (72) by an equivalent
condition with a functional having better differentiability properties than
R̆[.].

First we state the following simple regularity and convergence results for
the solutions of the system (4).

Lemma 5.1. (i) Let l be a nonnegative integer and 1 ≤ r ≤ ∞. If u ∈
W l,r(I, R3) then D ∈ W l+1,r(I, R3×3) and r ∈ W l+2,r(I, R3×3). If u ∈ C l,α(I, R3)
for some α ∈ [0, 1], then D ∈ C l+1,α(Ī , R3×3) and r ∈ C l+2,α(Ī , R3×3)

(ii) Let 1 < p < ∞. If wn ⇀ w in Xp, where {wn} ⊂ Xp
0 , then w ∈ Xp

0 and

Dn → D in C0(Ī , R3×3), rn → r in C0(Ī , R3),(76)

Dn ⇀ D in W 1,p(I, R3×3), rn ⇀ r in W 2,p(I, R3),(77)

where rn := r[wn], r := r[w], Dn := D[wn], D := D[w].
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(iii) Let 1 < p ≤ ∞. If wn → w in Xp, where {wn} ⊂ Xp
0 , then

(78)
dk,n → dk in W 1,p(I, R3), k = 1, 2, 3, and rn → r in W 2,p(I, R3).

Proof. (i) Starting with l = 0, i.e., u ∈ Lr(I, R3), the right-hand side of the
first equation in (4) is in Lr(I, R3), hence d′k, k = 1, 2, 3, as well, since on
the right-hand side, dk ∈ W 1,p(I, R3) ↪→ C0(Ī , R3). Thus D ∈ W 1,r(I, R3×3).
For l ≥ 1 use bootstrap arguments inductively. The other results follow
easily from the last equation in (4).

Part (ii) was essentially proven already in [11, Lemma 8]. The stronger
convergence for {rn} follows from the last equation in (4).

(iii) Let k = 1, (k = 2, 3 can be treated in the same way). Using the
orthonormality of the di we can rewrite the equation for d1 in (4) as

(79) d′1(s) = u3(s)d2(s)− u2(s)d3(s) for a.e. s ∈ I.

Subtracting (79) from the corresponding equation for d1,n we obtain

d′1,n(s)− d′1(s) = (u3
n − u3)d2,n(s) + u3(d2,n(s)− d2(s))

− (u2
n − u2)d3,n(s)− u2(d3,n(s)− d3(s)),(80)

for a.e. s ∈ I. Taking the Lp-norm, we get

‖d′1,n − d′1‖Lp ≤
3∑

i=2

‖ui
n − ui‖Lp‖Dn‖C0 +

3∑
i=2

‖di,n − di‖C0‖u‖Lp

→ 0 as n →∞,

where one uses (76) on the right-hand side, which holds even for p = ∞, since
strong convergence in L∞(I, R3) implies weak convergence in Lp̃(I, R3) for all
p̃ ∈ [1,∞). Thus d′1,n → d′1 in Lp([0, L], R3) and d1,n → d1 in Lp([0, L], R3) by
(76), which implies the first statement in (78). For the second statement in
(78) we argue in the same way and use the last equation in (4) in addition. 2

For the minimizing configuration we deduce the following regularity prop-
erties:

Lemma 5.2. Let w = (u, r0, D0) ∈ Xp
0 be a solution of the variational prob-

lem (45)–(50). Then
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(i) u1, u2 ∈ L∞([0, L]),

(ii) d3[w], d̆3[
4
w] ∈ W 1,∞([0, L], R3), and r[w], r̆[

4
w] ∈ W 2,∞([0, L], R3) for

any
4
w∈ Bδ(0) ⊂ Y.

Proof of Lemma 5.2. Since R[w] ≥ θ > 0, (6),(25),(48) imply√
(u1(s))2 + (u2(s))2 ≤ ‖r′′‖L∞ ≤ R[w]−1 ≤ θ−1 < ∞ for a.e. s ∈ SL,

i.e., u1, u2 ∈ L∞([0, L]), which shows part (i).
By the differential system (4) we have

d′3[w] = u2d1[w]− u1d2[w],

r′[w] = d3[w].

Arguing as in the proof of Lemma 5.1 we obtain (ii) for d3[w], r[w]. If we re-

place w = (u, r0, D0) with (u+
4
u, r0+

4
r0, D0U (

4
α)) and solve the perturbed

differential system

d̆k
′[
4
w](s) =

[ 3∑
i=1

(ui+
4
u i)(s)d̆i[

4
w](s)

]
∧ d̆k[

4
w](s),

r̆′[
4
w](s) = d̆3[

4
w](s),

r̆[
4
w](0) = r0+

4
r0, D̆[

4
w](0) = D0U (

4
α),

(81)

for a.e. s ∈ [0, L], k = 1, 2, 3, then we get the remaining statement in part
(ii) in the same way. 2

As a consequence of Lemma 5.2 we observe that small variations of w of
the kind described above do not violate the topological constraints.

Lemma 5.3. Let w = (u, r0, D0) ∈ Xp
0 be a solution of the variational prob-

lem (45)–(50). Then

(i) r̆[
4
w] ' r[w] for all ‖ 4

w ‖Y sufficiently small.

(ii) For all ‖ 4
w ‖Y sufficiently small satisfying

(82) r̆[
4
w](L) = r̆[

4
w](0) and D̆[

4
w](L) = D1U (

4
α),

one has l̆[
4
w] = l[w] = l0.
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Proof. (i) (78) of Lemma 5.1 implies that

(83) ‖r[w]− r̆[
4
w]‖W 2,∞ + ‖D[w]− D̆[

4
w]‖W 1,p → 0 as ‖ 4

w ‖Y → 0,

and notice that the convergence in W 2,∞ is equivalent to convergence in C1,1.

Hence for ‖ 4
w ‖Y sufficiently small we have

(84) K̆[
4
w] ≤ 2θ−1,

by the continuity of K[.] with respect to the convergence in (83), see Lemma

3.2. Now apply Lemma 3.3 for r = r[w] and C0 = 2θ−1 with ‖ 4
w ‖Y so small

that ‖r[w]− r̆[
4
w]‖C0 ≤ ε, where ε = ε(r, 2θ−1) is as in Lemma 3.3.

(ii) If we extend the curves r[w], r̆[
4
w ], and r[w] + (θ/2)d1[w], r̆[

4
w ] +

(θ/w)d̆1[
4
w] according to (40) and (39), respectively, we readily infer from

(82) that all these curves have the interval [0, L + 1] as their common do-

main. Now apply Lemma 3.4 for ‖ 4
w ‖Y sufficiently small to conclude the

proof. 2

Lemma 5.3 implies that the topological constraints are stable with respect
to small variations in Y. Thus they can be removed without affecting the fact

that
4
w= 0 is a local minimizer of the modified variational problem.

In order to replace (72) by an equivalent condition we introduce the func-
tions

P [
4
w](s, σ) := (r̆[

4
w](s), r̆[

4
w](σ), r̆′[

4
w](σ)),(85)

H(x, y, t) :=
4|(x− y) ∧ t|2

|x− y|4
, for x, y, t ∈ R3, t 6= 0,(86)

and note that according to (31),(32) we may write

(87) K̆[
4
w]2 = sup

s,σ∈SL
s 6=σ

H(P [
4
w](s, σ)).

By (29) we can replace (72) with

(88) g(
4
w) := K̆[

4
w]2 − θ−2 ≤ 0.

To remove the redundancies in the boundary conditions we are going to
replace the nine scalar conditions (71) by just three scalar equations, see
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(92)–(94) below. (Note that an element of SO(3) has merely three degrees
of freedom.)

This way we get the reduced variational problem

(89) Ĕ(
4
w) → Min! ,

4
w∈ Y,

subjected to

g(
4
w) ≤ 0,(90)

g0(
4
w) := r̆[

4
w](L)− (r0+

4
r0) = 0,(91)

g1(
4
w) := d̆1[

4
w](L) · (D1U (

4
α))2 = 0,(92)

g2(
4
w) := d̆3[

4
w](L) · (D0U (

4
α))1 = 0,(93)

g3(
4
w) := d̆3[

4
w](L) · (D0U (

4
α))2 = 0,(94)

where, for M ∈ R3×3, we denoted the k-th column vector by (M)k, k =
1, 2, 3.

