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Abstract
We present a characterization of ideal knots, i.e., of closed knotted

curves of prescribed thickness with minimal length, where we use the
notion of global curvature for the definition of thickness. We show
with variational methods that for an ideal knot γ, the normal vector
γ′′(s) at a curve point γ(s) is given by the integral over all contact
chords γ(τ)−γ(s) against a Radon measure µs, where |γ(τ)−γ(s)|/2
realizes the given thickness. As geometric consequences we obtain in
particular, that points without contact lie on straight segments of γ,
and for points γ(s) with exactly one contact point γ(τ) we have that
γ′′(s) points exactly into the direction of the contact chord γ(τ) −
γ(s). Moreover, isolated contact points lie on straight segments of γ,
and curved segments of γ consist of contact points only, all realizing
the prescribed thickness with constant (maximal) global curvature.
The set of contact parameters is closed due to the continuity of the
global curvature function on this set. These results confirm various
conjectures found in the literature.
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1 Introduction

Consider a closed knotted curve γ : [0, 1] → R3 such that the tubular neigh-
borhood with given radius θ > 0 does not intersect itself. Then we shrink
the length L(γ) of the curve until we arrive at some minimal length L0 where
the tube surrounding the shortened curve γ0([0, 1]) forms a completely tight
knot which cannot be shortened anymore. The middle curve γ0([0, 1]) of such
a tight tube is an ideal knot in the sense of [2], [9] and [11].

For a long time an accessible formulation of the problem was not avaiable.
The main difficulty was to find a suitable analytical condition preventing self-
intersection of the tubular neighborhood of the curve. In [10] several notions
of thickness based e.g. on the critical self-distance introduced in [11], or on
Gromov’s concept of distortion were investigated and related to each other.
Today, however, it seems to be more convenient to use a lower bound on
the global radius of curvature to prescribe the thickness for a curve, a notion
which was introduced in [7] and further analyzed in [8] and [13], see also [3].

Numerical simulations based on various notions of thickness indicated
some interesting features of possible ideal configurations, see, e.g., the con-
tributions in [15]. However, there was no satisfactory interpretation of these
numerical results, since

(a) the existence of ideal knots was not verified yet, and

(b) there was no equation (or any other analytical or geometric charac-
terization) of ideal knots, which could be checked to verify that the
numerically computed configurations are indeed close to being ideal.

Meanwhile the existence of ideal knots for each knot type was shown inde-
pendently by [3] and [8]. Furthermore it turned out that the minimizing
curves belong to C1,1. The present paper provides some necessary optimality
conditions as a characterization of ideal knots and confirms a number of con-
jectures found in the literature (cf. [10],[3],[16]). In [7] such conditions are
studied under the hypothetical smoothness assumption that ideal knots were
C2-curves, which we believe cannot be expected in general, since there are
examples of ideal links, exhibited in [3], which are only C1,1, and there seems
to be strong numerical evidence that one can also find ideal knots which are
not C2-smooth, see [16]. Here we show that, for a.e. s ∈ [0, 1], the curvature
vector γ′′(s) of the ideal knot γ belongs to the convex cone spanned by the
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chords realizing the supremum in the definition of the global curvature func-
tion at s, the inverse of the global radius of curvature function at s. In fact,
we prove an integral representation formula for γ′′(s) in terms of the contact
chords, see Theorem 3.1 in Section 3. This result implies several geometric
consequences for the shape of an ideal knot. Parts of the ideal configura-
tion where the tubular neighborhood does not exhibit self-contact have to be
straight (which may be considered as special case of the cone condition for
γ′′ with a trivial cone). Consequently, there has to be self-contact on curved
parts of the tubular neighborhood which implies a constant global curvature
function there. These results are derived under the assumption that the local
curvature of the ideal knot is strictly less than its global curvature, and it
seems that this condition is not violated for a large class of ideal knots. Let
us finally mention that our methods apply also to ideal links (i.e., several
closed knotted curves that are linked with each other) and provide analogous
results in this more general situation.

The proof essentially adapts the variational methods developed in [14],
where the Euler-Lagrange equations are derived for elastic rods with self-
contact. There, a similar variational problem involving an upper bound on
global curvature as a nonsmooth side condition was treated by a Lagrange
multiplier rule of Clarke’s nonsmooth calculus of generalized gradients (cf.
[4]). Furthermore the concept of framed curves, i.e., curves associated with
an orthonormal frame at each point, played an important role. The key idea
to transfer these methods to the present setting of ideal knots is, that C1,1-
curves can be represented as framed curves. This way the freedom of different
parameterizations of a curve is removed in a natural way, thus avoiding un-
pleasant expressions for derivatives and artificial singularities. Speaking in
mechanical terms we identify C1,1-curves with a tubular elastic string which
resists extension but without bending and torsional stiffness. From that point
of view the above mentioned optimality conditions express that the resultant
self-contact force at a cross section is directed as the curvature vector of the
middle curve, and that bending can only occur at points of self-contact.

Section 2 introduces the notion of global curvature and summarizes a
number of properties needed for our analysis. In particular a continuity re-
sult for “pointwise” global curvature is shown which ensures that the length
parameters of the ideal shape corrresponding to “contact” form a closed set.
The precise definition of ideal knots is given in Section 3, which also contains
the main results about their characterization. In Section 4 we discuss the
representation of C1,1-curves as framed curves, which is an essential ingredi-
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ent in the subsequent proof. Section 5 provides the proof of the main results,
which is carried out in several steps.

Notation. The strictly postive real numbers are denoted by R+. We use
x·y to denote the standard Euclidean inner product of x and y in R3, and |·| to
denote the (intrinsic) distance between two points in R3 or in some parameter
set J ⊂ R depending on the context. To denote the enclosed (smaller) angle
between two non-zero vectors x and y in R3 we use <)(x, y) ∈ [0, π]. The space
of continuous functions on the closure of the interval I = (0, 1) will be denoted
by C0(Ī), and Ck,1(Ī), k = 0, 1, 2, . . . , is the space of k-times continuously
differentiable functions whose k-th derivative is Lipschitz continuous on Ī.
Lp(I), 1 ≤ p ≤ ∞, stands for the Lebesgue space of p-integrable functions.
For Sobolev spaces of functions, whose weak derivatives up to order m are
p-integrable, we use the standard notation Wm,p(I). Notice that Ck,1(Ī) ∼=
W k+1,∞(I). For general Banach spaces X with dual space X∗ we denote the
duality pairing on X∗ ×X by 〈., .〉X∗×X .

Acknowledgments. We would like to thank the Sonderforschungsbereich
611 at the University of Bonn were supporting our research.

2 Global curvature

We consider the set L of continuous and rectifiable closed curves γ : Ī → R3,
with arc length parameterization Γγ : SL → R3. Here I = (0, 1) is the
open unit interval, L = L(γ) :=

∫
I
|dγ| ≥ 0 denotes the length of γ, and

SL is the circle with perimeter L, which corresponds to the interval [0, L]
with identified endpoints, i.e., SL

∼= R/(L · Z). The intrinsic distance on SL

and also the Euclidean distance in R3 will be denoted by | . |. To simplify
notation, we mostly omit the subscript γ and agree that Γ, Γk correspond to
γ, γk and so on. It is well-known that this arc length parameterization Γ is
Lipschitz continuous, i.e. of class C0,1([0, L], R3). Note that, by Rademacher’s
Theorem, Γ possesses a derivative Γ′ a.e. on [0, L] and C0,1([0, L], R3) ∼=
W 1,∞([0, L], R3).

