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1 Introduction

A typical question in geometry is to look for a curve γ of minimal length subjected to suitable
constraints. If both ends of the curve are fixed at given points, then we are led to the classical
problem of geodesics that are characterized by a vanishing curvature along the curve. An ana-
lytically much more difficult problem is the study of length minimizing curves with prescribed
positions and tangential directions at the ends and subjected to the nonholonomic constraint of
an upper bound for curvature. A few years ago this problem was formulated by Y. Wang [17]
for planar curves which, e.g., models the path of a car or robot where a lower bound for the
turning radius is taken into account. While a solution of E. Verriest based on control theory
was given in [14], it turned out that already L.E. Dubins [5] had solved the problem with much
more elementary methods about 50 years ago (cf. also [7]). Though the existence of a solution is
verified for curves in Rn (n ∈ N) in [5], its characterization is studied for planar curves only. In
the present paper we derive a characterization of such curves in R3.

A much more subtle constraint is obtained if the tubular neighborhood of a spatial curve γ
with given radius ϑ > 0 is prohibited to intersect itself. This can be formulated analytically by
an upper bound on the global curvature K[γ] of γ (cf. Gonzalez et al. [6], Schuricht & v.d. Mosel
[13]). A corresponding length minimizing solution within a given knot class is called an ideal knot
in the case of a closed curve γ and it is called an ideal link in the case of several linked curves.
For the characterization of ideal knots and links we are confronted with the difficulty that global
curvature can express either a local curvature bound or a nonlocal “self-distance” property of the
curve (or both). While the results in [13] are restricted to situations where only the nonlocal case
occurs, the subsequent investigations supplement these results for the case where only the local
case occurs.

The deformation of an elastic rod is usually described by some deformed reference curve sup-
plemented with deformed configurations of the cross sections. We observe that elastic deformation
becomes harder and harder the more the body is already deformed. This phenomenon can be
modeled by a suitable growth of the elastic energy density and, if only strains in a given set can
be realized, by so-called locking constraints (cf. Ciarlet & Nečas [2]). We shall use the Cosserat
theory to describe the behavior of nonlinearly elastic rods that can extend, bend, and shear.
Pointwise restrictions for the strains turn out to be quite similar to the nonholonomic curvature
condition discussed for curves. For a general class of problems the Euler-Lagrange equation as
necessary condition for constrained energy minimizing configurations is verified. For the special
case of a homogeneous circular unshearable rod we observe that the mechanical requirement of
non-interpenetration of matter locally corresponds to an upper bound on curvature for the de-
formed middle curve showing the affinity to the previous pure geometric problem. The more
sophisticated question of global non-interpenetration of matter for rods is studied in Gonzalez et
al. [6], Schuricht [9], Schuricht & v.d. Mosel [12], [11] where our investigations supplement these
results in the local case.

The analytical difficulty due to the nonholonomic constraint is circumvented by a special
formulation of the problems based on framed curves, i.e., the curve γ is equipped with an or-
thonormal frame at each point. This way the constraint forms a convex set and we can combine
the direct methods of the calculus of variations with convex analysis in order to derive necessary
minimality conditions. In the case of an elastic rod we get Lagrange multipliers as corresponding
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contributions in the balance of forces and moments. For curves subjected to a curvature bound we
obtain an equation as necessary condition and can easily derive further properties characterizing
such curves.

In Section 2 we first introduce the main ideas of the Cosserat theory for elastic rods. Then we
briefly discuss the existence of energy minimizing configurations with respect to a general class
of locking constraints and we formulate the corresponding Euler-Lagrange equation in Theorem
2.23. Curves of minimal length subjected to an upper curvature bound are considered in Section
3. Theorem 3.5 provides a general necessary condition and Corollary 3.9 collects a number of
simple consequences. In contrast to the planar case where minimal curves are a composition of
straight segments and circular arcs, for spatial curves also spirals can occur as it is shown by a
simple example. The proofs are deferred to Section 4. Some results needed for our analysis about
the dependence of ordinary differential equations on parameters, that are a slight modification of
them in Schuricht & v.d. Mosel [10], can be found in the Appendix.

Finally I would like to remark that all results presented in v.d. Mosel [15] are joint results of
H. v.d. Mosel and myself with comparable contributions (partially also with O. Gonzalez and J.
Maddocks) that are published in [6], [11], [12] and where my contributions go far beyond “conver-
sations” as it is stated in [15] (in particular, [15] contains proofs completely done by myself). The
joint manuscripts of [11], [12] are not cited in [15], but they had already been available in almost
final form (despite the gap mentioned below). Though the central transversality assertions (b),
(c) are already stated in the main theorem [15, Th. 4.2.1], this longstanding open problem of our
cooperation had not yet been solved at that time and it still took almost a year after submitting
[15] that the essential gap in the proof could be closed by myself (cf. [12, Lemma 15]).

Notation.
We use |a| for the Euclidean norm, a · b for the scalar product, and a× b for the cross product

in Rn. The Lebesgue measure of M ⊂ Rn is denoted by |M |. The open ε−ball of u is Bε(u) the
boundary of a set M is ∂M . We write AT for the transpose of matrix A. For a Banach space
X and its dual space X∗ the duality pairing is given by 〈·, ·〉. Lp(Ω), 1 ≤ p ≤ ∞, stands for the
Lebesgue space of p-integrable functions and we use 1/p + 1/p′ = 1 to identify the dual spaces.
Wk,p(Ω) is the space of all Lp-functions having p-integrable weak derivatives up to order k.

2 Constrained elastic rods

We first give a brief introduction into the special Cosserat theory which describes the behavior
of nonlinearly elastic rods that can undergo large deformations in space by suffering flexure,
torsion, extension, and shear. For a more comprehensive presentation see Antman [1, Chap.
VIII], Schuricht [8].

Let the deformed position field of a slender elastic body be given by

p(s, ζ1, ζ2) = γ(s) + ζ1d1(s) + ζ2d2(s) for (s, ζ1, ζ2) ∈ Ω , (2.1)

where
Ω = {(s, ζ1, ζ2)| s ∈ I, (ζ1, ζ2) ∈ A(s)} , I = [0, 1].

We interpret γ : I → R3 as the deformed configuration of some material curve in the body, the
so-called base curve, with length parameter s. d1(s), d2(s) are orthogonal unit vectors describing
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the orientation of the cross section at s and ζ1, ζ2 are corresponding thickness parameters. The
parameter sets A(s) ⊂ R2 characterize the shapes of the cross sections corresponding to s and do
not have to be uniform. For the stress free reference configuration, which has not to be straight,
we assume that s is the arc length of the base curve and that the cross sections are orthogonal
to the base curve. Setting d3 := d1 × d2, the vectors {d1, d2, d3}, which we call directors, form
a right-handed orthonormal basis for each s and can be identified with an orthogonal matrix
D = (d1|d2|d3) ∈ SO(3) (the right hand side denotes the matrix with columns d1, d2, d3).

A deformed configuration of the rod is thus determined by mappings γ : I → R3 and D : I →
SO(3). It is reasonable to assume that r ∈ W1,q(I,R3) and D ∈ W1,p(I,R3×3) for p, q ≥ 1. In
Gonzalez et al. [6] it is shown that each such configuration uniquely corresponds to an element

w = (u, v, r0, D0) with u = (u1, u2, u3), v = (v1, v2, v3)

belonging to
X = Xp,q = Lp(I,R3)× Lq(I,R3)× R3 × SO(3) (2.2)

by means of

d′k =
( 3∑

j=1

ujdj

)
× dk a.e. on I , k = 1, 2, 3 (2.3)

γ′ =
3∑

j=1

vjdj a.e. on I , (2.4)

γ(0) = γ0 , D(0) = D0 .

u, v are called the strains of the problem. The notation p[w], γ[w], etc. indicates the dependence
of p, γ, etc. on w = (u, v, γ0, D0).

We obtain more special rod theories by fixing suitable components of the strains u, v. E.g.,
the requirement v = (0, 0, 1) provides a theory for unshearable and inextensible rods.

