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1. Introduction

In continuum physics as continuum mechanics and thermodynamics the
behavior of a body is determined by all the interactions taking place between
its parts, which are also called subbodies. Thus we need an effective way to
describe interactions based on a suitable concept of subbodies. If we consider
the foundations of continuum physics as found in the literature we observe
that they are insufficient to describe satisfactorily singularities arising in mod-
ern applications. In particular the usually used system of subbodies, which
somehow disregards boundary points, does not allow an efficient and compre-
hensive description of concentration effects. Moreover it seems that the nature
of interactions as short-range and long-range interactions is not yet completely
understood. The new foundation for contact interactions given in Schuricht
[10] tries to resolve some of these difficulties.

In this survey we claim to make accessible the new basic ideas from [10]
to a broad audience. For that we not only summarize the theory developed
in [10] but we also illuminate its relation to the classical treatment of contact
interactions in a way going beyond the discussion in [10]. In addition we ex-
tend the central ideas to interactions which are mostly called body interactions
in the literature but which we suggest to call distant interactions, since they
describe long-range phenomena. Moreover we demonstrate by means of a clas-
sical example that, in contrast to the usual opinion, concentrations are not only
caused by singular external actions but we have to be aware of them even in
very “harmless” looking situations.

As an essential difference to the classical approach we assume that subbodies
correspond to subsets in the set-theoretical sense. Moreover we consider all
interactions as set functions on pairs of subbodies. On this basis we start with
additivity assumptions as the most elementary properties of interactions and
we investigate what remains to require in order to characterize different kinds
of interactions by comparing the new arguments with the classical ones. In
particular we illuminate the significance of σ-additivity for interactions. This
aspect seems to be somehow hidden in previous treatments and it turns out
that σ-additivity in the second argument is a characterizing difference between
distant and contact interactions. But our analysis also shows that the choice
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of a system of subbodies is guided by the analysis and may differ for different
arguments. Thus the selection of a class of subbodies is not a matter of choice
as it appears in some former treatments.

The presentation given here provides a new view to the subject and might
help for a further understanding of the fundamental phenomena relevant in con-
tinuum physics. For a more comprehensive treatment and for more references
we refer to [10].

Acknowledgement. The research that is reported here was supported by
the “Deutsche Forschungsgemeinschaft”.

Notation. By Ln we denote the n-dimensional Lebesgue measure and by
Hk the k-dimensional Hausdorff measure on Rn. Readers that are not familiar
with these notions can just consider Ln as volume measure and Hn−1 as area
measure on (n−1)-dimensional surfaces. Correspondingly,

∫
A

g dLn is a volume
integral and

∫
∂A

g dHn−1 is a surface integral. We write L1(C) for the space of
(Lebesgue-) integrable functions on C and L1

loc(C) contains all functions that
are integrable on each compact subset of C. Here, in contrast to the usual
practice, we do not identify functions that differ on a set of measure zero.
C∞0 (C) stands for the usual space of smooth test functions having compact
support and spt g denotes the support of function g.

For a set A ⊂ Rn we denote the measure theoretic interior by A∗ and the
measure theoretic boundary by ∂∗A. These notions agree with the “usual”
(topological) interior intA and boundary ∂A for “nice” sets A as, e.g., sets
with piecewise smooth boundary. A is said to be normalized if A = A∗. For
a function g : R 7→ R we call λ ∈ R the approximate limit from above at t,
written λ = ap lims↓t g(s), if

lim
r↓0

L1((t, t + r) ∩ {s| |g(s)− λ| ≥ ε})
L1((t, t + r))

= 0 for all ε > 0 .

This approximate limit can be considered, roughly speaking, as a limit from
above that disregards values of g on a set of measure zero.
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2. Bodies and subbodies

Let us assume that the material points of a body correspond to the points
of a set C ⊂ Rn. In particular we may choose the material description, where
the points of C correspond to the positions of the material points in a distin-
guished reference configuration, or the spatial description, where the points of
C correspond to the positions of the material points at a given time. Note that
our subsequent analysis can be carried out for any appropriate choice.

For the investigation of the behavior of a body we have to analyze the
behavior of its parts, which we also call subbodies. Thus we have to ask what
we should choose as a reasonable system of subbodies. Of course, the simplest
and most natural way to define subbodies of a body is to take the system of all
subsets or a suitable subsystem of it. Since it appears to be both conceptually
reasonable and analytically useful, we assume that the system A of subbodies
is an algebra on C, i.e.,

∅, C ∈ A, A1 \A2 ∈ A,

k⋃
i=1

Ai ∈ A,

k⋂
i=1

Ai ∈ A

whenever A1, . . . , Ak ∈ A. If, in addition,

∞⋃
i=1

Ai ∈ A,

∞⋂
i=1

Ai ∈ A

for any sequence A1, A2, ... ∈ A, then the algebra A is called σ-algebra. The
smallest σ-algebra containing a given algebra A is said to be the σ-algebra
generated by A. Analogously we say that the algebra A is generated by a
system of subsets of C if it is the smallest algebra containing this system.

The systems of subbodies considered in the literature are usually not as-
sumed to be an algebra but merely a Boolean algebra, since, roughly speaking,
boundary points of the subbodies are disregarded and, thus, the union and
the intersection have to be defined in a more general way. In our subsequent
analysis we want to demonstrate that there is no need for that. Even more,
we obtain a richer and more powerful theory by using algebras. In particular,
certain conceptual difficulties in the traditional approach disappear naturally
that way. Consider, e.g., a concentrated force exerted to some point of the
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body A. If we now cut A through that point into two pieces A1 and A2, then,
within the classical approach, one could not decide to which of the two parts
the force is exerted.