For a closed curve γ ∈ L of positive length L the global curvature κG[γ](s)
at the point s ∈ SL is defined as

(1) κG[γ](s) := sup
σ,τ∈SL\{s}

σ 6=τ

1

R(Γ(s), Γ(σ), Γ(τ))
,
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where R(x, y, z) ≥ 0 is the radius of the smallest circle containing the points
x, y, z ∈ R3. For collinear but pairwise distinct points x, y, z we set R(x, y, z)
to be infinite. When x, y and z are non-collinear (and thus distinct) there is
a unique circle passing through them and

(2) R(x, y, z) =
|x− y|

|2 sin[<)(x− z, y − z)]|
=

|x− y|

2
∣∣∣ x−z
|x−z| ∧

y−z
|y−z|

∣∣∣ .

If two points coincide, however, say x = z or y = z, then there are many
circles through the three points and we take R(x, y, z) to be the smallest
possible radius namely the distance |x−y|/2. We should point out that with
this choice the function R(x, y, z) fails to be continuous at points, where
at least two of the arguments x, y, z, coincide. Notice nevertheless that, by
definition, R(x, y, z) is symmetric in its arguments. In [13] it was shown that
κG[γ](s) is always positive for closed curves. In the case of smooth curves
that have no or only transversal crossings, our definition of κG agrees with
the inverse of the global radius of curvature defined in [7], but it is different
for curves with double covered regions, see [13] and the discussion in [8]. We
define the global curvature of γ by

(3) K[γ] := sup
s∈SL

κG[γ](s).

The curve γ is said to be simple if its arc length parameterization Γ : SL → R3

is injective. Otherwise there exist s, t ∈ SL (s 6= t) for which Γ(s) = Γ(t).
Any such pair will be called a double point of Γ.

The condition that the global curvature K[γ] is finite identifies curves
with a C1,1-arc length parameterization without double points which was
shown in [13, Theorem 1 (iii)]:

Proposition 2.1. Let γ ∈ L with arc length parameterization Γ : SL → R3.
Then K[γ] < ∞ if and only if γ is simple and Γ ∈ C1,1([0, L], R3).

In particular, if K[γ] is finite, then

(4) |Γ′(s1)− Γ′(s2)| ≤ K[γ]|s1 − s2| ∀s1, s2 ∈ SL,

i.e., Γ′ has Lipschitz constant K[γ].

Remark. The necessary condition for K[γ] to be finite implies that the
second derivative Γ′′(s) of Γ exists for a.e. s ∈ SL, since C1,1([0, L], R3) is
isomorphic to the Sobolev space W 2,∞([0, L], R3). Thus (4) actually implies

(5) ‖Γ′′‖L∞ ≤ K[γ] .

5



The next result (cf. [13, Theorem 2 (ii)]) clarifies how the supremum
in (1) is realized on a closed curve. Later this will lead to the definition
of generalized local curvature for rectifiable loops that are not necessarily
differentiable, and also to an alternative characterization of global curvature
in terms of the radius of a circle uniquely determined by two points and one
tangent.

Proposition 2.2. Let γ ∈ L with K[γ] < ∞, and let s ∈ SL. Then there
exists a sequence (σj, τj) → (σ, τ) in SL × SL with s 6= σj 6= τj 6= s for all
j ∈ N satisfying

κG[γ](s) = lim
j→∞

1

R(Γ(s), Γ(σj), Γ(τj))
,(6)

such that either (a) s = σ = τ, or (b) s 6= σ = τ.

Remarks. 1. The different options in Proposition 2.2 can occur simul-
taneously, as can, e.g., be seen for the planar circle. Here, at every point
the local curvature and the global curvature coincide, i.e., the different limit
cases hold simultaneously at every point due to the high degree of symmetry
of the circle. Another interesting example is that of a stadium curve, which
consists of two parallel straight line segments of equal length and distance
d connected by two planar half circles of radius d/2. These curves have
constant local curvature κ = 0 along the line segments and κ = 2/d along
the half circles, i.e., curvature jumps. The global curvature K[γ], however,
is equal to 2/d and one can show that K[γ] = κG[γ](s) for all s ∈ SL, see
[13, Theorem 2 (i)]. Stadium curves appear also in the examples of ideal
C1,1-links considered in [3].

2. The previous example has shown that a jump in local curvature must
not necessarily be accompanied by a discontinuity of κG[γ](·). Nevertheless
κG[γ](·) may fail to be continuous in the case where K[γ] < ∞. Indeed, one
can construct an example of a closed curve γ of class C1,1 with oscillations in
local curvature such that for some s the global curvature κG[γ](s) is strictly
less than the limit of κG[γ](si) where si → s and κG[γ](si) is realized be local
curvature.

3. The statement of Proposition 2.2 says, roughly speaking, that the
supremum in the definition of κG[γ](s) cannot exclusively be achieved by two
distinct parameters σ, τ ∈ SL. Moreover, due to the symmetry of R(., ., .) a
third feasible option (c), namely s = σ 6= τ , does not occur exclusively, that
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is, without option (b) at the same time. Observe, however, that R might not
be continuous at the limit point (s, σ, τ).

4. Notice that the assumption K[γ] < ∞ is equivalent to demanding that
γ possesses an injective arc length parameterization of class C1,1 according
to Proposition 2.1.

In case (a) of Proposition 2.2 the value κG[γ](s) expresses a local property
of the curve at s ∈ SL, which coincides with the classical local curvature of
γ ∈ L at s if γ is smooth.1 For curves γ ∈ L which are only continuous and
rectifiable in general, this observation motivates the following definition of
the generalized local curvature κ[γ](s) of γ ∈ L at s ∈ SL as

(7) κ[γ](s) := lim sup
(τj ,σj)→(s,s)

s 6=τj 6=σj 6=s

1

R(Γ(s), Γ(τj), Γ(σj))
.

Note that for γ ∈ L the generalized local curvature κ[γ] can take values in
[0,∞], and that

(8) κ[γ](s) ≤ κG[γ](s) for all s ∈ SL.

For curves γ ∈ L with a C1,1-arc length parameterization Γ we proved in [13,
Proposition 1] how the generalized local curvature is related to the second
derivative of Γ :

Proposition 2.3. Let Γ : SL → R3 be the arc length parameterization of a
simple curve γ ∈ L with Γ ∈ C1,1([0, L], R3). Then

(i) κ[γ](s) ≤ ap lim supσ→s |Γ′′(σ)| for all s ∈ SL.

(ii) κ[γ](s) = |Γ′′(s)| for a.e. s ∈ SL.

Here, ap lim sup denotes the approximate limes superior as defined, e.g. in
[5, p. 47]. Suppose we have the local bound |Γ′′(σ)| ≤ κ0 for a.e. σ in some
open subinterval J ⊂ SL, then, according to (i), κ[γ](σ) ≤ κ0 for all σ ∈ J .
The essence of part (ii) is that for curves γ ∈ L with finite global curvature
(hence γ simple and Γ ∈ W 2,∞ by Proposition 2.1), we can identify κ[γ] with
|Γ′′| a.e. on [0, L], and from (5) we infer

(9) ‖κ[γ]‖L∞ = ‖Γ′′‖L∞ ≤ K[γ] for all γ ∈ L with K[γ] < ∞.