We assume that the material of the rod is hyperelastic, i.e., there is a stored energy density
W : R3 × R3 × I → R depending on (u, v, s) where W (·, ·, s) is convex and such that the total
elastic energy of the rod is given by

Es(w) = Es(u, v) =
∫ 1

0
W (u(s), v(s), s) ds .

The contact force f(s) =
∑3

i=1 fi(s)di(s) and the contact couple m(s) =
∑3

i=1mi(s)di(s) exerted
from the elastic material through the cross section at s are then given by

fi(s) = Wvi(u(s), v(s), s), mi(s) = Wui(u(s), v(s), s) (2.5)

for almost all cross sections s (cf. Antman [1, Chap. VIII.7], Schuricht [8]). The respond of an
external force described by a vector valued Radon measure fe on Ω enters the theory by means
of an potential energy

Ep(w) = −
∫

Ω
p(s, ζ1, ζ2) · dfe(s, ζ1, ζ2) (2.6)
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(cf. Schuricht [8]). By

fe(s) =
∫

Ωs

dfe(s, ζ1, ζ2), Ωs := {(σ, ζ1, ζ2) ∈ Ω| σ ≥ s} (2.7)

we denote the resultant external force acting on the material corresponding to Ωs. The couple
induced by the force fe is given by

mfe(s) =
∫

Ωs

(
ζ1d1(σ) + ζ2d2(σ)

)
× dfe(σ, ζ1, ζ2) . (2.8)

The mechanical requirement that configurations should preserve orientation and should be
locally invertible is imposed by the analytical condition that

det
∂p(s, ζ1, ζ2)
∂(s, ζ1, ζ2)

≥ 0 a.e. on Ω (2.9)

By (2.1) this is equivalent to

v3(s) ≥ ζ1u2(s)− ζ2u1(s) for a.e. (s, ζ1, ζ2) ∈ Ω . (2.10)

and leads to the one-dimensional inequality

v3(s) ≥ Ṽ (u1(s), u2(s), s) for a.e. s ∈ I (2.11)

whith
Ṽ (u1, u2, s) ≡ max

(ζ1,ζ2)∈A(s)
ζ1u2 − ζ2u1 . (2.12)

As an upper envelope of a family of linear functions, Ṽ (·, ·, s) is convex and continuous (cf. also
Antman [1, Chap. VIII.6]). We claim to study general constrints of the type (2.11).

Let us first discuss some special case of (2.11). If we take a uniform rod with circular cross
sections of radius ϑ > 0 and and if we choose the curve of centroids as base curve, then condition
(2.11) has the special form

v3(s) ≥ ϑ
√
u1(s)2 + u2(s)2 a.e. on I. (2.13)

This condition has a concrete interpretation if we restrict our attention to unshearable extensible
rods where v = (0, 0, v3). If v3(s) > 0 a.e. on I, then the arc length parametrization Γ : [0, L] →
R3 of the base curve γ (here L = L(γ) is the length of the curve) has the weak second derivative
Γ′′ = (u2d1 − u1d2)/v3. Thus the curvature κ of γ is given by

κ = |Γ′′| =
√
u2

1 + u2
2

v3
a.e. on I (2.14)

(cf. Gonzalez et al. [6]). Hence (2.13) expresses an upper bound on the curvature of γ of the
form κ(s) ≤ 1/ϑ a.e. on I (ϑ > 0) in that special case.

A restriction for the strains (u, v) of the form (2.11) is also called a locking constraint for the
material (cf. Ciarlet & Nečas [2]). Other simple locking constraints might be, e.g., a bound for
maximal extension √

v2
1(s) + v2

2(s) + v2
3(s) ≤ α1 a.e. on I,
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a bound for maximal torsion
|u3(s)| ≤ α2 a.e. on I,

or a bound for a maximal shear angle√
v2
1(s) + v2

2(s)
v3(s)

≤ α3 a.e. on I

for suitable constants αi > 0, i = 1, 2, 3.
All formulated constraints can be written in the form

V (u(s), v(s), s) ≤ 0 a.e. on I

for a suitable function V that is convex in (u, v). Below we study a variational problem containing
that kind of side condition and we use the notation,

mV (s) =
3∑

i=1

mV
i (s)di(s), fV (s) =

3∑
i=1

fV
i (s)di(s),

where
mV

i (s) = Vui(u(s), v(s), s), fV
i (s) = Vvi(u(s), v(s), s).

To avoid technicalities we assume that

(Vu(u, v, s), Vv(u, v, s)) 6= 0 for all (u, v, s) with V (u, v, s) = 0 (2.15)

and define the normalized vectors

m̄V (s) =
mV (s)

|(mV (s), fV (s))|
, f̄V (s) =

fV (s)
|(mV (s), fV (s))|

, ν(s) = (m̄V (s), f̄V (s)) . (2.16)

We now study the variational problem

E(w) :=
∫

I
W (u(s), v(s), s) ds−

∫
Ω
p[w] · dfe → Min!, w ∈ Xp,q, (2.17)

γ[w](0) = γ0, γ[w](1) = γ1, D[w](0) = D0, D[w](1) = D1, (2.18)

V (u(s), v(s), s) ≤ 0 a.e. on I (2.19)

where γ0, γ1 ∈ R3, D0, D1 ∈ SO(3), 1 ≤ p, q ≤ ∞, and the Radon measure fe on Ω are given. For
our subsequent analysis we always assume that:

V (·, ·, s), W (·, ·, s) are continuous for all s ∈ I,
V (u, v, ·), W (u, v, ·) are Lebesgue measurable for all (u, v) ∈ R3 × R3.

Moreover, notice that Xp,q is not a linear space, but it is contained in the Banach space

Z = Zp,q = Lp(I,R3)× Lq(I,R3)× R3 × R3×3 .
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Let us first discuss the existence of a minimizer of (2.17) - (2.19). For that reason we assume
that 1 < p, q < ∞, that V (·, ·, s), W (·, ·, s) are convex for all s ∈ I and we impose the standard
growth condition

W (u, v, s) ≥ c(|u|p + |v|q) + ψ(s) for all u, v ∈ R3 and a.e. s ∈ I (2.20)

where c > 0 is a constant and ψ ∈ L1(I). Then Es(·) is weakly lower semicontinuous on Z by
standard arguments (cf. Dacorogna [4]). Ep(·) is weakly continuous on Z, since wn ⇀ w in Z

implies that γ[wn] → γ[w] and D[wn] → D[w] in C(I) (cf. Gonzalez et al. [6]). Hence E(·) is
weakly lower semicontinuous on Z. The subset of Z defined by (2.19) is convex and closed and,
hence, weakly closed. Since the boundary conditions (2.18) are stable under weak convergence
(cf. [6]) and since SO(3) is a closed subset of R3×3, we readily obtain the following existence
result by the direct methods of the calculus of variations.

Theorem 2.21 Let (2.20) be satisfied with 1 < p, q <∞ and let the admissible set be nonempty.
Then variational problem (2.17) - (2.19) possesses a minimizer.

Now we are interested in the Euler-Lagrange equation as necessary condition for a mini-
mizer. Here we again assume that V (·, ·, s) is convex and we suppose that W (·, ·, s), V (·, ·, s) are
continuously differentiable for all s ∈ I. Furthermore we impose the usual growth restriction

|Wu(u, v, s)|+ |Wv(u, v, s)| ≤ c̃(|u|p + |v|q) + ψ̃(s) for all u, v ∈ R3, a.e. s ∈ I (2.22)

where c̃ > 0 is a constant and ψ̃ ∈ L1(I). For a minimizer w of the variational problem we define
the set

Ia = {s ∈ I| V (u(s), v(s), s) = 0}

of active s in (2.19) (note that Ia is only determined up to a set of measure zero).

Theorem 2.23 Let (2.15), (2.22) be satisfied and let w ∈ X be a local minimizer of the
variational problem (2.17) - (2.19) with 1 < p, q < 1. Then there are multipliers λ ≥ 0,
f1, f2,m1,m2 ∈ R3, and a measurable function % : I → [0,∞), not all zero, such that
%m̄V ∈ Lp′(I), %f̄V ∈ Lq′(I), %(s) = 0 a.e. on I \ Ia, and

0 = λm[w](s)− λ

∫ 1

s
γ′[w](σ)× (fe(σ)− f2) dσ − λmfe(s) +m2 − %(s)m̄V (s) (2.24)

0 = λf [w](s)− λfe(s) + f2 − %(s)f̄V (s) (2.25)

0 = −λ
∫ 1

0
γ[w]′(s)× fe(s) ds− λmfe(0) +m1 +m2 (2.26)

0 = −λfe(0) + f1 + f2 (2.27)

for a.e. s ∈ I. If |I \ Ia| > 0 or if both m̄V and f̄V are not constant on I, then we can choose
λ = 1.

Notice that (2.24), (2.25) express the balance of moments and forces, respectively, and (2.26),
(2.27) say that the sum of all external moments and forces, respectively, has to vanish.
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The assertion can be extended to the case where V (·, ·, s) is not differentiable if we extend
Lemma 4.11 below to that case and replace the gradients mV (s), fV (s) with suitable elements
from the convex subdifferentials ∂uV and ∂vV , respectively.