All systems of subbodies considered in the literature before have in common
that they in fact generate the σ-algebra B of Borel subsets of C (which is the
σ-algebra generated by the sets that are open or closed relative to C). Thus it
seems to be reasonable for our further treatment to assume that C is a Borel
set in Rn and that we choose B as system of subbodies of C. But it turns out
that the σ-algebra B is too large for certain arguments. For a comprehensive
understanding of certain questions we have to consider not only small and rich
algebras generating B but also suitable generators of certain algebras. For that
reason we introduce a number of subsystems of B.

First let Q′ denote the collection of all closed n-dimensional intervals Q′

having the form

Q′ = {(x1, . . . , xn) ∈ Rn| ai ≤ xi ≤ bi, ai, bi ∈ R, i = 1, . . . , n}

where the ai, bi are called the coordinates of Q′. The ε-neighborhood of Q′

is the interval Q′
ε ∈ Q′ having coordinates ai − ε, bi + ε. By νQ′ : Rn 7→ Rn

we assign a normal field to Q′ ∈ Q′ such that νQ′(x) is the outer unit normal
of Q′

ε if x ∈ ∂Q′
ε for some ε ∈ R. Obviously νQ′ is well defined up to a set

of Ln-measure zero. The subsystem Q′(I) ⊂ Q′ contains all intervals having
coordinates ai, bi, i = 1, . . . , n, confined to the subset I ⊂ R.

Now we define the collection of boxes on C by

Q := {Q′ ∩ C|Q′ ∈ Q′} .

For Q ∈ Q with Q = Q′ ∩ C and Q′ ∈ Q′, the box Qε := Q′
ε ∩ C is the

ε-neighborhood of Q on C, νQ := νQ′ is the normal field of Q, and intQ :=
intQ′ ∩ C. We set Q(I) := {Q′ ∩ C|Q′ ∈ Q′(I)} and call Qf ⊂ Q a full

subsystem of Q if Qf = Q(I) for some I ⊂ R with L1(R \ I) = 0. The algebras
generated by Q or by some Qf are denoted by R or Rf , respectively. For open
C we also consider the system P of all sets of finite perimeter in C, i.e.,

P := {P ∩ C|Hn−1(C ∩ ∂∗P ) < ∞} ,
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which is an algebra on C. By νP we denote the normal field that is defined on
∂∗P . Notice that Q ⊂ R ⊂ P ⊂ B. Occasionally we write QC̃ , BC̃ , etc. to
indicate that the system is a collection of corresponding subsets of C̃ instead
of C. For an algebra A on C and any Ã ∈ A we define the restriction of A on
Ã by A|Ã := {A ∩ Ã|A ∈ A}, which is a subalgebra of A.

For our further treatment we always assume that A is some not yet specified
algebra on C containing a full system Qf . Note that the last requirement is in
fact met by all systems of subbodies studied in the literature.

3. Interactions

The behavior of a body is determined by all the interactions that its parts
and its neighborhood exert on each other. Though in classical continuum
physics such interactions are usually formulated in terms of density functions,
we have to realize that merely resultants f(A,A′) exerted from part A′ on
part A can be measured. Thus it is very natural to formulate the foundations
of continuum physics in terms of set functions (A,A′) 7→ f(A,A′) instead of
densities.

In order to introduce some basic properties let us first consider a set function
g : A 7→ Rm with a single argument. According to our experience set functions
in continuum physics should be additive with respect to disjoint decompositions
of its argument, i.e.,

g(
k⋃

i=1

Ai ) =
k∑

i=1

g(Ai)

for all pairwise disjoint A1, . . . , Ak ∈ A. For an additive g we readily see that

g(∅) = 0 .

From the analytical point of view it is desirable to have available the powerful
tools of measure and integration theory. But for that we need g to be even
σ-additive, i.e.,

g(
∞⋃

i=1

Ai ) =
∞∑

i=1

g(Ai)
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for any sequence A1, A2, ... ∈ A of pairwise disjoint sets with
⋃∞

i=1 Ai ∈ A
(here we implicitly assume absolute convergence on the right hand side, since
the left hand side is independent of a rearrangement of the Ai). A σ-additive
set function g that is defined on a σ-algebra (which is always the class of Borel
sets B in our treatment) is called a (vector-valued) measure. It is a Radon

measure if it is finite on compact sets.
Since resultants of actions in bounded physical systems should be finite, it

is reasonable to consider set functions g that are locally bounded, i.e., for any
Q̃ ∈ Q there is a constant cQ̃ > 0 such that

(3.1) |g(Q)| ≤ cQ̃ for any Q ∈ Qf with Q ⊂ C ∩ Q̃ .

Notice that any locally bounded σ-additive set function g : A 7→ Rm can be
uniquely extended to a measure on B (cf. Proposition 6.1 in the Appendix).
Usually we identify such set functions with its extension.

We call a set function f : A × A 7→ Rm an interaction if it is biadditive,
i.e., additive with respect to both of its arguments. We say that f is locally

bounded if for any Q̃ ∈ Q there is some cQ̃ > 0 such that

|f(Q,Q′)| ≤ cQ̃ for all Q,Q′ ∈ Qf with Q,Q′ ⊂ C ∩ Q̃ .

From the physics point of view we can distinguish long-range or distant in-
teractions fd and short-range or contact interactions fc. Contact interactions
as traction or heat flux are thought to act across the common boundary for
subbodies that touch each other. Distant interactions such as gravity or elec-
tromagnetic forces act also on subbodies that are far away from the “source”.

In the literature distant interactions are usually called body or volume in-
teractions, since they are traditionally assumed to become small if the volume
of one of its arguments becomes small. Contact interactions are sometimes
identified with surface interactions depending on the common boundary of the
touching arguments, and they are assumed to become small if the area of the
common boundary becomes small. Though contact interactions as described in
the previous paragraph are much more general objects, here we consider them
in the sense of surface interactions.

