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Abstract

The paper studies differential equations of the form u′(x) = f(x, u(x), λ(x)), u(x0) = u0,
where the right hand side is merely measurable in x. In particular sufficient conditions for the
continuous and the differentiable dependence of solution u on the data and on the parameter
λ are stated.
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1 Introduction

In many applications we are confronted with ordinary differential equations of the type

u′(x) = g(x, u(x), λ) , u(x0) = u0 ,

where the right hand side depends on a parameter λ. Here the dependence on the data and
on the parameter λ is a fundamental task which is usually studied in the classical sense, i.e.,
the function g(·, ·, ·) on the right hand side is assumed to be at least continuous in all of its
arguments (cf. Coddington & Levinson [1], Hestenes [2], Walter [7]). It turns out that this is
too restrictive for several applications. In particular certain problems for elastic rods lead to
equations of the type

u′(x) = f(x, u(x), λ(x)) , u(x0) = u0 ,

where λ : I ⊂ R 7→ Rm is a parameter function that is merely measurable. Thus the right
hand side is merely measurable in x and the differential equation has to be considered in the
sense of Carathéodory. While general existence results for that type of problem are available in
the literature (cf. Walter [7]), results about the dependence of the solution on the parameter
seem to be quite rare. The case of parameters λ ∈ Rn, which is contained in Kurzweil [3], is
insufficient for the intended applications. For λ ∈ L∞(I) the problem is covered by the general
results in Schuricht & v.d. Mosel [5] which are applied to the investigation of self-contact for
nonlinearly elastic rods in Schuricht & v.d. Mosel [6]. However, for further applications, it is
necessary to consider also the case λ ∈ Lp(I) with 1 < p < ∞ (cf. Schuricht [4]). In the present
paper we study a general situation which is sufficient for the desired applications. In particular
we study both the continuous dependence and the differentiable dependence of the solution u

on the data and on the parameter. While the continuous dependence is considered in Section
2 and includes the case p = 1, the differentiable dependence is investigated in Section 3. Let
us still mention that a special case of the present results is already announced and applied in
Schuricht [4] where, however, Theorem 5.8 is only valid for p > 1 and the δ in the theorems
might be smaller than that in the assumptions.

Notation. The closure of a set A is denoted by clA and |a| stands for the norm of a vector
a ∈ Rn. We write C(I) for the space of continuous functions on I. The Lebesgue space of
p-integrable functions is denoted by Lp(I) and Lp′(I) with 1

p + 1
p′ is its dual. g|I denotes the

restriction of the function g on I.

2 Continuous dependence on the data and the parameter

We consider an initial value problem for ordinary differential equations of the form

u′(x) = f(x, u(x), λ(x)) for a.e. x ∈ J, u(x0) = u0 , (2.1)

which depends on a parameter λ and where the right-hand side is merely measurable in the
argument x ∈ R. In this section we show existence and uniqueness of a solution u and continuous
dependence of the solution on the initial data and the parameter.
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Let f : J×K×Rm 7→ Rn be a mapping where K ⊂ Rn is open and J ⊂ R is an open bounded
interval. Moreover, let x0 ∈ J , u0 ∈ K, and λ ∈ Lp(J, Rm), 1 ≤ p ≤ ∞. We assume that f is
a Carathéodory function, i.e., (u, λ) 7→ f(x, u, λ) is continuous on K × Rm for a.e. x ∈ J and
x 7→ f(x, u, λ) is measurable on J for any (u, λ) ∈ K ×Rm. Consequently, x 7→ f(x, u(x), λ(x))
is measurable on J for any λ ∈ Lp(J) and any u ∈ C(J) with u(J) ⊂ K. Thus the right-
hand side of (2.1) is merely measurable in x and we have to consider solutions in the sense of
Carathéodory, i.e., we are looking for solutions u that are absolutely continuous. In particular
we are looking for local solutions on suitable subintervals I ⊂ J .

For our further analysis we fix x̃ ∈ J , ũ ∈ K, λ̃ ∈ Lp(J, Rm) and we choose δ0 > 0 such that

J̃ := Bδ0(x̃) ⊂ J , K̃ := clBδ0(ũ) ⊂ K . (2.2)

We assume that there exists a constant c0 > 0 such that for a.e. x ∈ J̃

(f1) |f(x, u, λ)| ≤ c0(1 + |λ|p) for all u ∈ K̃, λ ∈ Rm,

(f2) |f(x, u, λ)− f(x, v, λ)| ≤ c0(1 + |λ|p) |u− v| for all u, v ∈ K̃, λ ∈ Rm,

(f3) |f(x, u, λ)− f(x, u, µ)| ≤ c0(|λ− µ|+ |λ− µ|p) for all u ∈ K̃, λ, µ ∈ Rm.

