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Abstract

The eigenvalue problem for the 1-Laplace operator, which is considered to be the Euler-
Lagrange equation for an associated variational problem in BV (Ω), is formally given by

−Div
Du

|Du|
= λ

u

|u|
on Ω .

However the undetermined expressions Du/|Du| and u/|u| have to be replaced with an appro-
priate vector field z related to u and a measurable selection s of the set-valued sign function
Sgn (u(·)), respectively, such that −Div z = λs. For the special case of a square Ω ⊂ R2 and
the known minimizer u = χC of the related variational problem, the paper presents a somehow
explicit construction of corresponding vector fields z. In particular it is shown that, for a fixed
selection s, the field z is not determined by means of the differential equation and its coupling
conditions with u, but there are infinitely many continuous vector fields z that even differ on
the boundary of Ω.
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1 Introduction

Let us consider the constrained minimization problem∫
Ω

d|Du|+
∫

∂Ω
|u| dx → Min!, u ∈ BV (Ω), (1.1)∫
Ω
|u| dx = 1 (1.2)

for an open, bounded Ω ⊂ Rn with Lipschitz boundary. This problem can be considered as limit
of the variational problem associated with the eigenvalue problem for the p-Laplace operator by
taking p → 1. In particular, the surface integral replaces the boundary condition and implies
homogeneous Dirichlet data in a generalized way. Problem (1.1), (1.2) has always a solution
which, however, does not have to be unique (cf. Kawohl & Schuricht [16]).

The formal Euler-Lagrange equation of (1.1), (1.2) as necessary condition for a minimizer is
given by

−Div
(

Du

|Du|

)
= λ

u

|u|
on Ω , (1.3)

which is also called the eigenvalue problem for the 1-Laplace operator. However, this equation
is not well defined if we have in mind that typical minimizers of (1.1), (1.2) are characteristic
functions, i.e. they are piecewise constant and even vanish on a set of positive measure. In order
to give meaning to (1.3), variational problem (1.1), (1.2) has to be studied more carefully. The
lack of differentiability of the functionals involved requires more general tools than usually used
in the calculus of variations. A direct treatment of this singular problem has been proposed in
[16]. Roughly speaking, for a minimizer u ∈ BV (Ω) there is a vector field z : Ω → B1(0) ⊂ Rn

replacing Du/|Du| and satisfying certain coupling conditions to u such that

−Div z(x) = λs(x) on Ω (1.4)

where s : Ω → [−1, 1] is a measurable selection of the set-valued sign function Sgn (u(x)) replacing
u/|u|. More precisely, for any measurable selection s of Sgn (u(·)) there exists a corresponding
vector field z coupled to u such that (1.4) is satisfied. This is remarkable, since it provides infinitely
many Euler-Lagrange equations (1.4) as replacement of (1.3).

The purpose of the present paper is the investigation of the vector fields z that are associated
with a fixed minimizer u by means of the necessary condition just formulated. In particular, if
we also fix a measurable selection s, then we have to look for a vector field z with prescribed
divergence according to (1.4). This is a classical question and, of course, z is not determined
by the differential equation on its own. But we still have to take into account the coupling of z

with the minimizer u which roughly demands that ‖z‖∞ = 1 and that z has to respect certain
boundary conditions. Besides the interest to know how such vector fields look like, the question
of to what extent the coupling conditions combined with a fixed s determine z is fundamental.
Since it seems that |z(x)| < 1 at least on some ball B ⊂ Ω for a typical solution z, we clearly can
add any divergence free vector field with sufficiently small amplitude and support on B in order
to get a further solution z. This way we will always obtain infinitely many vector fields satisfying
the necessary condition for a fixed selection s. However, a much more subtle question is how much
freedom we have for z on the boundary of ∂Ω where, in general, the coupling conditions do not
completely prescribe z.
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We will analyze the questions discussed in the previous paragraph for the special case of a
square Ω ⊂ R2. It is known that a suitable multiple of the characteristic function χC of the
Cheeger set C of Ω, which minimizes the ratio |∂D|/|D| among all subdomains D ⊂ Ω (cf. [12]),
is a minimizer of (1.1), (1.2). In this special case of a square Ω the Cheeger set C is a “rounded
square” as shown in Figure 1 below. We present a construction of vector fields z that, for each
fixed selection s, provides infinitely many solutions z differing in particular on ∂Ω \ ∂C. Clearly,
z has to satisfy −Div z = λ on C and, as in [16], we construct z on C by means of a suitable
solution of the mean curvature equation. This vector field z is then always used on C. On the
“corners” Ω̂ := Ω \ C̄ we have to fix a selection s. For the construction of the corresponding z

we first consider a unit normal field ν on Ω̂ that is associated with a suitable foliation of Ω̂ by
circular arcs and, then, we construct a scalar function a : Ω̂ → [0, 1] such that z := −aν meets
the desired conditions on Ω̂. The composition of the fields z on C and Ω̂ then gives a solution z

on Ω for a prescribed selection s. The variety of foliations that can be used independent of the
special s provides the diversity of solutions z for a fixed s.

In Section 2 we summarize the existence of a minimizer and the corresponding necessary
condition for variational problem (2.1), (2.2). Consequences of the coupling condition between
a minimizer u and the vector field z are investigated in Section 3. In Section 4 the existence of
infinitely many continuous vector fields z for fixed s, that differ in particular on the boundary
∂Ω\∂C, is formulated as main result of the paper. But notice that their (to some extend) explicit
construction is very instructive by its own. While the basic ideas of this construction are briefly
discussed in Section 4, the details are carried out in the subsequent Section 5 that essentially
consists of two parts. At first foliations of the corners Ω̂ by circular arcs are constructed. Then,
using the ansatz z = −aν, we show the existence of a scalar function a by solving a corresponding
linear inhomogeneous partial differential equation of first order for a. Since the inhomogeneity
is a multiple of the merely measurable function s, the classical results based on characteristics
are not applicable. However, it turns out that we can carry out the method of characteristics
explicitly if consider the ordinary differential equations along the characteristics in the sense of
Carathéodory. This way we obtain continuous vector fields z that satisfy (1.4) in the sense of
distributions. A special solution z is discussed in some more detail in Section 6.

Let us still mention that some of the results have already been announced in Milbers [17].

Notation. We denote the boundary of a set A by ∂A and its closure by A or cl A. We define
its characteristic function χA by

χA(x) :=

{
1 for x ∈ A,

0 otherwise .