An application of the theorem to the special constraints discussed after (2.14) provides a
contribution to the balance of forces (2.25) if we restrict extension or shear angle and we get a
contribution to the balance of moments (2.24) if we restrict torsion.

3 Constrained curves

Let γ ∈ W2,p([0, 1],R3) be a curve and let Γ ∈ W2,p([0, 1],R3) be the corresponding reparametriza-
tion of constant speed, i.e., |Γ′(s)| = L for all s where L = L[γ] is the length of the curve (without
danger of confusion we always assume that Γ, Γ̃, Γk etc. refers to γ, γ̃, γk). Denoting the (local)
curvature of γ at s by κ[γ](s) and using I := [0, 1] we consider the variational problem

L[γ] =
∫ 1

0
|γ′(s)| ds → Min!, γ ∈ W2,p(I), (3.1)

γ(0) = γ0, γ(1) = γ1,
Γ′(0)
|Γ′(0)|

= t0,
Γ′(1)
|Γ′(1)|

= t1 (3.2)

κ[γ](s) =

√
|γ′|2|γ′′|2 − (γ′ · γ′′)2

|γ′|6
≤ κ0 a.e. on I (3.3)

where γj , tj ∈ R3, κ0 > 0 are given with |tj | = 1, j = 1, 2. The curvature κ can be expressed
much simpler by means of the constant speed parametrization Γ as

κ[γ](s) =
1

L[γ]2
|Γ′′(s)| . (3.4)

Note that, for each solution γ̃ ∈ W2,p(I) of the previous variational problem we always have the
corresponding solution Γ̃ ∈ W2,∞(I).

The existence of a solution in W2,∞(I) (with constant speed parametrization) was shown by
L.E. Dubins [5] for curves in Rn (based on the theorem of Arzelà-Ascoli, but without explicit
use of the Sobolev space W2,∞(I)). One might ask how far the direct methods of the calclus
of variations yield the existence of a solution in W2,p(I), 1 < p < ∞, for the nonholonomic
problem. As usually we select a minimizing sequence γk where we can assume that γk = Γk. The
sequence Γk has to be bounded in W2,p(I) by (3.4) and, thus, has a subsequence (denoted the
same way) with a weak limit γ ∈ W2,p(I). Conditions (3.2) are certainly stable with respect to
weak convergence and |γ′(s)| = L a.e. on I for L := limk→∞ L[Γk], i.e., γ has again constant
speed parametrization and agrees with Γ. Using (3.4) and the fact that closed convex sets are
weakly closed we find that γ solves the variational problem.

The next natural question is to ask for a necessary minimality condition, i.e., for the Euler-
Lagrange equation of the problem. In the case of planar curves Dubins [5] has shown, by compre-
hensive investigations of circular arcs and the curvature of planar curves, that a length minimizing
curve subjected to the considered constraints has to be a composition of straight segments S and
circular arcs C having curvature κ0. Furthermore, by geometric arguments combined with second
order minimality conditions, it is verified that a solution curve has to be of the type CCC, CSC
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or a subarc thereof. By an approach based on control theory, E. Verriest [14] has basically proved
that the curvature vector for a solution curve γ, which is obviously orthogonal to the tangent,
either has to have length κ0 (circular arcs) or length 0 (straight segments). Moreover it follows
that there is a fixed direction t̃ ∈ R2 such that Γ′(s) = t̃ on all straight segments of γ. But the
discussion in [14] about global minimizers γ only considers curves of the type CSC and misses
the type CCC.

Using the same methods as before for elastic rods we are able to derive the Euler-Lagrange
equation for our variational problem in R3. While the result is new for non-planar solution curves,
we easily recover the previous results in the planar case. A standard difficulty in geometric
problems is the freedom in reparametrization. We circumvent that problem for our curves γ by
the use of framed curves where an orthonormal frame D(s) ∈ SO(3) is attached to each point γ(s)
of the curve. This way we merely take into account curves with constant speed parametrization.
Let n(s) denote the (unit) binormal of Γ directed as Γ′(s)×Γ′′(s) at points Γ(s) where Γ′′(s) 6= 0
and we set n(s) = 0 at points where Γ′′(s) = 0. The next theorem provides the Euler-Lagrange
equation as necessary condition for solutions of our variational problem.

Theorem 3.5 Let γ be a solution of the variational problem (3.1) – (3.3) with constant speed
parametrization, i.e., |γ′(s)| = |Γ′(s)| = L for a.e. s ∈ I. Then there are Lagrange multipliers
λ ∈ R3, % ∈ C(I,R), %(s) ≥ 0, not both zero, such that

%(0)n(0) + (γ(s)− γ(0))× λ = %(s)n(s) for all s ∈ I, (3.6)

(γ(1)− γ(0)) · λ ≤ κ0L

∫ 1

0
%(s) ds , (3.7)

%(s) = 0 for a.e. s with κ(s) < κ0 . (3.8)

Moreover, % and n are continuously differentiable on the open set I+ := {s ∈ I| %(s) > 0} and the
second derivatives %′′(s) and n′′(s) exist a.e. on I+. (Note that %(s) = 0 for all s with n(s) = 0.)

Quite easily we obtain further conclusions from the previous Euler-Lagrange equation.

Corollary 3.9 Let γ be a solution of (3.1) – (3.3) as in the previous theorem satisfying (3.6) –
(3.8). Then:

(a) If λ = 0, then %(s) = %(0) > 0 for all s ∈ I and γ(I) is a planar circular arc.
(b) If %(s) = 0 for some s ∈ I, then λ 6= 0 and there is a line ` in R3 parallel to λ such that

γ(s) ∈ ` if and only if %(s) = 0. In particular, if γ(I) has a straight segment, then it belongs to
`. Moreover γ(s) ∈ ` for all s where n is discontinuous.

(c) If %(s) > 0 on (s1, s2) ⊂ I, s1 < s2, and %(s̃) = 0 for some s̃ ∈ I, then γ([s1, s2]) is a
planar circular arc.

(d) If the solution curve γ(I) contains a straight segment, then γ(I) consists of at most two
planar circular arcs separated by the straight segment. In particular, γ(I) cannot contain two
separated straight segments.

Remark 3.10 The proof in [5] that a planar solution curve γ(I) cannot contain four successive
circular arcs (with switching n) uses second order arguments and cannot be seen directly from
Theorem 3.5, but Corollary 3.9 c) provides at least a partial result contained in the corresponding
proof in [5].
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The next example demonstrates that minimizing curves in R3 do not have to be the compo-
sition of planar arcs.

Example: We fix

γ0 = (ϑ, 0, 0), γ1 = (ϑ, 0, 2πϑ), t0 = t1 = 2πϑ(0, 1, 1), κ0 =
2π√

2
where ϑ =

1
2π
√

2
.

For the curve
γ(s) = ϑ(cos 2πs, sin 2πs, 2πs), s ∈ I = [0, 1].

we have

γ′(s) = 2πϑ(− sin 2πs, cos 2πs, 1), γ′′(s) = 4π2ϑ(− cos 2πs,− sin 2πs, 0).

Thus γ = Γ has arc length parametrization, κ(s) = |γ′′(s)| = κ0 for all s ∈ I, and

γ(0) = γ0, γ(1) = γ1, γ′(0) = t0, γ′(1) = t1,

i.e., γ satisfies the side conditions (3.2), (3.3). Let us now check conditions (3.6), (3.7) for γ. For
the binormal of γ we readily obtain

n(s) =
1√
2
(sin 2πs,− cos 2πs, 1).

Then (3.6) becomes

%(0)√
2

 0
−1
1

 + ϑ

 cos 2πs− 1
sin 2πs

2πs

× λ =
%(s)√

2

 sin 2πs
− cos 2πs

1

 .

For s = 1 we find that %(0) 6= %(1) is impossible and, since we can normalize λ, we obtain that
λ = (0, 0,±1). Thus

%(0)√
2

 0
−1
1

± ϑ

 sin 2πs
1− cos 2πs

0

 =
%(s)√

2

 sin 2πs
− cos 2πs

1

 .

From the last line we get %(s) = %(0) for all s ∈ I. Hence the first line implies that %(s) = 1/2π on
I and λ = (0, 0, 1). This way the seond line is satisfied too. Moreover (3.7) becomes 2πϑ ≤ κ0/2π
which is obviously true. Consequently γ satisfies (3.6) – (3.8).