In the case p = ∞ we assume (f1)-(f3) with some exponent q ∈ [1,∞) instead of p.
We claim to verify solutions of (2.1) on some open interval

I∗ := B%(x̃) ⊂ Bδ0(x̃)

with some suitable ρ > 0 and for initial values and parameters satisfying

x0 ∈ I∗ , u0 ∈ K∗ := Bδ0/2(ũ) , λ ∈ Λ∗ := Bδ∗0
(λ̃|I∗) ⊂ Lp(I∗, Rm)

with some δ∗0 ∈ (0, δ0]. Obviously f(·, u(·), λ(·)) ∈ L1(I∗) for λ ∈ Lp(I∗) and u ∈ C(I∗) with
u(I∗) ⊂ K̃ by (f1). Therefore u ∈ C(I∗) with u(I∗) ⊂ K̃ solves (2.1) on I∗ if and only if it solves

u(x) = u0 +
∫ x

x0

f(s, u(s), λ(s)) ds for all x ∈ I∗ . (2.3)

Let u(x;x0, u0, λ) denote the solution of (2.1) for initial values (x0, u0) and parameter λ.

Theorem 2.4 Let 1 ≤ p ≤ ∞ and let f satisfy (f1)-(f3). Then there exists some ρ > 0 with
I∗ = Bρ(x̃) ⊂ J̃ and some δ∗0 ∈ (0, δ0] such that for each (x0, u0, λ) ∈ I∗ ×K∗ × Λ∗ there exists
a unique solution u(·;x0, u0, λ) of (2.1) on I∗ and u ∈ C(I∗ × I∗ ×K∗ × Λ∗, Rn).

As preparation for the proof we start with some preliminary considerations. Notice that the
case p = ∞, which we do not treat explicitly, is covered by replacing p with q in the exponents.
First we choose δ∗0 > 0 such that

δ∗0 ≤ min

{
δ0,

(
δ0

2p+1c0

)1/p

,

(
1

2p+1c0

)1/p
}

.
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Then we choose % > 0 so small that

2% +
∫

I∗
|λ̃(s)|p ds ≤ min

{
δ0

4
,

δ0

4c0
,

1
4c0

}
.

Consequently, ∫
I∗

(1 + |λ|p) ds ≤ 2% +
∫

I∗
| (λ− λ̃) + λ̃ |p ds

≤ 2% + 2p−1

∫
I∗

(
|λ− λ̃|p + |λ̃|p

)
ds

≤ 2% + 2p−1(δ∗0)
p +

∫
I∗
|λ̃|p ds

≤ min
{

δ0

2c0
,

1
2c0

}
for all λ ∈ Λ∗ . (2.5)

Now we introduce the Banach space

C∗ := {u ∈ C(I∗ × I∗ ×K∗ × Λ∗, Rn)| ‖u‖∞ < ∞}

with the norm
‖u‖∞ := sup

(x,x0,u0,λ)∈ I∗×I∗×K∗×Λ∗
|u(x;x0, u0, λ)| .

In order to exploit conditions (f1)-(f3), we are in particular interested in u ∈ C∗ belonging to
the closed subset

C∗
K̃

:= {u ∈ C∗| u(x;x0, u0, λ) ∈ K̃ for all (x, x0, u0, λ) ∈ I∗ × I∗ ×K∗ × Λ∗} . (2.6)

We define an operator T on C∗
K̃

such that Tu : I∗ × I∗ ×K∗ × Λ∗ 7→ Rn and

(Tu)(x;x0, u0, λ) := u0 +
∫ x

x0

f(s, u(s;x0, u0, λ), λ(s)) ds (2.7)

for all (x, x0, u0, λ) ∈ I∗× I∗×K∗×Λ∗. The next lemma verifies properties of T that allow the
application of Banach’s fixed point theorem below.

Lemma 2.8 Let T be given as in (2.7). Then:
(1) Tu ∈ C∗ for all u ∈ C∗

K̃
.

(2) We have that

‖Tu− Tv‖∞ ≤ 1
2
‖u− v‖∞ for all u, v ∈ C∗

K̃
. (2.9)

Proof. Let us start with (1). The mapping Tu : I∗ × I∗ ×K∗ × Λ∗ 7→ Rn is well-defined for all
u ∈ C∗

K̃
by (f1). In order to show continuity of Tu(·) we fix u ∈ C∗

K̃
. Using the abbreviations

(x, ν) = (x, x0, u0, λ) and (x̄, ν̄) = (x̄, x̄0, ū0, λ̄) for elements in I∗ × I∗ ×K∗ × Λ∗ we obtain by
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(f1)-(f3) that

|Tu(x;x0, u0, λ)− Tu(x̄; x̄0, ū0, λ̄)|

≤ |u0 − ū0|+
∣∣∣ ∫ x

x0

f(s, u(s; ν), λ(s)) ds−
∫ x̄

x̄0

f(s, u(s; ν̄), λ̄(s)) ds
∣∣∣

≤ |u0 − ū0|+
∣∣∣ ∫ x

x0

f(s, u(s; ν), λ(s)) ds−
∫ x0

x̄0

f(s, u(s; ν̄), λ̄(s)) ds

−
∫ x

x0

f(s, u(s; ν̄), λ̄(s)) ds−
∫ x̄

x
f(s, u(s; ν̄), λ̄(s)) ds

∣∣∣
≤ |u0 − ū0|+

∣∣∣ ∫ x

x0

(
f(s, u(s; ν), λ(s))− f(s, u(s; ν̄), λ̄(s))