Div u is the divergence of u in the distributional sense. The set-valued sign function on R is given
by

Sgnα :=


1 if α > 0,

[−1, 1] if α = 0,

−1 if α < 0.

The space of q-integrable functions on Ω is denoted by Lq(Ω) and its dual by Lq′(Ω) where
1
q + 1

q′ = 1. The Sobolev space W 1,q(Ω) consists of q-integrable functions having q-integrable weak
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derivatives. BV (Ω) stands for the functions of bounded variation. Ck
c (Ω) are k-times continuously

differentiable functions with compact support in Ω. The k-dimensional Hausdorff measure is
denoted by Hk. In particular, |∂Ω| and |Ω| denote the (n− 1)- and the n-dimensional Hausdorff
measure of ∂Ω and Ω, respectively. µbΩ is the restriction of a measure µ to the set Ω and fµ is
the measure having density f with respect to µ. For a Banach space X its dual is X∗ and 〈·, ·〉
is the duality form on X × X∗. By ⇀ and ∗

⇀ we denote the weak and the weak∗ convergence,
respectively.

2 Eigenvalue problem for the 1-Laplace operator

Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary. We consider the constrained
variational problem

E(u) :=
∫

Ω
d|Du|+

∫
∂Ω
|u| dHn−1 → Min!, u ∈ BV (Ω) , (2.1)

∫
Ω
|u| dx = 1 . (2.2)

Since usual Dirichlet boundary conditions on ∂Ω are unsuitable in BV (Ω), there is a surface
integral included in (2.1) which implies homogeneous boundary conditions in a weak sense, cf.
Kawohl & Schuricht [16]. The existence of a minimizer is shown, e.g., in Fridman & Kawohl [11].

Theorem 2.3 Problem (2.1), (2.2) has a solution u ∈ BV (Ω).

But it turns out that the solution does not have to be unique in general (cf. Kawohl & Schuricht
[16]). The Euler-Lagrange equation as necessary condition for a minimizer of (2.1), (2.2) is for-
mally given by

−Div
(

Du

|Du|

)
= λ

u

|u|
on Ω (2.4)

where λ > 0 is a Lagrange multiplier. Since minimizers u are typically constant or even vanish on
a set of positive measure (see Fridman & Kawohl [11] or the arguments below), the expressions in
(2.4) are not well defined in general. The following theorem of Kawohl & Schuricht [16] provides
a suitable substitute for (2.4) (cf. also Demengel [7] for a partial result).

Theorem 2.5 Let u ∈ BV (Ω) be a minimizer of (2.1), (2.2). Then for each measurable selection
s(x) ∈ Sgn (u(x)) a.e. on Ω there is some vector field z ∈ L∞(Ω, Rn) satisfying

‖z‖L∞ = 1, Div z ∈ Ln(Ω) , (2.6)∫
Ω

d|Du|+
∫

∂Ω
|u| dHn−1 = −

∫
Ω

u Div z dx (2.7)

such that
−Div z = λs a.e. on Ω, λ = E(u) . (2.8)

Notice that, in general, there are infinitely many Euler-Lagrange equations (2.8) as necessary
condition for a minimizer u of (1.1), (1.2), since (2.8) has to be satisfied not only for one but
for any measurable selection s. We call (2.8) combined with the coupling conditions (2.6), (2.7)
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relating z to u the eigenvalue problem for the 1-Laplace operator. A solution u is said to be an
eigenfunction according to the eigenvalue λ.

The previous theorem states the existence of vector fields z satisfying (2.6)-(2.8). For a deeper
understanding of the problem or for a direct solution of the eigenvalue problem, it would certainly
be useful to have some information about vector fields z with prescribed divergence and about
the relevance of the coupling conditions (2.6), (2.7) for that vector field. Unfortunately it turns
out that not that much is known about such vector fields. For a fixed eigenfunction u and a given
selection s it is even unclear how far the vector field z is determined by (2.6)-(2.8). The intention
of the present paper is to answer some of these questions for the simple special case of a square
Ω ⊂ R2.

Let us still illuminate some relation of the eigenvalue problem to a geometric question. It can
be shown that the smallest eigenvalue λ of the 1-Laplace operator equals the Cheeger constant of
a nonempty open bounded set Ω ⊂ Rn given by

h(Ω) := inf
D⊂Ω

|∂D|
|D|

(2.9)

with D varying over all nonempty sets D ⊂ Ω of finite perimeter, cf. Alter & Caselles [1]. The set
C ⊂ Ω is called a Cheeger set of Ω if |∂C|/|C| = h(Ω). Originally the Cheeger constant has been
defined by Cheeger [6] in a slightly different manner. The multiple u = 1

|C|χC of the characteristic
function of C is an eigenfunction corresponding to the smallest eigenvalue λ = h(Ω) by Kawohl
& Fridman [11]. For a Cheeger set C of Ω we know that the surface ∂C ∩ Ω has constant mean
curvature h(Ω), cf. Gonzalez et al. [14, Theorem 2]. In the case Ω ⊂ R2 this readily implies that
∂C ∩ Ω consists of circular arcs. If Ω is convex, then the Cheeger set has to be convex too and
it is known that the Cheeger set is unique in that case, cf. Alter & Caselles [1]. These properties
allow the description of the Cheeger set C of a convex Ω ⊂ R2 as the union of all balls contained
in Ω that have radius R = 1/h(Ω) = 1/λ.

3 Consequences of the coupling conditions

Let us start with some preliminary investigations of the coupling conditions (2.6), (2.7). As in
the previous section we assume that Ω ⊂ Rn is an open bounded set with Lipschitz boundary
where ν denotes its outer unit normal. For a function u ∈ BV (Ω) and a vector field

z ∈ L∞n := {z ∈ L∞(Ω, Rn)|Div z ∈ Ln(Ω)}

there is a function [z, ν] ∈ L∞(∂Ω, R), called normal trace of z on ∂Ω, and a Radon measure on
Ω denoted by (z,Du) such that

‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω) ,

∫
Ω̂

d(z,Du) ≤ ‖z‖L∞(Ω)

∫
Ω̂

d|Du| (3.1)

for all Borel sets Ω̂ ⊂ Ω and∫
Ω

u Div z dx +
∫

Ω
d(z,Du) =

∫
∂Ω

[z, ν]u dHn−1 . (3.2)

If z is continuous on Ω, then
[z, ν] = z · ν a.e. on ∂Ω (3.3)
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and ∫
Ω̂

d(z,Du) =
∫

Ω̂
z · d(Du)

for all Borel sets Ω̂ ⊂ Ω (cf. Anzellotti [4] or Kawohl & Schuricht [16]).

