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Zusammenfassung

Die vorliegende Arbeit konzentriert sich auf die Untersuchung bivari-
anter und triangulierter Homologietheorien auf der Kategorie separabler
C∗-Algebren. Insbesondere enth�alt die Arbeit eine De�nition von bivari-
anter konnektiver E-theorie und bivarianter Homologie. Beide Theorien
erlauben ein besseres Verst�andnis der Homotopietheorie nicht-kommuta-
tiver Zellkomplexe. Die algebraischen Eigenschaften der beiden Theorien
werden mit Hilfe von Spektralsequenzen untersucht.
In verschiedenen Berechnungen werden Matrixb�undel und nicht-kom-
mutative Algebren, welche man auf nat�urliche Weise zu kompakten, lokal
Hausdor�schen R�aumen assoziieren kann, untersucht. Desweiteren wer-
den Hindernisse zur Existenz eines rationalen Chern-Charakters von der
bivarianten Homologie zur bivarianten K-Theorie identi�ziert.
Der letzte Teil der Arbeit besch�aftigt sich mit einer Verbindung zur The-
orie der Modulspektren �uber dem konnektiven K-Theorie Spektrum.
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1 Introduction

The aim of this thesis is to analyze the variety of bivariant homology theories on the
category of separable C∗-algebras. This is motivated by the importance of the study
of E-theory and KK-theory which are both bivariant homology theories. This thesis
follows the general scheme of studying topological or operator theoretical problems by
algebraic means. A bivariant (or triangulated) homology theory (for a de�nition see
section 2.3) is thought of as a linear approximation of a category.

KK-theory is a result of the work of G.G. Kasparov [35] in the early 80s. The
character of KK-theory as a bivariant theory was central for its success throughout
operator theory. Later, in the work of J. Cuntz [16] KK-theory was identi�ed as the
universal bivariant homology theory satisfying an excision property for all semi-split
extensions, and stability with respect to the algebra of compact operators. (These
notions will be explained in section 2.3). This was a real surprise, since the de�nition
given by G.G. Kasparov was not at all abstract but very concrete and geometrically
motivated. It is well known that not all extensions of C∗-algebras are semi-split. Much
less obvious is the conclusion of G. Skandalis in [62] which says that KK-theory indeed
does not satisfy excision for certain non-semi-split extensions. It is therefore natural
to ask whether there exists a bivariant homology theory that satis�es excision for all
extensions.

E-theory was developed by N. Higson and A. Connes in [13] as a concrete realization
of the universal bivariant homology theory satisfying excision for all extensions and
stability. The existence of such a theory was known before by an abstract construction
using categories of fractions, see N. Higson's work in [30]. The important news was
that E-theory can be described using the concrete picture of asymptotic morphisms.
Furthermore, a lot of asymptotic morphisms arise in geometrically signi�cant contexts
like deformation quantization and so on. KK-theory and E-theory have applications
towards a proof of the Baum-Connes conjecture, e.g. in [28].

Our starting point in the discussion of bivariant homology theories on the category of
separable C∗-algebras is stable homotopy theory which was de�ned independently by M.
D�ad�arlat in [20] and A. Connes in [13, 14]. There had been earlier de�nitions of non-
commutative analogues of stable homotopy by J. Rosenberg [51] and di�erent other
authors (see [51] for complete references) but they did not have su�cient exactness
properties. Only the usage of asymptotic morphisms ensures the excision property
for all extensions which is what one requires in the operator algebraic setting. The
introduction of asymptotic morphisms by N. Higson and A. Connes in [13] was the
remaining crucial ingredient to make the theory work.

The foundation of the circle of ideas in stable homotopy of course goes back to E.
Spanier and J.H.C. Whitehead (see e.g. [72]). Stable homotopy for C∗-algebras is not
so well known to operator algebraists as a bivariant homology theory, since only few
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computations for non-commutative algebras have been done and the geometric signif-
icance is much less obvious than in the classical case. It remains open to connect the
deep work in (classical) stable homotopy theory that has been done since its foundation
to the results in (non-commutative) stable homotopy. An important question which
remains open is the one about the stable homotopy groups of matrix algebras. Those
questions and possible applications are related to the �ne structure in bu-theory which
will be analyzed in a forthcoming article.