)
ds

∣∣∣
+

∣∣∣ ∫ x0

x̄0

f(s, u(s; ν̄), λ̄(s)) ds
∣∣∣ +

∣∣∣ ∫ x̄

x
f(s, u(s; ν̄), λ̄(s)) ds

∣∣∣
≤ |u0 − ū0|+

∣∣∣ ∫ x

x0

|f(s, u(s; ν), λ(s))− f(s, u(s; ν), λ̄(s))|ds
∣∣∣

+
∣∣∣ ∫ x

x0

|f(s, u(s; ν), λ̄(s))− f(s, u(s; ν̄), λ̄(s))|ds
∣∣∣

+
∣∣∣ ∫ x0

x̄0

|f(s, u(s; ν̄), λ̄(s))|ds
∣∣∣ +

∣∣∣ ∫ x̄

x
|f(s, u(s; ν̄), λ̄(s))|ds

∣∣∣
≤ |u0 − ū0|+ c0

∣∣∣ ∫ x

x0

(
|λ(s)− λ̄(s)|+ |λ(s)− λ̄(s)|p

)
ds

∣∣∣
+ c0

∣∣∣ ∫ x

x0

(1 + |λ̄(s)|p) |u(s; ν)− u(s; ν̄)|ds
∣∣∣

+ c0

∣∣∣ ∫ x0

x̄0

(1 + |λ̄(s)|p) ds
∣∣∣ + c0

∣∣∣ ∫ x̄

x
(1 + |λ̄(s)|p) ds

∣∣∣ . (2.10)

By the continuity of u(x; ·) the right hand side tends to zero if (x, x0, u0, λ) → (x̄, x̄0, ū0, λ̄) in
I∗ × I∗ ×K∗ × Λ∗. But this implies that Tu ∈ C∗ and verifies assertion (1).

In order to show (2) we choose u, v ∈ C∗
K̃

. By (f2) and (2.5) we can estimate for every
(x, x0, u0, λ) = (x, ν) ∈ I∗ × I∗ ×K∗ × Λ∗ that

|Tu(x;x0, u0, λ)− Tv(x, x0, u0, λ)|

≤
∣∣∣ ∫ x

x0

|f(s, u(s; ν), λ(s))− f(s, v(s; ν), λ(s))|ds
∣∣∣

≤ c0

∣∣∣ ∫ x

x0

(1 + |λ(s)|p) |u(s; ν)− v(s; ν)|ds
∣∣∣

≤ c0 ‖u− v‖∞
∫

I∗
(1 + |λ(s)|p) ds

≤ 1
2
‖u− v‖∞ .

Taking the supremum over all (x, x0, u0, λ) ∈ I∗× I∗×K∗×Λ∗ on the left-hand side, we obtain
the contraction property (2.9). 2
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Proof of Theorem 2.4. By Lemma 2.8 we know that T : C∗
K̃
7→ C∗. By (f1) and (2.5) we obtain

that

|Tu(x, x0, u0, λ)− u0| =
∣∣∣ ∫ x

x0

f(s, u(s;x0, u0, λ), λ(s)) ds
∣∣∣

≤ c0

∫
I∗

(1 + |λ(s)|p) ds

≤ δ0

2

for all (x, x0, u0, λ) ∈ I∗×I∗×K∗×Λ∗. Hence T : C∗
K̃
7→ C∗

K̃
. The operator T is contractible on

C∗
K̃

by Lemma 2.8. Since C∗
K̃

is closed in C∗, the operator T has a unique fixed point u ∈ C∗
K̃

by Banach’s fixed point Theorem, i.e.,

u(x;x0, u0, λ) = u0 +
∫ x

x0

f(s, u(s;x0, u0, λ), λ(s)) ds

for all (x, x0, u0, λ) ∈ I∗× I∗×K∗×Λ∗. Obviously u(·;x0, u0, λ) uniquely solves (2.1) according
to (2.3). Moreover u ∈ C∗ = C(I∗ × I∗ ×K∗ × Λ∗, Rn) by construction. Notice that the case
p = ∞ is covered by the previous arguments. 2

3 Differentiable dependence on the parameter

In this section we consider situations in which the solution u of

u′(x) = f(x, u(x), λ(x)) for a.e. x ∈ J, u(x0) = u0 , (3.1)

is continuously differentiable with respect to the initial data and the parameter. Since the right
hand side is again merely assumed to be measurable in x, we are looking again for solutions
that are absolutely continuous in x. Thus we cannot expect a continuous derivative of u with
respect to x and x0. Hence we study differentiability of u only with respect to u0 and λ.

Let f : J × K × Rm 7→ Rn be a Carathéodory function as in the second paragraph of the
previous section. Moreover, let (u, λ) 7→ f(x, u, λ) be continuously differentiable on K ×Rm for
a.e. x ∈ J . As in the previous section we fix x̃ ∈ J , ũ ∈ K, λ̃ ∈ Lp(J, Rm) and we define J̃ , K̃

as in (2.2) where, however, we here restrict our attention to 1 < p ≤ ∞. In addition to (f1)-(f3),
we assume that for a.e. x ∈ J̃ and all u, v ∈ K̃, λ ∈ Rm

(f4) |fu(x, u, λ)| ≤ c0(1 + |λ|p) , |fλ(x, u, λ)| ≤ c0 ,

(f5) |fu(x, u, λ)− fu(x, v, λ)| ≤ c0(1 + |λ|p) |u− v| , |fλ(x, u, λ)− fλ(x, v, λ)| ≤ c0|u− v| .