4 Proofs

4.1 Proof of Theorem 2.23

Since we need a linear structure for our analysis, we represent small variations D0Ď0 ∈ SO(3)
of D0 ∈ SO(3) by variations ǎ ∈ R3. For that reason we consider the mapping α : SO(3) → R3

assigning the rotation vector ǎ ∈ R3 to Ď ∈ SO(3), i.e., ǎ provides the rotation axis and |ǎ| the
positively oriented rotation angle in [0, π) for the element Ď. α is a bijective and continuously
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differentiable mapping from a neighborhood of the identity in SO(3) on a neighborhood of the
origin in R3 (cf. Schuricht & v.d. Mosel [12] for further details.)

Thus small perturbations (u + ǔ, v + v̌, γ0 + γ̌0, D0Ď0) ∈ X of (u, v, γ0, D0) ∈ X can be
identified with the elements

(u+ ǔ, v + v̌, γ0 + γ̌0, α(Ď)) ∈ Lp(I,R3)× Lq(I,R3)× R3 × R3 =: Y

(note that D0 ∈ SO(3) corresponds to ǎ = 0 in R3). Identifying the elements of X and Y in a
neighborhood of the solution w we readily see that w is a local minimizer of the corresponding
variational problem formulated in Y and we claim to derive the necessary minimality condition
for w with respect to the latter problem.

Theorem 5.8 in the Appendix implies that w̌ → dk[w̌](·) is continuously differentiable on a
neighborhood U(w) ⊂ Y of w and, in analogy to Schuricht & v.d. Mosel [12, Lemma 16], we
obtain (Dw - derivative with repect to w)

Dwdk[w](s) w̌ = z[ǔ, ǎ](s)× dk[w](s), k = 1, 2, 3, (4.1)

for all w̌ = (ǔ, v̌, γ̌0, ǎ) ∈ Y , s ∈ I where, for the fixed frame field D[w](·), the curves z = z[ǔ, ǎ] ∈
W1,p(I) given by

z(s) = z(0) +
∫ s

0

3∑
i=1

ǔi(σ)di[w](σ) dσ with z(0) =
3∑

i=1

ǎidi[w](0) . (4.2)

provide a unique correspondence between the perturbations (ǔ, ǎ) ∈ Lp(I)×R3 and the elements
z ∈ W1,p(I).

Note. (4.1), (4.2) first follow for small intervals J ⊂ R instead of I from Theorem 5.8. The uniform
boundedness of the solutions dk[w̌](·) and the compactness of I then allow the continuation on I. Fur-
thermore we have to derive the explicit representation of z(0) in (4.2) from the more implicit version [12,
(A.166)]. This can be done by using that D0 ∈ SO(3) consists of the column vectors dj [w](0), j = 1, 2, 3,
that D−1

0 = DT
0 , and that

(α−1)′(0) a =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 for a = (a1, a2, a3) ∈ R3

(cf. [12, p. 79]).

We now imply that γ[·](s) is continuously differentiable on U(w) with

Dwγ[w](s)w̌ = γ̌0 +
3∑

i=1

∫ s

0

(
v̌idi[w](σ) + viz[ǔ, ǎ](σ)× di[w](σ)

)
dσ (4.3)

for all w̌ = (ǔ, v̌, γ̌0, ǎ) ∈ Y , s ∈ I.
For the treatment of the boundary conditions (2.18) we introduce the functions

g1(w̃) := γ[w̃](0)− γ0, g2(w̃) := γ[w̃](1)− γ1 .

11



Note that the boundary conditions D[w](0) = D0, D[w](1) = D1 in (2.18) are overdetermined,
since there are 9 scalar equations for 3 degrees of freedom in each case. Thus we replace them
with the (locally) equivalent conditions

g3(w̃) :=

 d1[w̃](0) · d02

d3[w̃](0) · d01

d3[w̃](0) · d02

 = 0 , g4(w̃) :=

 d1[w̃](1) · d12

d3[w̃](1) · d11

d3[w̃](1) · d12

 = 0

where D0 = (d01|d02|d03), D1 = (d11|d12|d13). From our previous considerations we get that all
gj are continuously differentiable on U(w) and (4.1), (4.3) imply

g′1(w)w̌ = γ̌0 ,

g′2(w)w̌ = γ̌0 +
3∑

i=1

∫ 1

0

(
v̌idi[w](s) + z[ǔ, ǎ](s)× vi(s)di[w](s)

)
ds ,

(Fubini)
= γ̌0 +

3∑
i=1

(∫ 1

0
v̌idi[w](s) ds+

∫ 1

0
z[ǔ, ǎ]′(s)×

∫ 1

s
vi(σ)di[w](σ) dσ ds

)
g′3(w)w̌ = (d03|d02| − d01)T · z[ǔ, ǎ](0) ,

g′4(w)w̌ = (d13|d12| − d11)T · z[ǔ, ǎ](1)

= (d13|d12| − d11)T ·
(
z[ǔ, ǎ](0) +

∫ 1

0
z[ǔ, ǎ]′(s) ds

)
(4.4)

for all w̌ = (ǔ, v̌, γ̌0, ǎ) ∈ Y .
Standard arguments using (2.22) imply the continuous differentiability of Es(·) on U(w) with

E′s(w)w̌ =
∫ 1

0

3∑
i=1

(
Wui(u(s), v(s), s) ǔi(s) +Wvi(u(s), v(s), s) v̌i(s)

)
ds

=
∫ 1

0

(
z′[ǔ, ǎ](s) ·

3∑
i=1

mi(s)di[w](s) +
3∑

i=1

fi(s)v̌i(s)
)
ds (4.5)

for all w̌ = (ǔ, v̌, γ̌0, ǎ) ∈ Y where we have used (2.5) and (4.2) for the last identity.
For Ep(·) we observe that the derivative of the integrand in (2.6) has an integrable majorant.

Thus Ep(·) is continuously differentiable on U(w) with

E′p(w)w̌ = −
∫

Ω

(
γ̌0 +

∫ s

0

( 3∑
i=1

v̌i(σ)di[w](σ) + vi(σ)z[ǔ, ǎ](σ)× di[w](σ)
)
dσ

)
· dfe(s, ζ1, ζ2)

−
∫

Ω

(
ζ1z[ǔ, ǎ](s)× d1[w](s) + ζ2z[ǔ, ǎ](s)× d2[w](s)

)
· dfe(s, ζ1, ζ2) (4.6)

for all w̌ = (ǔ, v̌, γ̌0, ǎ) ∈ Y . Using Fubini’s Theorem and partial integration we obtain the
following identities (arguments in brackets are omitted)∫

Ω

(∫ s

0
z(σ)× vi(σ)di(σ) dσ

)
· dfe(s, ζ1, ζ2)

=
∫ 1

0
z′(s) ·

(∫ 1

s
vi(σ)di(σ)×

∫
Ωσ

dfe(τ, ζ1, ζ2) dσ
)
ds

+ z(0) ·
(∫ 1

0
vi(σ)di(σ)×

∫
Ωσ

dfe(τ, ζ1, ζ2)
)
dσ , (4.7)
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∫
Ω

(
ζiz(s)× di(s)

)
· dfe(s, ζ1, ζ2)

=
∫ 1

0
z′(s) ·

(∫
Ωs

ζidi(σ)× dfe(σ, ζ1, ζ2)
)
ds

+ z(0) ·
∫

Ω
ζidi(σ)× dfe(σ, ζ1, ζ2) , (4.8)

∫
Ω

∫ s

0
v̌i(σ)di(σ) dσ · dfe(s, ζ1, ζ2)

=
∫ 1

0
v̌i(s)di(s) ·

(∫
Ωs

dfe(σ, ζ1, ζ2)
)
ds . (4.9)

for i = 1, 2, 3 (cf. also [12, (106), (107)]). Consequently, using the notation from (2.7), (2.8),

E′p(w)w̌ = −γ̌0fe(0)−
∫ 1

0

( 3∑
i=1

v̌i(s)di(s)
)
· fe(s) ds

−
∫ 1

0
z′(s) ·

(∫ 1

s

3∑
i=1

vi(σ)di(σ)× fe(σ)
)
ds

−z(0) ·
(∫ 1

0

3∑
i=1

vi(s)di(s)× fe(s)
)
ds

−
∫ 1

0
z′(s) ·mfe(s) ds− z(0) ·mfe(0) . (4.10)

Condition (2.19) describes a convex set C ⊂ Y and we are interested in the structure of the
normal cone NC(w) ⊂ Y ∗ of C at w where the dual space of Y is given by

Y ∗ = Lp′(I)× Lq′(I)× R3 × R3 .