Lemma 5.4. The reduced variational problem (89)–(94) has a local mini-

mizer at
4
w= 0.

Proof. In Lemma 5.3 it was shown that small variations do not violate

the topological constraints, hence (73) and (74) hold for all ‖ 4
w ‖Y suf-

ficiently small. Conditions (92)–(94) determine the frame D̆[
4
w](L) to be

equal to D1(U (
4
α)). Indeed, d13 = d03 by assumption on D1. Thus (93),(94)

force d̆3[
4
w](L) to be parallel to (D1U (

4
α))3, and by continuity (see Lemma

5.1) we get d̆3[
4
w](L) = (D1U (

4
α ))3 for ‖ 4

w ‖Y small. Now (92) im-

plies that d̆1[
4
w](L) is perpendicular to (D1U (

4
α))2, and d̆1[

4
w](L) is au-

tomatically perpendicular to (D1U (
4
α))3 = d̆3[

4
w](L). Again by continu-

ity, we get d̆1[
4
w ](L) = (D1U (

4
α ) )1 for ‖ 4

w ‖Y small. Since D̆[
4
w],

D1U (
4
α) ∈ SO(3), we still obtain d̆2[

4
w ](L) = (D1U (

4
α))2 for ‖ 4

w ‖Y

small. Thus D̆[
4
w](L) = D1U (

4
α), i.e., (92)–(94) imply (71). (70) and (72)

are obviously equivalent to (91) and (90), respectively. Since
4
w= 0 is a local

minimizer of (69)–(74), it is also a local minimizer of (89)–(94). 2
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We will now derive the Euler-Lagrange equations for the reduced varia-
tional problem, instead of (45)–(50) or (69)–(74). For that purpose we have
to compute a number of derivatives.

Differentiability of the base curve and the directors. In order to
analyze the dependence of the energy functions Ĕs, Ĕp, and the side condi-

tions on perturbations
4
w∈ Y we need to understand, how the solutions of the

perturbed differential system (81) depend on
4
w . According to [23, Thm 2.1]

the solutions of (81) depend continuously differentiable on the perturbations
4
u∈ L∞([0, L], R3),

4
r∈ R3, and

4

D∈ SO(3). Since the mapping
4
α7→ U (

4
α) is

smooth in a small neighbourhood of 0 ∈ R3, we obtain

Lemma 5.5. Let w be a solution of (45)–(50). Then the mapping

(
4
w, s) 7→ (r̆[

4
w](s), D̆[

4
w ](s))

from Bδ(0) × [0, L] into R3 × R3×3 is continuously differentiable for some
sufficiently small δ > 0 (depending on w), i.e.,

(95) (r̆[.](.), D̆[.](.)) ∈ C1(Bδ(0)× [0, L], R3 × R3×3).

Note. Since we study continuity and differentiability near the origin in Y , it is sufficient
to take a bounded neighbourhood of the origin in L∞([0, L], R3) as parameter set Λ in
[23, Theorem 2.1], which corresponds to perturbations

4
u . This way [23, Theorem 2.1]

implies the desired regularity (95), but only for small intervals instead of for [0, L]. Since
the system (81) is always uniquely solvable on [0, L] and, by uniform boundedness of the
solution, even on [−ε, L + ε] for any given ε > 0 (cf. [11, Lemma 6]), we obtain (95) with
[0, L] by a covering argument using the compactness of [0, L].

Since r and dk enter explicitly into the potential energy Ĕp(.) and the
side conditions (90)–(94), we need to calculate the Fréchet derivative of the

mappings
4
w 7→ r̆[

4
w](s) and

4
w 7→ d̆k[

4
w], k = 1, 2, 3, at the origin 0 ∈ Y, which

we denote by ∂wr̆[0](s), ∂wd̆k[0](s), respectively. Lemma A.1 in the appendix
shows that

(96) ∂wd̆k[0](s)
4
w = z(s) ∧ dk[w](s), k = 1, 2, 3,

and thus

(97) ∂wr̆[0](s)
4
w =

4
r0 +

∫ s

0

z(τ) ∧ d3[w](τ) dτ,
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for all s ∈ [0, L],
4
w= (

4
u,

4
r0,

4
α) ∈ Y. Here, z = z[

4
u] is a special characteriza-

tion of elements
4
u∈ L∞([0, L], R3) by the uniquely assigned function

(98) z(s) = z(0) +

∫ s

0

3∑
i=1

4
u i(τ)di[w](τ) dτ

with

(99) z(0) ∧ dk[w](0) = (D0U
′(0)

4
α)k, k = 1, 2, 3,

where U ′ denotes the derivative of U with respect to α at 0 ∈ R3, see
our remark at the end of Appendix A. Note that z ∈ W 1,∞([0, L], R3). In
particular,

(100) z(0) = 0 for
4
w= (

4
u,

4
r0, 0) ∈ Y.

Differentiability of the energy E.

Lemma 5.6. Let w be a solution of (45)–(50). Then the energy functions

Ĕs, Ĕp : Bδ(0) ⊂ Y −→ R

are continuously differentiable for some sufficiently small δ > 0 (depending
on w), and we have

Ĕ ′
s(0)

4
w =

∫ L

0

Wu(u(t), t)· 4u (t) dt(101)

=

∫ L

0

z′(t) ·
3∑

i=1

Wui(u(t), t)di[w](t) dt

and

Ĕ ′
p(0)

4
w = − 4

r0 ·
∫

Ω

dfe(t, ξ
1, ξ2)

−
∫ L

0

z′(t) ·
∫ L

t

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2) dτdt

−
∫ L

0

z′(t) ·
∫

Ωt

[
ξ1d1[w](τ) + ξ2d2[w](τ)

]
∧ dfe(τ, ξ

1, ξ2)dt(102)

−z(0) ·
∫

Ω

[
ξ1d1[w](t) + ξ2d2[w](t)

]
∧ dfe(t, ξ

1, ξ2)

−z(0) ·
∫ L

0

d3[w](t) ∧
∫

Ωt

dfe(σ, ξ1, ξ2) dt,
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for all
4
w= (

4
u,

4
r0,

4
α) ∈ Y , where z ∈ W 1,∞([0, L], R3) is given by (98),(99).

Proof. Recall that

Ĕs(
4
w) =

∫ L

0

W (u(s)+
4
u (s), s) ds,(103)

Ĕp(
4
w) = −

∫
Ω

(r̆[
4
w](s) + ξ1d̆1[

4
w](s) + ξ2d̆2[

4
w](s)) · dfe(s, ξ

1, ξ2).(104)

Conditions (W1)–(W3) on W imply that Ĕs(.) is Fréchet-differentiable, and
we obtain (101) by standard arguments and (98). (Notice that the integral on
the right-hand side exists by (W3) and the fact that u ∈ Lp([0, L], R3).) We

can differentiate in (104) with respect to
4
w under the integral sign, because

the integrand as well as its Fréchet derivative have integrable majorants.

Using (96)–(99) we obtain for
4
w= (

4
u,

4
r0,

4
α) ∈ Y

Ĕ ′
p(0)

4
w = −

∫
Ω

[
4
r0 +

∫ s

0

z(t) ∧ d3[w](t) dt

]
· dfe(s, ξ

1, ξ2)

−
∫

Ω

[
ξ1z(s) ∧ d1[w](s) + ξ2z(s) ∧ d2[w](s)

]
· fe(s, ξ

1, ξ2).(105)

Applying Fubini’s Theorem and integrating by parts we calculate

∫
Ω

∫ s

0

z(t) ∧ d3[w](t) dt · dfe(s, ξ
1, ξ2)

=

∫ L

0

[
z(t) ∧ d3[w](t)

]
·
∫

Ωt

dfe(s, ξ
1, ξ2) dt

=

∫ L

0

z(t) ·
[
d3[w](t) ∧

∫
Ωt

dfe(s, ξ
1, ξ2)

]
dt

= −
∫ L

0

z′(t) ·
∫ t

0

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2) dτ dt

+

[
z(t) ·

∫ t

0

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2)dτ

]t=L

t=0
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= −
∫ L

0

z′(t) ·
∫ t

0

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2) dτ dt

+z(L) ·
∫ L

0

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2)dτ

= −
∫ L

0

z′(t) ·
∫ t

0

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2) dτ dt

+

[
z(0) +

∫ L

0

z′(t)

]
·
∫ L

0

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2)dτ dt

=

∫ L

0

z′(t) ·
∫ L

t

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2) dτ dt(106)

+z(0) ·
∫ L

0

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2)dτ.