Proposition 3.4 Let u ∈ BV (Ω) and let z ∈ L∞n (Ω, Rn) satisfy ‖z‖L∞ ≤ 1. Then (2.7) is
equivalent to the two conditions

−[z, ν](x) ∈ Sgn (u(x)) Hn−1-a.e. on ∂Ω (3.5)

and
(z,Du) = |Du| (3.6)

in the sense of measures on Ω.

Proof. By (3.2) we have∫
Ω

d|Du|+
∫

∂Ω
|u| dHn−1 = −

∫
Ω

uDiv z dx

=
∫

Ω
d(z,Du)−

∫
∂Ω

[z, ν]u dHn−1 .

Since ∫
Ω

d|Du| ≥
∫

Ω
d(z,Du) and

∫
∂Ω
|u| dHn−1 ≥ −

∫
∂Ω

[z, ν]u dHn−1

by (3.1), condition (2.7) is equivalent to∫
Ω

d|Du| =
∫

Ω
d(z,Du) and

∫
∂Ω
|u| dHn−1 = −

∫
∂Ω

[z, ν]u dHn−1 .

Since (z,Du)(Ω̂) ≤ |Du|(Ω̂) for all Borel sets Ω̂ ⊂ Ω by (3.1), the first identity is equivalent to
(3.6). Since ‖[z, ν]‖L∞(∂Ω) ≤ 1 by (3.1), the second identity is equivalent to (3.5). ♦

Let us still consider the case of a characteristic function u.

Proposition 3.7 Let u = χC ∈ BV (Ω) for some open C ⊂ Ω having Lipschitz boundary and
satisfying

χC = 1 Hn−1-a.e. on ∂Ω ∩ ∂C (3.8)

in the sense of trace. Moreover let z ∈ L∞n (Ω, Rn) satisfy ‖z‖L∞ ≤ 1. Then z has a normal trace
[z, ν] on ∂C and (2.7) is equivalent to

[z, ν] = −1 Hn−1-a.e. on ∂C . (3.9)

If z is continuous, then (3.9) can be written as

z = −ν Hn−1-a.e. on ∂C . (3.10)
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Proof. Clearly, ∫
Ω

d|DχC | =
∫

∂C∩Ω
dHn−1 .

Since we have (3.2) also with C instead of Ω, we get by
∫
C d|Du| = 0 and by (3.1) that∫

C
Div z dx =

∫
∂C

[z, ν] dHn−1 .

Thus, ∫
Ω

d(z,DχC) = −
∫

Ω
χC Div z dx +

∫
∂Ω

[z, ν]χC dHn−1

= −
∫

C
Div z dx +

∫
∂Ω

[z, ν]χC dHn−1

= −
∫

∂C
[z, ν] dHn−1 +

∫
∂Ω∩∂C

[z, ν] dHn−1 = −
∫

∂C∩Ω
[z, ν] dHn−1 .

Consequently, (3.6) is equivalent to∫
∂C∩Ω

dHn−1 = −
∫

∂C∩Ω
[z, ν] dHn−1 ,

i.e., [z, ν] = −1 Hn−1-a.e. on ∂C ∩ Ω. Now we notice that (3.5) is automatically satisfied on
∂Ω \ ∂C. Hence the equivalence of (2.7) and (3.9) follows from Proposition 3.4. The equivalence
on ∂Ω ∩ ∂C follows by (3.8). The specialization for continuous z readily follows with (3.3). ♦

4 Special case of a square in R2

Let us now consider the particular case that Ω ⊂ R2 is a square of the form (0, b)× (0, b). Since
Ω is convex, we have that u = 1

|C|χC is a minimizer of (2.1), (2.2) where C is the Cheeger set of
Ω. According to our previous arguments, the Cheeger set C of Ω has the shape of a square with
“round corners” as shown in Figure 1.

R

C

Ω

Figure 1: The Cheeger set C of the square Ω.

The necessary condition from Theorem 2.5 implies for this special case that for any measurable
function

s(x) ∈ [−1, 1] a.e. on Ω \ C (4.1)
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there is a vector field z ∈ L∞(Ω, R2) satisfying the coupling condition

‖z‖L∞ = 1 , Div z ∈ L2(Ω) , E(u) = −
∫

Ω
u Div z dx , (4.2)

such that
−Div z = λ a.e. on C (4.3)

and
−Div z = λs a.e. on Ω \ C (4.4)

whith λ = E(u). Notice that the two equations (4.3), (4.4) are equivalent to the single equation
(2.8), since we do not have to evaluate Div z on the zero set ∂C∩Ω by the demand Div z ∈ L2(Ω).
The next result shows that the vector field z is not specified by the previous conditions for a fixed
selection s.

Theorem 4.5 Let Ω ⊂ R2 be a square, let u ∈ BV (Ω) be the minimizer of (2.1), (2.2) on Ω,
and let s(x) ∈ Sgn (u(x)) a.e. on Ω be a measurable selection. Then there exist infinitely many
vector fields z ∈ C(Ω̄) satisfying (4.2) - (4.4) that pairwise differ on Ω\C and, in particular, also
on ∂Ω \ ∂C.

Remark 4.6 We will see in the proof that, for fixed s, we can parametrize different solutions z

by means of real numbers belonging to an interval in R, i.e., we in fact obtain even a continuum
of vector fields z ∈ C(Ω̄) for each fixed s.

Let us start with some preliminary considerations before we carry out the proof in the next
section. Since we are looking for continuous vector fields z we can replace (4.2) with the equivalent
condition

‖z‖L∞ = 1 , Div z ∈ L2(Ω) , z = −ν Hn−1-a.e. on ∂C (4.7)

according to Proposition 3.7. Notice that the most right equation provides boundary conditions
for the differential equations (4.3), (4.4). We now intend to solve (4.3) and (4.4) separately.
More precisely, below in this section we provide a solution for (4.3) and we discuss a strategy to
determine solutions of (4.4). Then, in the next section, we carry out the construction of infinitely
many solutions z on Ω \ C in full detail. Using on C always the “fixed” solution from below, we
finally obtain the assertion of the theorem.