In the case p = ∞ we assume (f4), (f5) with some exponent q ∈ [1,∞) instead of p.
Again we consider solutions of (3.1) on I∗ := Bρ(x̃) ⊂ J̃ , where ρ > 0 is not yet specified,

and we take into account

x0 ∈ I∗ , u0 ∈ K∗ := Bδ0/2(ũ) , λ ∈ Λ∗ := Bδ∗0
(λ̃|I∗) ⊂ Lp(I∗, Rm)
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for some δ∗0 ∈ (0, δ0]. For λ ∈ Lp(I∗) and u ∈ C(I∗) with u(I∗) ⊂ K̃ we now not only
have f(·, u(·), λ(·)) ∈ L1(I∗) but also fu(·, u(·), λ(·)) ∈ L1(I∗, Rn×n) and fλ(·, u(·), λ(·)) ∈
L∞(I∗, Rn×m) by (f4). As before u(.;x0, u0, λ) denotes the solution of (3.1) for the data (x0, u0, λ)
and D(u0,λ)u(·) denotes the derivative of u with respect to (u0, λ).

Theorem 3.2 Let 1 < p ≤ ∞, let f satisfy (f1)-(f5), and let u = u(·;x0, u0, λ) be the unique
solution of (3.1) according to Theorem 2.4. Then, with some possibly smaller % and δ∗0 than in
Theorem 2.4, the solution u : I∗× I∗×K∗×Λ∗ → Rn is differentiable with respect to (u0, λ) on
K∗ × Λ∗ for all x, x0 ∈ I∗. The derivative D(u0,λ)u(·; ·, ·, ·) is continuous on I∗ × I∗ ×K∗ × Λ∗

and

D(u0,λ)u(x;x0, u0, λ) w = w1 +
∫ x

x0

(
fu(s, u(s;x0, u0, λ), λ(s))D(u0,λ)u(s;x0, u0, λ) w

+ fλ(s, u(s;x0, u0, λ), λ(s))w2(s)
)

ds (3.3)

for all w = (w1, w2) ∈ Rn × Lp(I∗, Rm). Moreover, for all (x0, u0, λ) ∈ I∗ × K∗ × Λ∗ and
w = (w1, w2) ∈ Rn × Lp(I∗, Rm),

d

dx
D(u0,λ)u(x;x0, u0, λ) w = D(u0,λ)

( d

dx
u(x;x0, u0, λ)

)
w (3.4)

for a.e. x ∈ I∗.

The only point in the proof of the theorem where the dependence on x0 has to be considered
explicitly is the continuity of D(u0,λ)u(·). But for that we have to argue the same way as with
respect to x. Therefore we suppress the dependence of u on x0 in the subsequent considerations
and we merely consider u = u(x;u0, λ). We also use the abbreviation ν = (u0, λ) for elements
in K∗ × Λ∗ and we write Dνu(·) for D(u0,λ)u(·).

As preparation for the proof we again start with some preliminary considerations. The case
p = ∞ is covered by replacing p with q in the exponents. We choose δ∗0 > 0 such that

δ∗0 ≤ min

{
δ0,

(
δ0

2p+4c0

)1/p

,

(
1

2p+4c0

)1/p
}

.

Then we choose % > 0 so small that

2% + (2%)1/p′ +
∫

I∗
|λ̃(s)|p ds ≤ min

{
δ0

4
,

δ0

32c0
,

1
32c0

}
where we have to use p′ = 1 in the case p = ∞. In particular we assume that δ∗0 and % are not
larger than taken in the previous section. Instead of (2.5) we then have∫

I∗
(1 + |λ|p) ds ≤ min

{
δ0

16c0
,

1
16c0

}
for all λ ∈ Λ∗ . (3.5)

Analogously to the previous section we define the Banach space

C∗ := {u ∈ C(I∗ ×K∗ × Λ∗, Rn)| ‖u‖∞ < ∞} ,
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‖u‖∞ := sup
(x,ν)∈ I∗×K∗×Λ∗

|u(x; ν)| .

In addition we introduce the Banach space

CL := {U ∈ C(I∗ ×K∗ × Λ∗, L(Rn × Lp(I∗, Rm), Rn) )| ‖U‖∞ < ∞} ,

‖U‖∞ := sup
(x,ν)∈ I∗×K∗×Λ∗

‖U(x; ν)‖L(Rn×Lp(I∗,Rm),Rn) .

Recall that
‖U(x; ν)‖L(Rn×Lp(I∗),Rn) := sup

‖w‖Rn×Lp(I∗)≤1
|U(x; ν) w| ,

‖w‖Rn×Lp(I∗) := |w1|+ ‖w2‖Lp(I∗) for w = (w1, w2) ∈ Rn × Lp(I∗, Rm) .

Moreover we consider the space

C1∗ := {u ∈ C∗|Dνu ∈ CL} , ‖u‖1,∞ := ‖u‖∞ + ‖Dνu‖∞ .

Lemma 3.6 The space C1∗ is a Banach space.