There is a variety of conditions in the literature defining distant or contact
interactions. Additivity, as supposed above for any interaction, is certainly
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the most natural and most elementary requirement for such a mathematical
object due to its agreement with our experience. This requirement is usually
supplemented by different kinds of estimates. It is certainly a question of taste
how far these estimates are considered to be physically elementary. Moreover
we have to realize, as a particular aspect, that distant interactions are defined
completely independently while contact interactions are basically assumed to
be balanced by a distant interaction (also if the condition to be “balanced”
is meanwhile quite weak). This coupling leads to the (explicit or implicit)
assumption that there should be only the two mentioned kinds of interactions.
While, on the one hand, phenomena like surface tension do not seem to be
covered in this way, we want to show in our subsequent treatment that, on the
other hand, there is no need for such a coupling in defining different kinds of
interactions.

In our further treatment we discuss distant and contact interactions from a
special point of view where we both summarize classical arguments and provide
a new approach to the subject. We in particular illuminate the significance of
σ-additivity which expresses some kind of continuity for set functions and which
might be considered as one of the most elementary conditions beyond (finite)
additivity. Since the classical systems of subbodies do not seem to be appropri-
ate for the investigation of σ-additivity, we discuss the classical arguments by
using the subbodies as introduced in the previous section. That way we will see
that distant and contact interactions can be defined independently from each
other and that both are σ-additive in the first argument. However, σ-additivity

in the second argument turns out to be the characterizing difference of distant

(long-range) and contact (short-range) interactions.

4. Distant interactions

Let us start with the discussion of distant interactions. Some typical con-
dition used in the literature for defining a distant (or body) interaction f is,
e.g., that C is assumed to be bounded and that for any A′ ∈ A there is some
cA′ > 0 with

|f(A,A′)| ≤ cA′ Ln(A) for all A,A′ ∈ A
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such that the cA′ are bounded and tend to zero with Ln(A′). Here we clearly
recognize the classical idea of volume dependence. This condition implies the
existence of an integrable function b : C × C 7→ Rm such that

|f(A,A′)| ≤
∫

A×A′
b(x, y) dLn(x, y) for all A,A′ ∈ A

(cf. Gurtin, Williams & Ziemer [6]). It turns out that concentration effects,
that may occur for distant interactions, are not covered in this way. Therefore
we generalize the previous condition by assuming that there is some Radon
measure µ on C × C such that

(4.1) |f(A,A′)| ≤ µ(A,A′) for all A,A′ ∈ A

(cf. Marzocchi & Musesti [8]).
It seems that all definitions of distant interactions found in the literature

have in common that they imply a condition like (4.1). Since C is usually
assumed to be bounded, it is certainly not restrictive for applications to assume
that the Radon measure µ be finite. Thus, by using Corollary 6.4 in the
Appendix, we discover that any distant interaction f satisfying (4.1) for a finite
Radon measure µ can be extended uniquely on B × B such that the extension
is bi-σ-additive, i.e., σ-additive in both of its arguments. Note that this in
particular implies that f itself has to be locally bounded and bi-σ-additive
already on A×A.

Let us now consider any interaction f on A×A which be even bi-σ-additive
and locally bounded. By Proposition 6.3 in the Appendix there is a measure
f× on the Borel sets of C×C such that f(A,A′) = f×(A×A′) for all A,A′ ∈ A.
Defining µ as the total variation |f×| of the measure f× we readily obtain an
estimate as (4.1).

Summarizing we can say that a variety of conditions used in the literature
to define a distant interaction f is equivalent to the condition that f is a bi-
σ-additive interaction. While our discussion has shown that such a distant
interaction f is uniquely determined by its specification on A × A, it can be
uniquely extended on B×B such that for any B ∈ B the mappings f(B, ·) and
f(·, B) are measures on B. Note that, in this way, we can naturally account for
concentrations and that there is no need for Boolean algebras as in previous
treatments.
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5. Contact interactions

Let us now consider contact interactions. Here we first illuminate the classi-
cal approach from the point of view of additivity. Then we present an example
showing that the traditional approach does not have enough structure to de-
scribe concentrations sufficiently well. In this way we motivate the main ideas
of the new approach given in Schuricht [10] that we summarize in the last part
of this section.

5.1. Classical approach

We formulate the main ideas of the classical approach by taking subbod-
ies in the sense described in Section 2 (and not in the traditional sense where
boundary points are disregarded), since that allows to analyze σ-additivity and
it illuminates the connection to the new theory presented later on. In order not
to obscure our arguments by technicalities we assume that C is open and we re-
strict our discussion to subbodies A ∈ R (recall that R is the algebra generated
by the boxes Q). Note that these simplifications do not influence the generality
of our conclusions. To be able to easily identify the hypotheses demanded we
number them separately by using “C” for (explicit or implicit) conditions in
the classical approach and by using “S” for supplementing conditions.

Traditionally contact interactions f are interactions that are merely consid-
ered for arguments (A,A′) with

(C.0) Ln(A ∩A′) = 0 .

The most elementary condition characterizing a contact (or short-range) inter-
action is that the action f(A,A′) exerted from A′ on A should vanish if the
bodies have no contact, i.e.,

(C.1) f(A,A′) = 0 if ∂A ∩ ∂A′ = ∅ .

Thus, by additivity, the action f(A,A′) exerted by A′ on A depends merely on
that material of A′ which lies within an arbitrarily small neighborhood of A

and the material of A′ outside of a small neighborhood of A can be disregarded
without changing the interaction.
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Contact interactions are thought to describe phenomena as, e.g., traction
and heat flux and, according to our experience, only some “substantial” mate-
rial can exert a nonvanishing action. Therefore subbodies are basically assumed
to correspond to open sets in most treatments, i.e., one implicitly imposes the
elementary condition that

(C.2) f(A,A′) = 0 if Ln(A′) = 0 .

It is a simple but important observation that already the basic conditions
(C.1) and (C.2) prevent the set function f(A, ·) from being σ-additive. This
can be seen by choosing any A,A′ ∈ Q respecting (C.0) and a sequence A′j ∈ R
of pairwise disjoint elements such that

A′ \A =
∞⋃

j=1

A′j , ∂A ∩ ∂A′j = ∅ for all j ∈ N .