Solution z on C. As demonstrated by Kawohl & Schuricht in [16], we use the mean curvature
equation

div

(
Dw√

1 + |Dw|2

)
= λ on C (4.8)

for the construction of a solution z of (4.3) with the boundary condition

z = −ν Hn−1-a.e. on ∂C (4.9)

and the additional constraint ‖z‖L∞ = 1. Since the curved part of the boundary ∂C has curvature
λ, the curvature of ∂C is less than or equal to λ = h(Ω) = |∂C|/|C| everywhere. Hence there
exists a solution w of (4.8) on C such that

lim
y→x

Dw(y)√
1 + |Dw(y)|2

= ν(x) for all x ∈ ∂C
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where ν(x) is the exterior normal of C and where the limit is uniform on ∂C (cf. Giusti [13] where
one can also find that the solution w is unique up to an additive constant). Obviously

z := − Dw√
1 + |Dw|2

on C , (4.10)

provides a solution of (4.3) with boundary condition (4.9). Moreover, ‖z‖L∞ = 1 and div z ∈
L2(C). As already mentioned, for the subsequent vector fields z on Ω we always use z satisfying
(4.10) on C and we merely vary z on Ω \ C.

Special solution z on Ω \ C. Now we want to demonstrate how solutions z of (4.4) can be
constructed. By symmetry we can restrict our attention to the set

Ω̃ :=
{
x = (x1, x2) ∈ R2 | x1, x2 ∈ (0, R),

∣∣x−R
∣∣ > R

}
with R := (R,R) ∈ R2 and R = 1/λ = 1/h(Ω) = 1/E(u), cf. Figure 2. Notice that Ω̃ is just one
“corner” of the set Ω \ C.

~Ω

R

R0

R

Figure 2: The set Ω̃.

For the construction of z we exploit a result relating the normal field of a family of plane
curves to their curvature. More precisely, let D ⊂ R2 be an open set that is covered by a foliation
of C1-curves that do not intersect or touch each other and such that the associated field ν(x) of
unit normals is of class C1. Then

div ν(x) = ±κ(x) on D (4.11)

where κ(x) denotes the (nonnegative) curvature of the curve through point x at x and we have
to take the positive sign if the normal ν(x) points away from the center of the corresponding
osculating circle and the negative one otherwise.

Thus, in order to find solutions z of (4.4), we can look for suitable foliations of Ω̃ and take
the normal field ν as z. For a simple example of a foliation of Ω̃ we shift the circular arc forming
the curved part of ∂Ω̃ diagonally outward, cf. Figure 3. This way each point x ∈ Ω̃ lies on a
circular arc of radius R = 1/λ. Hence the unit normal field ν to this foliation pointing away from
C satisfies div ν = λ. Therefore

z(x) := −ν(x) on Ω \ C



5 PROOF OF THEOREM 4.5 12

R

R0

R

Figure 3: Foliation of Ω̃ by arcs with radius R.

satisfies (4.4) for s ≡ 1 and, clearly, also boundary condition (4.9) and ‖z‖L∞ = 1, cf. [16].
Summarizing,

z(x) :=

−
Dw(x)√

1+|Dw(x)|2
if x ∈ C ,

−ν(x) if x ∈ Ω \ C

satisfies the necessary conditions (4.2), (4.3), and (4.4) for s ≡ 1.
Notice that such a construction always gives a vector field z of unit vectors. In our subsequent

constructions we also modify the length of the normals ν in order to construct more general
solutions z. More precisely, for a given foliation with normal field ν we will use the ansatz

z(x) = −ν(x)a(x) (4.12)

in order to construct a solution z of (4.4) for some given s, i.e., we construct a suitable function
a : Ω̃ → [0, 1] such that z is a solution.

5 Proof of Theorem 4.5

In a first step we construct infinitely many foliations of Ω̃. Then we fix some s with (4.1) and
construct a function a such that z according to (4.12) gives a solution.

5.1 Construction of infinitely many foliations

We now provide a general construction for a foliation of Ω̃ with circular arcs having their center on
the bisector connecting the origin with the point R̄ = (R,R) ∈ R2. In fact we consider foliations
that even cover the closure of Ω̃ and that always contain the curved part of ∂Ω̃

Γ :=
{

x = (x1, x2) ∈ Ω̃ | x1, x2 ∈ [0, R],
∣∣x−R

∣∣ = R
}

as an element of the foliation. A simple computation shows that the intersection γ̄ = (γ, γ) of Γ
with the straight segment connecting the origin with R̄ is obtained for

γ =
(

1− 1√
2

)
R ,
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0

R R

R

x

µ(τ)

ρ(τ)

Γ

γ
τ

µ(τ)τ γ

Figure 4: Construction of a foliation in Ω̃.

cf. Figure 4. We consider foliations of the described type where each point τ̄ = (τ, τ) on the
straight segment connecting the origin with γ̄ uniquely identifies an arc of the foliation and where
each circular arc touches the straight boundary of Ω̃ with its ends. Hence it is reasonable to
parametrize the curves of the foliation by means of τ ∈ [0, γ] such that the arc associated with
τ contains the point τ̄ = (τ, τ). Consequently, a foliation is uniquely described by a function
ρ : [0, γ] → R+ giving the radius of the corresponding circular arc. An important question now
is to determine functions ρ : [0, γ] → R+ that really give a foliation of Ω̃. Moreover we have to
compute from ρ the relevant quantities needed in our subsequent analysis.

Let us discuss how we can recognize whether a family of curves given by means of some
function ρ is a foliation of Ω̃. We readily verify that the center of the circular arc containing (τ, τ)
and having radius ρ(τ) is given by µ̄(τ) = (µ(τ), µ(τ)) with

µ(τ) = τ +
ρ(τ)√

2
.