Proof. Obviously C1∗ is a linear normed space and it remains to verify completeness. Let
{un} ⊂ C1∗ be a Cauchy sequence. Then there are u ∈ C∗ and U ∈ CL such that un → u in
C∗ and Dνun → U in CL. For any (x, ν) ∈ I∗ ×K∗ ×Λ∗, w ∈ Rn ×Lp(I∗, Rm), and t ∈ R with
ν + tw ∈ K∗ × Λ∗ we have that

un(x; ν + tw)− un(x; ν) =
∫ t

0
Dνun(x; ν + sw)w ds

=
∫ t

0

(
Dνun(x; ν + sw)w − U(x; ν + sw)w

)
ds +

∫ t

0
U(x; ν + sw)w ds .

In the limit we get

u(x; ν + tw)− u(x; ν) =
∫ t

0
U(x; ν + sw)w ds .

Since the right hand side is differentiable in t and U(x; ν) ∈ L(Rn × Lp(I∗, Rm), Rn), we
conclude that u(x; ·) is Gâteaux differentiable at ν with Dνu(x; ν)w = U(x; ν)w for all
w ∈ Rn × Lp(I∗, Rm), i.e., Dνu(x; ν) = U(x; ν) for all (x, ν) ∈ I∗ × K∗ × Λ∗. Since U(·; ·)
is continuous, Dνu(x; ν) is even a Fréchet derivative and u ∈ C1∗. Thus Dνun → Dνu in CL

and, hence, un → u in C1∗. 2

In order to exploit conditions (f1)-(f5) we are particularly interested in u belonging to

C1∗
K̃

:= {u ∈ C1∗| u(x;u0, λ) ∈ K̃ for all (x, u0, λ) ∈ I∗ ×K∗ × Λ∗ , ‖Dνu‖∞ ≤ 2} .

Obviously, C1∗
K̃

is a closed subset of C1∗. From the previous section we know that any solution
u of (3.1) is a fixed point of the operator T given by

(Tu)(x; ν) := u0 +
∫ x

x0

f(s, u(s; ν), λ(s)) ds (3.7)

for all (x, ν) = (x, u0, λ) ∈ I∗ ×K∗ × Λ∗. The next lemma provides differentiability properties
of the mapping ν 7→ Tu(x; ν).
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Lemma 3.8 For T according to (3.7) we have that Tu ∈ C1∗ for all u ∈ C1∗
K̃

and

DνTu(x; ν)w = w1 +
∫ x

x0

fu(s, u(s; ν), λ(s))Dνu(s; ν)w + fλ(s, u(s; ν), λ(s))w2(s) ds

for all (x, ν) = (x, u0, λ) ∈ I∗ ×K∗ × Λ∗ and w = (w1, w2) ∈ Rn × Lp(I∗, Rm).

Proof. By Lemma 2.8 we know that Tu ∈ C∗ for any u ∈ C1∗
K̃

. Thus we have to study
the differentiability of ν 7→ Tu(x; ν). For that we fix u ∈ C1∗

K̃
, ν = (u0, λ) ∈ K∗ × Λ∗, and

w = (w1, w2) ∈ Rn × Lp(I∗, Rm) and consider the function

α(σ) := Tu(x; ν + σw) = u0 + σw1 +
∫ x

x0

(
f(s, u(s; ν + σw), λ(s) + σw2(s))

)
ds (3.9)

for small σ ∈ R with ν + σw ∈ K∗ × Λ∗. Since f(x, ·, ·) is continuously differentiable for a.e. x

and since u ∈ C1∗, the integrand on the right-hand side is differentiable with respect to σ for
a.e. s ∈ I∗ and, by (f4), we can estimate∣∣∣ d

dσ
f(s, u(s; ν + σw), λ(s) + σw2(s))

∣∣∣
= |fu(s, u(s; ν + σw), λ(s) + σw2(s))Dνu(s; ν + σw)w

+ fλ(s, u(s; ν + σw), λ(s) + σw2(s))w2(s)|
≤ |fu(s, u(s; ν + σw), λ(s) + σw2(s))Dνu(s; ν + σw)w|

+ |fλ(s, u(s; ν + σw), λ(s) + σw2(s))w2(s)|
≤ c0

(
(1 + |λ(s) + σw2(s)|p) ‖Dνu‖∞ ‖w‖Rn×Lp + |w2(s)|

)
(3.10)

≤ c0

( (
1 + 2p−1(|λ(s)|p + |w2(s)|p)

)
‖Dνu‖∞ ‖w‖Rn×Lp + |w2(s)|

)
for a.e. s ∈ I∗ as long as |σ| ≤ 1. Thus the derivative on the left-hand side is bounded by an
integrable function. Hence we can differentiate under the integral in (3.9) (cf. [8, p. 1018]) and
obtain a linear operator A : Rn × Lp(I∗, Rm) → Rn with

Aw := α′(0) = w1 +
∫ x

x0

(
fu(s, u(s; ν), λ(s))Dνu(s; ν)w + fλ(s, u(s; ν), λ(s))w2(s)

)
ds

for all (x, ν) = (x, u0, λ) ∈ I∗×K∗×Λ∗ and w = (w1, w2) ∈ Rn×Lp(I∗, Rm). Using (3.10) with
σ = 0 we obtain that

|Aw| ≤ |w1|+ c0

∫
I∗

(
(1 + |λ(s)|p) ‖Dνu‖∞ ‖w‖Rn×Lp + |w2(s)|

)
ds

≤ ‖w‖Rn×Lp + c0‖Dνu‖∞‖w‖Rn×Lp

∫
I∗

(1 + |λ(s)|p) ds + c0

∫
I∗
|w2(s)|ds

≤ ‖w‖Rn×Lp

(
1 + c0 ‖Dνu‖∞ (2% + ‖λ‖p

Lp) + c̃0

)
for some c̃0 > 0. Hence A ∈ L(Rn × Lp(I∗, Rm), Rn). Thus DνTu(x; ν) = A is the Gâteaux
derivative of Tu(x; . ).