Similarly we obtain for i = 1, 2,

∫
Ω

ξi(z(t) ∧ di[w](t)) · dfe(t, ξ
1, ξ2)

=

∫
Ω

ξi

([
z(0) +

∫ t

0

z′(τ) dτ
]
∧ di[w](t)

)
· dfe(t, ξ

1, ξ2)

= z(0) ·
∫

Ω

ξ1di[w](t) ∧ dfe(t, ξ
1, ξ2)(107)

+

∫ L

0

z′(t) ·
∫

Ωt

ξidi[w](s) ∧ dfe(s, ξ
1, ξ2) dt.

(105)–(107) verify (102) and conclude the proof. 2

Differentiability of g0, g1, g2, g3.

Lemma 5.7. For some sufficiently small δ > 0 (depending on the mini-
mizer w) the functions g0, gi, i = 1, 2, 3, given in (91)–(94) are continuously
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differentiable on Bδ(0) ⊂ Y with

g′0(0)
4
w = z(0) ∧

∫ L

0

d3[w](t) dt

+

∫ L

0

z′(t) ∧
∫ L

t

d3[w](τ) dτ dt,(108)

g′1(0)
4
w =

∫ L

0

z′(t) · d03 dt(109)

g′2(0)
4
w =

∫ L

0

z′(t) · d02 dt(110)

g′3(0)
4
w = −

∫ L

0

z′(t) · d01 dt(111)

where z ∈ W 1,∞([0, L], R3) is given by (98),(99).

Proof. We use (97) to differentiate g0(.) in (91) and obtain

g′0(0)
4
w =

∫ L

0

z(t) ∧ d3[w](t) dt

= −
∫ L

0

z′(t) ∧
∫ t

0

d3[w](τ) dτ dt

+

[
z(t) ∧

∫ t

0

d3[w](τ) dτ

]t=L

t=0

= −
∫ L

0

z′(t) ∧
∫ t

0

d3[w](τ) dτ dt + z(L) ∧
∫ L

0

d3[w](τ) dτ

= −
∫ L

0

z′(t) ∧
∫ t

0

d3[w](τ) dτ dt

+

[
z(0) +

∫ L

0

z′(t) dt

]
∧
∫ L

0

d3[w](τ) dτ

=

∫ L

0

z′(t) ∧
∫ L

t

d3[w](τ) dτ dt + z(0) ∧
∫ L

0

d3[w](t) dt,(112)
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thus proving (108). Differentiating (92) we get

g′1(0)
4
w = (z(L) ∧ d1[w](L)) · (D1U (0))2 + d̆1[0](L) · (D1U

′(0)
4
α)2

=

([
z(0) +

∫ L

0

z′(t) dt
]
∧ d11

)
· d12

+d11 · (D1D
−1
0 D0U

′(0)
4
α)2.(113)

To evaluate the last term we use (99) and notice that the matrix D1D
−1
0 is

orthogonal, hence

d11 · (D1D
−1
0 D0U

′(0)
4
α)2 = d11 · (D1D

−1
0 (D0U

′(0)
4
α)2)

= d11 · (D1D
−1
0 (z(0) ∧ d02))

= ((D1D
−1
0 )−1d11) · (z(0) ∧ d02)

= (D0D
−1
1 d11) · (z(0) ∧ d02)

= d01 · (z(0) ∧ d02)

= z(0) · (d02 ∧ d01)

= −z(0) · d03.(114)

Inserting this into (113) leads to the desired formula (109) by d03 = d13.
Similar but simpler is the computation for g′2(0) :

g′2(0)
4
w = (z(L) ∧ d3[w](L)) · (D0U (0))1 + d̆3[0](L) · (D0U

′(0)
4
α)1

=

([
z(0) +

∫ L

0

z′(t) dt
]
∧ d13

)
· d01 + d03 · (D0U

′(0)
4
α)1

=

([
z(0) +

∫ L

0

z′(t) dt
]
∧ d03

)
· d01 + d03 · (z(0) ∧ d01)

=

(∫ L

0

z′(t) dt ∧ d03

)
· d01 =

∫ L

0

z′(t) · d02.(115)

This shows (110) and (111) is proved in the same way. 2

Differentiability of g. We intend to compute the generalized gradient
∂g(0) by the methods presented in Appendix B. In order to guarantee that
the function g is accessible to these methods it has to be shown that g is

Lipschitz continuous in a neighbourhood of
4
w= 0, and for that the functions
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H(., ., .) and P [.](., .) have to meet certain differentiability properties. This is
the first and only instance where we actually need that the global curvature
K[w] of the minimizer is locally not attained. For curves r satisfying (30)
the global curvature K[r] can be characterized by a maximum over pairs of
parameters in a well-defined compact subset of [0, L]× [0, L] away from the
diagonal, for the proof see [24] and our remark concerning the set A[r] in
Section 3.

Lemma 5.8. Let r be a curve with R[r] > 0, such that K[r] is locally not
attained and set

η(r) :=
1−R[r] · ‖r′′‖L∞

‖r′′‖L∞
,(116)

Q = Q[r] := {(s, σ) ∈ [0, L]× [0, L] : L− η(r) ≥ s− σ ≥ η(r)}.(117)

Then

(i) 0 < η(r) < L/(2π),

(ii) A[r] ∩Q 6= ∅, i.e.,

(118) K[r] = max
(s,σ)∈Q

1

r(r(s), r(σ), r′(σ))
,

(iii) K[r] > (r(r(s), r(σ), r′(σ)))−1 for all (s, σ) ∈ [0, L]2 such that
(s, σ) 6∈ Q and (σ, s) 6∈ Q.

The key observation of Lemma 5.8 is that in this case the global curvature is
characterized by a maximum over a fixed set. It is important to notice that
this characterization is stable with respect to small variations in Y :

Lemma 5.9. Let w be a minimizing configuration for (45)–(50), such that
K[w] is locally not attained. Then there are constants δ > 0 and η̃ ∈ (0, L/2π)
(both depending on the minimizer w) such that

(119) g(
4
w) = max

(s,σ)∈Q̃
H(P [

4
w](s, σ))− θ−2 for all

4
w∈ Bδ(0) ⊂ Y,

where

(120) Q̃ := {(s, σ) ∈ [0, L]× [0, L] : L− η̃ ≥ s− σ ≥ η̃ }.

In particular, A[r̆[
4
w]] ⊂ Q̃ for all

4
w∈ Bδ(0).
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Proof. By (78) of Lemma 5.1 and by Lemma 3.2 we have that K̆[.] and
hence also R̆[.] according to (29), are continuous on Y , i.e.,

(121) K̆[
4
w] → K̆[0] = K[w] and R̆[

4
w] → R̆[0] = R[w] as ‖ 4

w ‖Y → 0.

By virtue of (30), which holds for the minimizing configuration r[w], and by
(48), (29) we obtain

(122) ‖r̆′′[4w]‖L∞ < K̆[
4
w] ≤ 2θ−1 for ‖ 4

w ‖Y sufficiently small.

Consequently, Lemma 5.8 is applicable to r̆[
4
w] for ‖ 4

w ‖Y sufficiently small
and, by (118),

K̆[
4
w] = max

(s,σ)∈Q[r̆[
4
w]]

1

r(r̆[
4
w](s), r̆[

4
w](σ), r̆′[

4
w](σ))

.