Lemma 4.11 We have w∗ = (u∗, v∗, γ∗0 , a
∗) ∈ NC(w) with u∗ = (u∗1, u

∗
2, u

∗
3), v

∗ = (v∗1, v
∗
2, v

∗
3), if

and only if γ∗0 = 0, a∗ = 0,

u∗i (s) =

{
%(s)m̄V

i (s) a.e. on Ia,

0 otherwise,
(4.12)

v∗i (s) =

{
%(s)f̄V

i (s) a.e. on Ia,

0 otherwise,
(4.13)

for a nonnegative measurable function % such that %m̄V ∈ Lp′(I), %f̄V ∈ Lq′(I) (cf. (2.16) for
notation).

Proof . In this proof we use the abbreviation α = (u, v) for pairs (u, v) of points in R6 or
functions in Lp(I)× Lq(I) and αk = (uk, vk), α̃ = (ũ, ṽ) etc. Let us define the convex sets

C(s) = {α̃ ∈ R6| V (α̃, s) ≤ 0} , s ∈ I .
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Standard arguments show that the normal cone NC(s)(α̃) ⊂ R3 × R3 of C(s) at α̃ equals {0} if
α̃ ∈ int C(s) and {tν(s)| t ≥ 0} if α̃ ∈ ∂C(s). Hence, if α̃ ∈ ∂C(s) and α̃+ α̌ ∈ C(s), then

ν(s) · α̌ ≤ 0 .

For w∗ ∈ Y ∗ having the form stated in the lemma we thus get for all w̌ with w + w̌ ∈ C that

〈w∗, w̌〉 =
∫ 1

0
%(s) ν(s) · (ǔ(s), v̌(s)) ds ≤ 0 ,

i.e., w∗ ∈ NC(w).
Now let w∗ = (u∗, v∗, γ∗0 , a

∗) ∈ Y ∗ be an arbitrary element in NC(w). Since (u, v, γ0 + γ̌0, ǎ) ∈
C for all γ̌0, ǎ ∈ R3, we readily see that γ∗0 = 0, a∗ = 0. Next we claim that

α∗(s) = (u∗(s), v∗(s)) = 0 a.e. on I \ Ia. (4.14)

Suppose that α∗(s) 6= 0 on I1 ⊂ (I \ Ia) with |I1| > 0. Since α(s) ∈ int C(s) a.e. on I1, we find
δ > 0 and I ′1 ⊂ I1 such that |I ′1| > 0 and α(s) +Bδ(0) ⊂ C(s) for almost all s ∈ I ′1 (Bδ(0) ⊂ R6).
If we choose α̌(s) = δα∗(s)/|α∗(s)| on I ′1, α̌(s) = 0 on I \ I ′1, and w̌ = (α̌, 0, 0), then we obtain
the contradiction that 0 ≥ 〈w∗, w̌〉 > 0 which verifies (4.14).

We now set
ψ(s) = α∗(s) · ν(s) , α̌∗(s) = α∗(s)− ψ(s)ν(s) . (4.15)

Obviously,
α̌∗(s) · ν(s) = 0 for all s ∈ I. (4.16)

If ψ(s) < 0 a.e. on a set I2 ⊂ I with |I2| > 0, then we find δ > 0 and I ′2 ⊂ I2 with |I ′2| > 0 such
that α(s) + α̌(s) ∈ C(s) with α̌(s) = δα∗(s)/|α∗(s)| for all s ∈ I ′2 by the smoothness of V (·, ·, s).
Choosing α̌(s) = 0 on I \ I ′2 we get the contradicition that 0 ≥ 〈w∗, w̌〉 = 〈α∗, α̌〉 > 0. Hence

ψ(s) ≥ 0 a.e. on I.

Assume now that α̌∗(s) 6= 0 on a set I3 ⊂ Ia with |I3| > 0 and define

α̌∗1(s) =
α̌∗(s)
|α̌∗(s)|

a.e. on I3.

Since ∂C(s), s ∈ I, are smooth surfaces in R6, for each s ∈ I3 there is r(s) > 0 and a real function
τs(·) such that for all |t| ≤ r(s)

α(s) + tα̌∗1(s) + τs(t)ν(s) ∈ ∂C(s) with τs(t) = o(t) (as t→ 0)

and τs(t) ≤ 0 by convexity of C(s) (cf. Zeidler [18, Theorem 43.C]). We thus find r0 > 0 and
I ′3 ⊂ I3 with |I ′3| > 0 and r(s) ≥ r0 on I ′3. By Egoroff’s theorem we can assume that kτs(1/k) → 0
as k →∞ uniformly for all s ∈ I ′3. We have that w+w̌t ∈ C for all 0 < t < r0 where w̌t = (α̌t, 0, 0)
with

α̌t(s) =

{
tα̌∗1(s) + τs(t)ν(s) on I ′3,
0 otherwise.
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Thus,

0 ≥ 〈w∗, w̌t〉
(4.15)
=

∫
I′3

〈α̌∗(s) + ψ(s)ν(s), tα̌∗1(s) + τs(t)ν(s)〉 ds

(4.16)
=

∫
I′3

t|α̌∗(s)|+ ψ(s)τs(t) ds

= t

∫
I′3

(
|α̌∗(s)|+ ψ(s)

τs(t)
t

)
ds for all 0 < t < r0. (4.17)

But, for a sufficiently small t > 0 the right hand side becomes positive and yields a contradiction.
Hence α̌∗(s) = 0 a.e. on Ia which implies that α∗(s) is directed as ν(s) a.e. on Ia, i.e., there is
%(s) ≥ 0 such that (4.12) and (4.13) hold. The fact that u∗ ∈ Lp′(I) and v∗ ∈ Lq′(I) completes
the assertion. ♦

We now consider the variational problem (2.17), (2.19) with the boundary conditions gj(w̃) =
0, j = 1, . . . , 4, in Y instead of X and, obviously, w ∈ Y (which is identified with the minimizer
w ∈ X) is a local minimizer. Note that w ∈ Y minimizes a continuously differentiable functional
with respect to equality constraints for a finite number of continuously differentiable real functions
and the closed convex set C ⊂ Y . Thus we can apply a Lagrange multiplier rule (e.g., Clarke [3,
Theorem 6.1.1]) and obtain that there are multipliers λ ≥ 0, λj ∈ R3, j = 1, . . . , 4, w∗ ∈ NC(w),
not all zero, such that for all w̌ = (ǔ, v̌, γ̌0, ǎ) ∈ Y

0 = 〈λE′(w) +
4∑

j=1

λj · g′j(w) + w∗, w̌〉

= λ

∫ 1

0

(
z′[ǔ, ǎ](σ) ·

3∑
i=1

mi(u(σ), v(σ), σ)di[w](σ) +
3∑

i=1

fi(σ)v̌i(σ)
)
dσ

−λγ̌0

∫
Ω
dfe(s, ζ1, ζ2)− λ

∫ 1

0

( 3∑
i=1

v̌i(s)di[w](s)
)
·
(∫

Ωs

dfe(σ, ζ1, ζ2)
)
ds

−λ
∫ 1

0
z′[ǔ, ǎ](s) ·

(∫ 1

s

3∑
i=1

vi(σ)di[w](σ)×
∫

Ωσ

dfe(τ, ζ1, ζ2) dσ
)
ds

−λz[ǎ](0) ·
∫ 1

0

( 3∑
i=1

vi(σ)di[w](σ)×
∫

Ωσ

dfe(τ, ζ1, ζ2)
)
dσ

−λ
∫ 1

0
z′[ǔ, ǎ](s) ·

(∫
Ωs

(ζ1d1[w](σ) + ζ2d2[w](σ))× dfe(σ, ζ1, ζ2)
)
ds

−λz(0) ·
∫

Ω
(ζ1d1[w](σ) + ζ2d2[w](σ))× dfe(σ, ζ1, ζ2) + λ1 · γ̌0

λ2 ·
(
γ̌0 +

3∑
i=1

∫ 1

0

(
v̌i(s)di[w](s) + z′[ǔ, ǎ](s)×

∫ 1

s
vi(σ)di[w](σ) dσ

)
ds

)
+λ3 · (d03|d02| − d01)T · z[ǎ](0)

+λ4 · (d13|d12| − d11)T ·
(
z[ǎ](0) +

∫ 1

0
z′[ǔ, ǎ](s) ds

)
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−
∫ 1

0
%(s)

3∑
i=1

m̄V
i (s)ǔi(s) ds−

∫ 1

0
%(s)

3∑
i=1

f̄V
i (s)v̌i(s) ds (4.18)

Taking special variations we readily imply that

0 = λ
3∑

i=1

mi(s)di[w](s)− λ

∫ 1

s

( 3∑
i=1

vi(σ)di[w](σ)×
∫

Ωσ

dfe(τ, ζ1, ζ2)
)
dσ

−λ
∫

Ωs

(ζ1d1[w](σ) + ζ2d2[w](σ))× dfe(σ, ζ1, ζ2) +
∫ 1

s
vi(σ)di[w](σ) dσ × λ2

+(d13|d12| − d11) · λ4 − %(s)f̄V (s)

0 = λ

3∑
i=1

fi(s)di[w](s)− λ

∫
Ωs

dfe(σ, ζ1, ζ2) + λ2 − %(s)m̄V (s)

0 = −λfe(0) + λ1 + λ2

0 = −λ
∫ 1

0

3∑
i=1

vi(s)di(s)× fe(s) ds− λmfe(0)

+(d03|d02| − d01) · λ3 + (d13|d12| − d11) · λ4

for a.e. s ∈ I. We set f1 := λ1, f2 := λ2, m1 := (d03|d02| − d01) · λ3, m2 := (d13|d12| − d11) · λ4.
Note that (di3|di2| − di1) ∈ SO(3) for i = 1, 2.

