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Abstract
Eigenfunctions of the p-Laplace operator for p > 1 are defined to be critical points of

an associated variational problem or, equivalently, to be solutions of the corresponding
Euler-Lagrange equation. In the highly degenerated limit case of the 1-Laplace operator
eigenfunctions can also be defined to be critical points of the corresponding variational
problem if critical points are understood on the basis of the weak slope. However, the
associated Euler-Lagrange equation has many solutions that are not critical points and,
thus, it cannot be used for an equivalent definition. The present paper provides a new
necessary condition for eigenfunctions of the 1-Laplace operator by means of inner vari-
ations of the associated variational problem and it is shown that this condition rules out
certain solutions of the Euler-Lagrange equation that are not eigenfunctions.

1 Introduction

For an open bounded Ω ⊂ Rn with Lipschitz boundary a solution of the variational problem∫
Ω
|Du|p dx → Min! in W1,p

0 (Ω) with
∫

Ω
|u|p dx = 1 , (1.1)

1 < p < ∞, has to satisfy the Euler-Lagrange equation

−div |Du|p−2Du = λ|u|p−2u on Ω . (1.2)

By definition, any solution u ∈ W1,p
0 (Ω) of this Euler-Lagrange equation is a critical point of

the corresponding variational problem (1.1) and it is called an eigenfunction of the p-Laplace
operator. In the limit case p = 1 equation (1.2) becomes

−div
Du

|Du|
= λ

u

|u|
on Ω (1.3)
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and, due to a number of difficulties, we cannot define eigenfunctions of the 1-Laplace operator
as solutions of (1.3). First we observe that (1.1) for p = 1 does not have a minimizer in
W1,1

0 (Ω) but merely in BV (Ω) so that we have to consider∫
Ω

d|Du|+
∫

∂Ω
|u| dHn−1 → Min! in BV (Ω) with

∫
Ω
|u| dx = 1 (1.4)

instead of (1.1) where the surface integral replaces homogeneous boundary conditions (cf.
Kawohl & Schuricht [21]). Since the characteristic function u = χC of a Cheeger set C of Ω,
that is a strict subset of Ω in general, is always a minimizer of (1.4) (cf. [21]), equation (1.3)
is highly degenerate and needs a suitable interpretation. In [21] it is shown that, as necessary
condition for a minimizer of (1.4), in a first step (1.3) can be replaced with one equation, that
we want to call single equation, containing well-defined substitutes for Du/|Du| and u/|u|.
But in the end, it turns out that (1.3) can be even replaced with infinitely many equations
for u, a condition that we want to call multiple equation, cf. Section 2. Nevertheless, both
interpretations of (1.3) seem to be inappropriate for a definition of eigenfunctions, since there
are either too many solutions or, eventually, only minimizer solve it. While the definition
of the first eigenfunction of the 1-Laplace operator as minimizer of the variational problem
is clear, the definition of higher eigenfunctions as critical points of the variational problem
is neither obvious nor unique. In Milbers & Schuricht [23] and Chang [6] eigenfunctions
of the 1-Laplace operator are critical points of the variational problem in the sense that
the weak or the strong slope of an assigned function vanishes. Here the different slopes
and an interesting norm dependence may lead to different sets of eigenfunctions. Moreover,
a completely different approach for defining higher eigenvalues of the 1-Laplace operator
by means of multiple Cheeger sets is given by Parini [25]. It is still quite open how both
approaches are related to each other.

The eigenfunctions that are critical points of (1.4) with vanishing weak or strong slope
have to satisfy (1.3) in the sense of a single equation. However, this equation provides many
solutions that are not expected to be critical points of the associated variational problem.
Therefore further necessary conditions for critical points are needed to single out such solu-
tions of (1.3) that are not critical. In calculus of variations perturbations of a solution u of
the form

v(x, t) = u(x) + tξ(x) for ξ ∈ C∞0 (Ω) ,

also called outer variations, are usually considered to derive the Euler-Lagrange equation as
necessary condition. But, occasionally, also so called inner variations

v(x, t) = u(x + tξ(x)) for ξ ∈ C∞0 (Ω, Rn)

are used. However, the corresponding necessary condition is always satisfied for C2-solutions
of the Euler-Lagrange equation and, thus, it plays a minor role for many problems. But several
examples show that inner variations might provide an additional information for nonsmooth
minimizer, cf. Giaquinta & Hildebrandt [19, Chapter 3.1].

If one combines the method of inner variations with a Lagrange multiplier rule, a mini-
mizer of problem (1.1) for 1 < p < ∞ has to satisfy∫

Ω

〈
|Du|p−2Du , Dξ Du

〉
−|Du|pdiv ξdx = −λ

∫
Ω
|u|pdiv ξdx for all ξ ∈ C∞0 (Ω, Rn) . (1.5)

Since minimizer are merely in C1,α
loc (Ω) (cf. DiBenedetto [14, Theorem 2]) but not in C2(Ω), it

is not clear whether (1.5) follows from (1.2) in general. But this fact is not disturbing, since
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eigenfunctions of the p-Laplace operator for 1 < p < ∞ are defined to be solutions of (1.2) and,
by definition, they uniquely correspond to the critical points of the corresponding variational
problem. However, in the limit case p = 1 there is a completely different situation. Though
also here the eigenfunctions are defined as critical points of the corresponding variational
problem, this is done by means of a notion that is in some sense independent of the Euler-
Lagrange equation. Thus it seems that eigenfunctions cannot be characterized as solutions
of a reasonable version of (1.3).

Having in mind that eigenfunctions of the 1-Laplace operator might be piecewise constant
and, thus, highly nonsmooth, one can expect that the evaluation of inner variations might
provide an extra condition by giving meaning to the formal limit of (1.5)∫

Ω

(〈
Du

|Du|
, Dξ

Du

|Du|

〉
− div ξ

)
|Du| dx = −λ

∫
Ω
|u|div ξ dx . (1.6)

The derivation of a precise condition replacing (1.6) and the investigation of further con-
sequences is the main purpose of the present paper. Here we have to extend the classical
approach with inner variations, that had been used merely for minimizer before, to critical
points of a highly degenerate variational problem. This way we provide a new condition
that rules out many “artificial” solutions of the Euler-Lagrange equation (1.3) interpreted as
single equation.

In Section 2 we briefly discuss difficulties in formulating the eigenvalue problem for the
1-Laplace operator and we present an example showing that the solutions of equation (1.3),
interpreted as single equation, would provide a continuum of eigenvalues where “almost”
each of them has a continuum of normalized eigenfunctions. Section 3 collects several tools
from nonsmooth analysis. In particular we introduce the notions of weak and strong slope
and we prove a new characterization of the weak slope for lower semicontinuous functions.
Moreover we provide the convex subdifferentials for the nonsmooth functions occurring in
problem (1.4). In Section 4 first higher eigenfunctions of the 1-Laplace operator are defined
as critical points by means of the weak slope. Then we formulate a precise replacement for
the formal limit equation (1.6) as necessary condition for eigenfunctions that is based on
inner variations. The proof essentially rests on a proposition stated at the end of this section.
Consequences of the new necessary condition are studied in Section 5. First it is shown
that the “many” solutions of the single version of equation (1.3) that are not expected to be
critical points do not satisfy the new condition. Then the scalar case n = 1 is investigated
and all eigenfunctions are determined. At the end of Section 5 some general consequences of
the new necessary condition for eigenfunctions are derived. The major proofs are collected
in Section 6.

Acknowledgement. Let us thank Marco Degiovanni (Brescia) for interesting discussions
and valuable hints.

Notation. For a set A let Ā denote its closure and ∂A its boundary. Its indicator
function IA and its characteristic function χA are defined by

IA(x) :=
{

0 for x ∈ A ,
∞ otherwise ,

χA(x) :=
{

1 for x ∈ A ,
0 otherwise .

The usual sign function on R is sgn (·) and the set-valued sign function is

Sgn (α) :=


1 if α > 0,
[−1, 1] if α = 0,
−1 if α < 0.
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The open δ-neighborhood of u is denoted by Bδ(u) and Hk stands for the k-dimensional
Hausdorff measure. We write Lp(Ω) for the p-integrable functions on Ω and Lp′(Ω) with
1
p + 1

p′ = 1 for its dual. The Sobolev space W1,p(Ω) contains all p-integrable functions having
p-integrable weak derivatives. C∞0 (Ω) are the infinitely often differentiable functions with
compact support. BV (Ω) denotes the space of functions of bounded variation where |Du| is
the total variation measure for these functions. spt f stands for the support of function f
and f(x±) for its limit at x from the right or left. For the Banach space X its dual is X∗

and 〈·, ·〉 is the duality form on X∗ ×X. The convex subdifferential of F is ∂F and we write
id for the identity mapping.