Before going into details, our viewpoint will be an abstract one. We want to study
properties of bivariant homology theories. Most of the known bivariant homology the-
ories turn out to be what we call triangulated homology theories. Those triangulated
homology theories carry a lot more structure and a whole well-developed machinery
from the theory of triangulated categories can be applied (see e.g. the book by A. Nee-
man, [43]). Later, we want to study some bivariant homology theories in more detail
and discover that they are natural generalizations of well known bivariant homology
theories on the category of �nite CW-complexes to the non-commutative setting. We
stick to the requirement that the bivariant theories ought to satisfy excision with re-
spect to all extensions, although a similar approach leads to theories satisfying excision
for semi-split extensions (see [34]).

The category of bivariant homology theories (morphisms being natural transforma-
tions of bivariant theories) on the category of �nite CW-complexes is equivalent to a
homotopy category of ring spectra. The identi�cation goes as follows.

(En, σn : En → ΩEn+1)↔ {(X, Y) 7→ [X, E∗ ∧ Y]}

The importance of the category of ring spectra would be another good starting point for
the motivation of the study of bivariant homology theories. We are going to explain the
relationship between bivariant homology theories on CW-complexes and ring spectra in
section 2.3. Instead of studying the whole category of bivariant homology theories on
the category of C∗-algebras we are going to study certain bivariant homology theories
satisfying interesting universal properties.

The thesis is organized as follows. Starting with preliminaries to the de�nition of
stable homotopy, �rst, we generalize some theorems which are well known in the classical
world of �nite CW-complexes. This will occupy most of section 2. In particular, we
will show how the usage of the notion of co-�brations is circumvented in the setting of
operator algebras. This section also contains a de�nition of the terms 'bivariant and
triangulated homology theory' (see 2.3).

In section 3 we de�ne stable homotopy theory for separable C∗-algebras and show
that it is the universal triangulated homology theory on the category of separable C∗-
algebras. In this section we heavily use the extension category of the category of sep-
arable C∗-algebras which is de�ned in appendix C.3. Indeed, we show that the exten-
sion category is equivalent to the stable homotopy category which was de�ned using
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asymptotic morphisms. The usage of the extension category simpli�es the proof of the
universal properties of stable homotopy theory.

In section 4 we construct certain triangulated and bivariant homology theories which
are generalizations of well known bivariant homology theories on CW-complexes. In
particular, this section contains the de�nition of connective E-theory (which is denoted
by bu) and bivariant homology for C∗-algebras. Connective E-theory and bivariant
homology give extensions of connective K-homology and K-theory resp. singular ho-
mology and co-homology from the category of �nite CW-complexes to the category
of (possibly non-commutative) separable C∗-algebras. Our description provides a new
perspective on those theories from a non-commutative point of view. Furthermore, it
shows how natural theories, such as K-theory and connective K-theory, occur. The
idea to regard cohomology and homology as the defect of multiplication with the Bott
map in connective K-theory can be found in the work of Larry Smith [63] in the late
70s.

There has been previous work towards a de�nition of connective K-theory for C∗-
algebras by J. Rosenberg [51]. The de�nition in [51] lacked the appropriate exactness
property. To our knowledge there has not been a de�nition of a bivariant theory before.
There has also been no study of the defect of the Bott map in this context. There had
been attempts to de�ne cellular cohomology for C∗-algebras by R. Exel and T.A. Loring
[26] but they obviously did not have the desired exactness properties.

In section 4 we are also going to de�ne the notion of a (strict) non-commutative
cell complex. (Strict) non-commutative cell complexes will constitute a suitable substi-
tute for CW-complexes in the non-commutative setting. Strict non-commutative cell
complexes (we will omit the term 'non-commutative' in most of the situations) are re-
cursively de�ned type 1 algebras with a bound on the dimension of their irreducible
representations. We conjecture that the unitalizations of strict cell complexes are re-
cursively sub-homogenous algebras in the sense of C. Phillips [48] but we have not tried
to prove this.