Then σ-additivity of f(A, ·) would imply that

f(A,A′)
(C.2)
= f(A,A′ \A) =

∞∑
j=1

f(A,A′j)
(C.1)
= 0 .

But this is only possible for the trivial contact interaction f ≡ 0.
Though it is not explicitly stated in all treatments, the traditional idea of

a contact interaction f(A,A′) is that it should depend merely on the common
boundary ∂A ∩ ∂A′ of A and A′ and, even more, it should not change with
A,A′ as long as ∂A ∩ ∂A′ does not change, i.e.,

f(A1, A
′
1) = f(A2, A

′
2) if ∂A1 ∩ ∂A′1 = ∂A2 ∩ ∂A′2 .

This tacit assumption is slightly stronger than (C.1) and suggests, as done
in most treatments, to identify a contact interaction f with an additive set
function g : S 7→ Rm defined on a suitable class S of (oriented) surfaces such
that

f(A,A′) = g(∂A ∩ ∂A′) for all A,A′ .

It is this identification which motivates to require that a contact interaction f

should become small if the area of ∂A ∩ ∂A′ becomes small, i.e.,

|f(A,A′)| ≤ cHn−1(∂A ∩ ∂A′) for all A,A′
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with some constant c > 0. In more recent treatments this classical condition
is replaced with the weaker requirement that there is some integrable function
h : C 7→ [0,∞) and a full subsystem Qf ⊂ Q such that

(C.3) |f(A,A′)| ≤
∫

∂A∩∂A′
h dHn−1 for all A,A′ ∈ Qf

or, in terms of the function g, that

(C.3∗) |g(S)| ≤
∫

S

h dHn−1 for all S ∈ Sf := {S ∈ S|S ⊂ ∂A , A ∈ Qf}

(cf. Šilhavý [11], [12]). An additive set function g : S 7→ Rm satisfying estimate
(C.3∗) is called Cauchy flux. It can be shown that contact interactions satisfy-
ing (C.0)-(C.3) and Cauchy fluxes correspond to each other (cf. Marzocchi &
Musesti [8]).

Remark 5.1 - Note that (C.3) is not a completely elementary generalization of the

original area estimate. It would be a more natural extension to assume that for any

S ∈ S there is some (Hn−1-) integrable function hS : S 7→ Rm such that (C.3) holds

with hS instead of h as long as ∂A ∩ ∂A′ ⊂ S. However, this weaker condition is

analytically not sufficient to derive the desired results. Thus the significance of (C.3)

seems not to be completely clear (cf. Šilhavý [11] for a discussion of that point).

Note that we always considered A′ as the subbody that exerts an action
and A as the part that resists this action. The usual “reduction” of a contact
interaction f to its Cauchy flux g and the usual restriction to subbodies corre-
sponding to open sets express that the classical approach tacitly employs the
symmetry that the role of A and A′ in f(A,A′) is interchangeable. But notice
that there is no need to specify the nature of the reaction by A. If, e.g., A′

consists of some elastic material and exerts the traction f(A,A′) on A, then it
does not matter whether the reaction is caused by a rigid body, the tip of a nee-
dle, some magnetic film on ∂A, or also by some elastic material. Consequently
there is no necessity to demand a condition like (C.2) with respect to the first
argument A. Hence let us illuminate the classical theory from the point of view
where we neglect this traditional symmetry, i.e., we allow that f(A,A′) 6= 0
for Ln(A) = 0. In particular we want to analyze whether the theory becomes
consistent with σ-additivity of f in the first argument in this way.
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Let us fix A′ where, for technical simplicity, we assume that A′ ∈ Q. By
(C.1) we have that f(A,A′) = 0 for all A ⊂ C \ A′, A ∈ Q, since C \ A′ is
open and A is closed. As a necessary condition to get σ-additivity of f(·, A′)
we thus have to assume that

(S.1) f(A,A′) = 0 for all A ⊂ C \A′ A ∈ R .

Hence only the points of ∂A′ can give a nonvanishing contribution to f(·, A′).
Thus we rediscover the classical idea that the mapping A 7→ f(A,A′) corre-
sponds to a mapping S 7→ g(S) for surfaces S ⊂ ∂A′. By Proposition 6.2 we
now observe that (C.3) or, equivalently, (C.3∗) already implies that g has to be
σ-additive on any algebra of surfaces S ⊂ ∂A′. Consequently, condition (S.1)
ensures that

(5.1) A 7→ f(A,A′) is σ-additive for all A ∈ R respecting (C.0).

Thus f(·, A′) can be even extended to a measure on B by Proposition (6.1).
Note carefully that these implications do not contradict our arguments exclud-
ing σ-additivity of f with respect to the second argument.

The previously made hypotheses are not yet sufficient to derive Cauchy’s
famous representation formula that there is some tensor field τ : C 7→ Rn×m

such that

(5.2) f(A,A′) =
∫

∂A∩∂A′
τ · ν dHn−1 for all A,A′ ∈ Qf

where ν is the outer unit normal field of A′. Therefore only balanced contact
interactions f are usually considered, i.e., f is assumed to satisfy a balance law

f(A,C \A) + fd(A,C) = 0 for all A ∈ R

with some distant interaction fd. Note that this condition, in some sense, pro-
vides a relation between the measures f(·, A′) for different A′. Since the spec-
ification of fd(A,B) for B 6= C is not necessary for the derivation of Cauchy’s
formula, more recent treatments require the equivalent condition that there is
some Borel measure η such that

(C.4) |f(A,C \A)| ≤ η(A) for all A ∈ R .
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Let us study also this condition in the light of σ-additivity. For that reason
we drop (C.0) and, thus, we have to clarify what f(A,A′) means in the case
A′ ⊂ A. We intend that, for (closed) boxes A,A′ ∈ Q, f(A,A′) provides the
contact interaction exerted by the material of A′ on A from outside. Hence we
assume that

(S.2) f(A,A′) = 0 for all A′ ⊂ A , A, A′ ∈ Q ,

where, of course, f is assumed to be biadditive on all of R × R. After this
extension we can replace (C.4) with

|f(A,C)| ≤ η(A) for all A ∈ R .