2 Eigenvalue problem

Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary. For u ∈ BV (Ω) we consider
the variational problem

E(u) :=
∫

Ω
d|Du|+

∫
∂Ω
|u| dHn−1 → Min! , u ∈ BV (Ω) , (2.1)

with respect to the constraint

G(u) :=
∫

Ω
|u| dx = 1 . (2.2)

Here the surface integral in (2.1) is a replacement for homogeneous boundary conditions
in BV (Ω) (cf. [21]). Problem (2.1), (2.2) has always a solution u ∈ BV (Ω) which is not
necessarily unique and which is called (first) eigenfunction of the 1-Laplace operator. In
Kawohl & Schuricht [21] it is shown that any minimizer u ∈ BV (Ω) of (2.1), (2.2) satifies the
eigenvalue equation

−div z = λs a.e. on Ω, λ = E(u) (2.3)

where z ∈ L∞(Ω, Rn) and s ∈ L∞(Ω) are related to u by the coupling conditions

‖z‖L∞ = 1 , div z ∈ Ln(Ω) , E(u) = −
∫

Ω
u div z dx (2.4)

and
s(x) ∈ Sgn (u(x)) a.e. on Ω . (2.5)

More precisely, adapting the usual direct methods of calculus of variations to the nonsmooth
situation met in (2.1), (2.2), one obtains the existence of a vector field z ∈ L∞(Ω, Rn) and
a function s ∈ L∞(Ω) satisfying (2.4) and (2.5) such that (2.3) holds. In addition, it is
shown in [21] by means of a new argument that for any s ∈ L∞(Ω) with (2.5) there is some
z ∈ L∞(Ω, Rn) with (2.4) such that the eigenvalue equation (2.3) is satisfied. Thus, since
a typical minimizer vanishes on a set with positive measure, a minimizer u has to satisfy
infinitely many Euler-Lagrange equations in general. Let us call u a solution of the single
eigenvalue equation if it satisfies (2.3) for one selection s satsifying (2.5) and a corresponding
z with (2.4) and let us call u a solution of the multiple eigenvalue equation if it satisfies (2.3)
for any selection s satsifying (2.5) with corresponding vector fields z satisfying (2.4).

Now a natural question is that of higher eigensolutions of the 1-Laplace operator. The
eigenfunctions of the p-Laplace operator for p > 1 are, by definition, the solutions of the Euler-
Lagrange equation of the associated variational problem. But, by our previous arguments, it
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is not immediately clear how to define eigenfunctions in the limit case p = 1. The multiple
eigenvalue equation seems to be too restrictive for the definition of higher eigensolutions, since
it is expected that merely minimizer of the variational problem might satisfy it. Alternatively
one could consider eigenfunctions to be solutions of the single eigenvalue equation. But the
example below demonstrates that also the single eigenvalue equation is inappropriate for the
definition, since it possesses “too many” solutions providing a continuum of eigenvalues.

Example. Let B = Br(x0) ⊂ Ω be a ball with radius r > 0 and center x0 ∈ Ω that
is compactly contained in Ω (i.e. ∂B does not touch ∂Ω). We claim to show that the
BV -function

v(x) :=
1
|B|

χB(x) on Ω

satisfies the single eigenvalue equation (2.3). Clearly,

λ = E(v) =
|∂B|
|B|

=
n

r
.

We choose the continuous vector field

z(x) :=

{
x0−x

r for x ∈ B ,
x0−x
|x0−x| for x ∈ Ω \B ,

where all z(x) point to the center x0 of B. Obviously,

−div z =
n

r
= λ on B .

Since z is the unit normal field to the foliation of Ω \B by concentric spheres centered at x0

and pointing to the center, we have that

−div z(x) =
n− 1
|x0 − x|

on Ω \B

where the expression on the right hand side is just the mean curvature of the sphere containing
point x (notice that div z jumps across ∂B). We readily see that ‖z‖L∞ = 1, z ∈ Ln(Ω), and

−
∫

Ω
v div z dx = − 1

|B|

∫
B

div z dx =
1
|B|

∫
∂B

dHn−1 =
|∂B|
|B|

= E(v) ,

i.e. z satisfies the coupling condition (2.4). Certainly

s(x) :=

{
1 for x ∈ B ,
n−1

n
r

|x0−x| for x ∈ Ω \B ,

satisfies the coupling condition (2.5) and we conclude that the eigenvalue equation

−div z = λs a.e. on Ω with λ =
n

r

is satisfied. Consequently, v satisfies the single eigenvalue equation.
Notice that we obtain “very many” solutions of the single eigenvalue equation by changing

the center x0 ∈ Ω and the radius r > 0 of the ball B. In particular there is a solution v for
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any λ ∈ ( n
r0

,∞) where r0 denotes the radius of the largest ball contained in Ω. Moreover,
for any λ ∈ ( n

r0
,∞) we have a continuum of normalized solutions v by slightly moving the

center x0.

From the previous example we conclude that, in general, we would get a continuum of
eigenvalues λ with a continuum of normalized eigenfunctions v for “most” eigenvalues if we
would define eigenfunctions as solutions of the single eigenvalue equation. But this seems
to be inappropriate. Thus it turns out that neither the single nor the multiple eigenvalue
equation are suitable to define higher eigenfunctions of the 1-Laplace operator.

Alternatively we can consider to define higher eigenfunctions as critical points of E subject
to the constraint G(v) = 1. But, in contrast to the classical case p > 1, here we are confronted
with the difficulty that both E and G are not differentiable and, therefore, the usual definition
of critical points being solutions of the Euler-Lagrange equation is not available. However
we can use a theory of critical points for nondifferentiable functionals that uses a notion of
critical points independent of an Euler-Lagrange equation. Let us provide the necessary tools
in the next section.

3 Tools of nonsmooth analysis

3.1 Weak slope

Let us introduce the notion of weak slope as formulated in Degiovanni & Marzocchi [12]. We
assume X to be a metric space endowed with metric d and let f : X → R be a continuous
function. For every u ∈ X we denote by |df |(u) the supremum of all ω ∈ [0,∞) for which
there exist δ > 0 and a continuous map H : Bδ(u) × [0, δ] → X such that for all v ∈ Bδ(u)
and all t ∈ [0, δ]

d(H(v, t), v) ≤ t , (3.1)

f(H(v, t)) ≤ f(v)− ωt . (3.2)

The extended real number |df |(u) is called the weak slope of f at u. Note that for differentiable
functions the weak slope corresponds to the norm of the gradient.

Now we consider a lower semicontinuous function f : X → R ∪ {∞}. We define the
domain of f by

D(f) := {u ∈ X | f(u) < ∞} (3.3)

and the epigraph of f by

epi (f) := {(u, ξ) ∈ X × R | f(u) ≤ ξ} .

The set X × R will be endowed with the metric

d((u, ξ), (v, µ)) = (d(u, v)2 + (ξ − µ)2)1/2 (3.4)

and epi (f) with the induced metric. Using the continuous function

Gf : epi (f) → R , Gf (u, ξ) = ξ , (3.5)

we define the weak slope of f at u ∈ D(f) as

|df |(u) :=


|dGf |(u,f(u))√

1−|dGf |(u,f(u))2
for |dGf |(u, f(u)) < 1,

∞ for |dGf |(u, f(u)) = 1 .
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The idea of this definition is to reduce the study of the lower semicontinuous function f to
that of the Lipschitz continuous function Gf . When f is finite and continuous on X this
definition is consistent with the first definition of the weak slope for continuous functions.
Occasionally we denote the weak slope of f at u by |df |X(u) in order to indicate that it is
taken in the metric space X.

We say that u ∈ D(f) is a critical point of f if |df |(u) = 0. The value c ∈ R is called a
critical value of f if there exists a critical point u ∈ D(f) of f with f(u) = c. Note that if
(u, f(u)) ∈ epi (f) is a critical point of Gf then u is also a critical point of f . The bijective
correspondence between the critical points of f and those of Gf is given if

inf{|dGf |(u, ξ) | f(u) < ξ} > 0 , (3.6)

cf. Canino & Degiovanni [4, Theorem 1.5.5]. If f is finite and continuous, we have
|dGf |(u, ξ) = 1 whenever f(u) < ξ. The same property holds for some important classes
of lower semicontinuous functions (cf. Canino & Perri [5], Corvellec et al. [9], Degiovanni &
Marzocchi [12]).

We are interested in critical points of f under a constraint g(u) = 0 where g : X → R is
a locally Lipschitz continuous function. We set

K := {u ∈ X | g(u) = 0} (3.7)

and call u ∈ D(f)∩K a critical point of f with respect to K (or with respect to g = 0) if u is
a critical point of f on the metric space K with induced metric d of X, i.e. if |df |K(u) = 0.
Using the indicator function IK we readily obtain the analytically useful fact that |df |K(u) = 0
if and only if |d(f + IK)|X(u) = 0 (cf. Milbers & Schuricht [24]). Notice that this definition
of critical points is independent of an associated Euler-Lagrange equation. But, in order to
obtain such an equation as necessary condition for critical points let us formulate a special
version of a Lagrange multiplier rule given in Degiovanni & Schuricht [13]. Here X is assumed
to be a Banach space, ∂f(v), ∂g(v) ⊂ X∗ denote the convex subdifferentials of f , g at v, and
g′(v;w) be the directional derivative of g at v in direction w.

Proposition 3.8 Let f : X → R∪{∞} be convex and lower semicontinuous and let g : X →
R be convex and locally Lipschitz continuous. If u ∈ D(f) ∩ K is a critical point of f with
respect to K such that there exist u± ∈ D(f) with ±g′(u;u − u±) < 0, then ∂f(u) 6= ∅ and
there are λ ∈ R, f∗ ∈ ∂f(u), g∗ ∈ ∂g(u) such that f∗ + λg∗ = 0.