1This can easily be verified by expanding Γ about s when calculating the term
R(Γ(s),Γ(σj),Γ(τj)) in (6) in case (a) for j large, see also [13, Lemma 7].
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In the light of this inequality, we say for curves γ with K[γ] < ∞, that
the global curvature K[γ] is locally not attained if and only if

(10) ‖Γ′′‖L∞ < K[γ].

Curves with this property are considered in Proposition 2.5 below. They
play an essential role in [14], where the Euler-Lagrange equations for energy
minimizing elastic rods are derived. In fact, it seems that this property is
needed for the variational techniques we apply in the proof of Theorem 3.1.

For γ ∈ L with finite global curvature the alternative (b) in part (ii) of
Proposition 2.2 expresses a nonlocal property of the curve. It motivates a
different characterization of K[γ] which is analytically more tractable. Let
x, y, z ∈ R3 be such that the vectors x−y and z are linearly independent. By
P we denote the plane spanned by x− y and z. Then there is a unique circle
contained in P through x and y, and tangent to z in the point y. We denote
the radius of that circle by r(x, y, z) and set r(x, y, z) := ∞, if x − y and z
are collinear. Using elementary geometric arguments r can be computed as

(11) r(x, y, z) =
|x− y|

2
∣∣∣ x−y
|x−y| ∧

z
|z|

∣∣∣ ,

which shows that r(x, y, z) is continuous on the set of triples (x, y, z) with
the property, that x − y and z are linearly independent. But it fails to be
continuous at points, where, e.g., x and y coincide. Recall that for curves
γ with K[γ] < ∞ Proposition 2.1 says, that the corresponding arc length
parameterization Γ possesses a Lipschitz continuous unit tangent field Γ′ on
[0, L]. Hence, for every pair (s, σ) ∈ SL × SL, the radius r(Γ(s), Γ(σ), Γ′(σ))
is well defined, and we obtain the following identities for κG and K (cf. [13,
Lemma 2]):

Lemma 2.4. Let γ ∈ L be such that K[γ] < ∞, then at least one of the
following statements (A),(B) is true:

(A) κG[γ](s) = sup
σ∈SL
σ 6=s

1

r(Γ(s), Γ(σ), Γ′(σ))
,

(B) κG[γ](s) = sup
σ∈SL
σ 6=s

1

r(Γ(σ), Γ(s), Γ′(s))
= κ[γ](s).
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If for s ∈ SL part (b) of Proposition 2.2 holds, then alternative (A) above is
true.

In addition,

K[γ] = sup
s,σ∈SL

s 6=σ

1

r(Γ(s), Γ(σ), Γ′(σ))
.(12)

Because of the representation of K[γ] as a supremum in (12) the following
set A[γ], where the global curvature K[γ] is attained, is of particular interest.

(13) A[γ] := {(s, σ) ∈ [0, L]× [0, L] : K[γ] =
1

r(Γ(s), Γ(σ), Γ′(σ))
}.

Note that also Γ(s) 6= Γ(σ) for (s, σ) ∈ A[γ], if K[γ] is finite. The set A[γ] can
be empty, e.g., in the case when γ parameterizes a regular ellipse, where the
local curvature κ[γ] is maximal and equal to K[γ] at exactly the two vertices.
In other words, for an ellipse, K[γ] is attained exclusively locally. On the
other hand, if γ describes a circle, one has A[γ] = [0, L]× [0, L]\ diagonal.

We conclude this section with a continuity property of the global cur-
vature κG[γ](.) on the set of parameters with sufficiently large values for
κG[γ](s) (notice that this condition is not met in the example mentioned in
the second remark following Proposition 2.2).

Proposition 2.5. Let γ ∈ L satisfy (10) with K[γ] < ∞. Then κG[γ](.) :
SL → (0,∞) is continuous on the set

S̃ := {s ∈ SL : κG[γ](s) > ‖Γ′′‖L∞}.

Proof. Let s ∈ S̃. According to Proposition 2.2 we can find a sequence
(σj, τj) → (σ, τ) in SL × SL with s 6= σj 6= τj 6= s for all j ∈ N with

κG[γ](s) = lim
j→∞

1

R(Γ(s), Γ(σj), Γ(τj))
,

such that either (a) s = σ = τ, or (b) s 6= σ = τ.
Case (a) is not possible since by (7), Proposition 2.3 (i), and by our

assumption that s ∈ S̃ we would obtain

κG[γ](s) ≤
(7)

κ[γ](s) ≤
Prop.2.3(i)

‖Γ′′‖L∞ <
Def. of S̃

κG[γ](s),
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which is absurd. Hence we are in the situation (b) which allows us to go to
the limit j →∞ in the formula (2), since γ is simple and Γ ∈ C1,1([0, L], R3)
by Proposition 2.1 and K[γ] < ∞. We obtain

(14) κG[γ](s) =
1

r(Γ(s), Γ(τ), Γ′(τ))
,

where the function r(., ., .) is given by (11). By continuity of r(x, y, z) in the
vicinity of non-collinear vectors x− y and z we can find for

ε ∈ (0, κG[γ](s)− ‖Γ′′‖L∞)

some number δ = δ(s) > 0 such that for all s′, τ ′ ∈ SL with |s− s′| ≤ δ and
|τ − τ ′| ≤ δ

1

r(Γ(s′), Γ(τ ′), Γ′(τ ′))
≥ 1

r(Γ(s), Γ(τ), Γ′(τ))
− ε/2.

Consequently, by (1), and for |τ ′′ − τ ′| sufficiently small by (2) and (11)

κG[γ](s′) ≥
(1)

1

R(Γ(s′), Γ(τ ′), Γ(τ ′′))
≥ 1

r(Γ(s′), Γ(τ ′), Γ′(τ ′))
− ε/2

≥ 1

r(Γ(s), Γ(τ), Γ′(τ))
− ε = κG[γ](s)− ε > ‖Γ′′‖L∞ .

Hence s′ ∈ S̃ as well and as before we obtain

(15) κG[γ](s′) =
1

r(Γ(s′), Γ(τ̄), Γ′(τ̄))

for some τ̄ 6= s′. Therefore, by Lemma 2.4

κG[γ](s) ≥
Lemma 2.4

1

r(Γ(s), Γ(τ̄), Γ′(τ̄))

=
1

r(Γ(s′), Γ(τ̄), Γ′(τ̄))
+

1

r(Γ(s), Γ(τ̄), Γ′(τ̄))

− 1

r(Γ(s′), Γ(τ̄), Γ′(τ̄))

= κG[γ](s′) +
1

r(Γ(s), Γ(τ̄), Γ′(τ̄))
− 1

r(Γ(s′), Γ(τ̄), Γ′(τ̄))
.
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Hence we arrive at

κG[γ](s′)− κG[γ](s) ≤ 1

r(Γ(s′), Γ(τ̄), Γ′(τ̄))
− 1

r(Γ(s), Γ(τ̄), Γ′(τ̄))
,

and exchanging the roles of s and s′ in the previous considerations also

κG[γ](s)− κG[γ](s′) ≤ 1

r(Γ(s), Γ(τ), Γ′(τ))
− 1

r(Γ(s′), Γ(τ), Γ′(τ))
.

Since the right-hand side of each inequality (for fixed τ, and τ̄) tends to zero
as s′ → s we have proven the claim. 2

Corollary 2.6. Let γ ∈ L satisfy (10) with K[γ] < ∞. Then the set

S̃ρ := {s ∈ SL : κG[γ](s) ≥ ‖Γ′′‖L∞ + ρ}

is closed for each ρ ∈ (0,K[γ]− ‖Γ′′‖L∞).