Using Proposition 6.2 we conclude that f(·, C) is σ-additive on Q. Let us now
investigate σ-additivity of f(·, A′) in that extended case where, for technical
simplicity, we assume that A′ ∈ Q. For any fixed A ∈ R we choose a pairwise
disjoint decomposition A =

⋃∞
j=1 Aj with Aj ∈ R and we set A1

j := Aj \ intA′,
A2

j := Aj ∩ intA′. By additivity,

f(A,A′) = f(A \ intA′, A′) + f(A ∩ intA′, A′) .

By property (5.1),

f(A \ intA′, A′) =
∞∑

j=1

f(A1
j , A

′) .

From (S.1) we derive that f(Ã, C \ A′) = 0 for all Ã ⊂ intA′. Since f(·, C) is
σ-additive, we thus get

f(A ∩ intA′, A′) = f(A ∩ intA′, C) =
∞∑

j=1

f(A2
j , C) =

∞∑
j=1

f(A2
j , A

′) .

Consequently,

f(A,A′) =
∞∑

j=1

f(A1
j , A

′) +
∞∑

j=1

f(A2
j , A

′) =
∞∑

j=1

f(Aj , A
′) .

Thus, in the case where (C.0) is disregarded we can extend (5.1) to

(5.3) A 7→ f(A,A′) is σ-additive for all A ∈ R.
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Let us summarize our discussion. The traditional approach takes it as
granted that contact interactions f are only considered for pairs of (basically)
disjoint subbodies (A,A′) and that the role of A and A′ is somehow inter-
changeable. However a more careful distinction between acting and reacting
body and, correspondingly, a more careful treatment of subbodies makes visi-
ble a fundamental asymmetry in the arguments of contact interactions which
was hidden in classical treatments. Moreover we see that contact interactions
f are in fact σ-additive with respect to the first argument while σ-additivity
in the second argument is not possible. Thus it turns out that σ-additivity in

the second argument is a fundamental difference between distant and contact

interactions. While here we have derived the σ-additivity of f(·, A′) from the
classical hypotheses (C.1) - (C.4) supplemented by (S.1), (S.2), we will show
below what remains to require if we demand σ-additivity of f(·, A′) from the
beginning. But before let us illuminate some aspects related to concentrations.

5.2. Concentrations

If we press the tip of a needle against some deformable body, then it is
convenient to idealize the exerted force as concentrated at one point. In the
foundations of continuum physics such concentrations had been disregarded for
a long time. They are somehow taken into account in the treatment of Degio-
vanni et al. [2], but the surfaces where they act have to be neglected. Here we
demonstrate, by means of a classical example, that the usual idea where the con-
tact interaction f(A,A′) merely depends on the common boundary ∂A ∩ ∂A′

is too restrictive for a complete treatment of concentrations. Moreover the
example demonstrates, independently from the permanent discussion how far
concentrations really occur in nature, that we might be confronted with concen-
trations very naturally even in “harmless” looking situations where the presence
of concentrations becomes visible only by a more careful analysis. For a more
comprehensive discussion of related questions we refer to Podio-Guidugli [9].

Let us consider a planar version of the problems studied by Boussinesq [1]
and Flamant [5]. More precisely, we consider an elastic body occupying the
half plane C = {(x1, x2) ∈ R2|x1 ≥ 0} and we assume that an external unit
point load directed as (1, 0) is exerted at the origin. The corresponding stress
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distribution is given by the locally integrable tensor field τ : R2 7→ R4 with

(5.4) τ(x) :=
2x1

π|x|4

(
x2

1 x1x2

x1x2 x2
2

)
for x1 ≥ 0 .

Let us extend τ by zero on all of R2. Then the divergence of this τ in the weak
sense equals the measure

div τ = −

(
1
0

)
δ(0,0)

where δ(0,0) is the scalar Dirac measure concentrated at x = (0, 0).
We now want to analyze the balance of forces for closed circular sectors

V = V (θ1, θ2) of radius % > 0 with vertex at the origin as shown in Figure 1
where 0 ≤ θ1 < θ2 ≤ π.

x1

x2

θ1

θ2

V

C

Figure 1: Circular sectors V = V (θ1, θ2).

It turns out that the material of C \ V exerts a resultant elastic contact force

f(V,C \ V ) = − 1
π

(
(θ2 − θ1)− 1

2 sin 2(θ2 − θ1)
sin2 θ2 − sin2 θ1

)
on V depending on θ1, θ2 but not on %. Obviously, f(V (0, π), C \ V (0, π)) =
(−1, 0) for all % > 0. Since this traction is balanced by the external force
(1, 0) exerted on V (0, π) at the origin, the material of V (0, π) has to exert the
resultant elastic contact force (−1, 0) on the single point (0, 0), i.e.,

f({(0, 0)}, V (0, π)) =

(
−1
0

)
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is a concentrated force. By analogous arguments we obtain that

f({(0, 0)}, V (0, π/2)) =

(
−1/2
−1/π

)

which balances only some part of the external force and, suprisingly, it even
has a component parallel to the boundary ∂C of the half plane. In general
it turns out that f({(0, 0)}, V (θ1, θ2)) depends on the opening angle of the
sector V . Consequently a theory where the contact interaction f(A,A′) merely
depends on the common boundary of A and A′ is too restrictive to describe
such concentrations in full detail. Therefore we drop this traditional restriction
in the more general approach for contact interactions given later on.