Notice that the property of u ∈ X being critical depends on the metric on X in general.
We say u is a critical point on X if this uniquely refers to the corresponding metric d on X.

For an upper estimate of the weak slope one can use the strong slope (cf. De Giorgi et al.
[10]) defined for a lower semicontinuous function f : X → R ∪ {∞} at u ∈ D(f) by

|∇f |(u) :=

 lim sup
v→u

f(u)− f(v)
d(u, v)

if u is not a local minimum,

0 if u is a local minimum.

It is easily seen that |df |(u) ≤ |∇f |(u). Occasionally, we call u ∈ X a strong critical point
of f on X if |∇f |(u) = 0 and, clearly, strong critical points are critical points. |∇f |X(u)
indicates the underlying metric space X.
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For analytical arguments the previous indirect definition of |df |(u) for a lower semicontinu-
ous function f is not very convenient. Therefore, let us provide a more direct characterization
where we use the notation

fβ := {v ∈ X | f(v) ≤ β}
(cf. Chang [6] for a similar characterization).

Lemma 3.9 Let f : X → R ∪ {∞} be lower semicontinuous and let u ∈ D(f). Then |df |(u)
is the supremum of all ω ∈ [0,∞) for which there exist δ > 0, β > f(u), and a continuous
map H : (Bδ(u) ∩ fβ)× [0, δ] → X such that

d(H(v, t), v) ≤ t , f(H(v, t)) ≤ f(v)− ωt (3.10)

for all v ∈ Bδ(u) ∩ fβ and all t ∈ [0, δ].

Proof. If for some ω ∈ [0,∞) there exist δ, β, H as in the lemma, then |df |(u) ≥ ω according
to [12, Prop. 2.5]. Hence |df |(u) ≥ ω̃ if ω̃ denotes the supremum in the lemma.

If |df |(u) = 0 the assertion is readily verified with H(v, t) = v. Let us now assume that
|df |(u) > 0. According to [11], the weak slope |df |(u) is the supremum of all ω ∈ [0,∞) for
which there exist δ̃ > 0 and a continuous map H̃ : (Bδ̃(u, f(u))∩ epi f)× [0, δ̃] → X such that

d(H̃((v, µ), t), v) ≤ t , f(H̃((v, µ), t)) ≤ µ− ωt (3.11)

for all (v, µ) ∈ Bδ̃(u, f(u))∩ epi (f) and all t ∈ [0, δ̃]. Let us now fix some ω ∈ (0, |df |(u)) and
let us choose corresponding δ̃ and H̃ as above. Clearly, there is δ1 ∈ (0, δ̃) such that

Bδ1(u)× (f(u)− δ1, f(u) + δ1) ⊂ Bδ̃(u, f(u)) .

Since f is lower semicontinuous, there is δ ∈ (0, δ1) such that

f(v) > f(u)− δ1 for all v ∈ Bδ(u) .

With β := δ1/2 we readily get

(v, f(v)) ∈ Bδ̃(u, f(u)) ∩ epi (f) for all v ∈ Bδ(u) ∩ fβ .

For the continuous map H : Bδ(u)∩ fβ × [0, δ] → X with H(v, t) := H̃((v, f(v)), t) we obtain
(3.10) from (3.11). By the arbitrariness of ω we conclude that |df |(u) ≤ ω̃ which yields the
assertion. ♦

3.2 Some special subdifferentials

Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary and let us consider the convex
functions E,G : BV (Ω) → R given by

E(u) =
∫

Ω
d|Du|+

∫
∂Ω
|u| dHn−1 , G(u) =

∫
Ω
|u| dx = 1

as defined in (2.1), (2.2). Since the structure of the dual space BV (Ω)∗ is not known very
well, we cannot compute the subdifferentials ∂E(u) and ∂G(u) directly. Therefore, for 1 ≤
q ≤ n

n−1 , let us first consider the extended function Eq : Lq(Ω) → R ∪ {∞} given by

Eq(u) :=

{∫
Ω d|Du|+

∫
∂Ω |u| dH

n−1 for u ∈ BV (Ω) ,

∞ for u ∈ Lq(Ω) \BV (Ω) ,
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and the natural extension Gq : Lq(Ω) → R according to

Gq(u) :=
∫

Ω
|u| dx = 1 .

Proposition 3.12 Let 1 ≤ q ≤ n
n−1 . Then:

(1) The functional Eq is convex and lower semicontinuous on Lq(Ω). Moreover, E∗ ∈
∂Eq(u) for u ∈ Lq(Ω) ∩BV (Ω) if and only if there exists a vector field z ∈ L∞(Ω, Rn) with

‖z‖L∞ ≤ 1 , E∗ = −div z ∈ Lq′(Ω) , Eq(u) = 〈E∗, u〉 = −
∫

Ω
u div z dx . (3.13)

If E(u) > 0, then ‖z‖L∞ = 1.
(2) The functional Gq is convex and Lipschitz continuous on Lq(Ω). Moreover, G∗ ∈

∂Gq(u) for u ∈ Lq(Ω) if and only if

G∗(x) ∈ Sgn (u(x)) a.e. on Ω . (3.14)

Proof. This is shown in Kawohl & Schuricht [21], but without the case q = 1 for (1) which
remains to show.

First let E∗ ∈ ∂E1(u) for u ∈ BV (Ω). Then E1(v)−E1(u) ≥ 〈E∗, v−u〉 for all v ∈ L1(Ω).
Since E1 = Eq on Lq(Ω) for q > 1, the element E∗ ∈ L∞(Ω) belongs also to ∂Eq(u) and,
thus, must have the structure as in (3.13). Now let E∗ = −div z ∈ L∞(Ω) as in (3.13) for
u ∈ BV (Ω). Obviously E∗ ∈ ∂Eq(u) for any q ∈ (1, n

n−1 ] and Eq(v) − Eq(u) ≥ 〈E∗, v − u〉
for all v ∈ Lq(Ω) ⊃ BV (Ω). Since E1 = Eq on BV (Ω) and E1 = ∞ on L1(Ω) \ BV (Ω), the
previous inequality remains true with q = 1 for all v ∈ L1(Ω) and, hence, E∗ ∈ ∂E1(u). But
this verifies the assertion. ♦

Let us now consider an element G∗ ∈ ∂G(u) ⊂ BV (Ω)∗ for u ∈ BV (Ω). By definition,

G(v)−G(u) ≥ 〈G∗, v − u〉 for all v ∈ BV (Ω) . (3.15)

With v = 2u, v = 0 we get G(u) = 〈G∗, u〉 and, thus, 〈G∗, v〉 ≤ G1(v) for all v ∈ BV (Ω). The
Hahn-Banach theorem provides a continuous linear extension G∗

1 ∈ L∞(Ω) of G∗ on L1(Ω)
that respects the inequality. Since (3.15) remains valid with G1 and G∗

1 for all v ∈ L1(Ω), we
obtain G∗

1 ∈ ∂G1(u) (cf. also Chang [6]).

Corollary 3.16 We have ∂G(u) = ∂G1(u) for u ∈ BV (Ω), i.e. G∗ ∈ ∂G(u) if and only if
(3.14) is satisfied.

The next result describes the relation between the subdifferentials ∂Eq(u) and ∂E(u).

Lemma 3.17 Let f : BV (Ω) → R ∪ {∞} be convex and, for 1 ≤ q ≤ n
n−1 , let fq : Lq(Ω) →

R ∪ {∞} be the extension of f with f(v) = ∞ for all v ∈ Lq(Ω) \BV (Ω). Then

∂f(u) ∩ Lq′(Ω) = ∂fq(u) for all u ∈ D(f) ⊂ BV (Ω) .

This fact is already used in [6] but without proof. Thus let us briefly sketch it for completeness.

Proof. Let f∗ ∈ ∂fq(u) ⊂ Lq′(Ω). By BV (Ω) ⊂ Lq(Ω), we get f(v) − f(u) ≥ 〈f∗, v − u〉
for all v ∈ BV (Ω). Then Lq′(Ω) ⊂ BV (Ω)∗ implies f∗ ∈ ∂f(u). For f∗ ∈ ∂f(u) ∩ Lq′(Ω) we
have f(v)− f(u) ≥ 〈f∗, v − u〉 for all v ∈ BV (Ω). This remains true for fq instead of f and
all v ∈ Lq(Ω) and, hence, f∗ ∈ ∂fq(u). ♦
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4 Higher eigensolutions

Based on our preliminary discussion we define eigenfunctions of the 1-Laplace operator to be
certain constrained critical points of the total variation where we distinguish different cases
depending on the underlying norm. More precisely, u ∈ BV (Ω) is called BV -eigenfunction
if it is a critical point of E with respect to G(v) = 1 on BV (Ω) (i.e., subject to the BV -
norm) and u ∈ BV (Ω) is called Lq-eigenfunction if it is a critical point of Eq subject to
Gq(v) = 1 on Lq(Ω) (i.e., subject to the Lq-norm). Occasionally we use the notion of strong
BV -eigenfunction or strong Lq-eigenfunction which refers to corresponding strong critical
points. With

K := {v ∈ BV (Ω) | G(v) = 1} , Kq := {v ∈ Lq(Ω) | Gq(v) = 1} ,

we readily see that u ∈ BV (Ω) is BV -eigenfunction if and only if u is critical point of E + IK

in BV (Ω) and it is Lq-eigenfunction if and only if it is critical point of Eq + IKq in Lq(Ω).
Now let u ∈ BV (Ω) be BV -eigenfunction or Lq-eigenfunction, i.e. we have either

|d(E + IK)|BV (u) = 0 or |d(E + IK)|Lq
(u) = 0. Then the assumptions of Proposition 3.8

are obviously satisfied for the functions E, G on BV (Ω) or for Eq, Gq on Lq(Ω), respectively,
with u+ = 2u, u− = 0. Thus, correspondingly, there are either E∗ ∈ ∂E(u), G∗ ∈ ∂G(u) or
E∗ ∈ ∂Eq(u), G∗ ∈ ∂Gq(u) and λ ∈ R such that

E∗ + λG∗ = 0 in BV (Ω)∗ or Lq′(Ω).