Thus we can identify the points on the circular arc corresponding to τ by assigning some σ such
that

x1(τ, σ) = µ(τ) + ρ(τ) cos σ = τ +
ρ(τ)√

2
+ ρ(τ) cos σ (5.13)

x2(τ, σ) = µ(τ) + ρ(τ) sinσ = τ +
ρ(τ)√

2
+ ρ(τ) sinσ (5.14)

where σ belongs to a suitable subinterval Iτ ⊂ [π, 3π/2] dependent on τ . If we can find % such
that (5.13), (5.14) defines a smooth change of coordinates between (τ, σ) and (x1, x2) on Ω̃, then %

obviously provides a foliation of Ω̃. In that case we denote the inverse transformation by τ = τ(x),
σ = σ(x) and we introduce the functions

r(x) := ρ(τ(x)) , m(x) := µ(τ(x)) (5.15)

for our further analysis. The unit normal field corresponding to the foliation and pointing away
from Γ is obviously given by

ν(x) =

(
cos σ(x)
sinσ(x)

)
. (5.16)
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In order to construct different foliations we take R0 ∈ [0, R] as parameter and look for

ρ : [0, γ] → [R0, R] with ρ(0) = R0 , ρ(γ) = R .

The next lemma provides sufficient conditions ensuring that % defines a foliation of Ω̃.

Lemma 5.17 Let ρ : [0, γ] → [R0, R] with ρ ∈ C1([0, γ]) satisfy the following conditions:

(i) ρ(0) = R0 , ρ(γ) = R ,

(ii) ρ(τ) ≥
(√

2 + 2
)
τ for all τ ∈ [0, γ] ,

(iii) 0 ≤ ρ′(τ) ≤
√

2 + 2 for all τ ∈ [0, γ] .

Then (5.13),(5.14) defines a change of variables of class C1 on Ω̃ and, thus, ρ determines a
foliation of Ω̃ such that, with the corresponding unit normal field ν according to (5.16), relation
(4.11) is applicable.

Examples given in Section 6 show that for any R0 ∈ [0, R] there is at least one foliation
satisfying conditions (i)-(iii) of Lemma 5.17.

Proof. According to our previous discussion, ρ defines a family of circular arcs parametrized by
τ on Ω̃. We readily obtain that condition (ii) is equivalent with

ρ(τ) ≥ µ(τ) on [0, γ] ,

i.e., each arc touches the straight part of ∂Ω̃ with its ends. Using representation (5.13),(5.14) we
can explicitly determine the intervals Iτ = [σ1(τ), σ2(τ)] ⊂ [π, 3

2π] by solving the equations

τ +
ρ(τ)√

2
+ ρ(τ) cos σ1(τ) = 0 ,

τ +
ρ(τ)√

2
+ ρ(τ) sinσ2(τ) = 0 ,

and we obtain

σ1(τ) = 2π − arccos
(
− τ

ρ(τ)
− 1√

2

)
,

σ2(τ) = π − arcsin
(
− τ

ρ(τ)
− 1√

2

)
.

Thus (5.13), (5.14) is defined on

M := {(σ, τ)| τ ∈ (0, γ), σ ∈ (σ1(τ), σ2(τ))} .

Let us now analyze transformation (5.13), (5.14) by means of the inverse function theorem.
We calculate

det

(
∂x1
∂τ (τ, σ) ∂x1

∂σ (τ, σ)
∂x2
∂τ (τ, σ) ∂x2

∂σ (τ, σ)

)
=
(

1 +
1√
2
ρ′(τ) + ρ′(τ) cos σ

)
ρ(τ) cos σ

+
(

1 +
1√
2
ρ′(τ) + ρ′(τ) sinσ

)
ρ(τ) sinσ
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= ρ(τ)
((

1 +
1√
2
ρ′(τ)

)
(cos σ + sinσ) + ρ′(τ)

)
. (5.18)

Obviously condition (iii) implies that

ρ′(τ)√
2 + ρ′(τ)

≤ 1√
2

on [0, γ] .

Since

−cos + sin√
2

((
π,

3
2
π
))

=
(

1√
2
, 1
)

,

we obtain
ρ′(τ)√

2 + ρ′(τ)
< −cos σ + sinσ√

2

and, thus, (
1 +

1√
2
ρ′(τ)

)
(cos σ + sinσ) + ρ′(τ) < 0 on M .

We have %(τ) > 0 on (0, γ) by (ii) and, therefore, the expression in (5.18) is negative on M . Hence
transformation (5.13), (5.14) is locally a C1-diffeomorphism.

Let us denote by

ϕ1(τ) := x1(τ, σ2(τ)) = τ +
ρ(τ)√

2
+ ρ(τ) cos σ2(τ)

the x1-coordinates of the end points of the arcs on the x1-axis. Hence

ϕ′1 = 1 + ρ′
( 1√

2
+ cos σ2

)
− ρσ′2 sinσ2

= 1 + ρ′
( 1√

2
+ cos σ2

)
+

τ
ρ + 1√

2√
1− ( τ

ρ + 1√
2
)2

≥ 1 + ρ′
( 1√

2
− 1
) (iii)

≥ 0 . (5.19)

Using the symmetry of Ω̃ and of the circular arcs with respect to the bisector, this implies that
the circular arcs do not intersect or touch each other. Therefore the transformation (5.13), (5.14)
is bijective.

We still have to show that the image of M under transformation (5.13), (5.14) coincides with
Ω̃. Obviously, the image of M is a subset of Ω̃ and let us assume that there is some point of
Ω̃ that does not belong to the image. Then the image of M must also have a boundary point
(x̂1, x̂2) ∈ Ω̃. Clearly, (x̂1, x̂2) has to be contained in the image of the closure of M and, thus, it
has to be in the image of the boundary ∂M . But this is a contradiction, since ∂M is mapped on
∂Ω̃. ♦

5.2 Vector fields z on Ω \ C

We now intend to construct continuous vector fields z on Ω̃ satisfying (4.4) and (4.7) by using
the ansatz (4.12). For that we fix a foliation of Ω̃ as constructed in the previous section that
corresponds to some ρ satisfying the assumptions of Lemma 5.17. By ν(·) we denote the unit
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normal field associated to the foliation and pointing away from Γ. Thus we are looking for vector
fields z of the form

z(x) = −ν(x)a(x) (5.20)

with a scalar function a : Ω̃ → R. Since

div ν(x) =
1

r(x)
∈ (1/R,∞)

by (4.11), (5.15), we get for a differentiable a

div (ν(x)a(x)) = ν(x) ·Da(x) + a(x) div ν(x)

= ν(x) ·Da(x) +
a(x)
r(x)

.