From (116) we see that
4
w 7→ η(r̆[

4
w]) is continuous near the origin in Y. Thus

we can assume that

L

2π
> η(r̆[

4
w]) ≥ 1

2
η(r̆[0]) =

1

2
η(r[w]) =: η̃

for all
4
w∈ Bδ(0) ⊂ Y, δ > 0 sufficiently small. Lemma 5.8 (iii) implies that

K̆[
4
w] = max

(s,σ)∈Q̃

1

r(r̆[
4
w](s), r̆[

4
w](σ), r̆′[

4
w](σ))

.

with Q̃ defined in (120). By (31), (85), (86) and (88) we finally obtain (119).

By the definition of η̃ and by Lemma 5.8 we see that A[r̆[
4
w]] ⊂ Q̃ for all

4
w∈ Bδ(0). 2

Due to the characterization (119) of g we can apply the nonsmooth chain
rule proved in Proposition B.2 of Appendix B to analyze the structure of the
generalized gradients ∂g(0). This leads to

Lemma 5.10. Let w be a minimizer of (45)–(50), such that K[w] is locally
not attained. Then the function g as defined in (88) is Lipschitz continuous
on Bδ(0) ⊂ Y for some small δ > 0 depending on w. Furthermore, for any
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g∗ ∈ ∂g(0) there is a Radon measure µ∗ on [0, L] × [0, L] with nonempty
support on A[w], see (33), such that

〈g∗, 4w〉Y ∗×Y = −
∫ L

0

z′(t) ·
∫ L

t

d3(τ) ∧ f ∗
c(τ) dτ dt

−z(0) ·
∫ L

0

d3(t) ∧ f ∗
c(t) dt,(123)

where

f ∗
c(τ) :=

∫
Qτ

r[w](s)− r[w](σ)

|r[w](s)− r[w](σ)|
dµ∗(s, σ),(124)

Qτ := {(s, σ) ∈ [0, L]× [0, L] : σ ≤ τ ≤ s} for τ ∈ [0, L].(125)

Proof. We consider the representation (119) of g. To verify the assump-
tions (a)–(c) of Proposition B.2 we observe that the set T := Q̃ ⊂ R2 is
compact. We set X := Y, U := Bδ(0) ⊂ Y for some sufficiently small δ > 0.
Furthermore, define p(., .) := P [.](.), G := H, and

(126) N := BR(r0)×BR(r0)×Bδ̄(S
2)\{(x, y, t) ∈ [R3]3 : x = y}

for δ̄ > 0 sufficiently small, where BR(r0) ⊂ R3 with

(127) R ≥ 2 diam r[w].

According to Lemma 5.5 hypothesis (b) of Proposition B.2 holds true. (Note

that r̆′[
4
w] = d̆3[

4
w], to which Lemma 5.5 applies.) By (127) the set N is

an open neighbourhood of the set P [Bδ(0)](Q̃), since r̆[
4
w] is uniformly close

to r[w] by Lemma 5.1 for small ‖ 4
w ‖Y and |r̆′[4w]| = 1 on [0, L] by (81).

Furthermore,

r̆[
4
w](s) 6= r̆[

4
w](σ) for all (s, σ) ∈ Q̃,

because the diagonal is excluded in Q̃ and r̆[
4
w] is simple for ‖ 4

w ‖Y suffi-

ciently small, according to R̆[
4
w] > 0, see (48), (121), and [11, Lemma 1].

The function H = H(x, y, t) as defined in (86) is continuously differen-
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tiable on N with differential

H ′(x, y, t) · (4x,
4
y,

4
t) =

8

|x− y|4
{

(
4
y − 4

x)
[
((x− y) · t)t− |t|2(x− y)

+
2|(x− y) ∧ t|2

|x− y|2
(x− y)

]
+

4
t ·
{
|x− y|2t− ((x− y) · t)(x− y)

}}
for

4
x,

4
y,

4
t∈ R3.(128)

H ′ is bounded on N and thus satisfies (180). Hence we have verified assump-
tions (a)–(c) and can apply Proposition B.2, i.e., g is Lipschitz continuous

near
4
w= 0 and for any g∗ ∈ ∂g(0) there is a probability Radon measure µ̄

on Q̃ supported on A[w] ⊂ Q̃, such that

(129) 〈g∗, 4w〉Y ∗×Y =

∫
Q̃

H ′(P [0](s, σ)) · Pw[0](s, σ)
4
w dµ̄(s, σ)

for all
4
w∈ Y. Since we have to consider the integrand only on the support of

µ̄, we need to evaluate (128) merely for (x, y, t) = (r[w](s), r[w](σ), r′[w](σ))
with (s, σ) ∈ A[w].

The global curvature K[w] of the minimizer w is locally not attained, so
we can use (34) and (35) to obtain for (s, σ) ∈ A[w]

H ′(P [0](s, σ)) · (4x,
4
y,

4
t) =

8

(2R[w])3

{
(
4
y − 4

x) · r[w](s)− r[w](σ)

|r[w](s)− r[w](σ)|
+

4
t ·r′[w](σ)R[w]

}
.(130)

In (129) we have (
4
x,

4
y,

4
t) = Pw[0](s, σ)

4
w for (s, σ) ∈ A[w] and

4
w= (

4
u,

4
r0,

4
α) ∈ Y, which, by (85), (96) and (97), can be computed as

Pw[0](s, σ)
4
w=(131)(

4
r0 +

∫ s

0

z(t) ∧ d3[w](t) dt ,
4
r0 +

∫ σ

0

z(t) ∧ d3[w](t) dt, z(σ) ∧ d3[w](σ)
)
.

This leads to

〈g∗, 4w〉Y ∗×Y =

− 1

R[w]3

∫
Q̃

r[w](s)− r[w](σ)

|r[w](s)− r[w](σ)|
·
∫ s

σ

z(t) ∧ d3[w](t) dtdµ̄(s, σ)(132)
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for g∗ ∈ ∂g(0),
4
w∈ Y. Let us extend the measure µ̄ from Q̃ to the triangle

Q̄ := {(s, σ) ∈ [0, L]× [0, L] : s ≥ σ} ⊃ Q̃

by zero, which we denote by µ̄ again. Then we can replace Q̃ with Q̄ in
(132). By Fubini’s Theorem and the special structure of the set Q̄ we can
transform the integral on the right-hand side in (132) further, where we also
use the notation given in (124), (125) and µ∗ := R[w]−3µ̄ :

〈g∗, 4w〉Y ∗×Y = − 1

R[w]3

∫ L

0

z(t) ∧ d3[w](t) ·
∫
Qt

r[w](s)− r[w](σ)

|r[w](s)− r[w](σ)|
dµ̄(s, σ) dt

= −
∫ L

0

z(t) · (d3[w](t) ∧ f ∗
c(t)) dt

=

∫ L

0

z′(t) ·
∫ t

0

d3[w](τ) ∧ f ∗
c(τ) dτ dt

−
[
z(t) ·

∫ t

0

d3[w](τ) ∧ f ∗
c(τ) dτ

]t=L

t=0

=

∫ L

0

z′(t) ·
∫ t

0

d3[w](τ) ∧ f ∗
c(τ) dτ dt

−z(L) ·
∫ L

0

d3[w](τ) ∧ f ∗
c(τ) dτ

= −
∫ L

0

z′(t) ·
∫ L

t

d3[w](τ) ∧ f ∗
c(τ) dτ dt

−z(0) ·
∫ L

0

d3[w](t) ∧ f ∗
c(t) dt.(133)

This verifies (123). 2

Lagrange multiplier rule. By Lemma 5.4 we know that
4
w= 0 is a lo-

cal minimizer for the reduced variational problem (89)–( 94). We are in the
position to apply the Lagrange multiplier rule, Proposition B.1 (iii), to this
variational problem, since the energy functions Ĕs, Ĕp and the constraints
g, g0, gi, i = 1, 2, 3, are Lipschitz continuous near 0 ∈ Y according to Lem-
mas 5.6, 5.7 and 5.10. Hence there exist multipliers λE, λ ≥ 0, λ0 ∈ R3,
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λ1, λ2, λ3 ∈ R, not all zero, such that by (178)

(134) 0 ∈ λE(Ĕ ′
s(0) + Ĕ ′

p(0)) + λ∂g(0) + λ0 · g′0(0) +
3∑

i=1

λig
′
i(0)

with

(135) λg(0) = 0.