3 DIFFERENTIABLE DEPENDENCE ON THE PARAMETER 12

It remains to show that (x, ν) 7→ DνTu(x; ν) is continuous on I∗×K∗×Λ∗. For that we choose
a sequence (xn, νn) = (xn, u0,n, λn) ⊂ I∗×K∗×Λ∗ converging to (x, ν) = (x, u0, λ) ∈ I∗×K∗×Λ∗.
Using (f4) and Hölder’s inequality we can estimate

|DνTu(x; ν)w −DνTu(xn; νn)w|
≤ |DνTu(x; ν)w −DνTu(xn; ν)w|+ |DνTu(xn; ν)w −DνTu(xn; νn)w|

≤
∣∣∣ ∫ x

x0

(
fu(s, u(s; ν), λ(s))Dνu(s; ν)w + fλ(s, u(s; ν), λ(s))w2(s)

)
ds

−
∫ xn

x0

(
fu(s, u(s; ν), λ(s))Dνu(s; ν)w + fλ(s, u(s; ν)λ(s))w2(s)

)
ds

∣∣∣
+

∣∣∣ ∫ xn

x0

(
fu(s, u(s; ν), λ(s))Dνu(s; ν)w + fλ(s, u(s; ν), λ(s))w2(s)

)
ds

−
∫ xn

x0

(
fu(s, u(s; νn), λn(s))Dνu(s; νn)w + fλ(s, u(s; νn), λn(s))w2(s)

)
ds

∣∣∣
≤

∣∣∣ ∫ x

xn

|fu(s, u(s; ν), λ(s))Dνu(s; ν) w + fλ(s, u(s; ν), λ(s))w2(s)|ds
∣∣∣

+
∣∣∣ ∫ xn

x0

(
|fu(s, u(s; ν), λ(s))Dνu(s; ν) w − fu(s, u(s; νn), λn(s))Dνu(s; νn) w|

+ |fλ(s, u(s; ν), λ(s))w2(s)− fλ(s, u(s; νn), λn(s))w2(s)|
)

ds
∣∣∣

≤
∣∣∣ ∫ x

xn

|fu(s, u(s; ν), λ(s))Dνu(s; ν) w|+ |fλ(s, u(s; ν), λ(s))w2(s)|ds
∣∣∣

+
∫

I∗
|(fu(s, u(s; ν), λ(s))− fu(s, u(s; νn), λn(s)))Dνu(s; ν) w|ds

+
∫

I∗
|fu(s, u(s; νn), λn(s)) (Dνu(s; ν)−Dνu(s; νn))w|ds

+
∫

I∗
|(fλ(s, u(s; ν), λ(s))− fλ(s, u(s; νn), λn(s)))w2(s)|ds

≤
∣∣∣ c0

∫ x

xn

(1 + |λ(s)|p)|Dνu(s; νn)w|+ |w2(s)|ds
∣∣∣

+
∫

I∗
|fu(s, u(s; ν), λ(s))− fu(s, u(s; νn), λn(s))|L(Rn,Rn) |Dνu(s; ν) w|ds

+ c0

∫
I∗

(1 + |λn(s)|p) |(Dνu(s; ν)−Dνu(s; νn))w|ds

+
∫

I∗
|fλ(s, u(s; ν), λ(s))− fλ(s, u(s; νn), λn(s))|L(Rm,Rn) |w2(s)|ds

≤ c0‖Dνu‖∞‖w‖Rn×Lp

∣∣∣ ∫ x

xn

(1 + |λ(s)|p) ds
∣∣∣ + c0‖w2‖Lp |x− xn|1/p′

+ ‖Dνu‖∞‖w‖Rn×Lp

∫
I∗
|fu(s, u(s; ν), λ(s))− fu(s, u(s; νn), λn(s))|L(Rn,Rn) ds

+ c0‖w‖Rn×Lp

∫
I∗

(1 + |λn(s)|p) ‖Dνu(s; ν)−Dνu(s; νn)‖L(Rn×Lp,Rn) ds

+‖w2‖Lp

(∫
I∗
|fλ(s, u(s; ν), λ(s))− fλ(s, u(s; νn), λn(s))|p

′

L(Rm,Rn) ds

) 1
p′

.
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Taking the supremum over all w ∈ Rn × Lp(I∗, Rm) with ‖w‖Rn×Lp ≤ 1 we obtain

‖DνTu(x; ν)−DνTu(xn; νn)‖L(Rn×Lp(I∗,Rm),Rn)

≤ c0‖Dνu‖∞
∣∣∣ ∫ x

xn

(1 + |λ(s)|p) ds
∣∣∣ + c0|x− xn|1/p′ (3.11)