One might think that these difficulties with concentrations can only occur
on the boundary of the body in the case of concentrated external forces. But let
us consider the tensor field τ̃ that equals τ for x1 ≥ 0 and that is the reflection
of τ for x1 ≤ 0, i.e.,

τ̃(x) := (sgn x1)
2x1

π|x|4

(
x2

1 x1x2

x1x2 x2
2

)
for all (x1, x2) ∈ R2 .

The weak divergence of this tensor field τ̃ is identical zero everywhere on R2.
Hence we can regard τ̃ as the stress tensor of an elastic body occupying C̃ =
R2 where no external force is applied. Let us now assume that the material
outside the unit ball around the origin is removed and that the stresses of
the material on the boundary are balanced by a suitable external boundary
traction. That way we obtain an equilibrium for the elastic unit ball with
smooth external boundary traction and without applying external forces inside
the body. If we now analyze the neighborhood of the origin for this “harmless
looking” problem, then we see that all phenomena discussed above are still
there. In particular we have concentrated contact forces exerted at the origin
by circular sections. Consequently this example indicates that we always should
be aware of concentrations and, thus, we have to account for concentrations in

the foundations of continuum physics in any case.
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5.3. Alternative approach

In this section we summarize the foundations for contact interactions as
given in Schuricht [10] that substantially differ from previous treatments. The
primary concern of this new approach was to develop a theory that satisfacto-
rily describes concentrations as they are discussed in the previous part. But
this approach also demonstrates what of the traditional hypotheses for contact
interactions remains relevant if additivity and σ-additivity (as far as possi-
ble) are postulated from the beginning. In this way the new theory certainly
provides a new insight into the nature of contact interactions.

Let A be an algebra on the Borel set C ⊂ Rn such that A contains a full
system Qf of boxes and let f : B×A 7→ Rm be (the extension of) an interaction
that is σ-additive in the first argument. We call f a contact interaction on C

relative to A if for any Q ∈ Qf , A ∈ A:

(H1) f(Q,A) = 0 as long as Qε ∩A = ∅ for some ε > 0,

(H2) f(Q,A) = 0 as long as Ln(A \Q) = 0,

(H3) f(Q,A) = ap lim
ε↓0

f(Qε \ Z,A \Qε) for all Z ∈ B with Ln(Z) = 0 .

Note that (H1) and (H2) slightly differ from those given in Schuricht [10]. But,
as a simple consequence of additivity, (H1) and (H2) are equivalent to the
original conditions

(H1’) f(Q,A) = f(Q, (Qε \Q) ∩A) for all ε > 0 with Qε ∈ Qf ,

(H2’) f(Q,A) = 0 as long as Ln(A) = 0.

The fundamental feature of a contact interaction to be a short-range phe-
nomenon is expressed by the locality condition (H1). Taking into account also
(H2) we see that the action exerted on Q by A depends only on that material of
A which is outside of Q and which belongs to an arbitrarily small neighborhood
of Q. Note that this already includes the condition that

(5.5) f(Q,A) = 0 if A ⊂ Q, A ∈ A, Q ∈ Qf

(cf. also (S.2)). In addition to these elementary postulates merely certain
singular cases are excluded that seem to be untypical for “usual” contact inter-
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actions. (H2) says in particular that only a “thick” body A can exert a nonva-
nishing action. The more technical condition (H3) expresses, roughly speaking,
that an eventually concentrated action f(Q ∩ Z,A) 6= 0 cannot “propagate”
along the “thin” set Z, but it rather has to diffuse within the “thick” body A.
Note that (H3) is always satisfied in the case Z = ∅, since f(·, A) is a measure
and since f(Qε, A \Qε) = f(Qε, A) according to (H2).

Let us demonstrate that it is important to use “closed” boxes Q in the
hypotheses. Since f(·, A) is a measure, we first observe that, by (H1),

f(int Q,A) = 0 for all A ⊂ (C \ intQ) , Q ∈ Qf .

Using also (H2) we see that

f(Q,A) = f(∂Q,A \Q) for all A ∈ A , Q ∈ Qf .

Consequently, by additivity,

f(int Q,A ∩Q) = f(int Q,A)− f(int Q,A \Q) = f(int Q,A)

= f(Q,A)− f(∂Q,A)

= f(Q,A)− f(∂Q,A \Q)− f(∂Q,A ∩Q)

= −f(∂Q,A ∩Q) .

Since the right hand side does not vanish in general, also the left hand side
does not, in contrast to (5.5).

As in the classical case the previous hypotheses ensure that a contact inter-
action can be represented by means of a tensor. Here it is sufficient to consider
the contact interaction on a “small” algebra A = Rf that is generated by a
full system Qf ⊂ Q.

Theorem 5.2. (Interaction tensor). Let f : B × Rf 7→ Rm be a locally

bounded contact interaction on C. Then there exists an interaction tensor
τ ∈ L1

loc(C, Rm×n) such that, for any Q ∈ Qf , R ∈ Rf ,

(5.6)
f(Q,R) = lim

ε↓0

1
ε

∫
(Qε\Q)∩R

τ · νQ dLn

= lim
ε↓0

1
ε

∫ ε

0

∫
∂Qσ∩R

τ · νQ dHn−1 dσ .

The tensor τ is uniquely determined up to a set of Ln-measure zero.



21

We are now interested in a more general representation formula for f than
(5.6). Moreover we want to look for a preferably large algebra A such that
f(B, ·) can be extended on A for any B ∈ B. As preparation for these inves-
tigation we consider a locally bounded contact interaction f : B × A 7→ Rm

relative to an algebra A containing Rf and we assign special interactions to f .
For any A ∈ A we define the partial restriction f(A) : B ×A 7→ Rm of f by

f(A)(B̃, Ã) := f(B̃, Ã ∩A) for all B̃ ∈ B, Ã ∈ A .