In other words, there exists g∗ ∈ ∂g(0) ⊂ Y ∗, such that
(136)

0 =

{
λE(Ĕ ′

s(0) + Ĕ ′
p(0)) + λ0 · g′0(0) +

3∑
i=1

λig
′
i(0)

}
4
w +λ〈g∗, 4w〉Y ∗×Y

for all
4
w∈ Y.

Choosing
4
w= (

4
u, 0, 0) ∈ Y, we have z(0) = 0 by (100) and

4
r0= 0.

Inserting the expressions (101), (102),(108)–(111) and (123) into (136)
and using (18) we thus arrive at

0 = λE

[∫ L

0

z′(t) · m̂(u(t), t) dt

−
∫ L

0

z′(t) ·
∫ L

t

d3[w](τ) ∧
∫

Ωτ

dfe(s, ξ
1, ξ2) dτ dt

−
∫ L

0

z′(t) ·
∫

Ωt

[ξ1d1[w](τ) + ξ2d2[w](τ)] ∧ dfe(τ, ξ
1, ξ2) dt

]
+

∫ L

0

z′(t) ·
(∫ L

t

d3[w](τ) ∧ λ0 dτ

)
dt(137)

+λ1

∫ L

0

z′(t) · d03 + λ2

∫ L

0

z′(t) · d02 − λ3

∫ L

0

z′(t) · d01

−λ

∫ L

0

z′(t) ·
∫ L

t

d3[w](τ) ∧ f ∗
c(τ) dτ dt

for all
4
u∈ L∞([0, L], R3). Recall that

4
u uniquely determines z′ by (98), and

notice that z′ can be any function in L∞([0, L], R3) by a suitable choice of
4
u∈ L∞([0, L], R3). Thus the Fundamental Lemma in the calculus of variations
implies the Euler-Lagrange equation (51) by means of the notation f 0 := λ0,
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m0 := λ1d03 + λ2d02 − λ3d01, and µ := λµ∗. If R[w] > θ in (48), i.e., if
g(0) < 0 in (90), then by (135), λ = 0, hence µ = 0. Notice that µ∗ has
nonempty support in A[w], but λ can vanish even if R[w] = θ.

Now we take variations
4
w= (0,

4
r0, 0) ∈ Y in (136). Thus z′ = 0 a.e. on

[0, L] and z(0) = 0, and we obtain by (101), (102), (108)–(111), (123) that

0 = λE

∫
Ω

dfe(t, ξ
1, ξ2),

which is (52). Finally we consider variations
4
w= (0, 0,

4
α) ∈ Y in (136).Notice

that for any vector x ∈ R3, there exists
4
α∈ R3, such that x = z(0), where

z(0) is given by (99), since dk[w](0), k = 1, 2, 3, furnish an orthonormal basis
of R3, see the remark at the end of Appendix A. Thus

0 =

∫ L

0

d3[w](t) ∧
[
f 0 − f c(t)− λE

∫
Ωt

dfe(s, ξ
1, ξ2)

]
dt,

−λE

∫
Ω

[ξ1d1[w](t) + ξ2d2[w](t)] ∧ dfe(t, ξ
1, ξ2),

which is (53).

Before finishing the proof of Theorem 4.1 we first prove Corollary 4.2.

Proof of Corollary 4.2. Set

Rτ := {(s, σ) ∈ [0, L]2 : s ≥ τ},
Sτ := {(s, σ) ∈ [0, L]2 : σ > τ}.

Let π1(s, σ) := s and π2(s, σ) := σ be projection operators on [0, L]2, and for
Borel sets A ⊂ [0, L] we define the push-forwards

µ1(A) := µ(π−1
1 (A)), µ2(A) := µ(π−1

2 (A)),

which are Radon measures on [0, L] (cf. [1, p. 32]). By [1, Theorem 2.28]
there exist Radon measures µ1

s, µ2
σ on [0, L], s, σ ∈ [0, L], such that s 7→

µ1
s(A) is µ1-measurable and σ 7→ µ2

σ(A) is µ2-measurable for all Borel sets
A ⊂ [0, L], and such that for all τ ∈ [0, L]∫

Rτ

F (s, σ) dµ(s, σ) =

∫ L

τ

∫ L

0

F (s, σ) dµ1
s(σ)dµ1(s),∫

[0,L]2\Sτ

F (s, σ) dµ(s, σ) =

∫ τ

0

∫ L

0

F (s, σ) dµ2
σ(s)dµ2(σ).
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Hence

f c(τ) =

∫
Rτ\Sτ

F (s, σ) dµ(s, σ)

=

∫ L

τ

∫ L

0

F (s, σ) dµ1
s(σ)dµ1(s)−

∫
[0,L]2

F (s, σ) dµ(s, σ)(138)

+

∫ τ

0

∫ L

0

F (s, σ)dµ2
σ(s)dµ2(σ),

where we used the fact that suppµ ⊂ A[w] ⊂ {(s, σ) : σ < s}.
Since s 7→

∫ L

0
F (s, σ)dµ1

s(σ) is µ1-measurable and σ 7→
∫ L

0
F (s, σ)dµ2

σ(σ)
is µ2-measurable (cf. [1, Theorem 2.28]), the function f c belongs to the space
BV ([0, L], R3), and such functions are bounded. From (138) we readily obtain
(ii), and by taking the inner product of (60) with r′[w](τ) the equation (61)
follows.

By the Lebesgue Decomposition Theorem (cf. [8, p. 42]) there are non-
negative functions α1, α2 ∈ L1([0, L]), representing the absolutely continuous
part of µ1, µ2, such that differentiation of (138) implies for a.e. τ ∈ [0, L]

f ′
c(τ) = −α1(τ)

∫ L

0

F (τ, σ) dµ1
τ (σ) + α2(τ)

∫ L

0

F (s, τ) dµ2
τ (s).

By F (s, τ) = −F (τ, s) and with the nonnegative measure

µτ := α1(τ)µ1
τ + α2(τ)µ2

τ , τ ∈ [0, L],

we arrive at

(139) f ′
c(τ) = −

∫ L

0

F (τ, σ) dµτ (σ) for a.e. τ ∈ [0, L].

Taking the inner product of (139) with r′[w](τ) and by (35) we obtain (62).
For the proof of (v) we have to show that the mapping τ 7→ f c(τ)·r′[w](τ)

is Lipschitz continuous on [0, L]. For t, τ ∈ [0, L] we have

|f c(t) · d3[w](t)− f c(τ) · d3[w](τ)| ≤
|d3[w](t)− d3[w](τ)||f c(t)|+ |(f c(t)− f c(τ)) · d3[w](τ)|.(140)

By Lemma 5.1, d3[w] ∈ W 1,∞([0, L], R3), i.e., it is Lipschitz continuous, and
f c is bounded according to assertion (i). Thus it remains to be shown that
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the second term on the right-hand side is Lipschitz continuous. For t > τ we
can estimate, using |F (s, σ)| = 1,

|(f c(t)− f c(τ)) · d3[w](τ)|

=
∣∣∣ ∫

Qt−Qτ

F (s, σ) · d3[w](τ) dµ(s, σ)−
∫
Qτ−Qt

F (s, σ) · d3[w](τ) dµ(s, σ)
∣∣∣

≤
∫
Qt−Qτ

|d3[w](τ)− d3[w](σ)| dµ(s, σ) +

∫
Qt−Qτ

|F (s, σ) · d3[w](σ)| dµ(s, σ)

+

∫
Qτ−Qt

|d3[w](τ)− d3[w](s)| dµ(s, σ) +

∫
Qτ−Qt

|F (s, σ) · d3[w](s)| dµ(s, σ).