We call λ eigenvalue corresponding to eigenfunction u. By Proposition 3.12 and Corollary
3.16 we know that G∗ ∈ L∞(Ω) in any case and, hence, also E∗ ∈ L∞(Ω). Consequently,
Proposition 3.12 combined with Lemma 3.17 provides the structure of E∗ and we obtain the
next result (cf. also Milbers & Schuricht [24], Chang [6]).

Proposition 4.1 Let u ∈ BV (Ω) be BV -eigenfunction or Lq-eigenfunction, q ∈ [1, n
n−1 ], of

the 1-Laplace operator. Then there exists a measurable selection s(x) ∈ Sgn (u(x)) for a.e.
x ∈ Ω and a vector field z ∈ L∞(Ω, Rn) with

‖z‖L∞ = 1 , div z ∈ L∞(Ω) , E(u) = −
∫

Ω
u div z dx (4.2)

such that
−div z = λs a.e. on Ω , λ = E(u) . (4.3)

This means that BV -eigenfunctions and Lq-eigenfunctions u satisfy the single eigenvalue
equation (2.3) and that the corresponding eigenvalue λ equals E(u).

In Milbers & Schuricht [24] the existence of a sequence of pairs ±uk ∈ BV (Ω) of critical
points of Eq + IKq on Lq(Ω) with λk = E(uk) →∞ is shown for 1 ≤ q < n

n−1 (critical points
±uk ∈ BV (Ω) of E1 + IK1 on L1(Ω) are verified in Chang [6] without analyzing the con-
vergence of λk). Clearly, all these critical points are Lq-eigenfunctions and satisfy the single
eigenvalue equation (2.3). Unfortunately that equation cannot identify the eigenfunctions,
since it has too many solutions according to our previous example. Therefore it is reasonable
to look for further necessary conditions eigensolutions have to satisfy. We deduce a new ad-
ditional condition for L1-eigenfunctions by means of inner variations that can be considered
as precise interpretation of the formal equation (1.6).
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For u ∈ BV (Ω) let σ : Ω → Rn be a |Du|-measurable vector field such that

|σ(x)| = 1 |Du|-a.e. on Ω and Du = σ|Du| , (4.4)

i.e. Du = σ|Du| is the polar decomposition of the measure Du, cf. Ambrosio et al. [1,
Corollary 1.29].

Theorem 4.5 Let Ω ⊂ Rn be an open bounded set with Lipschitz boundary, let u ∈ BV (Ω)
be L1-eigenfunction of the 1-Laplace operator, and let σ be the vector field from the polar
decomposition Du = σ|Du|. Then for each ξ ∈ C∞

0 (Ω, Rn) we have∫
Ω
〈σ,Dξ σ〉 − div ξ d|Du| = −λ

∫
Ω
|u|div ξ dx (4.6)

with λ = E(u) (notice that Dξ σ = (Dξ)σ).

As a direct consequence of the Gauss-Green formula for the BV-function |u| and using the
continuity of ξ (cf. Milbers & Schuricht [23, Section 3]), we obtain an alternative expression
for the right hand side in (4.6) by

−λ

∫
Ω
|u|div ξ dx = λ

∫
Ω

ξ · dD|u| for all ξ ∈ C∞
0 (Ω, Rn) . (4.7)

The proof of the theorem will be carried out in several steps in Section 6 where the next
observation is an essential ingredient.

Proposition 4.8 Let X ⊂ L1(Ω) be a Banach space continuously embedded into L1(Ω) and
let KX := {v ∈ X|G(v) = 1}. Then u ∈ X is a critical point of E with respect to KX on X
if and only if u ∈ X is a critical point of F := E − λG on X with λ = E(u).

The proof can be found in Section 6 below.

5 Consequences

5.1 Previous example

We demonstrate how the new necessary condition from Theorem 4.5 works for our ex-
ample from Section 2 where we had constructed a continuum of solutions for the single
Euler-Lagrange equation. In fact all these solutions are candidates for eigenfunctions of the
1-Laplace operator. Recall that for any ball B = Br(x0) ∈ Rn with B ⊂ Ω the function

v(x) :=
1
|B|

χB(x)

satisfies the single eigenvalue equation (2.3). If v would be an L1-eigenfunction, then it has
to satisfy condition (4.6)∫

Ω
〈σ,Dξ σ〉 − div ξ d|Dv| = −λ

∫
Ω
|v|div ξ dx

for any ξ ∈ C∞
0 (Ω, Rn) with λ = E(v) = n/r (cf. Section 2). We pick a ξ ∈ C∞

0 (Ω, Rn) such
that ξ(x) = x on a set containing B. Then we have

Dξ(x) = id and div ξ(x) = n on B .

13



Moreover, we know that |Dv| = 1
|B| H

n−1 b ∂B, cf. Evans & Gariepy [16, p. 169]. Thus we
get for the left hand side∫

Ω
〈σ,Dξ σ〉 − div ξ d|Dv| =

1
|B|

∫
∂B
〈σ, σ〉 − n dHn−1

=
1
|B|

∫
∂B

(1− n) dHn−1 =
|∂B|
|B|

(1− n)

=
n(1− n)

r

and for the right hand side

−λ

∫
Ω
|v|div ξ dx = −n

r

1
|B|

∫
B

n dx = −n2

r
,

which implies the contradiction
n− 1 = n .

Consequently, the new condition (4.6) confirms our expectation and shows its ability by ruling
out all these functions v from being L1-eigenfunctions of the 1-Laplace operator.

5.2 Scalar case n = 1

Here we want to investigate eigensolutions of the 1-Laplace operator for the special case
Ω ⊂ R1 where we can restrict our attention to the case Ω = (0, 1). This case has been
already investigated to some extend in Chang [6] where, however, the focus was on strong
L1-eigenfunctions u, i.e., the strong slope |∇(E1 + IK1)|(u) = 0 with respect to the L1-norm,
cf. Section 3. Notice that strong L1-eigenfunctions are also L1-eigenfunctions, since the
strong slope is an upper bound for the weak slope, but the opposite is not clear in general.

Let us start with a necessary condition for solutions of the single eigenvalue equation (2.3)
that reduces to

−z′(x) = λs(x) a.e. on (0, 1) , λ = E(u) (5.1)

where s and z are coupled with u by

s ∈ L∞(0, 1) with s(x) ∈ Sgn (u(x)) a.e. on (0, 1) , (5.2)

z ∈ W1,∞(0, 1) (i.e. z is Lipschitz continuous), ‖z‖L∞ = 1 , (5.3)

E(u) = −
∫ 1

0
uz′ dx . (5.4)

For any (a, b) ⊂ (0, 1) we have the Gauss-Green formula∫ b

a
uz′ dx +

∫
(a,b)

z d(Du) = z(b)u(b−)− z(a)u(a+) (5.5)

(notice that u(a+), u(b−) agree with u on the boundary of (a, b) in the sense of trace) and
we obtain a condition that is equivalent to (5.4)

zDu = |Du| (in the sense of measures), z(0) ∈ Sgn (u(0+)) , −z(1) ∈ Sgn (u(1−)) (5.6)

(cf. Milbers & Schuricht [23, Section 3]).
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Proposition 5.7 Let u ∈ BV (0, 1) be a solution of the single eigenvalue equation (5.1).
Then there are points 0 = a0 < a1 < · · · < ak = 1, αj ∈ R, j = 1, . . . , k, such that with
Ij := (aj−1, aj)

u =
k∑

j=1

αjχIj a.e. on (0, 1) . (5.8)

Though this is already shown in [6] let us provide a brief alternative proof.

Proof. Using the polar decomposition Du = σ|Du| (here σ(x) = ±1 for all x) in (5.6), we
get z(x) = σ(x) for |Du|-a.e. x ∈ (0, 1). Thus,

z(x) ∈ {±1} |Du|-a.e. on (0, 1) . (5.9)

Since u ∈ BV (0, 1), we have

u(y−)− u(x+) = Du((x, y)) =
∫

(x,y)
d(Du) for all 0 ≤ x < y ≤ 1 (5.10)

(cf. Ambrosio et al. [1, Theorem 3.28]).
Let I ⊂ (0, 1) be a nonempty open interval with length |I| ≤ 1/λ. If |z(x)| < 1 on

an open interval Ĩ ⊂ I, then Du = 0 on Ĩ by (5.9) and u is constant on Ĩ by (5.10). If
{x ∈ I| |z(x)| = 1} 6= ∅, then z cannot change sign on I, since |z′| ≤ λ by (5.1). Assume that
z(a) = z(b) = 1 for some a, b ∈ I with a < b. Then zDu = Du on I in the sense of measures.
Hence, by (5.5), (5.1), and (5.10),

−λ

∫ b

a
|u| dx + u(b−)− u(a+) = u(b−)− u(a+) .