Moreover, for any Borel set C̆ ⊂ Rn with C ⊂ C̆ and for some algebra Ă on C̆

with Ă|C ⊂ A and Qf

C̆
⊂ Ă we define the zero extension f̆ : BC̆ × Ă 7→ Rm of

f by
f̆(B̆, Ă) := f(B̆ ∩ C, Ă ∩ C) for all B̆ ∈ BC̆ , Ă ∈ Ă

(notice that Qf = Q(I) ⊂ Rf and Qf

C̆
= QC̆(I) with the same set I ⊂ R

of coordinates). It can be shown that both the partial restrictions f(A) and
the zero extensions f̆ are also locally bounded contact interactions. We can
think of the partial restriction f(A) as the interaction on C where the material
outside of A is inactive while the zero extension f̆ results from f by adding
inactive material. Obviously, by the application of the previous theorem, we
obtain a tensor τA ∈ L1

loc(C, Rm×n) for each partial restriction f(A) and a
tensor τ̆ ∈ L1

loc(C̆, Rm×n) for each zero extension f̆ . The next proposition tells
us how the τA and τ̆ are related to the tensor τ of f .

Proposition 5.3. Let f be a locally bounded contact interaction on C relative

to the algebra A and let τ be the corresponding interaction tensor.

(1) For any A ∈ A the interaction tensor τA of the partial restriction f(A)

of f is given by

(5.7) τA(x) =

{
τ(x) for x ∈ A ,

0 for x ∈ C \A .

(2) If f̆ is the zero extension of f on C̆, then the interaction tensor τ̆ is

given by

τ̆(x) =

{
τ(x) for x ∈ C ,

0 for x ∈ C̆ \ C .
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For our further treatment we confine our attention to contact interactions
on open sets C ⊂ Rn. Notice that this is not restrictive, since otherwise we can
use a suitable zero extension. We say that the tensor field τ ∈ L1

loc(C, Rm×n)
has divergence measure if for each compact set K ⊂ C there exists a constant
cK ≥ 0 such that ∣∣∣∣∫

C

τ ·Dϕ dLn

∣∣∣∣ ≤ cK max
K

|ϕ|

for all ϕ ∈ C∞0 (C, R) with spt ϕ ⊂ K. This means that the distributional
divergence div τ can be interpreted as vector-valued Radon measure on C such
that

−
∫

C

τ ·Dϕ dLn =
∫

C

ϕ d(div τ)

for all Lipschitz continuous functions ϕ : C 7→ Rm having compact support.
Notice that the measure div τ is independent of a change of τ on a set of
Ln-measure zero.

Theorem 5.4. (Representation formula). Let f be a locally bounded contact

interaction on the open set C relative to the algebra A. Then the interaction

tensor τ of f and the interaction tensors τA of the partial restrictions f(A) for

any A ∈ A have divergence measure. Moreover,

(5.8) f(B,A) = div τA(B)

for all B ∈ B, A ∈ A.

Relation (5.8) can be considered as a replacement for Cauchy’s famous rep-
resentation formula (5.2). In contrast to the classical case, (5.8) is independent
of a normal field on the boundary of B and, thus, it provides the interaction
for any Borel set B. However, we recover Cauchy’s identity for “nice” sets B.

Corollary 5.5. Let f , τ , τA be as in the previous theorem. Then, for any

A ∈ A, there is some nonnegative h ∈ L1
loc(C, R) and some nonnegative real

measure µ on C such that

f(P,A) =
∫

∂∗P

τA · νP dHn−1

for all P ∈ P with
∫

∂∗P
h dHn−1 < ∞ and µ(∂∗P ) = 0.



23

At the beginning we have seen that we get a unique interaction tensor τ

already for locally bounded contact interactions f that are merely defined on
some quite “small” algebra Rf with respect to the second argument. However,
for a comprehensive understanding of contact interactions it is certainly useful
to look for extensions of f on a preferably large algebra A.

Let us first assume that we can reach A = B. Then we choose boxes
Q,Q′ ∈ Qf and construct Q̃′ from Q′ by removing the points of ∂Qε for all
ε ∈ ( 1

4k+2 , 1
4k ), k ∈ N. Obviously Q̃′ ∈ B and f(Qε, Q̃

′) = 0 for all ε1
k := 1

4k+1

by (H1). Since f(·, Q), f(·, Q̃′) have to be measures, we obtain with ε3
k := 1

4k+3

that

f(Q,Q′) = lim
k→∞

f(Qε3
k
, Q′) = lim

k→∞
f(Qε3

k
, Q̃′)

= f(Q, Q̃′) = lim
k→∞

f(Qε1
k
, Q̃′) = 0 .

Hence f has to be the trivial interaction f ≡ 0. Therefore f(B, ·) cannot be
extended consistently on all of B for a nontrivial f . But now Theorem 5.4
provides the necessary condition that we have to look for a “large“ algebra A
such that the tensor fields τA according to (5.7) have divergence measure for
all A ∈ A.

Proposition 5.6. (Extension). Let f be a locally bounded contact interaction

on the open set C relative to an algebra Rf . Then there is a nonnegative

function h ∈ L1
loc(C, R) such that, with the algebra

Ph := {P ∈ P |
∫

∂∗P

h dHN−1 < ∞} ,

f can be uniquely extended to a contact interaction on B × Ph by (5.8).

The algebra Ph is certainly rich enough for applications, but it is still open
whether contact interactions f may be extended to larger algebras A.

Summarizing we can say that we obtain a new theory that has a richer struc-
ture than the traditional approach and that precisely accounts for boundary
points of subbodies. That way the new theory is able to describe concentra-
tions in more detail than this was possible before. Finally we observe that
σ-additivity in the second argument turns out to be a characterizing difference
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between distant and contact interactions, that have been introduced completely
independently from each other in our approach.

6. Appendix

In this appendix we provide some facts from measure theory. Here we
assume that A is an algebra on a Borel set C ⊂ Rn and that g : A 7→ Rm is a
set function.