+ ‖Dνu‖∞
∫

I∗
|fu(s, u(s; ν), λ(s))− fu(s, u(s; νn), λn(s))|L(Rn,Rn) ds (3.12)

+ c0

∫
I∗

(1 + |λn(s)|p) ‖Dνu(s; ν)−Dνu(s; νn)‖L(Rn×Lp,Rn) ds (3.13)

+
(∫

I∗
|fλ(s, u(s; ν), λ(s))− fλ(s, u(s; νn), λn(s))|p

′

L(Rm,Rn) ds

) 1
p′

. (3.14)

Let us now show that the right-hand side tends to zero for (xn, νn) → (x, ν). This is immediately
clear for the two terms in (3.11). Since λn → λ in Lp(I∗), for a subsequence (denoted the same
way) we have λn(s) → λ(s) for a.e. s ∈ I∗. If we use that u ∈ C1∗, then we get that the
integrands in (3.12)-(3.14) converge to zero for a.e. s ∈ I∗. By (f4)

|fu(s, u(s; ν), λ(s))− fu(s, u(s; νn), λn(s))|L(Rn,Rn) ≤ c0(2 + |λ(s)|p + |λn(s)|p)

and

|fλ(s, u(s; ν), λ(s))− fλ(s, u(s; νn), λn(s))|p
′

L(Rm,Rn)

≤ 2p′−1
(
|fλ(s, u(s; ν), λ(s))|p

′

L(Rm,Rn) + |fλ(s, u(s; νn), λn(s))|p
′

L(Rm,Rn)

)
≤ 2p′cp′

0

for a.e. s ∈ I∗. Moreover

(1 + |λn(s)|p) ‖Dνu(s; ν)−Dνu(s; νn)‖L(Rn×Lp,Rn) ≤ 2‖Dνu‖∞(1 + |λn(s)|p)

for a.e. s ∈ I∗. Since λn → λ in Lp(I∗), the generalized dominated convergence theorem yields
the desired convergence in (3.12)-(3.14) at least for a subsequence. Notice that our previous
arguments also show that any subsequence of (xn, νn) has a subsequence (xn′ , νn′) such that
DνTu(xn′ ; νn′) → DνTu(x; ν) as n′ → ∞. This subsequence principle implies the convergence
for the complete sequence (xn, νn) which verifies the continuity of DνTu(·; ·), i.e., u ∈ C1∗ and
the proof is complete. 2

Lemma 3.15 For T according to (3.7) we have that

Tu ∈ C1∗
K̃

and ‖Tu− Tv‖1,∞ ≤ 3
4
‖u− v‖1,∞ for all u, v ∈ C1∗

K̃
.

Proof. Let us fix u, v ∈ C1∗
K̃

. We know that Tu ∈ C1∗ by Lemma 3.8 and Tu ∈ C∗
K̃

by the proof of
Theorem 2.4. In order to show that ‖DνTu‖∞ ≤ 2 we use (f4), the representation from Lemma
3.8, and Hölder’s inequality and estimate for (x, ν) ∈ I∗ ×K∗ × Λ∗ and w ∈ Rn × Lp(I∗, Rm)

|DνTu(x; ν)w|

≤ |w1|+
∫ x

x0

(
|fu(s, u(s; ν), λ(s))Dνu(s; ν)w|+ |fλ(s, u(s; ν), λ(s))w2(s)|

)
ds
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≤ ‖w‖Rn×Lp + c0

∫ x

x0

(
(1 + |λ(s)|p) |Dνu(s; ν)w|+ |w2(s)|

)
ds

≤ ‖w‖Rn×Lp + c0‖w‖Rn×Lp

∫ x

x0

(1 + |λ(s)|p) ‖Dνu(s; ν)‖L(Rn×Lp,Rn) ds

+ c0‖w2‖Lp(2%)1/p′ .

The supremum over all w with ‖w‖Rn×Lp ≤ 1, relation (3.5), the properties of %, and
‖Dνu‖∞ ≤ 2 give

‖DνTu(x; ν)‖L(Rn×Lp,Rn) ≤ 1 + c0

(
‖Dνu‖∞

1
16c0

+
1

32c0

)
≤ 2 .

The supremum over all (x, ν) ∈ I∗ ×K∗ × Λ∗ implies ‖DνTu‖∞ ≤ 2 and, thus, Tu ∈ C1∗
K̃

.
For the contraction property we carry out a similar estimate as in the previous proof. Using

(f4) and (f5) we obtain for (x, ν) ∈ I∗ ×K∗ × Λ∗ and w ∈ Rn × Lp(I∗, Rm)

|DνTu(x; ν)w −DνTv(x; ν)w|

≤
∣∣∣ ∫ x

x0

(
fu(s, u(s; ν), λ(s))Dνu(s; ν)w + fλ(s, u(s; ν), λ(s))w2(s)

−fu(s, v(s; ν), λ(s))Dνv(s; ν)w − fλ(s, v(s; ν)λ(s))w2(s)
)

ds
∣∣∣

≤
∣∣∣ ∫ x

x0

(
fu(s, u(s; ν), λ(s))− fu(s, v(s; ν), λ(s))