Consequently, u = 0 a.e. on (a, b) and we get the same result in the case z(a) = z(b) = −1.
Summarizing we conclude that I can be covered by at most three subintervals such that u is
constant on each subinterval. Since (0, 1) can be covered by finitely many intervals of length
less than 1/λ, we readily obtain the assertion. ♦

Let us now consider the consequences of Theorem 4.5 for L1-eigenfunctions.

Proposition 5.11 Let u ∈ BV (0, 1) be L1-eigenfunction of the 1-Laplace operator with
eigenvalue λ. Then there is some k ∈ N such that, up to sign of u,

u(x) = uk(x) := sgn
(
sin(kπx)

)
a.e. on (0, 1) and λ = λk := 2k . (5.12)

Proof. Theorem 4.5 with the polar decomposition Du = σ|Du| gives∫
(0,1)

(σ2ξ′ − ξ′) d|Du| = −λ

∫ 1

0
|u| ξ′ dx for all ξ ∈ C∞0 (0, 1) .

Since σ2 = 1, the left hand side vanishes. Therefore, by the Lemma of Du Bois-Reymond
and by ‖u‖L1 = 1,

|u| = 1 a.e. on (0, 1) .
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As L1-eigenfunction u has to satisfy the single eigenvalue equation (5.1) by Proposition 4.1
with corresponding functions z and s. Moreover, u must have the form (5.8) where, clearly,
all |αj | = 1. We get that |s| = 1 a.e. on (0, 1) and, thus, z′(x) = −λ sgn (u(x))) a.e. on
(0, 1). Since u can only jump at points where |z| = 1 by (5.9), since |z| = 1 only at isolated
points, and since |z(0)| = |z(1)| = 1 by (5.6), the intervals (aj , aj+1) must all have the length
2/λ = 1/k for some k ∈ N and the αj have to alternate. But this gives the assertion. ♦

Chang [6, Theorem 3.10] has shown that any strong L1-eigenfunctions must equal ±uk

from (5.12) for some k ∈ N. Proposition 5.11 generalizes this result so far that already
L1-eigenfunctions (i.e., with respect to the weak slope) have to meet that necessary condition.
Since

|d(E1 + IK1)|L
1
(±uk) = |∇(E1 + IK1)|L

1
(±uk) = 0

by Chang [6, Lemma 3.9], all ±uk are really L1-eigenfunctions. Thus, combined with Propo-
sition 5.11, we obtain a precise characterization of all L1-eigenfunctions.

Theorem 5.13 For Ω = (0, 1) the L1-eigenfunctions of the 1-Laplace operator are the func-
tions ±uk, k ∈ N, given in (5.12) with corresponding eigenvalues λk = 2k.

The eigenvalues λk can be characterized by a usual min-max principle and the eigenfunc-
tions uk are the pointwise limit of the normalized eigenfunctions up

k of the p-Laplace operator
according to [6].

Interestingly, the L1-eigenfunctions are exactly the same as the strong L1-eigenfunctions
in the case n = 1 which might be wrong in higher dimensions. Notice that the existence
of a sequence of eigenfunctions is shown in general merely for L1-eigenfunctions and not for
strong L1-eigenfunctions. Moreover, it turns out that the case R1 is somehow special, since,
in contrast to higher dimensions, the selection s(x) ∈ Sgn (u(x)) is uniquely determined (in
the sense of L∞) and, thus, single and multiple eigenvalue equation agree.

The rich structure of the eigenvalue problem for the 1-Laplace operator also becomes
visible in the case of BV -eigenfunctions. In Chang [6, Theorem 3.12] it is shown that all
functions

u = ±
k∑

j=1

(−1)jαjχIj with αj > 0 , Ij = ( j−1
k , j

k ) , j = 1, . . . , k ,

k∑
j=1

αj = k

are local minimizer of E + IK in BV (Ω). Hence |d(E + IK)|BV (u) = |∇(E + IK)|BV (u) = 0,
i.e., all these u are BV -eigenfunctions and even strong BV -eigenfunctions on Ω = (0, 1) with
eigenvalue λ = 2k. Consequently, the set of BV -eigenfunctions is strictly larger than that
of L1-eigenfunctions and the same is true for strong eigenfunctions. More general, let us
consider

u = ±
k∑

j=1

(−1)jαjχIj with αj ≥ 0 , Ij = ( j−1
k , j

k ) , j = 1, . . . , k ,

k∑
j=1

αj = k (5.14)

where we assume that αj = 0 for at least one index j. For ε > 0 we define u±ε as in (5.14)
with coefficients

α±ε,j :=
{
±ε if αj = 0 ,
αj − cε if αj > 0
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where c > 0 is a constant such that
∑k

j=1 |α
±
ε,j | = k. Thus u±ε ∈ K for all ε > 0 and u±ε → u

in BV (Ω) as ε → 0. Clearly α+
ε,j > 0 for all j if ε > 0 is sufficiently small. Hence, all u+

ε are
local minimizer of E + IK in BV (Ω) and

|d(E + IK)|BV (u+
ε ) = 0 for all small ε > 0 .

Since the weak slope is lower semicontinuous, we have |d(E + IK)|BV (u) = 0. Moreover, a
simple computation shows that

|∇(E + IK)|BV (u) ≥ lim sup
ε→0

E(u)− E(u−ε )
‖u− u−ε ‖BV

≥ c̃

for some c̃ > 0. Consequently, u according to (5.14) with αj = 0 for at least one index
j is BV -eigenfunction but not strong BV -eigenfunction. This in particular means that, in
contrast to the L1-case, the set of BV -eigenfunctions is strictly larger than that of strong
BV -eigenfunctions.

5.3 General case

Let us start with some generalization of the arguments from Section 5.1. Let u ∈ BV (Ω) and
let Ω0 ⊂ Ω be an open compactly contained subset with Lipschitz boundary such that u = 0
on a neighborhood of ∂Ω0 (inside and outside). If u were L1-eigenfunction of the 1-Laplace
operator, then we multiply the single eigenvalue equation (2.3) by u and integrate to get

λ

∫
Ω0

|u| dx = −
∫

Ω0

u div z dx =
∫

Ω0

d|Du|

where the most right equality follows from the Gauss-Green formula with (z,Du) = |Du| and
u = 0 on ∂Ω0 in the sense of trace (cf. Milbers & Schuricht [23, Section 3]). Now we consider
(4.6) with ξ(x) = x on Ω0 and spt ξ contained in a small neighborhood of Ω0 and obtain∫

Ω0

(1− n) d|Du| = −λn

∫
Ω0

|u| dx

which leads to the contradiction 1 − n = −n. Therefore a function u ∈ BV (Ω) of the kind
described above cannot be L1-eigenfunction.

If u would be a smooth L1-eigenfunction with Du(x) 6= 0 and u(x) 6= 0, then z in the
single eigenvalue equation (2.3) would coincide with Du/|Du| in a neighborhood of x, i.e., z
were a unit normal field on the level sets of u that must have the constant mean curvature
−div z = λ sgn (u). Therefore we expect L1-eigenfunctions to be step functions in general
though exceptions might be possible.

Let us consider an L1-eigenfunction u ∈ BV (Ω) such that on an open ball B ⊂ Ω

u = c1χΩ1 + c2χΩ2 , ∂Ω1 = ∂Ω2

with Ω1,Ω2 ⊂ Ω being disjoint open subsets having smooth boundary and outer unit normals
ν1, ν2. For the left hand side in (4.6) with spt ξ ⊂ B we get∫

B
〈σ,Dξ σ〉 − div ξ d|Du| = −

∫
B

div ∂Ω1ξ d|Du|

= |c1 − c2|
∫

B∩∂Ω1

H∂Ω1〈ξ, ν1〉 − divg ξ∂Ω1 dHn−1

= |c1 − c2|
∫

B∩∂Ω1

H∂Ω1〈ξ, ν1〉 dHn−1
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where div ∂Ω1 denotes the tangential part of the divergence, divg the divergence in the man-
ifold ∂Ω1, ξ∂Ω1 the tangential part of ξ, and H∂Ω1 the mean curvature of ∂Ω1 (with respect
to the normal field ν1) while we have used the divergence theorem in the manifold ∂Ω1 for
the last equality, cf. [22, Proposition 8.7]. Using (4.7) and D|u| =

(
|c2| − |c1|

)
ν1Hn−1b∂Ω1,

we derive from (4.6)

|c1 − c2|
∫

B∩∂Ω1

H∂Ω1〈ξ, ν1〉 dHn−1 = λ
(
|c2| − |c1|

) ∫
B∩∂Ω1

〈ξ, ν1〉 dHn−1

for all ξ ∈ C∞0 (B, Rn). Consequently,

H∂Ω1 |c1 − c2| = λ
(
|c2| − |c1|

)
on B ∩ ∂Ω1 .