Proposition 6.1. If g is locally bounded and σ-additive on A, then it can be

extended uniquely to a σ-additive set function on B.

Proof – Let us sketch the essential arguments. We assume that m = 1,
since otherwise we can argue for each component of g separately. The assigned
functions g± : A 7→ [0,∞), given by

(6.1) g+(A) := sup
A′∈A, A′⊂A

g(A′) , g−(A) := sup
A′∈A, A′⊂A

−g(A′) ,

are additive on A and satisfy g(A) = g+(A)− g−(A) for all A ∈ A by Dunford
& Schwartz [4, p. 98] (note that g±(A) ≥ ±g(∅) = 0). Let now A =

⋃∞
i=1 Ai

be a pairwise disjoint decomposition within A. Then, for any ε > 0, there are
subsets Aε ⊂ A, Aε

i ⊂ Ai in A such that

g+(A) ≤ g(Aε) + ε =
∞∑

i=1

g(Aε ∩Ai) + ε ≤
∞∑

i=1

g+(Ai) + ε ,

∞∑
i=1

g+(Ai) ≤
∞∑

i=1

(
g(Aε

i ) +
ε

2i

)
= g(

∞⋃
i=1

Aε
i ) + ε ≤ g+(A) + ε .

The arbitrariness of ε implies σ-additivity of g+ and, analogously, of g− on A.
Since g is locally bounded, g± are locally bounded too and, thus, σ-finite.

Therefore g± can both be extended uniquely to a measure on B which we denote
again by g± (cf. Halmos [7, p. 54]). Then g+ − g− is the desired extension of
the function g.
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Proposition 6.2. Let g : A 7→ Rm be additive and let

|g(A)| ≤ µ(A) for all A ∈ A

where µ is some finite Radon measure on C. Then g is even σ-additive on A.

Proof – Let A′1, A
′
2, · · · ∈ A be a sequence of pairwise disjoint sets. Addi-

tivity implies

g(
∞⋃

j=1

A′j) =
k−1∑
j=1

g(A′j) + g(
∞⋃

j=k

A′j) .

Since µ is finite, µ(
⋃∞

j=k A′j) → 0 for k → ∞. Thus g(
⋃∞

j=k A′j) → 0 and
σ-additivity follows.

We say that the set function f : A × A 7→ Rm is biadditive if the set
functions f(A, ·) and f(·, A′) are additive on A for each A,A′ ∈ A. If both set
functions are even σ-additive on A, then we call f bi-σ-additive. By A× we
denote the algebra on C ×C generated by A×A (note that A× consists of all
finite unions of product sets A×A′ with A,A′ ∈ A, cf. Doob [3, II.5]).

Proposition 6.3. Let f : A×A 7→ Rm be biadditive. Then:

(1) There is a unique additive set function f× : A× 7→ Rm such that

f×(A×A′) = f(A,A′) for all A,A′ ∈ A .

(2) If f is even bi-σ-additive, then f× from (1) is σ-additive on A×.

(3) If there is some finite Radon measure µ× on C × C with

|f(A,A′)| ≤ µ×(A×A′) for all A,A′ ∈ A ,

then f× from (1) is σ-additive on A×.

(4) If f is locally bounded and f× from (1) is σ-additive on A×, then f× can

be extended uniquely to a measure on the Borel sets of C × C.

Proof – Let us start with (1). We first define f×(A × A′) := f(A,A′)
for all A,A′ ∈ A. For fixed A,A′ ∈ A we now choose any pairwise disjoint
decomposition A×A′ =

⋃k
j=1 Aj×A′j with Aj , A

′
j ∈ A. Then there are pairwise
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disjoint decompositions A =
⋃l

i=1 Ãi and A′ =
⋃l′

i′=1 Ã′i′ with Ãi, Ã
′
i′ ∈ A such

that Aj =
⋃

i∈ιj
Ãi and A′j =

⋃
i′∈ι′j

Ã′i′ for suitable index sets ιj ⊂ {1, . . . , l}
and ι′j ⊂ {1, . . . , l′} (cf. Doob [3, II.3]). Hence

f×(A×A′) = f(A,A′) =
l∑

i=1

f(Ãi, A
′) =

l∑
i=1

l′∑
i′=1

f(Ãi, Ã
′
i′)

=
k∑

j=1

∑
i∈ιj

∑
i′∈ι′j

f(Ãi, Ã
′
i′) =

k∑
j=1

f(Aj , A
′
j) =

k∑
j=1

f×(Aj ×A′j) .

But this verifies that f× is additive on the set of all product sets A×A′ with
A,A′ ∈ A. Therefore f× can be extended uniquely to an additive set function
on the algebra A× (cf. Doob [3, III.2]).

Let us now show (2). Since each element in A× is the finite union of product
sets A×A′ with A,A′ ∈ A, it is sufficient to show σ-additivity of f× for pairwise
disjoint decompositions A × A′ =

⋃∞
j=1 Aj × A′j with A,Aj , A

′, A′j ∈ A. But
this follows as in the previous part of the proof with the only difference that
all occurring decompositions might be countable.

We now show (3). Since any A× ∈ A× has the form A× =
⋃k

j=1 Aj × A′j
with Aj , A

′
j ∈ A, we have for f× from (1) that

|f×(A×)| ≤
k∑

j=1

|f(Aj , A
′
j)| ≤

k∑
j=1

µ×(Aj ×A′j) = µ×(A×) .

The assertion now follows from Proposition 6.2.
Statement (4) is a consequence of Proposition 6.1.

The next corollary is a direct consequence of the previous proposition.

Corollary 6.4. Let f : A × A 7→ Rm be biadditive and locally bounded and

let f satisfy the assumptions from (2) or (3) of Proposition 6.3. Then f can be

extended uniquely on B × B such that f(·, B′) and f(B, ·) are σ-additive.
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50931 Köln, Germany

e-mail: fs@math.uni-koeln.de