Proof. Let si → s0 as i → ∞, where si ∈ S̃ρ for all i ∈ N. Then, since
si ∈ S̃ for all i ∈ N, where S̃ is defined in Proposition 2.5, we obtain as in
(14)

(16) κG[γ](si) =
1

r(Γ(si), Γ(τi), Γ′(τi))
,

where si 6= τi for all i ∈ N. A straightforward argument involving Taylor’s
expansion implies that for all i ∈ N

(17) |si − τi| > η :=
1− ‖Γ′′‖L∞

‖Γ′′‖L∞−ρ

‖Γ′′‖L∞
,

since ‖Γ′′‖L∞ + ρ < κG[γ](si) (see [13, Lemma 8] for details). Without loss
of generality we can assume that τi → τ0 ∈ SL. Hence |s0 − τ0| > η and
Γ(s0) 6= Γ(τ0). Using the continuity of the function 1/r(., ., .) (cf. (11)) we
obtain for all i sufficiently large

(18)
1

r(Γ(s0), Γ(τi), Γ′(τi))
≥ 1

r(Γ(si), Γ(τi), Γ′(τi))
− ρ

4
.
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Using (1) one deduces for τ ′i ∈ [0, 1] with |τ ′i − τi| sufficiently small by (2)
and (11)

(19) κG[γ](s0) ≥
1

R(Γ(s0), Γ(τi), Γ(τ ′i))
≥ 1

r(Γ(s0), Γ(τi), Γ′(τi))
− ρ

4
.

Thus, by (16)–(19)

κG[γ](s0) ≥ κG[γ](si)− ρ/2 ≥ ‖Γ′′‖L∞ + ρ/2,

since si ∈ S̃ρ. Hence s0 ∈ S̃ defined in Proposition 2.5, i.e. si → s0 in S̃.
Now we can use the continuity of κG[γ](.) on S̃ to obtain

κG[γ](s0) = lim
i→∞

κG[γ](si) ≥ ‖Γ′′‖L∞ + ρ ,

hence s0 ∈ S̃ρ. 2

Remark. If we apply estimate (17) to (s, τ) in (14), then we even obtain
Lipschitz continuity of κG[γ](.) on S̃ρ with a Lipschitz constant depending
on ρ.

3 Ideal knots

An ideal knot in the sense of [2], [9] and [11] is a non-self-intersecting tube
of fixed radius θ > 0 and prescribed knot type with a centreline curve γ
of minimal length. To be more precise, an ideal knot is a solution of the
variational problem

(20) L(γ) =

∫
I

|γ′(σ)| dσ → Min!, γ ∈ W 1,q, q ∈ (1,∞),

subject to the conditions

(21) γ(0) = γ(1), K[γ] ≤ θ−1 and γ(Ī) ' γ̃(Ī).

Here θ > 0 is a constant representing the prescribed thickness of the curves
in competition. In fact, the upper bound on the global curvature corresponds
to a uniform lower bound on the global radius of curvature (cf. [13]), and it
provides by [8, Lemma 3] or [13, Proposition 3] a geometrically exact model
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for the self-contact or excluded volume constraint imposed on the curve by
a tubular neighbourhood of fixed radius θ.

The fixed curve γ̃ ∈ W 1,q ∩ L represents the prescribed knot or isotopy2

type and are assumed to satisfy K[γ̃] ≤ θ−1.
The existence of a curve of class W 1,q(I, R3) solving the minimization

problem (20),(21) is established in [8, Theorem 4] for each knot type γ̃ and
the corresponding arc length parameterization Γ belongs to C1,1([0, L], R3)
where L denotes the length of the minimizing curve. Using the simple repa-
rameterization γ(τ) := Γ(L · τ) for τ ∈ Ī = [0, 1] we obtain the same curve
parameterized on [0, 1] with constant velocity L. Obviously γ is again a
solution of (20),(21) and γ ∈ C1,1([0, 1], R3).

Theorem 3.1. Let γ ∈ W 1,q(I, R3) be a solution of problem (20),(21) such
that γ is the parameterization with constant speed (i.e., γ ∈ C1,1([0, 1], R3),
and the global curvature K[γ] be locally not attained. Then K[γ] = θ−1, and
for all s ∈ [0, 1] there exists a (nonnegative) Radon measure µs on [0, 1]
supported on

Is := {τ ∈ [0, 1] : (s, τ) ∈ A[γ] or (τ, s) ∈ A[γ]}

(i.e., µs is the zero measure if Is = ∅) such that

(22) γ′′(s) =

∫ 1

0

[γ(τ)− γ(s)] dµs(τ) for a.e. s ∈ [0, 1].

Remarks.
1. The condition that K[γ] be locally not attained excludes the circle of

radius θ, for which K[γ] is attained locally and globally at all points. This
circle is the obvious ideal knot in the trivial isotopy class of unknots, as one
can easily deduce from [8, Lemma 3 (i)].

2. A simple scaling argument (cf. Section 5) shows that K[γ] = θ−1 for
any ideal knot, i.e., the global curvature K[γ] is automatically attained for
an ideal configuration.

2Two continuous closed curves K1,K2 ⊂ R3 are isotopic, denoted as K1 ' K2, if there
are open neighbourhoods N1 of K1, N2 of K2, and a continuous mapping Φ : N1× [0, 1] →
R3 such that Φ(N1, τ) is homeomorphic to N1 for all τ ∈ [0, 1], Φ(x, 0) = x for all x ∈ N1,
Φ(N1, 1) = N2, and Φ(K1, 1) = K2. Roughly speaking, two curves are in the same isotopy
class if one can be continuously deformed onto the other.
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3. Notice that

γ′′(s) ∈ conv { ρ
(
γ(τ)− γ(s)

)
| ρ ≥ 0, τ ∈ Is} for a.e. s ∈ [0, 1]

by (22) and the definition of the integral (conv - closed convex hull).

Let us define
Ic := {s ∈ [0, 1] : Is 6= ∅}

Then we have the following consequences of the previous theorem:

Corollary 3.2. Assume that the assumptions of the previous theorem are
satisfied. Then:

(i) Ic is closed.

(ii) If κG[γ](s) < θ−1 then there is δ(s) > 0 such that γ′′(τ) = 0 for a.e.
τ ∈ [0, 1] with |τ − s| < δ(s), i.e., γ is straight on a neighbourhood of s.

(iii) Let Ĩ ⊂ [0, 1] be an open interval and let Ic∩ Ĩ have (Lebesgue) measure
zero. Then γ is straight on Ĩ.

(iv) Let γ be curved on an open interval Ĩ ⊂ [0, 1], i.e, γ′′(s) 6= 0 a.e. on Ĩ,
then Ĩ ⊂ Ic and κG[γ](s) = θ−1 on Ĩ.

Remark.
1. If s0 is an isolated point in Ic (or also an accumulation point of isolated

points sn in Ic), then γ has be be straight on a neighborhood of s0 by (iii).
2. Notice that the previous results can be transferred to ideal links, i.e.,

ideal configurations composed of several closed knotted and linked curves
having minimal length under a uniform upper bound on the global curvature.

4 Framed curves

In this section we provide a special representation of curves γ ∈
C1,1([0, 1], R3) having constant speed parameterization as key ingredient for
the proof of Theorem 3.1. This will enable us to apply the methods developed
in [14].