Let us consider some special cases of that condition. First,

H∂Ω1 = −λ if c2 = 0 ,

i.e. on a “free” part of ∂Ω1 we have a curvature condition as for the boundary of a Cheeger
set. Notice that one obtains the same condition for the “free” parts of ∂Ω2. Next,

H∂Ω1 = −λ if c1 > c2 > 0 or c1 < c2 < 0 .

Finally,

H∂Ω1 = −λ
|c1| − |c2|
|c1 − c2|

if c1 > 0 > c2 or c2 > 0 > c1 .

Notice that, in the last case, H∂Ω1 = 0 if and only if |c1| = |c2|. Summarizing we can say that
the new necessary condition (4.6) provides additional information supplementing the single
eigenvalue equation (2.3).

6 Proofs

In this section we first carry out the proof of Proposition 4.8 and then, in several steps, the
proof of Theorem 4.5.

Proof of Proposition 4.8. In this proof Bδ(u) denotes the δ-neighborhood with respect to
‖ · ‖X and ‖ · ‖ denotes the norm in L1(Ω). By assumption there is some c > 0 such that

‖v‖ ≤ c‖v‖X for all v ∈ X . (6.1)

(a) Let u ∈ X be a critical point of E with respect to KX on X and, by contradiction,
let |dF |X(u) > 0. Hence, there is ω > 0, δ > 0, β > F (u), and H : (Bδ(u)∩F β)× [0, δ] → X
continuous such that

‖H(v, t)− v‖X ≤ t , F (H(v, t)) ≤ F (v)− ωt (6.2)

for all v ∈ Bδ(u) ∩ F β, t ∈ [0, δ]. With F = E − λG and the 1-homogeneity of E, G, the
inequality on the right implies

‖H(v, t)‖E
( H(v, t)
‖H(v, t)‖

)
− E(u)‖H(v, t)‖ ≤ ‖v‖E

( v

‖v‖

)
− E(u)‖v‖ − ωt .
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Using H̃(v, t) := H(v, t)/‖H(v, t)‖, ṽ := v/‖v‖ we get

‖H(v, t)‖
(
E(H̃(v, t))− E(ṽ)

)
+

(
‖H(v, t)‖ − ‖v‖

)
E(ṽ) ≤ E(u)

(
‖H(v, t)‖ − ‖v‖

)
− ωt

and, thus,

‖H(v, t)‖
(
E(H̃(v, t))− E(ṽ)

)
≤

(
E(u)− E(ṽ)

)
(‖H(v, t)‖ − ‖v‖

)
− ωt (6.3)

for all v ∈ Bδ(u) ∩ F β, t ∈ [0, δ].
Since E is lower semicontinuous (also on X), we can choose an eventually smaller δ > 0,

denoted the same way, such that

E(u)− E( v
‖v‖) = E(u)− E(ṽ) ≤ ω

2c
for all v ∈ Bδ(u) . (6.4)

Using (6.1), we get∣∣‖u‖ − ‖v‖
∣∣ ≤ ‖u− v‖ ≤ c‖u− v‖X ≤ cδ for v ∈ Bδ(u) . (6.5)

With ‖u‖ = 1 and since H is continuous (with respect to the norm on X), we can assume
that δ > 0 is so small that

‖H(v, t)‖ ≤ 2 , ‖H(v, t)‖ ‖v‖ ≥ 1
2

, ‖v‖ ≥ 1
2

for all v ∈ Bδ(u) , t ∈ [0, δ] . (6.6)

Furthermore, with some eventually smaller β > F (u) = 0, denoted the same way, and
satisfying 2β ≤ ω

2c , we obtain for all v ∈ Bδ(u) ∩ F β

E(ṽ)− E(u) =
1
‖v‖

(
E(v)− λG(v)

)
=

1
‖v‖

F (v) ≤ 2β ≤ ω

2c
.

By (6.1), (6.2) ∣∣ ‖H(v, t)‖ − ‖v‖
∣∣ ≤ ‖H(v, t)− v‖ ≤ c‖H(v, t)− v‖X ≤ ct .

Consequently, by (6.3), (6.4),

‖H(v, t)‖
(
E(H̃(v, t))− E(ṽ)

)
≤ ω

2
t− ωt = −ω

2
t

and, moreover,

E(H̃(v, t))− E(ṽ) ≤ −ω

2
t

‖H(v, t)‖
≤ −ω

4
t

for all v ∈ Bδ(u) ∩ F β, t ∈ [0, δ]. Using (6.6) we can also estimate

‖H̃(v, t)− ṽ‖X =
∥∥∥ H(v, t)
‖H(v, t)‖

− v

‖v‖

∥∥∥
X

=
1

‖H(v, t)‖‖v‖

∥∥∥‖v‖H(v, t)− ‖H(v, t)‖v
∥∥∥

X

≤ 2
(
‖v‖ ‖H(v, t)− v‖X +

∣∣ ‖v‖ − ‖H(v, t)‖
∣∣ ‖v‖X

)
≤ 2

(
c‖v‖X t + ct‖v‖X

)
≤ 4ct(δ + ‖u‖X)

for all v ∈ Bδ(u) ∩ F β, t ∈ [0, δ].
For v ∈ Bδ(u) ∩ (E + IKX )E(u)+β with KX := {v ∈ X|G(v) = 1} we get

F (v) = E(v)− λG(v) = E(v)− E(u) ≤ β .
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Thus, with β̃ := E(u) + β,

Bδ(u) ∩ (E + IKX )β̃ ⊂ Bδ(u) ∩ F β .

With c0 := 4c(δ+‖u‖X) and Ĥ(v, t) := H̃(v, t/c0) we finally get for all v ∈ Bδ(u)∩(E+IKX )β̃,
t ∈ [0, δ]

‖Ĥ(v, t)− v‖X = ‖H̃(v, t/c0)− v‖X ≤ t

and
(E + IKX )(Ĥ(v, t))− (E + IKX )(v) = E(H̃(v, t/c0))− E(v) ≤ − ω

4c0
t

(notice that v = ṽ ∈ KX and Ĥ(v, t) ∈ KX in that case). But this implies that u is not a
critical point of E with respect to KX , which is a contradiction and verifies the assertion.

(b) Assume that |d(E − λG|X(u) = 0 and, by contradiction, let |d(E + IKX )|X(u) > 0.
Then there exist ω > 0, δ > 0, β > (E+IKX )(u) = E(u), and H : Bδ(u)∩(E+IK)β×[0, δ] →
X continuous such that

‖H(v, t)− v‖X ≤ t , (E + IKX )(H(v, t)) ≤ (E + IKX )(v)− ωt

for all v ∈ Bδ(u) ∩ (E + IKX )β, t ∈ [0, δ]. Clearly, (E + IKX )β = Eβ ∩KX and

H(v, t) ∈ KX for all v ∈ Bδ(u) ∩ Eβ ∩KX , t ∈ [0, δ] .

Hence,
E(H(v, t)) ≤ E(v)− ωt for all v ∈ Bδ(u) ∩ Eβ ∩KX , t ∈ [0, δ] . (6.7)

Using (6.5) we can choose δ̃ ∈ (0, δ) so small that

v

‖v‖
∈ Bδ(u) and ‖v‖ ≥ 1

2
for all v ∈ Bδ̃(u) .

Then there is c1 ≥ 1 with ‖v‖ ≤ c‖v‖X ≤ c(‖u‖X + δ̃) ≤ c1 on Bδ̃(u). With β̃ := β−E(u)
2 we

have for all v ∈ Bδ̃(u) ∩ (E − λG)β̃

E
(

v
‖v‖

)
= 1

‖v‖
(
E(v)− λG(v)

)
+ E(u) ≤ 2β̃ + E(u) = β .

Let us now define the continuous map

H̃(v, t) := ‖v‖H
(

v
‖v‖ ,

t
c1

)
on

(
Bδ̃(u) ∩ (E − λG)β̃

)
× [0, δ̃] .

We conclude,

‖H̃(v, t)− v‖X =
∥∥∥ ‖v‖H( v

‖v‖
,

t

c1

)
− v

∥∥∥
X

= ‖v‖
∥∥∥H( v

‖v‖
,

t

c1

)
− v

‖v‖

∥∥∥
X
≤ c1

t

c1
= t

and, by (6.7) and G(H( v
‖v‖ ,

t
c1

)) = 1,

E(H̃(v, t))− λG(H̃(v, t)) = ‖v‖E(H( v
‖v‖ ,

t
c1

))− λ‖v‖G(H( v
‖v‖ ,

t
c1

))

≤ ‖v‖E( v
‖v‖)− ω‖v‖ t

c1
− λG(v)

≤ E(v)− λG(v)− ω

2c1
t
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for all v ∈ Bδ̃(u) ∩ (E − λG)β̃, t ∈ [0, δ̃]. Consequently, |d(E − λG)|X(u) > 0. But this
contradicts our assumption and yields the assertion. ♦

Let us now start with preliminary considerations for the proof of Theorem 4.5. We set

DiffΩ := {η ∈ C∞0 (Ω, Rn)| (id + η) : Ω → Ω is a diffeomorphism}

and, clearly, 0 ∈ DiffΩ. For v ∈ BV (Ω) and η ∈ DiffΩ we consider perturbations

vη : Ω → R with vη(x) := v(x + η(x)) .