The second and fourth term on the right-hand side vanish by (35) and each
of the two other terms is bounded from above by lµ([0, L]2)|t− τ |, where l is
the Lipschitz constant for d3[w]. This together with (140) verifies (v). 2

Transversality. We finish the proof of Theorem 4.1. We will show
that λE = 0 in (51)–(53) leads to a contradiction as long as one of the
transversality conditions (a), (b) or (c) holds true. Thus λE > 0 in these
cases and, by normalization, λE = 1.

If λE = 0, then (51) leads to

(141) m0 +

∫ L

s

d3[w](t) ∧ (f 0 − f c(t)) dt = 0 for a.e. s ∈ [0, L].

Differentiating (141) leads to

(142) d3[w](s) ∧ (f 0 − f c(s)) = 0 for a.e. s ∈ [0, L],

and by (141)

(143) m0 = 0.

We infer from (142) that

(144) f c(s) = b(s)d3[w](s) + f 0 for a.e. s ∈ [0, L],

where b ∈ BV ([0, L]), since f c ∈ BV ([0, L], R3). The only possible type of
discontinuity of f c (and hence of b) could be a jump-discontinuity. Assume
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that say [f c](s0) 6= 0 for some s0 ∈ SL (recall the notation in (60)). The
identity (144) implies

f c(s0+) = b(s0+)d3[w](s0),(145)

f c(s0−) = b(s0−)d3[w](s0).(146)

Subtracting (146) from (145) leads to

[f c](s0) = [b](s0)d3[w](s0),

contradicting (61) of Corollary 4.2, hence f c and b must be continuous, and
the identity (144) holds everywhere on [0, L]. Moreover, by Corollary 4.2,
part (v), we know that f = f c · d3[w] is of class W 1,∞([0, L]), so is b by
(144). Consequently also f c ∈ W 1,∞([0, L], R3), and we can take derivatives
in (144) to get

(147) f ′
c(s) = b′(s)d3[w](s) + b(s)d′3[w](s) for a.e. s ∈ SL.

From (62) in Corollary 4.2 and by d3[w](s) · d′3[w](s) = 0 we infer that

(148) b(s) ≡ b0 = const. on [0, L].

Thus

(149) f ′
c(s) = b0d

′
3[w](s) a.e. on SL.

Now we are in the position to investigate the different transversality con-
ditions (a)–(c) stated in Theorem 4.1. Let us assume that we are in situ-
ation (a). Applying (60) and using the fact that there is an isolated pair
(s, σ) ∈ suppµ in the sense of (56), we find a constant β 6= 0, such that

(150) [f c](s) = β
r[w](s)− r[w](σ)

|r[w](s)− r[w](σ)|
,

contradicting the continuity of f c, that we just proved. In other words,
λE 6= 0 in this case.

In case (b) we notice that the assumption (57) implies that[
(J × [0, L]) ∪ ([0, L]× J)

]
∩ suppµ = ∅.
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For any t1, t2 ∈ J with t1 < t2, we thus obtain by (54) (using the notation
introduced in (59)) that

f c(t1)− f c(t2) =

∫
Qt1

F (s, σ) dµ(s, σ)−
∫
Qt2

F (s, σ) dµ(s, σ)

=

∫
Qt1−Qt2

F (s, σ) dµ(s, σ)−
∫
Qt2−Qt1

F (s, σ) dµ(s, σ) = 0.

Hence f c is constant on J , i.e.,

(151) f ′
c ≡ 0 on J.

From (149) we get

(152) 0 = b0d
′
3[w] a.e. on J.

The case b0 6= 0 contradicts our assumption that d3[w](s) is not constant on
J . Thus b0 = 0 and, by (144), f c(s) = f 0 on [0, L]. According to Lemma
5.11 below this implies that µ is the zero measure and hence f 0 = 0. Thus,by
λ0 = f 0, all Lagrange multipliers vanish which is impossible. Consequently,
b0 = 0 leads to a contradiction, too, and thus λE 6= 0 in case (b).

In case (c) we infer from (149)

f ′
c(τ) = b0r

′′[w](τ) for a.e. τ ∈ [0, L],

because f c ∈ W 1,∞([0, L], R3). Now use part (iii) of Corollary 4.2 to conclude
a contradiction at the parameter s, where

r′′[w](s) 6∈ conv ({ρ(r[w](s)− r[w](σ)) : ρ > 0, (s, σ) ∈ suppµ}).

2

Lemma 5.11. If f c ≡ constant on [0, L], then µ = 0.

Proof. Since f c is constant we infer from (54) (where F as defined in (59))
for every τ ∈ [0, L]∫

Qτ+ε

F (s, σ) dµ(s, σ) =

∫
Qτ−ε

F (s, σ) dµ(s, σ) for all ε > 0,
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which implies by (55) for all τ ∈ [0, L], ε > 0,

(153)

∫
Q1

τ,ε

F (s, σ) dµ(s, σ) =

∫
Q2

τ,ε

F (s, σ) dµ(s, σ),

where we have set

Q1
τ,ε := [τ + ε, L]× (τ − ε, τ + ε] and Q2

τ,ε := [τ − ε, τ + ε)× [0, τ − ε].

Assuming that µ 6= 0 we find a point (s0, σ0) ∈ suppµ, hence (s0, σ0) ∈ Q2
s0,ε

for all sufficiently small ε > 0 by definition of the set A[r] in (33) containing
suppµ. Thus, by continuity of F , there exists a small radius r > 0 such that
for all ε > 0 ∫

Q2
s0,ε∩Br((s0,σ0))

F (s, σ) dµ(s, σ) 6= 0.

This together with (153) for τ := s0 leads to∫
Q1

s0,ε

F (s, σ) dµ(s, σ)−
∫
Q2

s0,ε\Br((s0,σ0))

F (s, σ) dµ(s, σ) 6= 0.

Consequently, for each ε > 0 we either find (tε1, t
ε
2) ∈ Q1

s0,ε ∩ suppµ, or
(σε

1, σ
ε
2) ∈ (Q2

s0,ε\Br((s0, σ0))) ∩ suppµ. Since suppµ is closed we can let
ε → 0 to obtain either

(t1, t2) ∈ ([s0, L]× {s0}) ∩ suppµ,

in which case we denote s1 := t1, or

(σ1, σ2) ∈ (({s0} × [0, s0])\Br((s0, σ0))) ∩ suppµ,

in which case we set s1 := σ2. (Notice that s1 6= s0 in either case since suppµ
stays away from the diagonal according to our remark after (33), compare
also Lemmas 5.8 and 5.9.) In any case we have by (34)

(154) |r(s1)− r(s0)| = 2θ.

Moreover, we can use (153) for τ := s1, i.e., we obtain for every ε > 0

(155)

∫
Q1

s1,ε

F (s, σ) dµ(s, σ) =

∫
Q2

s1,ε

F (s, σ) dµ(s, σ).
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We fix ε > 0 and distinguish between two cases.
Case I. If for all (τ1, τ2) ∈ Q2

s1,ε ∩ suppµ

F (τ1, τ2) · (r(s1)− r(s0)) > 0,

then ∫
Q2

s1,ε

F (s, σ) · (r(s1)− r(s0)) dµ(s, σ) > 0,

which implies by (155) that also∫
Q1

s1,ε

F (s, σ) · (r(s1)− r(s0)) dµ(s, σ) > 0.

Hence we find a point (tε3, t
ε
4) ∈ Q1

s1,ε ∩ suppµ such that F (tε3, t
ε
4) · (r(s1) −

r(s0)) > 0, i.e.,

(156) F (tε4, t
ε
3) · (r(s1)− r(s0)) < 0.

Case II. There is some point ((tε5, t
ε
6) ∈ Q2

s1,ε ∩ suppµ with

(157) F (tε5, t
ε
6) · (r(s1)− r(s0)) ≤ 0.

As before, using the fact that suppµ is closed we can let ε → 0 to obtain
either

(t3, t4) ∈ ([s1, L]× {s1}) ∩ suppµ,

in which case we denote s2 := t3, or

(t5, t6) ∈ (({s1} × [0, s1]) ∩ suppµ,

in which case we set s2 := t6. (Notice again that s2 6= s1 in either case since
suppµ stays away from the diagonal.)