Moreover we have λ = 1/R. Thus (4.4) is equivalent to

ν(x) ·Da(x) +
a(x)
r(x)

=
s(x)
R

on Ω̃ (5.21)

and (4.7) provides the boundary condition

a(x) = 1 on Γ . (5.22)

This is a linear inhomogeneous partial differential equation of first order for a which can be
solved by the method of characteristics as long as the right hand side of (5.21) is continuous (cf.
[9, p. 97]). In our case the right hand side is merely measurable. We will show explicitly that the
method of characteristics can be applied in this case as well in order to verify the next lemma.

Lemma 5.23 Let s : Ω̃ → [−1, 1] be a measurable function satisfying (4.1) and let ν be the unit
normal field according to (5.16) that is associated with a foliation of Ω̃ satisfying the assumptions
of Lemma 5.17 and pointing away from Γ. Then there is a continuous function a : cl Ω̃ → [0, 1]
such that

a(x) = 1 on Γ

and
Div aν = λs a.e. on Ω̃

in the sense of distributions.

At the end of this section we will use the vector field z := −aν on Ω̃ in order to verify
Theorem 4.5.

Proof. We construct the function a by explicitly carrying out the method of characteristics for
the linear partial differential equation (5.21) with boundary condition (5.22).

Characteristics. Let us start with the construction of the characteristics. We parametrize the
boundary curve Γ by

x0
1(ξ) = R + R cos ξ ,

x0
2(ξ) = R + R sin ξ
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with ξ ∈
(
π, 3

2π
)
. Thus the characteristics, parametrized by t, must satisfy

ẋ1(t, ξ) = ν1(x(t, ξ)) , x1(0, ξ) = x0
1(ξ) = R + R cos ξ (5.24)

ẋ2(t, ξ) = ν2(x(t, ξ)) , x2(0, ξ) = x0
2(ξ) = R + R sin ξ , (5.25)

where ẋ denotes the derivative of x with respect to t. Using (5.15), we have

ν(x) =
x−m(x)
|x−m(x)|

=
x−m(x)

r(x)
on Ω̃ .

Therefore (5.24), (5.25) can be written as

ẋ1(t, ξ) =
x1(t, ξ)−m(x(t, ξ))

r(x(t, ξ))
, x1(0, ξ) = R + R cos ξ ,

ẋ2(t, ξ) =
x2(t, ξ)−m(x(t, ξ))

r(x(t, ξ))
, x2(0, ξ) = R + R sin ξ .

The vector valued function
f(x) :=

x−m(x)
r(x)

is locally Lipschitz continuous on R × Ω̃, since r, m are of class C1 and r(x) > 0 on Ω̃, cf.
Lemma 5.17 (ii). Consequently, for any ξ ∈ (π, 3

2π) the initial value problem has a unique local
solution which can be extended up to the boundary of R× Ω̃.

Let x(·, ξ) exist on the interval [0, t(ξ)) for some t(ξ) ∈ (0,∞]. We want to show that t(ξ) < ∞
and x(t(ξ), ξ) ∈ ∂Ω̃ \Γ. For that we consider the orthogonal linear projection P : R2 → B on the
linear subspace

B := {x = (x1, x2) ∈ R2 | x1 = x2}

generated by the vector (1, 1). Obviously,

Px =
(x1 + x2)

2

(
1
1

)
for all x = (x1, x2) .

We apply P on both sides of the differential equations in (5.24), (5.25) and get

Pẋ(t, ξ) = Pν(x(t, ξ)) .

Since P is linear, this can be written as

d

dt
(Px(t, ξ)) = Pν(x(t, ξ)) .

By |ν(x(t, ξ))| = 1 and ν1(x), ν2(x) ≤ 0 on Ω̃,∣∣∣∣ d

dt
(Px(t, ξ))

∣∣∣∣ = |Pν(x(t, ξ))|

=
1√
2
|ν1(x(t, ξ)) + ν2(x(t, ξ))|

=
1√
2

(|ν1(x(t, ξ))|+ |ν2(x(t, ξ))|)
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≥ 1√
2

√
ν2
1(x(t, ξ)) + ν2

2(x(t, ξ))

=
1√
2

.

Using also ẋ(t, ξ) = ν(x(t, ξ)), we can conclude that, for each ξ, the projection of the characteristic
“moves” at least with speed 1/

√
2 > 0 towards the origin. Therefore all characteristics have to

leave Ω̃ through ∂Ω̃ \ Γ, cf. Figure 5. This way we in particular obtain that t(ξ) < ∞.

Figure 5: Characteristics in Ω̃.

Since ν ∈ C1(Ω̃) by (5.16) and Lemma 5.17, solution x is of class C2 as function of t and the
initial value x0 = x0(ξ), cf. [19]. By x0 ∈ C∞(R) we conclude that (t, ξ) → x(t, ξ) is of class C2

too. Below we show that

d

dt
|det Dx(t, ξ)| = |det Dx(t, ξ)|

r(x(t, ξ))
, det Dx(0, ξ) > 0 (5.26)

which implies detDx(t, ξ) > 0. Since the characteristics cannot cross each other, they have to
cover the whole set Ω̃. Consequently, (t, ξ) → x(t, ξ) has to be invertible on

{(t, ξ)| ξ ∈ (π, 3
2π), t ∈ [0, t(ξ))}

and there are functions t(·), ξ(·) on Ω̃ of class C1 such that x = x(t(x), ξ(x)).
For the verification of (5.26) we introduce the notation

xi
t := ẋi , xi

ξ :=
d

dξ
xi , νi

xj
:=

∂

∂xj
νi , i, j = 1, 2 .

Hence

det Dx(t, ξ) = det

(
x1

t (t, ξ) x1
ξ(t, ξ)

x2
t (t, ξ) x2

ξ(t, ξ)

)
= x1

t (t, ξ)x
2
ξ(t, ξ)− x2

t (t, ξ)x
1
ξ(t, ξ) .