For v in a L1-neighborhood of a critical point u we claim to study the functions

Ev : DiffΩ → R with Ev(η) := E(vη) =
∫

Ω
d|Dvη|+

∫
∂Ω
|vη| dHn−1 ,

Gv : DiffΩ → R with Gv(η) := G(vη) =
∫

Ω
|vη| dx

near η = 0. In particular, for ξ ∈ C∞0 (Ω, Rn) we want to derive a first order expansion of the
real functions t → Ev(tξ) and t → Gv(tξ) at t = 0 by computing the directional derivatives
δEv(0, ξ) and δGv(0, ξ). But first we have to clarify that Ev, Gv are well defined.

Lemma 6.8 If v ∈ BV (Ω) and η ∈ DiffΩ, then vη ∈ BV (Ω). With ỹ(x) := x + η(x) and
x̃(·) being the inverse of ỹ on Ω, we have∫

Ω
|vη(x)| dx =

∫
Ω
|v(y)|det Dx̃(y) dy , (6.9)

∫
Ω

d|Dvη| =
∫

Ω
|Dỹ(x̃(y))T σ(y)|det Dx̃(y) d|Dv| (6.10)

where σ : Ω → Rn denotes the vector field according to the polar decomposition of Dv = σ|Dv|
(cf. (4.4)).

Proof. By the change of variables formula we have vη ∈ L1(Ω) with (6.9). Relation (6.10) is
shown in Giusti [20, Lemma 10.1] and, since the integrand on the right hand side is bounded,
vη ∈ BV (Ω). ♦

For an arbitrary but fixed ξ ∈ C∞0 (Ω, Rn) we define

ỹ(x, t) := x + tξ(x) , Dỹ(x, t) :=
∂

∂x
ỹ(x, t) on Ω× R .

Using the implicit function theorem we readily obtain the next lemma.

Lemma 6.11 There is t0 > 0 such that tξ ∈ DiffΩ and ỹ(·, t) is a C∞-diffeomorphism from
Ω to Ω for all t ∈ (−t0, t0). Moreover Dỹ(x, t) is regular for all (x, t) ∈ Ω× (−t0, t0) and

det Dỹ(x, t) ≥ 1
c

for all x ∈ Ω , t ∈ (−t0, t0)

for some constant c > 0.
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For any t ∈ (−t0, t0) we denote the inverse of ỹ(·, t) on Ω by

x̃(·, t) and set Dx̃(y, t) :=
∂

∂y
x̃(y, t) .

The next corollary summarizes standard results about inner variations (cf. Giaquinta &
Hildebrandt [19, Chapter 3.1]).

Corollary 6.12 We have x̃ ∈ C∞
(
Ω × (−t0, t0),Ω

)
and x̃(·, t) is a C∞-diffeomorphism on

Ω with
x̃(y, t) = y for all y ∈ Ω \ spt ξ , t ∈ (−t0, t0) .

Moreover, there are C∞-functions rj : Ω× (−t0, t0) → R, j = 1, 2, such that

x̃(y, t) = x̃(y, 0)− tξ(y) + r1(y, t) , det Dx̃(y, t) = 1− t div ξ(y) + r2(y, t)

for all y ∈ Ω, t ∈ (−t0, t0) and

rj(y, t) = o(t) as t → 0 uniformly in y ∈ Ω, j = 1, 2.

We readily conclude that the real functions t → Ev(tξ), t → Gv(tξ) are well defined on (−t0, t0)
for any v ∈ BV (Ω). Notice that t0 and the rj from Corollary 6.12 depend on ξ but not on v.
Moreover, the surface integral in the definition of Ev(tξ) is independent of t.

Lemma 6.13 Let v ∈ BV (Ω) with polar decomposition Dv = σ|Dv| (cf. (4.4)) and let
ξ ∈ C∞0 (Ω, Rn). Then we have the directional derivatives

δEv(0, ξ) :=
∫

Ω
〈σ,Dξ σ〉 − div ξ d|Dv| , δGv(0, ξ) := −

∫
Ω
|v|div ξ dx .

Moreover, there are functions rE , rG : (−t0, t0) → R depending on ξ but not on v and satisfying

rE(t) = o(t) , rG(t) = o(t) as t → 0

such that
Ev(tξ) = Ev(0) + δEv(0, ξ)t + rE(t)Ev(0)

Gv(tξ) = Gv(0) + δGv(0, ξ)t + rG(t)Gv(0)

for all t ∈ (−t0, t0).

Proof. For v ∈ BV (Ω), σ from the corresponding polar decomposition, and |t| small, we
get by Lemma 6.8 and Corollary 6.12

Ev(tξ) =
∫

Ω
d|Dvtξ|+

∫
∂Ω
|vtξ| dHn−1

=
∫

Ω
|Dỹ(x̃(y, t), t)T σ(y)|det Dx̃(y, t) d|Dv|+

∫
∂Ω
|v| dHn−1

=
∫

Ω
|Dỹ(x̃(y, t), t)T σ(y)|(1− t div ξ(y) + r2(y, t)) d|Dv|+

∫
∂Ω
|v| dHn−1

=
∫

Ω
|Dỹ(x̃(y, t), t)T σ(y)| d|Dv| (6.14)

−
∫

Ω
t |Dỹ(x̃(y, t), t)T σ(y)| div ξ(y) d|Dv| (6.15)

+
∫

Ω
|Dỹ(x̃(y, t), t)T σ(y)| r2(y, t) d|Dv|+

∫
∂Ω
|v| dHn−1 . (6.16)
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We calculate the directional derivative

δEv(0, ξ) =
∂

∂t

( ∫
Ω

d|Dvtξ|+
∫

∂Ω
|vtξ| dHn−1

) ∣∣
t=0

by treating the terms in (6.14), (6.15), (6.16) separately and using a majorizing result for the
differentiability of parameter-dependent integrals, cf. Schilling [26, Theorem 11.5].

Let us calculate the derivatives of the integrands. For the first one, cf. (6.14), we obtain

F(y, t) :=
∂

∂t
|Dỹ(x̃(y, t), t)T σ(y)|

=
〈

Dỹ(x̃(y, t), t)T σ(y)
|Dỹ(x̃(y, t), t)T σ(y)|

,
∂

∂t
Dỹ(x̃(y, t), t)T σ(y)

〉
=

〈
Dỹ(x̃(y, t), t)T σ(y)
|Dỹ(x̃(y, t), t)T σ(y)|

,
∂

∂t

(
id + t Dξ(x̃(y, t))

)T
σ(y)

〉
=

〈
Dỹ(x̃(y, t), t)T σ(y)
|Dỹ(x̃(y, t), t)T σ(y)|

,
(
Dξ(x̃(y, t)) + t D2ξ(x̃(y, t))

∂

∂t
x̃(y, t)

)T
σ(y)

〉
. (6.17)

Since Dỹ(x̃(y, 0), 0) = id , |σ(y)| = 1,

F(y, 0) = 〈σ(y), Dξ(y) σ(y)〉 for all y ∈ Ω .

For the second integrand, cf. (6.15),

∂

∂t

(
t |Dỹ(x̃(y, t), t)T σ(y)|

)
div ξ(y) =

(
|Dỹ(x̃(y, t), t)T σ(y)|+ tF(y, t)

)
div ξ(y) . (6.18)

Since r2 is smooth, we get for the third part, cf. (6.16),

∂

∂t

(
|Dỹ(x̃(y, t), t)T σ(y)| r2(y, t)

)
= F(y, t) r2(y, t) + |Dỹ(x̃(y, t), t)T σ(y)| ∂

∂t
r2(y, t) . (6.19)

Notice that r2(y, 0) = ∂
∂tr2(y, 0) = 0 for all y ∈ Ω by Corollary 6.12. Since r2(·, t) has

compact support on Ω, the right hand sides in (6.17), (6.18), (6.19) are uniformly bounded
by a constant for y ∈ Ω and |t| small. Thus

δEv(0, ξ) =
∫

Ω
〈σ(y), Dξ(y) σ(y)〉+ div Dξ(y) d|Dv| .

Clearly all integrands in (6.14), (6.15), (6.16) are even twice continuously differentiable
with respect to t (|t| small) and all second derivatives are uniformly bounded with respect
to y ∈ Ω by a constant c̃ > 0. Therefore we find some function rE : (−t0, t0) → R with
rE(t) = o(t) as t → 0 such that

Ev(tξ) = Ev(0) + δEv(0, ξ)t + rE(t)
∫

Ω
d|Dv| .

Notice that rE depends on ξ but not on v.
By Lemma 6.8,

Gv(tξ) =
∫

Ω
|vtξ(x)| dx =

∫
Ω
|v(y)|det Dx̃(y, t) dy. (6.20)
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Using Lemma 6.12 we calculate the derivative of the integrand

∂

∂t

(
|v(y)|det Dx̃(y, t)

)
=

∂

∂t

(
|v(y)|(1− t div ξ(y) + r2(y, t))

)
= −|v(y)|div ξ(y) + |v(y)| ∂

∂t
r2(y, t) (6.21)

and, hence,
∂

∂t

(
|v(y)|det Dx̃(y, t)

) ∣∣
t=0

= −|v(y)|div ξ(y) .