We consider pairs (γ, D), called framed curves, where γ : Ī → R3 is a
curve of class W 2,∞(I, R3) parameterized by constant speed equipped with
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a frame field D : Ī → SO(3) of class W 1,∞(I, R3). Notice that D(s) =
(d1(s)|d2(s)|d3(s)) consists of three orthonormal column-vectors di(s) (i =
1, 2, 3) for each s ∈ Ī = [0, 1]. Thus a framed curve can be considered as curve
with an orthonormal frame attached to each point γ(s). Let us mention that
our smoothness assumptions for (γ, D) constitute a proper subset of more
general framed curves treated, e.g., in [8] and [13]. We call (γ, D) a closed
framed curve if

(23) γ(0) = γ(1) and d3(0) = d3(1).

Proposition 4.1 below states that a framed curve (γ, D) ∈ W 2,∞(I, R3) ×
W 1,∞(I, R3×3) may be uniquely determined from shape and placement vari-
ables

w = (u, v, γ0, D0) ∈ X0 := L∞(I, R3)× R+ × R3 × SO(3)

with u = (u1, u2, u3) via the equations

d′k(s) =
[ 3∑

i=1

ui(s)di(s)
]
∧ dk(s) for a.e. s ∈ I, k = 1, 2, 3,

γ′(s) = vd3(s) for a.e. s ∈ I,

γ(0) = γ0, D(0) = D0,

(24)

Notice that X0 is a proper subset of the corresponding Banach space

X := Lp(I, R3)× R× R3 × R3×3 .

The triples (u1, u2, u3) and (0, 0, v) may be identified as the coordinates, in
the moving frame {di}, of the Darboux vector for the frame field D(s) and the
tangent vector γ′(s), respectively. Notice that u ∈ L∞(I, R3) and v describe
the shape of a framed curve, whereas γ0 and D0 describe its spatial placement.
The constant v > 0 in particular is the speed of the parameterization of γ.

The following result is a special case of [8, Lemma 6].

Proposition 4.1. To each framed curve (γ, D) ∈ W 2,∞ × W 1,∞ we can
associate a unique w = w(γ, D) ∈ X0 determined by (24). Conversely, to
each w ∈ X0 we can associate a unique framed curve (γ, D) = (γ[w], D[w]) ∈
W 2,∞ ×W 1,∞ such that (24) holds.
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As already mentioned we claim to apply the variational techniques for
framed curves developed in [14] in the proof of our main results. Here the
key observation is that for each curve γ ∈ W 2,∞ having constant speed
parameterization we can find a frame field D ∈ W 1,∞ such that (γ, D) is a
framed curve.

Proposition 4.2. For each curve γ ∈ W 2,∞(I, R3) with |γ′(σ)| = v > 0
there are u1, u2 ∈ L∞(I), γ0 ∈ R3, and D0 ∈ SO(3), such that for any
u3 ∈ L∞(I) equations (24) provide a frame field D : Ī → SO(3) of class
W 1,∞(I, R3×3) such that (γ, D) is a framed curve.

Proof. Given a curve γ ∈ W 2,∞(I, R3) with |γ′(σ)| = const. > 0 we
set d3 := γ′/|γ′| which is of class W 1,∞(I, R3) and has unit length.
Moreover we define v := |γ′| > 0. To obtain a complete frame field
D = (d1|d2|d3) : Ī → SO(3) of class W 1,∞(I, R3) we observe that the
length of the curve γ′(Ī) ⊂ S2 is bounded since γ ∈ W 2,∞(I, R3). Hence the
two-dimensional Hausdorff-measure H2(γ′(Ī)) of the image curve γ′(Ī) of the
tangent is zero, in particular we find a fixed vector d̃ ∈ S2\d3(Ī) and define
d1 := d̃∧d3 and d2 := d3∧d1 on Ī. Now we apply the first part of Proposition
4.1 to the framed curve (γ, D) ∈ W 2,∞(I, R3) × W 1,∞(I, R3×3) and obtain
ui ∈ L∞(I), i = 1, 2, 3, and γ0 := γ(0), D0 := D(0), such that (24) holds.
Finally we note that we can change the function u3 ∈ L∞(I) arbitrarily
without changing the differential equation and the initial condition for d3 in
(24). Thus, by the second part of Proposition 4.1, we obtain a framed curve
(γ, D) for any u3 ∈ L∞(I). 2

Remarks.
1. The preceding proposition allows to represent any curve of class

W 2,∞(I, R3) by an element w ∈ X0. Thus, instead to consider perturba-
tions of an ideal knot in W 2,∞, we can study corresponding variations inX0.
This has the essential advantage that the freedom in parameterization of
competing curves is removed.

2. Below we assign the length of γ to framed curves (γ, D) as some
kind of energy. For a mechanical interpretation one may view these objects
as unshearable elastic strings which are able to develop tensile stresses but
without resistance towards bending and torsion.

The previous investigations allow us to reformulate the variational prob-
lem stated in Section 3 in terms of w ∈ X0. This way we restrict our attention
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to constant speed parameterizations on the fixed parameter interval I = [0, 1]
as representatives for curves in W 2,∞. To each element w = (u, v, γ0, D0) in
X0 = L∞(I, R3)× R+ × R3 × SO(3) we assign the “energy”

(25) E(w) :=

∫ 1

0

vdσ = v = L(γ).

Then we are looking for minimizers of the problem

E(w) → Min! , w ∈ X0,(26)

γ[w](1) = γ0,(27)

d3[w](1) = d3[w](0),(28)

K[w] ≤ θ−1,(29)

γ[w] ' γ̃(Ī).(30)

Here and from now on we use the short notation K[w], A[w] etc. for K[γ[w]],
A[γ[w]], etc. Note that (28)is automatically satisfied for a constant speed
ideal knot, since γ′ is continuous and γ′ = d3. Consequently, if γ is a (repa-
rameterized) solution of (20), (21) and w = w[γ] ∈ X0 is the element assigned
according to Proposition 4.2 (with, e.g., u3 ≡ 0), then w solves the variational
problem (26)–(30).

Remark. The minimizing curves cannot expected to be unique,
there are concrete examples of nonunique minimizing links constructed by
Cantarella et al. in [3]. Hence when we speak of the minimizer we mean
a particular suitably reparameterized minimizing curve whose existence was
established independently in [3] and [8].

5 Proofs

We claim to prove Theorem 3.1. Similarly as in [14] we proceed in several
steps first modifying and reducing the variational problem and then deriving
variational formulas for the quantities involved. Throughout this section we
assume that w = (u, v, γ0, D0) ∈ X0 is a solution of the variational problem
(26)–(30) such that the global curvature K[w] is locally not attained.