)
Dνu(s; ν) w ds

∣∣∣
+

∣∣∣ ∫ x

x0

fu(s, v(s; ν), λ(s))
(
Dνu(s; ν)−Dνv(s; ν)

)
w ds

∣∣∣
+

∣∣∣ ∫ x

x0

(
fλ(s, u(s; ν), λ(s))− fλ(s, v(s; ν), λ(s))

)
w2(s) ds

∣∣∣
≤ c0

∫ x

x0

(1 + |λ(s)|p) |u(s; ν)− v(s; ν)| |Dνu(s; ν) w|ds

+ c0

∫ x

x0

(1 + |λ(s)|p)
∣∣∣( Dνu(s; ν)−Dνv(s; ν) )w

∣∣∣ ds

+ c0

∫ x

x0

|u(s; ν)− v(s; ν)| |w2(s)|ds

≤ c0‖u− v‖∞
∫ x

x0

(1 + |λ(s)|p) ‖Dνu(s; ν)‖L(Rn×Lp,Rn) ‖w‖Rn×Lp ds

+ c0

∫ x

x0

(1 + |λ(s)|p) ‖Dνu(s; ν)−Dνv(s; ν)‖L(Rn×Lp,Rn) ‖w‖Rn×Lp ds

+ c0‖u− v‖∞‖w‖Rn×Lp |x− x0|1/p′ .

Taking the supremum over all w ∈ Rn × Lp(I∗, Rm) with ‖w‖Rn×Lp ≤ 1 we obtain

‖DνTu(x; ν)−DνTv(x; ν)‖L(Rn×Lp,Rn)

≤ c0

(
(‖Dνu‖∞ + 1)

∫ x

x0

(1 + |λ(s)|p) ds + (2%)1/p′
)
‖u− v‖1,∞ . (3.16)
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Taking the supremum over all (x; ν) ∈ I∗ × K∗ × Λ∗ and using (3.5), the properties of ρ, and
the definition of C1∗

K̃
, we get

‖DνTu−DνTv‖∞ ≤ c0

(
3

16c0
+

1
32c0

)
‖u− v‖1,∞ ≤ 1

4
‖u− v‖1,∞ .

By Lemma 2.8 we have that

‖Tu− Tv‖∞ ≤ 1
2
‖u− v‖1,∞

which implies the assertion. 2

Proof of Theorem 3.2. Using Lemma 3.8, Lemma 3.15, and Banach’s fixed point theorem, we
obtain a unique fixed point u ∈ C1∗

K̃
of the operator T defined in (3.7). Thus u = u(·;u0, λ) is a

unique solution of (3.1) on I∗ for all (u0, λ) ∈ K∗×Λ∗ (recall (2.3)) and, consequently, u has to
agree with the solution verified in Theorem 2.4. By u ∈ C1∗ the mapping (u0, λ) 7→ u(x;u0, λ) is
continuously differentiable and (x, u0, λ) 7→ Dνu(x;u0, λ) is continuous. Since u is a fixed point
of T , we can differentiate the identity Tu(x; ν) = u(x; ν) with respect to ν and obtain that

DνTu(x; ν)w = Dνu(x; ν)w

for all (x, ν) ∈ I∗ × K∗ × Λ∗, w ∈ Rn × Lp(I∗, Rm). Now we can derive (3.3) directly from
Lemma 3.8.

For fixed ν ∈ K∗ × Λ∗, w ∈ Rn × Lp(I∗, Rm) the right hand side in (3.3) is absolutely
continuous in x and, thus,

d

dx
Dνu(x; ν)w = fu(x, u(x; ν), λ(x))Dνu(x; ν)w + fλ(x, u(x; ν), λ(x))w2(x) (3.17)

for a.e. x ∈ I∗. Since f(x, ·, ·) and u(x; ·) are continuously differentiable, we readily obtain that

Dνf(x, u(x; ν), λ(x))w = fu(x, u(x; ν), λ(x))Dνu(x; ν)w + fλ(x, u(x; ν), λ(x))w2(x) (3.18)

for a.e. x ∈ I∗. From the differential equation (3.1) we now see that Dν( d
dxu(x; ν))w exists and

equals the right hand side in (3.18). Recalling (3.17) we get (3.4) which completes the proof. 2

References

[1] E.A. Coddington, N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill,
New York, 1955.

[2] M.R. Hestenes. Calculus of Variations and Optimal Control Theory. John Wiley & Sons,
New York, 1966.

[3] J. Kurzweil. Ordinary Differential Equations. Elsevier, Amsterdam, 1986

[4] F. Schuricht. Locking constraints for elastic rods and a curvature bound for spatial curves.
Calc. Var. 24 (2005) 377-402



REFERENCES 16

[5] F. Schuricht, H. v.d. Mosel. Ordinary differential equations with a measurable right-hand
side and parameters in metric spaces. Universität Bonn, SFB 256 Preprint 676, 2000

[6] F. Schuricht, H. v.d. Mosel. Euler-Lagrange equation for nonlinearly elastic rods with
self-contact. Arch. Rational Mech. Anal. 168 (2003) 35-82

[7] W. Walter. Ordinary Differential Equations. Springer, Berlin, 1998

[8] E. Zeidler. Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone
Operators. Springer, New York, 1990