Since the terms in (6.21) are uniformly bounded in y and t we get the directional derivative

δGv(0, ξ) = −
∫

Ω
|v(y)|div ξ(y) dy .

Again the function t → det Dx̃(y, t) is twice continuously differentiable and the second deriva-
tive is uniformly bounded with respect to y ∈ Ω and |t| small. Therefore we find some function
rG : (−t0, t0) → R with rG(t) = o(t) as t → 0 such that

Gv(tξ) = Gv(0) + δGv(0, ξ)t + rG(t)
∫

Ω
|v| dy .

Also rG depends on ξ but not on v. ♦

Proof of Theorem 4.5. Notice that equation (4.6) is equivalent to

δEu(0, ξ)− λδGu(0, ξ) = 0 for all ξ ∈ C∞0 (Ω, Rn) .

By contradiction let us assume that the assertion is wrong, i.e., there is some ξ ∈ C∞0 (Ω) such
that

δEu(0, ξ)− λδGu(0, ξ) < −ω < 0 (6.22)

for some ω > 0. We claim to show that |d(E − λG)|L1
(u) > 0.

For the fixed ξ from (6.22) we choose t0 > 0 as in Lemma 6.11 and we fix δ, β with

δ := t0 , β > F (u) := E(u)− λG(u) = 0 .

By Lemma 6.11,

0 <
1

det(id + tDξ(x))
≤ c for all |t| < δ, x ∈ Ω .

Now we define a map H : (Bδ(u) ∩ F β) × [0, δ] → L1(Ω), where Bδ(u) denotes the δ-ball in
L1(Ω), with

H(v, t) := vtξ = v(·+ tξ(·))

(recall F β = {v ∈ L1| F (v) < β}). Notice that v ∈ F β implies v ∈ BV (Ω)and, hence,

H(v, t) ∈ BV (Ω) for all v ∈ Bδ(u) ∩ F β , t ∈ [0, δ]

by Lemma 6.8.
Assume there is a sequence vk → u in L1(Ω) with F (vk) → F (u) and

δEvk
(0, ξ)− λδGvk

(0, ξ) ≥ −ω for all k ∈ N .
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Obviously E(vk) → E(u) and, with the extensions v̄k, ū of vk, u on Rn by zero, |Dv̄k|(Ω) →
|Dū|(Ω). With the polar decompositions Dvk = σk|Dvk| Reshetnyak’s theorem (cf. Ambrosio
et al. [1, Theorem 2.39]) implies∫

Rn

〈σk , Dξ σk〉 − div ξ d|Dv̄k| →
∫

Rn

〈σ , Dξ σ〉 − div ξ d|Dū| .

Since ξ has compact support on Ω we obtain δEvk
(0, ξ) → δEu(0, ξ). Moreover, for some

c1 > 0,

|δGvk
(0, ξ)− δGu(0, ξ)| ≤

∫
Ω

∣∣|vk| − |u|
∣∣ |div ξ| dx ≤ c1

∫
Ω
|vk − u| dx = c1‖vk − u‖L1 → 0 .

We derive δEu(0, ξ) − λδGu(0, ξ) ≥ −ω which contradicts (6.22). Therefore, with eventually
smaller constants δ > 0 and β > F (u),

δEv(0, ξ)− λδGv(0, ξ) < −ω for all v ∈ Bδ(u) ∩ F β . (6.23)

Let us now verify the continuity ofH on (Bδ(u)∩F β)×[0, δ] as mapping from L1(Ω)×[0, δ]
to L1(Ω) where the next lemma is a first step.

Lemma 6.24 We have for v ∈ BV (Ω), t1, t2 ∈ [0, δ]

‖v(·+ t2ξ(·))− v(·+ t1ξ(·))‖L1 ≤ c‖ξ‖L∞ |Dv|(Ω)|t2 − t1| .

Proof. Notice that tξ ∈ DiffΩ for all t ∈ [0, δ] and, thus, all expressions in the lemma are well
defined. Let (vk)k∈N ⊂ BV (Ω)∩C∞(Ω) be such that ‖vk−v‖L1 → 0 and |Dvk|(Ω) → |Dv|(Ω).
Note that we have vtξ

k ∈ BV (Ω) for all k ∈ N, t ∈ (−t0, t0) by Lemma 6.8. We get∫
Ω
|vk(x + t2ξ(x))− vk(x + t1ξ(x))| dx

=
∫

Ω

∣∣∣∣∫ t2

t1

Dvk(x + τξ(x))ξ(x) dτ

∣∣∣∣ dx

≤ ‖ξ‖L∞
∫ t2

t1

∫
Ω
|Dvk(x + τξ(x))| dx dτ

= ‖ξ‖L∞
∫ t2

t1

∫
Ω
|Dvk(y)| 1

det(id + τDξ(x(y)))
dy dτ

≤ c‖ξ‖L∞ |Dvk|(Ω)|t2 − t1|
→ c‖ξ‖L∞ |Dv|(Ω)|t2 − t1| .

For the left-hand side we have∫
Ω

∣∣|vk(x + t2ξ(x))− vk(x + t1ξ(x))| − |v(x + t2ξ(x))− v(x + t1ξ(x))|
∣∣ dx

≤
∫

Ω
|vk(x + t2ξ(x))− v(x + t2ξ(x))|+ |vk(x + t1ξ(x))− v(x + t1ξ(x))| dx

=
∫

Ω
|vk(y)− v(y)| 1

det(id + t2Dξ(x(y)))
dy +

∫
Ω
|vk(y)− v(y)| 1

det(id + t1Dξ(x(y)))
dy

≤ 2c‖vk − v‖L1 → 0 .
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Thus we get
‖v(·+ t2ξ(·))− v(·+ t1ξ(·))‖L1 ≤ c‖ξ‖L∞ |Dv|(Ω)|t2 − t1| .

♦

Lemma 6.25 The mapping H : (Bδ(u) ∩ F β)× [0, δ] → BV (Ω) with

H(v, t) = v(·+ tξ(·))

is continuous as mapping from L1(Ω)× [0, δ] to L1(Ω).

Proof. Let v1, v2 ∈ Bδ(u) ∩ F β, t1, t2 ∈ [0, δ]. Then

|Dv2|(Ω)| ≤ E(v2) = F (v2) + λG(v2) ≤ β + λ(1 + δ)

and ∫
Ω
|v1(x + t1ξ(x))− v2(x + t2ξ(x))| dx

≤
∫

Ω
|v1(x + t1ξ(x))− v2(x + t1ξ(x))|+ |v2(x + t1ξ(x))− v2(x + t2ξ(x))| dx

≤
∫

Ω
|v1(y)− v2(y)| 1

det(id + t1Dξ(x(y)))
dx + c‖ξ‖L∞ |Dv2|(Ω)|t2 − t1|

≤ c
(
‖v1 − v2‖L1 + ‖ξ‖L∞ |Dv2|(Ω)|t2 − t1|

)
≤ c

(
‖v1 − v2‖L1 + ‖ξ‖L∞(β + λ(1 + δ))|t2 − t1|

)
→ 0

as (v1, t1) → (v2, t2) in L1(Ω)× (−t0, t0). ♦

We continue the proof of Theorem 4.5 with estimates used in the definition of the weak
slope |dF |L1

(u). By Lemma 6.24 with c̃ := c‖ξ‖L∞(β + λ(1 + δ))

‖H(v, t)− v‖L1 ≤ c‖ξ‖L∞ |Dv|(Ω)t ≤ c‖ξ‖L∞
(
F (v) + λG(v)

)
t ≤ c̃ t

for all v ∈ (Bδ(u) ∩ F β), t ∈ [0, δ]. Hence, with H̃(v, t) := H(v, t/c̃) and δ̃ := min{δ, c̃δ}

‖H̃(v, t)− v‖L1 ≤ t for all v ∈ Bδ̃(u) ∩ F β t ∈ [0, δ̃] . (6.26)

Moreover, by Lemma 6.13 and (6.23),

F (H(v, t))− F (v) = E(H(v, t))− E(v)− λ
(
G(H(v, t))−G(v)

)
= Ev(tξ)− Ev(0)− λ

(
Gv(tξ)− Gv(0)

)
=

(
δEv(0, ξ)− λδGv(0, ξ)

)
t + rE(t)Ev(0)− λrG(t)Gv(0)

< −ωt + rE(t)E(v)− λrG(t)G(v)
≤ −ωt + |rE(t)|(β + λ(1 + δ)) + λ|rG(t)|(1 + δ)

≤ −ωt +
ω

2
t = −ω

2
t (6.27)

for all v ∈ Bδ(u) ∩ F β, t ∈ [0, δ]. Consequently,

F (H̃(v, t))− F (v) ≤ − ω

2c̃
t for all v ∈ Bδ̃(u) ∩ F β , t ∈ [0, δ̃] .

With (6.26) we conclude that |dF |L1
(u) > 0 by Lemma 3.9. Since u is L1-eigenfunction,

it is also critical point of F = E − λG in L1 by Proposition 4.8. Thus |dF |L1
(u) = 0, a

contradiction to the previous estimate. Hence (6.22) cannot be true and the assertion of
Theorem 4.5 follows. ♦
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