Let now |I \ Ia| > 0 and assume that λ = 0. Then λ2 = %(s)f̄V (s) a.e. on I. Since %(s) = 0
a.e. on I \ Ia, we get λ2 = 0 and thus %(s) = 0 a.e. on I. Hence m2 = 0, λ1 = 0, m1 = 0, and also
λ3 = λ4 = 0. But this contradicts the fact that not all multipliers are zero. Similarly we obtain
a contradiction in the other case. Without any loss of generality we can thus take λ = 1 in these
cases which completes the proof.

4.2 Proof of Theorem 3.5 and Corollary 3.9

Proof of Theorem 3.5. First we recall a representation of curves γ ∈ W2,p(I) (1 ≤ p ≤ ∞)
having constant speed parametrization from [13]. A pair (γ,D) is said to be a framed curve
if γ ∈ W2,p(I,R3) is a curve with constant speed parametrization equipped with a frame field
D : I → SO(3) of class W1,p(I,R3×3) such that γ′(s) = vd3(s) for some v > 0 where D(s) =
(d1(s)|d2(s)|d3(s)) is the matrix with the orthonormal column vectors dj(s), j = 1, 2, 3. Thus
we can interpret a framed curve as a curve having an orthonormal frame D(s) attached to each
point γ(s) and |γ′(s)| = v. Notice that such framed curves are in fact the same structure we
had used for the description of elastic rods but with the special choice of (v1, v2, v3) = (0, 0, v)
(observe that, in contrast to Section 2 where v had been a vector-valued funcion, here v ∈ R is
just a real number). In analogy to the statement surrounding (2.2) we find that a framed curve
(γ,D) uniquely corresponds to an element

w = (u, v, γ0, D0) ∈ X := Lp(I,R3)× (0,∞)× R3 × SO(3)

with u = (u1, u2, u3) such that

d′k(s) =
( 3∑

j=1

uj(s)dj(s)
)
× dk(s) for a.e. s ∈ I, k = 1, 2, 3,
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γ′(s) = vd3(s) for a.e. s ∈ I, (4.19)

γ(0) = γ0, D(0) = D0

(cf. Gonzalez et al. [6], Schuricht & v.d. Mosel [13]).
Clearly, each framed curve (γ,D) provides a curve γ ∈ W2,p(I). The next lemma states

that we also can assign a framed curve (γ,D) to each curve γ ∈ W2,p(I) having constant speed
parametrization.

Lemma 4.20 Let γ ∈ W2,p(I,R3), 1 ≤ p ≤ ∞, with |γ′(s)| = v > 0 a.e. on I. Then there are
u1, u2 ∈ Lp(I), γ0 ∈ R3, D0 ∈ SO(3) such that w = ((u1, u2, u3), v, γ0, D0) ∈ X corresponds to a
framed curve (γ[w], D[w]) with γ = γ[w] for any u3 ∈ Lp(I) via equations (4.19).

The proof proceeds as that in Schuricht & v.d. Mosel [13, Prop. 6] for the case p = ∞.
Thus we can reformulate variational problem (3.1) – (3.3) in terms of elements w ∈ X (recall

(2.14)).

E(w) :=
∫ 1

0
|γ′[w](s)| ds = v → Min!, w ∈ X,

γ[w](0) = γ0, γ[w](1) = γ1, d3[w](0) = t0, d3[w](1) = t1, (4.21)

0 ≥
√
u1(s)2 + u2(s)2 − vκ0 a.e. on I. (4.22)

Note that the boundary conditions for the tangent vectors are overdetermined, since d3(s) is
always a unit vector. To remove this we choose vectors dj,1, dj,2 ∈ R3 such that (dj1, dj2, tj) ∈
SO(3), j = 1, 2, and replace (4.21) with the following equivalent equations.

g1(w) := γ[w](0)− γ0 = 0, g2(w) := γ[w](1)− γ1 = 0,

g3(w) := d3[w](0) · d0,1 = 0, g4(w) := d3[w](0) · d0,2 = 0, (4.23)

g5(w) := d3[w](1) · d1,1 = 0, g6(w) := d3[w](1) · d1,2 = 0.

Let now w ∈ X correspond to a solution γ of the variational problem (3.1) – (3.3) with
constant speed parametrization and note that L[γ] = v. In analogy to the beginning of the proof
in Section 4.1 we identify small perturbations (u+ ǔ, v+ v̌, γ0 + γ̌0, D0Ď0) ∈ X of w with elements

(u+ ǔ, v + v̌, γ0 + γ̌0, ǎ) ∈ Lp(I,R3)× R× R3 × R3 =: Y

where Y is a Banach space.
We claim to apply a Lagrange multiplier rule and determine the needed derivatives. Obviously

E(·) is continuously differentiable on Y with

〈E′(w), w̌〉 = v̌ for all w̌ ∈ Y.

In analogy to (4.1) we obtain (for 1 < p <∞) that the mappings w̆ → dk[w̆](s), k = 1, 2, 3, s ∈ I
are continuously differentiable in Y near w and, with the notation z(s) = z[ǔ, ǎ](s) from (4.2),
we have that

Dwdk[w](s)w̌ = z(s)× dk[w](s), k = 1, 2, 3, s ∈ I
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for all w̌ = (ǔ, v̌, γ̌0, ǎ) ∈ Y . Therefore w̆ → γ[w̆](s) is continuously differentiable with

Dwγ[w](s)w̌ = γ̌0 + v

∫ s

0
z(σ)× d3[w](σ) dσ + v̌

∫ s

0
d3[w](σ) dσ, for all s ∈ I, w̌ ∈ Y.

Hence, all gj(·) are continuously differentiable near w and we readily obtain for all w̌ ∈ Y

g′1(w)w̌ = γ̌0 ,

g′2(w)w̌ = γ̌0 + v

∫ 1

0
z(σ)× d3[w](σ) dσ + v̌

∫ 1

0
d3[w](σ) dσ ,

g′3(w)w̌ = (z(0)× d3[w](0)) · d01 = z(0) · d02 ,

g′4(w)w̌ = (z(0)× d3[w](0)) · d02 = −z(0) · d01 ,

g′5(w)w̌ = (z(1)× d3[w](1)) · d11 = z(1) · d12 ,

g′6(w)w̌ = (z(1)× d3[w](1)) · d12 = −z(1) · d11 .

Condition (4.22) defines a convex set C ⊂ Y and we want to determine the normal cone
NC(w) of C at the point w ∈ C. Using the notation V (u1, u2, u3, v) :=

√
u2

1 + u2
2− vκ0 we define

the vector n =
∑3

i=1 nidi with

n1 :=
∂V

∂u1
=

u1√
u2

1 + u2
2

, n2 :=
∂V

∂u2
=

u2√
u2

1 + u2
2

, n3 :=
∂V

∂u3
= 0

for
√
u2

1 + u2
2 > 0. Inserting the functions uj(s) on the right hand side we obtain n(s). Note

that |n(s)| = 1, n(s) · d3(s) = n(s) · γ′(s) = 0, n(s) · Γ′′(s) = 0 where Γ′′(s) is the curvature
vector of curve γ (recall the arguments after (2.13)). Hence we readily see that n(s) is directed
as γ′(s)× Γ′′(s), i.e., n(s) coincides with the (unit) binormal of γ at γ(s).

The dual space of Y (1 < p <∞) is obviously given by

Y ∗ = Lp′(I,R3)× R× R3 × R3 , 1
p + 1

p′ = 1 .