Modified variational problem. We follow the approach in [14, Section
5] to linearize the space X0 by using the correspondence of small variations of
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the identity in SO(3) with small variations in R3 near the origin by means of
the rotation vector. To be more precise, small perturbations of D0 ∈ SO(3)

have the form D0U(
4
α) with a continuous and invertible mapping U : Bδ1(0) ⊂

R3 → SO(3) for sufficiently small δ1 > 0, where U(0) = Id ∈ SO(3). We can
identify each slightly perturbed configuration

(u+
4
u, v+

4
v, γ0+

4
γ0, D0

4

D) ∈ X0

with an element

(31)
4
w= (

4
u,

4
v,

4
γ0,

4
α) ∈ L∞(I, R3)× R× R3 × R3 =: Y

by
4

D= U(
4
α). With the norm

(32) ‖ 4
w ‖Y := ‖ 4

u ‖L∞ + | 4v |+ |
4
γ0 |+ | 4α |

for
4
w= (

4
u,

4
v,

4
γ0,

4
α) ∈ Y we obtain (Y, ‖.‖Y ) as a Banach space, whereas the

original set X0 is not a linear space.
For notational convenience we introduce the modified energy function

Ĕ(
4
w) := E(v+

4
v) for

4
w∈ Bδ(0) ⊂ Y,(33)

where Bδ(0) is a small neighbourhood of 0 ∈ Y with δ > 0 not fixed yet but

sufficiently small. Analogously, we define γ̆[
4
w], D̆[

4
w], K̆[

4
w], etc. Note that

γ̆[0] = γ[w], D̆[0] = D[w], etc.
Now we consider the modified variational problem

Ĕ(
4
w) −→ Min!,

4
w∈ Y,(34)

γ̆[
4
w](1) = γ0+

4
γ0,(35)

d̆3[
4
w](1) = d̆3[

4
w](0),(36)

K̆[
4
w] ≤ θ−1,(37)

γ̆[
4
w](Ī) ' γ̃(Ī).(38)

Since w ∈ X0 was assumed to be a solution of (26)-(30),

(39)
4
w= 0 is a local minimizer of (34)–(38).
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Reduction of the modified problem. Some of the constraints of the
modified variational problem are redundant and need to be reformulated to
obtain a clear-cut situation. Furthermore we will replace K[γ] by its square
to obtain better regularity properties for the side condition (37).

We recall from [14, Lemma 5.3] that small variations

4
w1:= (

4
u, 0,

4
γ0,

4
α) ∈ Y

do not violate the constraint of a given knot class. Variations of the form
4
w2:= (0,

4
v, 0, 0) ∈ Y on the other hand, correspond to merely changing the

length of the curve within the same knot class. Since general variations
4
w∈ Y may be decomposed as

4
w=

4
w1 +

4
w2 we conclude that the topological

condition of a prescribed knot class can be removed without affecting the

fact that
4
w= 0 is a local minimizer of the modified variational problem:

Lemma 5.1. Let w = (u, v, γ0, D0) ∈ X0 be a solution of the variational

problem (26)–(30). Then γ̆[
4
w] ' γ[w] for all ‖ 4

w ‖Y sufficiently small.

In order to replace (37) by an equivalent condition we introduce the functions

P [
4
w](s, σ) := (γ̆[

4
w](s), γ̆[

4
w](σ), γ̆′[

4
w](σ)),(40)

H(x, y, t) :=
4|(x− y) ∧ t|2

|x− y|4|t|2
, for x, y, t ∈ R3, x 6= y, t 6= 0,(41)

and note that according to (11),(12) we may write

(42) K̆[
4
w]2 = sup

s,σ∈SL
s 6=σ

H(P [
4
w](s, σ)).

Now we can replace (37) with

(43) g(
4
w) := K̆[

4
w]2 − θ−2 ≤ 0.

To remove the redundancy in the boundary condition (36) we are going to
replace the three scalar conditions (36) by just two scalar equations, see (47),

(48) below. (Note that d3[
4
w](s) is always a unit vector for each

4
w∈ Y, thus

it has only two degrees of freedom.)
This way we get the reduced variational problem

(44) Ĕ(
4
w) → Min! ,

4
w∈ Y,
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g(
4
w) ≤ 0,(45)

g0(
4
w) := γ̆[

4
w](1)− (γ0+

4
γ0) = 0,(46)

g1(
4
w) := d̆3[

4
w](1) · (D0U(

4
α))1 = 0,(47)

g2(
4
w) := d̆3[

4
w](1) · (D0U(

4
α))2 = 0,(48)

where, for M ∈ R3×3, we denote the k-th column vector by (M)k, k = 1, 2, 3.

Lemma 5.2. The reduced variational problem (44)–(48) has a local mini-

mizer at
4
w= 0.

Proof. Taking into account the previous arguments one merely needs

to show that (47), (48) imply (36) for ‖ 4
w ‖Y sufficiently small. Note

that d̆3[
4
w](1) is collinear with d̆3[

4
w](0) by (47), (48). [8, Lemma 8]

implies that d̆3[
4
w](s) → d̆3[0](s) for all s ∈ [0, 1] as ‖ 4

w ‖Y → 0. By
d̆3[0](1) = d3[w](1) = d3[w](0) = d̆3[0](0) (cf. (28)) we conclude that

d̆3[
4
w](1) = d̆3[

4
w](0) for ‖ 4

w ‖Y sufficiently small. 2

Computation of derivatives. The mapping

(
4
w, s) 7→ (γ̆[

4
w](s), D̆[

4
w](s))

from Bδ(0) × [0, 1] into R3 × R3×3 is of class C1(Bδ(0) × [0, L], R3 × R3×3)
for some sufficiently small δ > 0 (depending on w), which can be shown as
in [14, Lemma 5.5]. In [14, Lemma A.1] we gave an explicit formula for the

Fréchet derivative of the mapping
4
w 7→ d̆k[

4
w](s), k = 1, 2, 3, at the origin

0 ∈ Y, which we denote by ∂wd̆k[0](s). (Note that d̆k[
4
w](s) is independent of

variations
4
v which are not considered in [14].) In fact, we have

(49) ∂wd̆k[0](s)
4
w = z(s) ∧ dk[w](s), k = 1, 2, 3, s ∈ [0, 1].

Here, z = z[
4
u,

4
α] is a special characterization of elements

4
u∈ L∞([0, 1], R3),

and
4
α∈ R3 by the uniquely assigned function

(50) z(s) = z(0) +

∫ s

0

3∑
i=1

4
u i(τ)di[w](τ) dτ
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with

(51) z(0) ∧ dk[w](0) = (D0U
′(0)

4
α)k, k = 1, 2, 3,

where U ′ denotes the derivative of U with respect to α at 0 ∈ R3, which is
invertible as pointed out in [14, Appendix]. Note that z ∈ W 1,∞([0, 1], R3).
In particular,

(52) z(0) = 0 for
4
w= (

4
u,

4
v,

4
γ0, 0) ∈ Y.

Thus, by (24)

(53) ∂wγ̆[0](s)
4
w =

4
γ0 +v

∫ s

0

z(τ) ∧ d3[w](τ) dτ+
4
v

∫ s

0

d3[w](τ) dτ,

for all s ∈ [0, 1],
4
w= (

4
u,

4
v,

4
γ0,

4
α) ∈ Y.

The energy functional Ĕ : Bδ(0) ⊂ Y −→ R is obviously differentiable
satisfying

(54) Ĕ ′(0)
4
w =

∫ 1

0

4
v dτ =

4
v for

4
w∈ Y .