By ν ∈ C1 and x ∈ C2 we derive from (5.24), (5.25)

xtt(t, ξ) =
d

dt
ν(x(t, ξ)) = Dν(x(t, ξ)) · xt(t, ξ) ,

xtξ(t, ξ) =
d

dξ
ν(x(t, ξ)) = Dν(x(t, ξ)) · xξ(t, ξ) ,
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and calculate

d

dt
det Dx(t, ξ) =

d

dt

(
x1

t (t, ξ)x
2
ξ(t, ξ)− x2

t (t, ξ)x
1
ξ(t, ξ)

)
= x1

tt(t, ξ)x
2
ξ(t, ξ) + x1

t (t, ξ)x
2
ξt(t, ξ)− x2

tt(t, ξ)x
1
ξ(t, ξ)− x2

t (t, ξ)x
1
ξt(t, ξ)

= x2
ξ(t, ξ)

(
ν1

x1
(x(t, ξ))x1

t (t, ξ) + ν1
x2

(x(t, ξ))x2
t (t, ξ)

)
+ x1

t (t, ξ)
(
ν2

x1
(x(t, ξ))x1

ξ(t, ξ) + ν2
x2

(x(t, ξ))x2
ξ(t, ξ)

)
− x1

ξ(t, ξ)
(
ν2

x1
(x(t, ξ))x1

t (t, ξ) + ν2
x2

(x(t, ξ))x2
t (t, ξ)

)
− x2

t (t, ξ)
(
ν1

x1
(x(t, ξ))x1

ξ(t, ξ) + ν1
x2

(x(t, ξ))x2
ξ(t, ξ)

)
= ν1

x1
(x(t, ξ))

(
x1

t (t, ξ)x
2
ξ(t, ξ)− x1

ξ(t, ξ)x
2
t (t, ξ)

)
+ ν2

x2
(x(t, ξ))

(
x1

t (t, ξ)x
2
ξ(t, ξ)− x1

ξ(t, ξ)x
2
t (t, ξ)

)
=
(
ν1

x1
(x(t, ξ)) + ν2

x2
(x(t, ξ))

) (
x1

t (t, ξ)x
2
ξ(t, ξ)− x1

ξ(t, ξ)x
2
t (t, ξ)

)
= div ν(x(t, ξ)) det Dx(t, ξ)

=
det Dx(t, ξ)
r(x(t, ξ))

. (5.27)

Notice that this gives the equation in (5.26) without modulus.
For t = 0 we have xξ(0, ξ) = x0

ξ(ξ), i.e. xξ(0, ξ) is tangent to the boundary curve Γ. Thus
ν(x(0, ξ)) = xt(0, ξ) and x⊥ξ (0, ξ) := (x2

ξ(0, ξ),−x1
ξ(0, ξ)) point into the same direction and

det Dx(0, ξ) = x1
t (0, ξ)x2

ξ(0, ξ)− x2
t (0, ξ)x1

ξ(0, ξ)

= xt(0, ξ) · x⊥ξ (0, ξ)

= |x⊥ξ (0, ξ)| > 0 .

Using (5.27) we see that t → det Dx(t, ξ) has to be increasing for all t ≥ 0. But this verifies (5.26).
Since x(t, ξ) is invertible and t(x), ξ(x) ∈ C1 are bijective, we have a change of coordinates of
class C1.

Differential equation. In order to determine the unknown function a on the characteristics we
have to compute α(t, ξ) := a(x(t, ξ)) by solving the initial value problem

α̇(t, ξ) =
s(x(t, ξ))

R
− α(t, ξ)

r(x(t, ξ))
, α(0, ξ) = 1 (5.28)

for all ξ. Since s is merely measurable, we cannot solve (5.28) in the classical sense. Instead, we
solve it in the sense of Carathéodory and apply some corresponding extension of the existence
and uniqueness Theorem of Picard-Lindelöf, cf. [19]

We consider the right hand side

f(t, α) :=
s(x(t, ξ))

R
− α

r(x(t, ξ))

of (5.28) on a set J ×R where J ⊂ [0, t(ξ)) is a nonempty closed interval. Clearly, f is continuous
in α for any fixed t ∈ J and, since 1/r(x(·, ξ)) is bounded on the closed interval J , the function
f is measurable and integrable in t on J for any fixed α ∈ R. Since

|f(t, α)− f(t, α̃)| =
∣∣∣∣ α

r(x(t, ξ))
− α̃

r(x(t, ξ))

∣∣∣∣
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=
1

r(x(t, ξ))
|α− α̃| for all t ∈ J, α, α̃ ∈ R ,

f satisfies a Lipschitz condition in α with a Lipschitz constant

l(t) :=
1

r(x(t, ξ))

that is measurable and integrable on J . Therefore equation (5.28) has a unique local solution in
the sense of Carathéodory for any ξ ∈ (π, 3

2π).
Let us prove that |α(·, ξ)| ≤ 1 on any closed J ⊂ [0, t(ξ)) in order to justify that α(·, ξ) can be

extended on the whole interval [0, t(ξ)). For any fixed J we assume that there is some t+ ∈ J with
α(t+, ξ) > 1. Since α is continuous in t, there exists a largest t1 ∈ [0, t+), such that α(t1) = 1. By

α(t+, ξ) = α(t1, ξ) +
∫ t+

t1

s(x(τ, ξ))
R

− α(τ, ξ)
r(x(τ, ξ))

dτ

and
s(x(τ, ξ))

R
− α(τ, ξ)

r(x(τ, ξ))
<

1
R
− 1

r(x(τ, ξ))
≤ 0 for all τ ∈ (t1, t+)

we obtain the contradiction α(t+, ξ) ≤ 1. Hence α(·, ξ) ≤ 1 and, analogously, α(·, ξ) ≥ −1 on any
J . Therefore we have solutions α(·, ξ) of (5.28) on [0, t(ξ)).

Defining a(x) := α(t(x), ξ(x)), we clearly have a(x) = 1 on Γ and it remains to show that

Div (a(x)ν(x)) =
s(x)
R

on Ω̃

in the sense of distributions, i.e.,

−
∫

Ω̃
a(x)ν(x) ·Dϕ(x) dx =

∫
Ω̃

s(x)
R

ϕ(x) dx

for all ϕ ∈ C1
c (Ω̃). Notice that ϕ(x(·, ·)) has compact support on

M :=
{
(t, ξ) ∈ R2

∣∣ ξ ∈ (π, 3
2π
)
, t ∈ [0, t(ξ))

}
for ϕ ∈ C1

c (Ω̃). Thus we obtain for any ϕ ∈ C1
c (Ω̃)

−
∫

Ω̃
a(x)ν(x) ·Dϕ(x) dx

= −
∫

M
a(x(t, ξ))ν(x(t, ξ)) ·Dϕ(x(t, ξ)) |det Dx(t, ξ)| d(t, ξ)

= −
∫

M
α(t, ξ) ẋ(t, ξ) ·Dϕ(x(t, ξ)) |det Dx(t, ξ)| d(t, ξ)

= −
∫ 3

2
π

π

∫ t(ξ)