Lemma 4.24 Let 1 < p <∞. Then w∗ ∈ NC(w) ⊂ Y ∗ if and only if there is % ∈ Lp′(I,R) such
that %(s) ≥ 0 a.e. on I, %(s) = 0 for a.e. s satisfying V (u1(s), u2(s), u3(s), v) < 0, and

w∗ = (u∗, v∗, γ∗0 , a
∗) = (%(n1, n2, n3),−%0κ0, 0, 0) where %0 :=

∫ 1

0
%(σ) dσ . (4.25)

Proof . We introduce the convex set

C0 := {(ŭ, v̆) ∈ R3 × R | V (ŭ1, ŭ2, ŭ3, v̆) ≤ 0}

(which is even a cone). Standard arguments show that the normal cone NC0(ŭ, v̆) of C0 at
(ŭ, v̆) ∈ R3 × R equals {0} for (ŭ, v̆) ∈ int C0 and cone{(n,−κ0)} for (ŭ, v̆) ∈ ∂C0 with v̆ > 0
(cone - cone hull). Hence, if (ŭ, v̆) ∈ ∂C0 with v̆ > 0 and (ŭ+ ǔ, v̆ + v̌) ∈ C0, then

(n,−κ0) · (ǔ, v̌) ≤ 0 .

For w∗ from (4.25) we thus have for any w̌ ∈ Y with w + w̌ ∈ C that

〈w∗, w̌〉 =
∫ 1

0
%(s)(

3∑
i=1

ni(s)ǔi(s)− κ0v̌) ds ≤ 0 ,
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i.e., w∗ ∈ NC(w).
Now let w∗ = (u∗, v∗, γ∗0 , a

∗) ∈ Y ∗ be any element in NC(w). With

n⊥ :=
u2d1 − u1d2√

u2
1 + u2

2

we have an orthonormal frame (n(s), n⊥(s), d3(s)) for each s ∈ I and we can decompose

3∑
i=1

u∗i (s)di(s) = %1(s)n(s) + %2(s)n⊥(s) + u∗3(s)d3(s) . (4.26)

If
√
u2

1 + u2
2 = 0, then we take n(s) = d1(s) and n⊥(s) = d2(s). First we observe that

((u1, u2, ǔ3), v, γ̌0, ǎ) ∈ C for any ǔ3 ∈ Lp(I), γ̌0 ∈ R3, ǎ ∈ R3 which implies that u∗3 = 0,
γ∗0 = 0, a∗ = 0.

Let I0 := {s ∈ I| u1(s) = u2(s) = 0}, ǔ1, ǔ2 ∈ L∞ with ǔ1(s) = ǔ2(s) = 0 a.e. on I \ I0. Then
w + w̌ ∈ C for all w̌ = ((ǔ1, ǔ2, 0), 0, 0, 0) with ‖ǔj‖L∞ sufficiently small. Hence

0 ≥ 〈w∗, w̌〉 =
∫ 1

0
%1ǔ1 + %2ǔ2 ds

(note that u∗j (s) = %j(s) on I0, j = 1, 2). The arbitrariness of ǔ1, ǔ2 implies that %1(s) = %2(s) = 0
a.e. on I0. Now let

Iδ := {s ∈ I|
√
u1(s)2 + u2(s)2 − vκ0 ≤ −δ} for δ ≥ 0.

A simple computation shows that, for τ < 1,

(u(s), v) + (−τu(s), v̌) ∈ C0 as long as v̌ + δ ≥ −τ(v − δ), s ∈ Iδ. (4.27)

For δ > 0 we thus have w + w̌ ∈ C for all w̌ = (−%̌u, 0, 0, 0) with %̌ ∈ L∞(I), %̌(s) = 0 a.e. on
I \ Iδ and ‖%̌‖L∞ sufficiently small. Hence

0 ≥ 〈w∗, w̌〉 = −
∫ 1

0
%1%̌

√
u2

1 + u2
2 ds

The arbitrariness of %̌ implies %1(s) = 0 a.e. on Iδ for all δ > 0. Since

{s ∈ I|
√
u2

1(s) + u2
2(s)− vκ0 < 0} =

⋃
k∈N

I1/k ,

we get %1(s) = 0 a.e. on this set. For δ = 0 we obtain, by (4.27), that w + w̌ ∈ C for all
w̌ = (−%̌u, 0, 0, 0) with %̌ ∈ L∞(I), %̌(s) ≥ 0 a.e. on I and ‖%̌‖L∞ sufficiently small. Therefore

0 ≥ 〈w∗, w̌〉 = −
∫ 1

0
%1%̌

√
u2

1 + u2
2 ds .

The arbitrariness of %̌ implies, combined with our previous results, %1(s) ≥ 0 a.e. on I. Thus
%1(s) > 0 implies essentially that s belongs to the set

Ia := {s ∈ I|
√
u1(s)2 + u2(s)2 − vκ0 = 0}
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where the inequality constraint is active. Analogously as above we now get with variations
w̌ = (−τu,−τv, 0, 0), τ ∈ R small, δ = 0

0 ≥ 〈w∗, w̌〉 = −τ
∫ 1

0
%1

√
u2

1 + u2
2 ds− τv∗v = −τv

(∫
Ia

%1κ0 ds+ v∗
)

and, consequently,

v∗ = −κ0

∫ 1

0
%1 ds . (4.28)

In analogy to (4.27) we get by a further elementary computation that, for all s ∈ I,

(u(s), v) +
(
τ(u2(s),−u1(s), 0), v̌

)
∈ C0 as long as v̌ ≥ (

√
1 + τ2 − 1)v .

We choose w̌ = (ǔ, v̌, 0, 0) with ǔ1 = τ %̌u2, ǔ2 = −τ %̌u1, %̌ = sign %2, v̌ = (
√

1 + τ2 − 1)v, τ ∈ R,
and derive as above

0 ≥ 〈w∗, w̌〉 = τ

∫ 1

0
|%2|

√
u2

1 + u2
2 ds+ v∗v(

√
1 + τ2 − 1)

By (4.28) we get for τ > 0∫ 1

0
|%2|

√
u2

1 + u2
2 ds ≤

κ0v(
√

1 + τ2 − 1)
τ

∫ 1

0
%1 ds

τ→0−→ 0

Hence %2(s) = 0 a.e. on I. Recalling (4.26) we verify the assertion of the lemma. ♦

As in the previous proof we are now able to apply a Lagrange multiplier rule (e.g., Clarke [3,
Theorem 6.1.1]). Thus there exist multipliers λ0 > 0, λ1, λ2 ∈ R3, λ3, . . . , λ6 ∈ R, w∗ ∈ NC(w),
not all zero, such that

0 = λ0〈E′(w), w̌〉+ λ1 · g′1(w)w̌ + λ2 · g′2(w)w̌ +
6∑

i=3

λi〈g′i(w), w̌〉+ 〈w∗, w̌〉

for all w̌ ∈ Y . Specifying all derivatives and using the notation m0 := λ3d02 − λ4d01, m1 :=
λ5d12 − λ6d11 we get

0 = λ0v̌ + λ1 · γ̌0 + λ2 · γ̌0 + v

∫ 1

0
(z × d3) · λ2 ds+ v̌λ2 ·

∫ 1

0
d3 ds

+z(0) ·m0 + z(1) ·m1 +
3∑

i=1

∫ 1

0
%ni · ǔi ds− %0κ0v̌ for all w̌ ∈ Y. (4.29)

Using Fubinis theorem we obtain∫ 1

0
(z × d3) · λ2 ds =

∫ 1

0

(
z(0) +

∫ s

0
z′(σ) dσ

)
· (d3(s)× λ2) ds

= z(0) ·
∫ 1

0
d3 × λ2 ds+

∫ 1

0

∫ 1

s
z′(s) · (d3(σ)× λ2) dσ ds .

Furthermore ∫ 1

0
d3 ds =

1
v
(γ(1)− γ(0)) , z(1) = z(0) +

∫ 1

0
z′ ds .
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Thus (4.29) implies for all w̌ ∈ Y

0 = v̌
(
λ0 + 1

v (γ(1)− γ(0)) · λ2 − %0κ0

)
+ γ̌0 · (λ1 + λ2)

+z(0) ·
(
m0 +m1 + (γ(1)− γ(0))× λ2

)
+

∫ 1

0
z′(s) ·

(
m1 +

∫ 1

s
vd3(σ)× λ2 dσ + %(s)n(s)

)
ds . (4.30)

Recalling (4.2) and choosing special w̌ ∈ Y ∗ we get

0 = λ0 + 1
v (γ(1)− γ(0)) · λ2 − %0κ0 , (4.31)

0 = λ1 + λ2 , (4.32)

0 = m0 +m1 + (γ(1)− γ(0))× λ2 , (4.33)

0 = m1 +
∫ 1

s
vd3(σ)× λ2 dσ + %(s)n(s) a.e. on I. (4.34)

Since λ0 ≥ 0, v = L[γ], we recover (3.7) from (4.31) with λ := λ2. By continuity (4.34) has to be
true for all s ∈ I (with a suitable representative of %). Taking s = 0 and s = 1 we obtain together
with (4.33) that

m0 = %(0)n(0), m1 = −%(1)n(1)

and, therefore,

m0 + v

∫ s

0
d3 × λ dσ = %(s)n(s) for all s ∈ I

which obviously equals (3.6). Assume that λ = 0 and % = 0. Thus %0 = 0 and, hence, λ0 = λ1 = 0
and m0 = m1 = 0 where the latter implies λ3 = . . . = λ6 = 0. But this contradicts the fact that
not all multipliers are simultaneously zero, i.e., λ, % cannot both be zero.