Similarly as in [14, Lemma 5.7] one verifies that the constraint functions g0,
g1, and g2 are differentiable on Bδ(0) ⊂ Y for δ > 0 sufficiently small, and
we obtain

g′0(0)
4
w = vz(0) ∧

∫ 1

0

d3[w](t) dt+
4
v

∫ 1

0

d3[w](t) dt

+v

∫ 1

0

z′(t) ∧
∫ 1

t

d3[w](τ) dτ dt

=
(27)

v

∫ 1

0

z′(t) ∧
∫ 1

t

d3[w](τ) dτ dt,(55)

g′1(0)
4
w =

∫ 1

0

z′(t) · d02 dt(56)

g′2(0)
4
w = −

∫ 1

0

z′(t) · d01 dt(57)

where z ∈ W 1,∞([0, 1], R3) is given by (50),(51).
Notice that g is not smooth, but one can show (cf. [14, Lemma 5.10])

that g is Lipschitz continuous on Bδ(0) ⊂ Y for some δ > 0 sufficiently small.
Thus we can compute its generalized gradient in the sense of Clarke [4]. As
a preliminary tool we show
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Lemma 5.3. Let w be a minimizing configuration for (26)–(30), such that
K[w] is locally not attained. Then there are constants δ > 0 and η̃ ∈ (0, L/2π)
(both depending on the minimizer w) such that

(58) g(
4
w) = max

(s,σ)∈Q̃
H(P [

4
w](s, σ))− θ−2 for all

4
w∈ Bδ(0) ⊂ Y,

where

(59) Q̃ := {(s, σ) ∈ [0, 1]× [0, 1] : 1− η̃ ≥ s− σ ≥ η̃ }.

In particular, A[γ̆[
4
w]] ⊂ Q̃ for all

4
w∈ Bδ(0), where A[γ̆[

4
w]] is the set defined

in (13).

Proof. It suffices to prove the continuity of the mapping K̆[.] near the origin
of Y , i.e.,

(60) K̆[
4
w] → K̆[0] = K[w] as ‖ 4

w ‖Y → 0.

Then we can argue exactly as in the proof of [14, Lemma 5.9] to prove the
claim.

For the proof of (60) we notice that according to (40)–(42) we have

(61) K̆[
4
w] = v(v+

4
v)−1K̆[

4
w0],

where

(62)
4
w0:= (

4
u, 0,

4
γ0,

4
α),

since d̆3[
4
w] = d̆3[

4
w0] by (24). Variations of the special form (62) keep the

length fixed according to (24), and [14, Lemma 3.2] implies that K̆[.] is con-
tinuous with respect to these particular variations. Hence we conclude with
(61) that

|K̆[
4
w]− K̆[0]| ≤ |K̆[

4
w]− K̆[

4
w0]|+ |K̆[

4
w0]− K̆[0]|

→ 0 as
4
w→ 0,

because
4
w→ 0 implies

4
w0→ 0 and

4
v→ 0. 2

Due to the characterization (58) of g we can apply the nonsmooth chain
rule proved in [14, Appendix] to get an explicit formula for the generalized
gradient ∂g(0).
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Lemma 5.4. Let w be a minimizer of (26)–(30), such that K[w] is locally
not attained. Then the function g as defined in (43) is Lipschitz continuous
on Bδ(0) ⊂ Y for some small δ > 0 depending on w, that is, the generalized
gradient ∂g(0) ⊂ X∗ exists. Furthermore, for any g∗ ∈ ∂g(0) there is a
Radon measure µ∗ on [0, 1]× [0, 1] with nonempty support on A[w], see (13),
such that

〈g∗, 4w〉Y ∗×Y = −
∫ 1

0

z′(t) · v
∫ 1

t

d3(τ) ∧ f ∗c (τ) dτ dt

− z(0) · v
∫ 1

0

d3(t) ∧ f ∗c (t) dt(63)

− 4
v

∫ 1

0

d3[w] · f ∗c (t) dt,

where

f ∗c (τ) :=

∫
Qτ

[γ[w](s)− γ[w](σ)] dµ∗(s, σ),(64)

Qτ := {(s, σ) ∈ [0, 1]× [0, 1] : σ ≤ τ ≤ s} for τ ∈ [0, 1].(65)

Proof. We can proceed as in the proof of [14, Lemma 5.10] the only differ-
ence being the evaluation of the Fréchet derivative Pw[0](s, σ) of the function
P defined in (40). In contrast to [14, formula (131)] we obtain by (49), (53)

Pw[0](s, σ)
4
w =


4
γ0 +v

∫ s

0
z(t) ∧ d3[w](t) dt+

4
v

∫ s

0
d3[w](t) dt

4
γ0 +v

∫ σ

0
z(t) ∧ d3[w](t) dt+

4
v

∫ σ

0
d3[w](t) dt

z(σ) ∧ d3[w](σ)
)

 .

Thus for any g∗ ∈ ∂g(0) there is a probability Radon measure µ̄ on Q̃ sup-
ported on A[w] such that

〈g∗, 4w〉Y ∗×Y = −K[w]4
∫
Q̃
[γ[w](s)− γ[w](σ)] ·[

v

∫ s

σ

z(t) ∧ d3[w](t) dt+
4
v

∫ s

σ

d3[w](t) dt
]
dµ̄(s, σ)

for all
4
w∈ Y. After extending the measure µ̄ from Q̃ to the triangle

Q̄ := {(s, σ) ∈ [0, 1]× [0, 1] : s ≥ σ} ⊃ Q̃
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by zero (again denoted by µ̄), we proceed as in [14] (essentially by Fubini’s
Theorem after integrating by parts) to obtain for µ∗ := K[w]4µ̄ and f ∗c as
in (64)

〈g∗, 4w〉Y ∗×Y = −
∫ 1

0

z′(t) · v
∫ 1

t

d3[w](τ) ∧ f ∗c (τ) dτ dt

−z(0) · v
∫ 1

0

d3[w](t) ∧ f ∗c (t) dt(66)

− 4
v

∫ 1

0

d3[w](t) · f ∗c (t) dt.

2

Lagrange multiplier rule. By Lemma 5.2 we know that
4
w= 0 is a

local minimizer for the reduced variational problem (44)–( 48). We are now
in the position to apply the nonsmooth Lagrange multiplier rule of Clarke
(cf. [4, Chapter 6]) to this variational problem, since the energy function Ĕ
and the constraints g, g0, gi, i = 1, 2, are Lipschitz continuous near 0 ∈ Y .
Hence there exist multipliers λE, λ ≥ 0, λ0 ∈ R3, λ1, λ2 ∈ R, not all zero,
such that

(67) 0 ∈ λEĔ ′(0) + λ∂g(0) + λ0 · g′0(0) +
2∑

i=1

λig
′
i(0)

with

(68) λg(0) = 0.

In other words, there exists g∗ ∈ ∂g(0) ⊂ Y ∗, such that

(69) 0 =

〈
λEĔ ′(0) + λ0 · g′0(0) +

2∑
i=1

λig
′
i(0),

4
w

〉
Y ∗×Y

+ λ〈g∗, 4w〉Y ∗×Y

for all
4
w∈ Y.

Inserting the expressions (54), (55)–(57) and (64) into (69) and setting
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m0 := λ1d02 − λ2d01 we thus arrive at

0 = λE
4
v +v

∫ 1

0

z′(t) ·
(∫ 1

t

d3[w](τ) ∧ λ0 dτ

)
dt

+

∫ 1

0

z′(t) ·m0 dt− λv

∫ 1

0

z′(t) ·
∫ 1

t

d3[w](τ) ∧ f ∗c (τ) dτ dt(70)

−λ
4
v

∫ 1

0

d3[w](t) · f ∗c (t) dt− λz(0) · v
∫ 1

0

d3[w](t) ∧ f ∗c (t) dt

for all
4
w∈ Y. Notice that the equation is independent of the variations

4
γ0 .

(Recall that
4
u uniquely determines z′ by (50), and that z′ can be any function

in L∞([0, 1], R3) by a suitable choice of
4
u∈ L∞([0, 1], R3). Analogously z(0)

can be any vector in R3 by a suitable choice of
4
α∈ R3, see (51).)