0
α(t, ξ) |det Dx(t, ξ)| d

dt
ϕ(x(t, ξ)) dt dξ

=
∫ 3

2
π

π

∫ t(ξ)

0

d

dt

(
α(t, ξ) |det Dx(t, ξ)|

)
ϕ(x(t, ξ)) dt dξ

=
∫

M

(
α̇(t, ξ) |det Dx(t, ξ)|+ α(t, ξ)

d

dt
|det Dx(t, ξ)|

)
ϕ(x(t, ξ)) d(t, ξ)
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=
∫

M

(
α̇(t, ξ) +

α(t, ξ)
|det Dx(t, ξ)|

d

dt
|det Dx(t, ξ)|

)
ϕ(x(t, ξ)) |det Dx(t, ξ)| d(t, ξ)

(5.26)
=

∫
M

(
α̇(t, ξ) +

α(t, ξ)
r(x(t, ξ))

)
ϕ(x(t, ξ)) |det Dx(t, ξ)| d(t, ξ)

(5.28)
=

∫
M

s(x(t, ξ))
R

ϕ(x(t, ξ)) |det Dx(t, ξ)| d(t, ξ)

=
∫

Ω̃

s(x)
R

ϕ(x) dx

which verifies Lemma 5.23. ♦

Proof of Theorem 4.5. Let s be fixed as in the theorem. Then we choose a foliation of Ω̃ satisfying
the assumptions of Lemma 5.17 with the associated unit normal field ν pointing away from Γ.
Let a be the corresponding function according to Lemma 5.23. Then we extend ν, a on all of
Ω \ C by symmetry. Using (4.10), we see that

z(x) :=

−
Dw(x)√

1+|Dw(x)|2
if x ∈ C ,

−a(x)ν(x) if x ∈ Ω \ C
(5.29)

satisfies equations (4.3), (4.4). Clearly ‖z‖∞ ≤ 1 and the boundary condition in (4.7) is satisfied
by (4.9) and a = 1 on Γ. Hence it remains to show Div z ∈ L2(Ω) in order to verify (4.7) which
is equivalent to (4.2). We know that Div z ∈ L2(C) and Div z ∈ L2(Ω̃) for the corresponding
restrictions of z. For any v ∈ C∞

0 (Ω) ⊂ BV (Ω) and the outer unit normal νC on ∂C we can apply
(3.2) on C and Ω \ C to obtain

0 =
∫

∂C∩Ω
vz · νC dH1 +

∫
∂C∩Ω

vz · (−νC) dH1

=
∫

∂C
vz · νC dH1 +

∫
∂(Ω\C)

vz · νΩ\C dH1

=
∫

C
z ·Dv dx +

∫
C

vDiv z dx +
∫

Ω\C
z ·Dv dx +

∫
Ω\C

vDiv z dx

=
∫

Ω
z ·Dv dx +

∫
Ω

vDiv z dx .

This implies that Div z on Ω in the sense of distributions is just the composition of Div z on C

and on Ω \ C. Hence Div z ∈ L2(Ω) and z satisfies (4.2) - (4.4).
The previous construction works for any foliation of the considered type. As seen in the

previous section we can find infinitely many foliations such that the corresponding fields ν of unit
normals differ pairwise. By (5.29) we then obtain vector fields z that differ pairwise on Ω\C and,
in particular, on ∂Ω \ ∂C.

♦

6 Special example

Here we show that a function with linear growth satisfies conditions (i)-(iii) of Lemma 5.17. For
fixed R0 ∈ [0, R] we consider

ρ(τ) :=
(√

2 + 2
)(

1− R0

R

)
τ + R0 . (6.1)
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Since
ρ(0) = R0 , ρ(γ) = R

for γ = 1− 1/
√

2, function ρ satisfies (i). Condition

ρ(τ) ≥
(√

2 + 2
)

τ

is obviously equivalent to τ ≤ γ and, thus, ρ satisfies (ii). From

ρ′(τ) =
(√

2 + 2
)

(1−R0/R)

we conclude that 0 ≤ ρ′(τ) ≤
√

2+2 and, thus, (iii) is satisfied. Consequently, for any R0 ∈ [0, R]
we obtain at least one function ρ satisfying the assumptions of Lemma 5.17 by (6.1).

Let us analyze the particular foliation of Ω̃ corresponding to ρ in (6.1) with R0 = 0 in some
more detail. It turns out that all circular arcs are tangential to both the x1-axis and the x2-axis
at the touching points, cf. Figure 6. The center of each circular arc is the point r := (r, r) where

R

R

R

0

Figure 6: Foliation of Ω̃ by arcs with de-
creasing radii.

r(x)

0

RR

R

r(x)

r(x)

x

Figure 7: Construction of r(x) in Ω̃.

r is the radius of the arc, cf. Figure 7. Clearly, r(x) has to satisfy

|x− r(x)| = r(x) and |x| ≤ r(x)

and a simple computation implies that

r(x) = x1 + x2 +
√

2x1x2 on Ω̃ .

To get some information about the vector field z, let us calculate α explicitly along the charac-
teristic corresponding to σ = 5

4π for s ≡ 1. From (5.24), (5.25), and (5.16) we readily obtain for
that characteristic

x1(0) = R + R cos
(

5
4
π

)
= γ , x2(0) = R + R sin

(
5
4
π

)
= γ ,

and
x1(t) = x2(t) , ẋ1(t) = ẋ2(t) = − 1√

2
.
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Thus
x1(t) = x2(t) = − 1√

2
t + γ .

Since
r(x(t)) = −

(√
2 + 1

)
t + R ,

we have to solve the initial value problem

α̇(t) =
1
R
− α(t)
−
(√

2 + 1
)
t + R

, α(0) = 1

to get α along the special characteristic. As explicit solution of the linear problem we obtain

α(t) =
(

1 +
1√
2

)(
−1 +

√
2

R
t + 1

)√2−1

− 1√
2

(
−1 +

√
2

R
t + 1

)
,

see Figure 8. Moreover we obtain that x1(t) = x2(t) = 0 for t =
(√

2− 1
)
R =

√
2γ, i.e. t

(
5
4π
)

=

0
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Figure 8: Graph of α for R = 1.
√

2γ. Hence
α(
√

2γ) = α
((√

2− 1
)

R
)

= 0 ,

i.e., the length of the vectors z(x) approaches zero if x approaches the origin.
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