%(·)n(·) has to be continuous on I by (3.6) and |n(s)| = 1 for all s with %(s) > 0. Hence %(·)
is even continuous on I and n(·) is continuous on the open set I+. Obviously,

%(s) = |%(0)n(0) + (γ(s)− γ(0))× λ| on I+

by (3.6) and |n(s)| = 1 there. Thus

%′(s) =
%(0)n(0) + (γ(s)− γ(0))× λ

%(s)
· (γ′(s)× λ) on I+, (4.35)

i.e., % is continuously differentiable on I+. Since the left hand side in (3.6) is continuously
differentiable, we conclude by standard arguments that also n has to be continuously differentiable
on I+. Moreover, the right hand side in (4.35) and the left hand side in (3.6) have a derivative a.e.
on I+. Consequently, %′′(s) and n′′(s) exist a.e. on I+. This way we have verified the theorem.

Proof of Corollary 3.9.
(a) If λ = 0, then %(s)n(s) = %(0)n(0) for all s ∈ I. Since % 6= 0 in that case and since

|n(s)| = 1 where %(s) > 0, we conclude that n(s) = n(0) 6= 0 and %(s) = %(0) 6= 0 for all s ∈ I.
By d3(s) · n(s) = 0 we get that the curve is planar. Furthermore we always have that κ(s) = κ0.
Since n(s) is constant, also the curvature vector 1

v2 Γ′′(s) has to be constant which means that
γ(I) is a planar circular arc.
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(b) If I \ I+ 6= ∅, then λ 6= 0 by (a) and, by (3.6),

(γ(s)− γ(0))× λ = −%(0)n(0) for all s ∈ I \ I+.

Since the right hand side is constant, all γ(s) satisfying the previous equation belong to a uniquely
determined line ` in R3 parallel to λ and vice versus. Note that %(s) = 0 on straight segments of
γ(I) and at s where n is discontinuous.

(c) Note that λ 6= 0 in that case by (b). Subtracting (3.6) with s = s̃ from (3.6) we get

(γ(s)− γ(s̃))× λ = %(s)n(s) on I. (4.36)

Hence, n(s) · λ = 0 and n′(s) · λ = 0 on (s1, s2). By the Frenet formulas,

n′(s) = −τ(s) Γ′′(s)
|Γ′′(s)|

on (s1, s2)

(τ - torsion). Thus τ(s)Γ′′(s) ·λ = 0. If τ(s) 6= 0, then n(s) and Γ′′(s) have to be orthogonal to λ
and, whence, γ′(s) is parallel to λ. Therefore, by (4.36), 0 = γ′×λ = %′n+%n′ at that point s. The
dot product with n(s) yields %′(s) = 0 and, thus, n′(s) = 0 contradicting τ(s) 6= 0. Consequently,
τ(s) = 0 on (s1, s2). Hence γ([s1, s2]) is planar and, since n(s) and κ(s) are constant, it has to
be a circular arc.

(d) If the curve γ(I) contains a straight segment γ([s1, s2]), s1 < s2, then λ 6= 0 and
γ([s1, s2]) ⊂ ` by (b). Let now γ(s0) 6∈ ` for some s0 < s1. Then there is a smallest s̃ ∈ (s0, s1]
with γ(s̃) ∈ `. We have %(s̃) = 0 by (b) and γ([s0, s̃]) is a planar circular arc by (c). We now
observe that a composition of consecutive planar circular arcs having all the same curvature κ0

intersect ` always at the same angle. Since such arcs have always the same length, there are only
finitely many of them. In particular, a circular arc next to the straight segment has to intersect
` tangentially. But such an arc has only one intersection point with ` and, by the minimality of
length, γ can “pass” a full circle at most once, i.e., γ([0, s1]) can have at most one circular arc.
Applying the same argument also on [s2, 1], we obtain the first assertion. This result certainly
excludes minimizing curves having two disjoint separated straight segments.

5 Appendix

The results in Schuricht & v.d. Mosel [10] can be used to study the dependence of the solutions
of the differential equation (2.3) on the parameter u for u ∈ L∞(I), but we need it for u ∈ Lp(I)
with 1 < p <∞. Here we present a version adopted to our special situation.

Let f : M ⊂ Rn × Rm → Rn, M open, be continuous and let I ⊂ R be an open bounded
interval. For given τ ∈ I, ξ ∈M , u ∈ Lp(I,Rm), 1 ≤ p ≤ ∞ we consider the initial value problem

x′(t) = f(x(t), u(t)), x(τ) = ξ . (5.1)

Notice that this differential equation has to be interpreted in the sense of Caratheodory, since the
right-hand side is merely measurable in t (cf. Walter [16]). We are interested in the differentiable
dependence of x(t) = x(t; ξ, u) on the parameters (ξ, u).
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Let τ ∈ I, ξ̃ ∈ M , and ũ ∈ Lp(I) be fixed. For suitable open balls Bδ(ξ̃) ⊂ M and Bδ(ũ) ⊂
Lp(I) we assume that there is some c > 0 such that

|f(x, u)| ≤ |u| for all x ∈ Bδ(ξ̃), u ∈ Rm, (5.2)

|f(x, u)− f(y, u)| ≤ c|u| |x− y| for all x, y ∈ Bδ(ξ̃), u ∈ Rm, (5.3)

|f(x, u)− f(x, v)| ≤ c|u− v| for all x ∈ Bδ(ξ̃), u, v ∈ Rm. (5.4)

Theorem 5.5 Let the continuous function f satisfy (5.2) - (5.4) with 1 ≤ p ≤ ∞. Then there
is some open interval J ⊂ I, τ ∈ J , such that for each (ξ, u) ∈ Bδ/2(ξ̃)×Bδ(ũ) there is a unique
solution x = x(t; ξ, u) on J of (5.1). Furthermore, the mapping (t, ξ, u) → x(t; ξ, u) is continuous
on J ×Bδ/2(ξ̃)×Bδ(ũ).

The proof is a straightforward adoption of the proof of [10, Theorem 1.1].
For differentiable dependence we assume in addition that f is continuously differentiable and

that there is some constant c > 0 such that

|fx(x, u)x̌|+ |fu(x, u)ǔ| ≤ c(|u| |x̌|+ |ǔ|) , (5.6)

|(fx(x, u)− fx(y, u))x̌|+ |(fu(x, u)− fu(y, u))ǔ| ≤ c|x− y| (|u||x̌|+ |ǔ|) (5.7)

for all x ∈ Bδ(ξ̃), x̌ ∈ Rn, u, ǔ ∈ Rm. We use the notation w = (ξ, u) ∈ Bδ(ξ̃)×Bδ(ũ).

Theorem 5.8 Let the continuously differentiable function f satisfy (5.2) - (5.4), (5.6), (5.7) with
1 ≤ p ≤ ∞. Then the solution x = x(t; ξ, u) of (5.1) according to Theorem 5.5 is continuouusly
differentiable with respect to (t, ξ, u) on J × Bδ/2(ξ̃) × Bδ(ũ). The derivative with respect to
w = (ξ, u) is given by

Dwx(t;w)w̌ = ξ̌ +
∫ t

τ

(
fx(x(s;w), u(s))Dwx(s;w)w̌ + fu(x(s;w), u(s))ǔ

)
ds

for all w̌ = (ξ̌, ǔ) ∈ Rn × Lp(J). Moreover

d

dt
Dwx(t;w)w̌ = Dw

( d
dt
x(t;w)

)
w̌

for a.e. t ∈ J and all w = (ξ, u) ∈ Bδ/2(ξ̃)×Bδ(ũ), w̌ = (ξ̌, ǔ) ∈ Rn × Lp(J).

The proof is a straightforward modification of the proof of [10, Theorem 2.1, Corollary 2.2].
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