Taking special variations of the form
4
w= (0,

4
v, 0, 0) ∈ Y we obtain from

(61) that K̆[
4
w] = v(v+

4
v)−1K̆[0] = v(v+

4
v)−1K[w]. Assume that K[w] < θ−1.

Then, for ‖ 4
w ‖Y sufficiently small, one has K̆[

4
w] < θ−1 and

4
w satisfies all side

conditions (45)–(48). For
4
v< 0, however, Ĕ(

4
w) = v+

4
v< v = Ĕ(0) = E(w)

according to (25). Thus w = 0 could not have been a local minimizer. Hence
K[w] = K[γ] = θ−1.

Next we show that λ 6= 0 in (70). Indeed, λ = 0 in (70) implies

0 = λE
4
v +v

∫ 1

0

z′(t) ·
(∫ 1

t

d3[w](τ) ∧ λ0 dτ

)
dt +

∫ 1

0

z′(t) ·m0 dt.

The choice
4
v 6= 0 and

4
u= 0 giving z′ ≡ 0 by (50) leads to λE = 0. Arbitrary

variations
4
u∈ L∞(I, R3) correspond to arbitrary z′ ∈ L∞(I, R3) by (50),

hence we can apply the Fundamental Lemma in the calculus of variations to
obtain

(71) 0 = v

∫ 1

t

d3[w](τ) ∧ λ0 dτ + m0

for a.e. t ∈ [0, 1], and then by continuity for all t ∈ [0, 1]. Differentiation with
respect to t gives

(72) d3[w](t) ∧ λ0 = 0 for all t ∈ [0, 1],
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again by continuity of d3[w] ∈ C0,1([0, 1], R3). Inserting (72) into (71) we
arrive at m0 = 0, i.e., λ1 = λ2 = 0 by definition of m0. If λ0 = 0 then
all Lagrange multipliers in (67) would vanish contradicting the Lagrange
multiplier rule, hence λ0 6= 0. But then by (72) the vectors d3[w](t) = γ′[w](t)
and λ0 would be collinear for all t ∈ [0, 1] contradicting the fact that γ[w]
is a closed curve. Hence λ 6= 0, i.e., λ > 0 (since λ ≥ 0 by the Lagrange
multiplier rule).

Evaluating (70) for
4
v= 0 and setting fc(t) := λvf ∗c (t) for t ∈ [0, 1], and

f0 := vλ0 we obtain

0 =

∫ 1

0

z′(t) ·
(∫ 1

t

d3[w](τ) ∧ [f0 − fc(τ)] dτ + m0

)
dt,

which implies by the Fundamental Lemma in the calculus of variations

(73) 0 =

∫ 1

t

d3[w](τ) ∧ [f0 − fc(τ)] dτ + m0

for all t ∈ [0, 1] by continuity. Differentiating this with respect to t we obtain

d3[w](t) ∧ [f0 − fc(t)] = 0 for a.e. t ∈ [0, 1],

which by (73) leads to m0 = 0. Hence we can write

(74) fc(t) = b(t)d3[w](t) + f0 for a.e. t ∈ [0, 1]

for some function b. Notice that [14, Corollary 4.2] applies to fc, which is a
constant multiple of f ∗c defined in (64). Hence fc · d3[w] ∈ W 1,∞([0, 1]) and,
by (74), b ∈ W 1,∞([0, 1]) and fc ∈ W 1,∞([0, 1], R3). Taking derivatives in
(74) we get

f ′c(t) = b′(t)d3[w](t) + b(t)d′3[w](t) a.e. on [0, 1].

Since d′3[w] · d3[w] = 0 on [0, 1] and, by [14, Corollary 4.2], f ′c · d3[w] = 0 a.e.
on [0, 1], there is a constant b0 ∈ R with

b(t) = b0 for all t ∈ [0, 1].

Consequently,

(75) f ′c(t) = b0d
′
3[w](t) for a.e. t ∈ [0, 1].
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If b0 = 0, then fc(t) = f0 for all t ∈ [0, 1] by (74). With [14, Lemma 5.11] we
conclude that

λvµ∗ = λvK[w]4µ̄ = 0.

Hence µ̄ = 0 by λ > 0. This contradicts the fact that µ̄ is a probability
Radon measure according to the proof of Lemma 5.4. Therefore b0 6= 0. By
the identity γ′[w](t) = vd3[w](t) according to (24) we can rewrite (75) as

(76) f ′c(t) = (b0/v)γ′′[w](t) for a.e. t ∈ [0, 1].

To determine the sign of the constant b0 we take variations

4
w = (0,

4
v, 0, 0) ∈ Y with

4
v 6= 0

in (70) to obtain

0 = λE − λ

∫ 1

0

d3[w](t) · f ∗c (t) dt

= λE − v−1

∫ 1

0

d3[w](t) · [fc(t)− f0] dt

=
(74)

λE − b0/v,

where we used that
∫ 1

0
d3[w](t) · f0 dt = 0 by (24) and (27). Consequently,

λE 6= 0, i.e., λE > 0 by the Lagrange multiplier rule, hence b0 > 0 as well.
(The condition λE > 0 expresses normality in the Lagrange multiplier rule.)

Recall that fc = λvf ∗c with f ∗c according to (64) and λ, v > 0. Now we can
argue as in the proof of [14, Corollary 4.2 (iii)], which rests on [1, Theorem
2.28]. Hence there are (nonegative) Radon measures µs for s ∈ [0, 1] such
that

supp µs ⊂ Is (i.e., µs = 0 if Is = ∅.)

and

γ′′(s) =
v

b0

f ′c(s) =

∫ 1

0

[γ(τ)− γ(s)] dµs(τ) a.e. on [0, 1].

This verifies Theorem 3.1. 2

Proof of Corollary 3.2. (i) We can rewrite the set Ic as

(77) Ic = {s ∈ [0, 1] : κG[γ](s) = θ−1}
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by definition of A[γ] in (13), together with Lemma 2.4 and by the fact that
K[γ] = θ−1 according to Theorem 3.1. Thus (i) follows from Corollary 2.6.

(ii) If κG[γ](s) < θ−1 we find δ = δ(s) such that κG[γ](τ) < θ−1 for all
τ ∈ [0, 1] with |τ − s| < δ. Otherwise we could find a sequence si → s with
κG[γ](si) = θ−1 for all i ∈ N, but then κG[γ](s) = θ−1 according to assertion
(i). Thus τ 6∈ Ic for |s− τ | < δ. Hence Iτ = ∅ and µτ = 0 for all |τ − s| < δ.
Therefore γ′′(τ) = 0 for a.e. |τ − s| < δ, which implies the assertion.

(iii) Obviously µs = 0 for a.e. s ∈ Ĩ. Thus γ′′(s) = 0 a.e. on Ĩ, i.e., γ is
straight on Ĩ by γ ∈ W 2,∞.

(iv) Since γ′′(s) 6= 0 a.e. on Ĩ, µs 6= 0 for a.e. s ∈ Ĩ. Thus there is a set
I0 ⊂ Ĩ of (Lebesgue) measure zero such that Ĩ \ I0 ∈ Ic. Since the closure
of Ĩ \ I0 relatively to Ĩ is Ĩ and since Ic is closed, we readily get Ĩ ⊂ Ic, i.e.,
κG[γ](s) = θ−1 on Ĩ by (77). 2
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