In any case, (156) or (157) and the continuity of F imply

F (s1, s2) · (r(s1)− r(s0) ≤ 0,

which by (154) and elementary geometric arguments leads to

(158) |r(s2)− r(s0)| ≥
√

(2θ)2 + |r(s1)− r(s0)|2 = 2θ
√

2.
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Now we can proceed in the same manner (starting with the identity (155)
with s1 replaced by s2) to obtain a sequence of points {si} ⊂ [0, L] satisfying
the analogue of (158), i.e.,

(159) |r(si+1)− r(s0)| ≥
√

(2θ)2 + |r(si)− r(s0)|2 ≥ 2θ
√

i + 1.

Hence we have a divergent sequence of curve points r(si) as i → ∞ which
is absurd, since r([0, L]) is bounded. Consequently, our assumption of a
nonempty support for µ was wrong. 2

5.2 Further proofs

Proof of Corollary 4.3.
We set λE = 1 in (51) due to transversality. The terms involving the

external force fe are of class BV ([0, L], R3). This implies m ∈ BV ([0, L], R3).
If, in addition, (63) holds for fe, then we may use Fubini’s Theorem to write∫

⊗s

[ξ1d1[w](t) + ξ2d2[w](t)] ∧ dfe(t, ξ
1, ξ2) =∫ L

s

d1[w](t) ∧
∫

D

ξ1φe(t, ξ
1, ξ2) dµ̄(ξ1, ξ2) dt

+

∫ L

s

d2[w](t) ∧
∫

D

ξ2φe(t, ξ
1, ξ2) dµ̄(ξ1, ξ2) dt,(160)

and similarly

(161)

∫
⊗s

dfe(t, ξ
1, ξ2) =

∫ L

s

φe(t, ξ
1, ξ2) dµ̄(ξ1, ξ2) dt.

The terms on the right-hand side of (160) and (161) are absolutely continu-
ous, which is also the case for all the other terms present in (51), hence m ∈
W 1,1([0, L], R3) with (64). If φe is bounded, we get m ∈ W 1,∞([0, L], R3),
since also f c is uniformly bounded on SL by Lemma 4.2, part (i). 2

Proof of Corollary 4.4. Note that, since m ∈ BV ([0, L], R3), we get that
Wui(u(.), .) = m ·di[w] ∈ BV ([0, L]) for i = 1, 2, 3. By the Implicit Function
Theorem we obtain (first locally and, by uniqueness, then globally)

u(.) = û(Wu1(u(.), .), Wu2(u(.), .), Wu3(u(.), .), .),
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where û is a continuously differentiable vector function in its four entries,
hence u ∈ BV ([0, L], R3). Now (4) implies that D′[w] ∈ BV ([0, L], R3×3).
In particular D′[w] ∈ L∞([0, L], R3×3), and thus D[w] ∈ W 1,∞([0, L], R3×3).
Finally, r′′[w] = d′3[w] ∈ BV ([0, L], R3) ∩ L∞([0, L], R3) by (3). 2

Proof of Corollary 4.5. According to Corollary 4.3 we know that m ∈
W 1,∞([0, L], R3). This implies in a first step that Wui(u(.), .) = m · di[w] ∈
W 1,p([0, L]) for i = 1, 2, 3. By the Implicit Function Theorem we find
u ∈ W 1,p([0, L], R3), hence D ∈ W 2,p([0, L], R3×3) by (4). This in turn
gives Wui(u(.), .) = m · di[w] ∈ W 1,∞([0, L]) for i = 1, 2, 3 leading to
u ∈ W 1,∞([0, L], R3). Again by (4), D[w] ∈ W 2,∞([0, L], R3×3), hence r[w] ∈
W 3,∞([0, L], R3). 2

Proof of Corollary 4.6. By Corollary 4.3 m ∈ W 1,∞([0, L], R3), which
implies that

(162) m̃(s) := Wu(u(s), s) = C(s)(u(s)− uo(s))

is of class W 1,p([0, L], R3). Since C is uniformly positive definite on [0, L],
hence invertible with inverse C−1 ∈ Lr([0, L], R3×3) as well, we can invert
(162) to obtain

(163) u(s) = C−1(s)m̃(s) + uo(s),

from which we deduce u ∈ Lr([0, L], R3). Then (4) implies D ∈ W 1,r([0, L], R3),
r[w] ∈ W 2,r([0, L], R3). (ii) follows from (163) in the same way. In a first step
one obtains u ∈ W 1,p([0, L], R3), which leads to D ∈ W 2,p([0, L], R3×3) by
(4). Now Wui(u(.), .) = m · di[w] ∈ W 1,∞([0, L], R3), i = 1, 2, 3, and (162)
again gives u ∈ W 1,∞([0, L], R3). The regularity for D[w] and r[w] follows
from (4). 2

A Fréchet derivatives of the directors

According to Lemma 5.5, the mappings (
4
w, s) 7→ d̆k[

4
w](s), k = 1, 2, 3, are

continuously differentiable on Bδ(0)× [0, L] and thus

(164) ∂wd̆k[.](.) ∈ C0(Bδ(0)× [0, L],L(Y, R3)), k = 1, 2, 3,
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where L(Y, R3) denotes the space of continuous linear mappings from Y to
R3. In the following we will give an explicit characterization of this derivative.

Lemma A.1. For all
4
w= (

4
u,

4
r0,

4
α) ∈ Y, s ∈ [0, L], one has

(165) ∂wd̆k[0](s)
4
w= z(s) ∧ dk[w](s), k = 1, 2, 3.

Here, z ∈ W 1,∞([0, L], R3) is the function

(166) z(s) = z(0) +

∫ s

0

3∑
i=1

4
u i(τ)di[w](τ) dτ,

where z(0) is uniquely determined by

(167) z(0) ∧ dk[w](0) = (D0U
′(0)

4
α)k.

In particular, we obtain z(0) = 0 for
4
w= (

4
u, r0, 0) ∈ Y.

Proof. The tangent space of SO(3) at the identity is given by the set of skew
symmetric matrices so(3) := {C ∈ R3×3 |CT = −C}, see [12, vol.II, Ch.17].
Since we know by Lemma 5.5 that D̆[.](s) := (d̆1[.](s)|d̆2[.](s)|d̆3[.](s)) is con-
tinuously differentiable on Bδ(0) ⊂ Y, we may look at the Fréchet derivative
∂wR[.](s) of the function

R[.](s) := D̆[.](s)(D[w](s))−1 : Bδ(0) ⊂ Y −→ SO(3)

for arbitrary fixed s ∈ [0, L]. Notice that R[0](s) = Id ∈ SO(3) and that
∂wR[0](s) is a linear mapping of Y into so(3). Hence

∂wR[0](s) = ∂wD̆[0](s)(D[w](s))−1

is a linear mapping of Y into so(3). That means, by multiplication with

D[w](s) from the right, we obtain for each
4
w∈ Y

(168) ∂wD̆[0](s)
4
w= C(s)D[w](s), for C(s) := ∂wR[0](s)

4
w ∈ so(3).

The skew symmetric matrix C(s) is determined by three coefficients z(s) =

(z1(s), z2(s), z3(s)) ∈ R3, depending on
4
w, via

(169) C(s) =

 0 −z3(s) z2(s)
z3(s) 0 −z1(s)
−z2(s) z1(s) 0

 for s ∈ [0, L],
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which gives rise to rewriting (168) in terms of the columns of D[w](s)

(170) ∂wd̆k[0](s)
4
w = z(s) ∧ dk[w](s).

It remains to be examined how z depends on
4
w . For this reason we differ-

entiate (170) with respect to s, which we may do by [23, Cor.2.2] to get

d

ds
∂wd̆k[0](s)

4
w = z′(s) ∧ dk[w](s) + z(s) ∧ d′k[w](s)

= z′(s) ∧ dk[w](s) + z(s) ∧

([ 3∑
i=1

ui(s)di[w](s)
]
∧ dk[w](s)

)

= z′(s) ∧ dk[w](s) +

(
z(s) ∧

[ 3∑
i=1

ui(s)di[w](s)
])

∧ dk[w](s)(171)

+
[ 3∑

i=1

ui(s)di[w](s)
]
∧
(
z(s) ∧ dk[w](s)

)
.

On the other hand, [23, Corollary 2.2] tells us that

(172)
d

ds
∂wd̆k[0](s)

4
w= ∂wd̆k

′[0](s)
4
w .

Using the notation

h[
4
w](s) :=

3∑
i=1

(ui(s)+
4
u i(s))d̆i[

4
w](s),

(81) and (170) imply that

∂wd̆k
′[0](s)

4
w =

(4)
∂wh[0](s)

4
w ∧dk[w](s) + h[0](s) ∧ ∂wd̆k[0](s)

4
w

=
(170)

∂wh[0](s)
4
w ∧dk[w](s)(173)

+
[ 3∑

i=1

ui(s)di[w](s)
]
∧
(
z(s) ∧ dk[w](s)

)
.

By (171)–(173) we conclude that for k = 1, 2, 3,

(174) z′(s)∧dk[w](s) =
[
∂wh[0](s)

4
w −z(s)∧

3∑
i=1

ui(s)di[w](s)
]
∧dk[w](s).
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Now using the product rule and (170) we deduce

∂wh[0](s)
4
w =

3∑
i=1

4
u i(s)di[w](s) +

3∑
i=1

ui(s)∂wd̆i[0](s)
4
w

=
(170)

3∑
i=1

4
u i(s)di[w](s) + z(s) ∧

3∑
i=1

ui(s)di[w](s).

Inserting this into (174) we arrive at the identity

z′(s) =
3∑

i=1

4
u idi[w](s),

since {dk[w](s)}3
k=1 furnishes an orthonormal basis of R3, which immediately

implies (166).

To compute the initial value z(0) in dependence on
4
w we first evaluate

(165) at s = 0

(175) ∂wd̆k[0](0)
4
w= z(0) ∧ dk[w](0), k = 1, 2, 3.

Now we differentiate the identity d̆k[w](0) = (D0U (
4
α))k (cf. (81)), and

obtain

(176) ∂wd̆k[0](0)
4
w= (D0U

′(0)
4
α)k, k = 1, 2, 3.

(175), (176) imply the initial condition (167) which uniquely determines

z(0) by
4
w, since dk[w](0), k = 1, 2, 3, is an orthonormal basis of R3. For

4
w= (

4
u,

4
r0, 0) ∈ Y, i.e.,

4
α= 0 we readily get z(0) = 0. 2

Remark. If z is expressed by means of the matrix C defined in (169),
then (167) can be written as

C(0) = D0U
′(0)

4
α D−1

0 .

Since the derivative U ′(0) is invertible, we obtain

(177) U ′(0)−1
[
D−1

0 C(0)D0

]
=

4
α,
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which implies that for any given vector x ∈ R3, we find
4
α∈ R3 with (177),

such that x = z(0), where z(0) determines C(0) via (169).
Note. For α ∈ R3 we have the explicit representation

U(α) = Id +
sin |α|
|α|

Λ(α) +
1− cos |α|

|α|
Λ(α)2,

where

Λ(α) :=

 0 −α3 α2

α3 0 α1

−α2 α1 0

 for α =

 α1

α2

α3

 .

Hence U ′(0) : R3 → so(3), (where so(3) is the tangent space of SO(3) at the identity
consisting of the skew matrices in R3×3) is given by

U ′(0)
4
α= Λ(

4
α) for all

4
α∈ R3,

which has an obvious inverse U ′(0)−1 : so(3) → R3.

B Clarke’s generalized gradients

Here we summarize some basic properties of Clarke’s generalized gradients
for locally Lipschitz continuous functions, and we derive a special chain rule
necessary for our analysis. For a more comprehensive presentation of this
nonsmooth calculus we refer the reader to Clarke’s monograph [4].

Consider a locally Lipschitz continuous function f : X → R, where X is

a real Banach space. The generalized directional derivative f 0(w;
4
w) of f at

w ∈ X in the direction
4
w∈ X is defined as

f 0(w;
4
w) := lim sup

v→w
t↘0

f(v + t
4
w)− f(v)

t
.

The mapping
4
w 7→ f 0(w;

4
w) is positively homogeneous and subadditive, and

satisfies |f 0(w;
4
w)| ≤ lf‖

4
w ‖X , where lf denotes the local Lipschitz constant

of f near w ∈ X.
The generalized gradient ∂f(w) of f at w is the subset of X∗ given by

∂f(w) := {f ∗ ∈ X∗ : 〈f ∗, 4w〉X∗×X ≤ f 0(w;
4
w) for all

4
w∈ X}.

∂f(w) is a nonempty, bounded, convex and weak∗-compact subset of X∗. For
continuously differentiable functions f the generalized gradient ∂f(w) is the
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singleton {f ′(w)}, whereas for convex functions f the set ∂f(w) is the usual
subdifferential of convex analysis. For our purposes we need the following
additional properties of the generalized gradients:

Proposition B.1. Let f, g, gi, i = 0, . . . , n be Lipschitz continuous near w ∈
X. Then the following holds.

(i) ∂(αf)(w) = α∂f(w) for all α ∈ R.

(ii) ∂
∑n

i=0 gi(w) ⊂
∑n

i=0 ∂gi(w).

(iii) (Lagrange Multiplier Rule) Let w be a local minimizer of f subject to
the restrictions g(v) ≤ 0 and gi(v) = 0, i = 0, . . . , n. Then there exist
constants λf , λ ≥ 0, and λi ∈ R, not all zero, such that

(178) 0 ∈ λf∂f(w) + λ∂g(w) +
n∑

i=0

λi∂gi(w),

and λg(w) = 0.

In our analysis we have to deal with functions of the form

(179) g(w) := max
t∈T

G(p(w, t)), w ∈ X.

We assume that

(a) T is a metrizable sequentially compact topological space.

(b) The map p : U ×T → Rn, where U ⊂ X is open and bounded, satisfies

(1) p(., t) is continuously differentiable on U for each t ∈ T.

(2) pw(., .) is continuous on U × T.

(3) p(w, .) is continuous on T for all w ∈ U.

(c) G : N → R, where N ⊂ Rn is an open neighbourhood of the set
p(U, T ) ⊂ Rn, is continuously differentiable, and there is a constant
Λ ≥ 0, such that

(180) |G′(x)| ≤ Λ for all x ∈ N.
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Since T is compact, the function g is well defined, and

(181) A(w) := {t ∈ T : g(w) = G(p(w, t))}

is a nonempty closed subset of T.

Proposition B.2. Suppose that (a)–(c) are satisfied. Then g is locally Lip-
schitz continuous on U , and for each g∗ ∈ ∂g(w), w ∈ U, there is a probability
Radon measure µ on T supported on A(w), such that

(182) 〈g∗, 4w〉X∗×X =

∫
T

G′(p(w, t)) · pw(w, t)
4
w dµ(t) for all

4
w∈ X.

Proof. Fix w0 ∈ U. Since pw(., .) is continuous and T is compact, we can find
a neighbourhood U0 ⊂ U of w0 such that p(., t) is Lipschitz continuous on U0

for all t ∈ T with a Lipschitz constant independent of t ∈ T (compare [19,
Lemma 6.9]). G(.) is Lipschitz continuous with Lipschitz constant Λ on N by
(180). Thus G(p(., t)) is Lipschitz continuous on U0 with a uniform constant
with respect to t ∈ T. Furthermore, for each t ∈ T, the function G(p(., t)) is
continuously differentiable on U0, and the derivative G′(p(w, t)) · pw(w, t) is
continuous on U0× T. The continuous function G(p(w, .)) is bounded on the
compact set T. Thus we can apply [4, Theorem 2.8.2, Corollary 2] to get the
assertion. Note that the continuous derivative of a function agrees with its
strict derivative introduced and used in [4, p.30,31]. 2
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