The triangulated categories corresponding to E-theory and connective E-theory are
only partially understood by homological algebra. This is due to the fact that there
are possible obstructions to the convergence of a universal coe�cient (UC) spectral se-
quence. The obstruction is identi�ed with the possibility of the existence of algebras
with vanishing K-groups or connective K-groups, which are non-trivial in the corre-
sponding bivariant homology theories (i.e. K∗(A) = 0 but E∗(A,A) 6= 0 or bu∗(A) = 0

but bu∗(A,A) 6= 0). Nonetheless, the behavior on the sub-category of cell complexes is
rather nice.

We study the thick sub-category of algebras with �nitely generated connective K-
groups in more detail. The localization of this sub-category with respect to the possible
obstruction sub-category turns out to be a Bous�eld localization. The quotient (in the
sense of triangulated categories) gives a triangulated homology theory which always
satis�es convergence of the UC spectral sequence and hence is much better understood
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algebraically. (There is one problem with this construction. Since we cannot exclude
the possibility that bu∗(A) = 0 but bu∗(A⊗A) 6= 0, the localization is not necessarily
monoidal. But it is at least equivalent to a triangulated category with compatible
monoidal structure. Indeed, it is equivalent (as a triangulated category) to the full
triangulated sub-category of cell complexes which is monoidal.)

Among other computations we compute the bu-type of matrix bundles over compact
pointed spaces. Furthermore, we give a procedure of associating a separable C∗-algebra
up to bu-equivalence to any locally Hausdor� pointed compact topological space. This
allows to compute certain invariants of those spaces which give obstructions to the
existence of a stable homotopy equivalence to a global Hausdor� space. The existence
of a global Hausdor� structure up to homotopy is an interesting property. It seems
that the question of its existence has not been considered before. There are no further
applications so far.

We show that negative connective E-theory coincides with negative algebraic K-
theory on a category of strict non-commutative cell-complexes. This is based on results
by J. Rosenberg [52]. In [53] he conjectures that homotopy invariance of negative
algebraic K-theory holds for C∗-algebras which would relate the two theories even closer.
This remains open. We mention those results, since they provide another view on
connective E-theory.

In the algebraic study of bivariant homology we establish a Bockstein-Chern spectral
sequence with E2-term given by the bivariant homology groups and converging towards
(non-connective) E-theory. This spectral sequence encodes all the information about
the torsion of the Bott element. If we rationalize, the spectral sequence is in some sense
what remains of the rational Chern character after passage to the non-commutative
setting. We compute the ring of cohomology operations of bivariant homology and
use it to detect algebras which are not equivalent to commutative ones in connective
E-theory. We prove the existence of a bivariant rational Chern character which is an
isomorphism in the case that the algebras in question are bu-equivalent to commutative
algebras. A converse is proved in the rational case. Furthermore, we construct an Adams
spectral sequence converging to connective E-theory.

Finally, in section 5, we are going to identify the triangulated categories found so far
with homotopy categories of module spectra (see e.g. the work of M. Hovey, B. Shipley
and J. Smith in [33]) over the non-connective and connective K-theory spectrum (the
latter is denoted by bu). Further algebraic study of C∗-algebras, considered as objects
in bu, can be carried out in the homotopy category of bu-module spectra as well (see
e.g. the work of J. Wolbert in [73]). This category has the advantage that it is the
homotopy category of a simplicial model category. The spectral sequences which we
have considered can be constructed in the category of bu-spectra as well. The author
hopes that the usage of C∗-algebras allows to give a more concrete picture of bu-module
spectra. So far there are no applications of this alternative description.

The construction of a suitable model structure on the category of pro-objects of
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separable C∗-algebras is content of further study. Although such a model structure
might be useful for abstract purposes we do not expect it to be very useful for concrete
computations. A �rst step towards a useful model structure would be a strict category
of asymptotic morphisms which is rather di�cult to obtain.

This thesis partially answers questions which were asked by B. Blackadar [8], M.
D�ad�arlat and J. McClure [24] and J. Wolbert [73].

I want to thank my supervisor Professor Joachim Cuntz for his guidance through
the topic and for a lot of interesting comments. Furthermore, I want to thank Christian
Ausoni, Paul Balmer, Arthur Bartels, Tilman Bauer, Michael Joachim, Mark John-
son, Eberhard Kirchberg, Michel Matthey, Ralf Meyer, Roman Sauer, Stefan Schwede,
Thomas Timmermann, Julius Verrel, Christian Voigt and Wilhelm Winter for fruitful
and interesting discussions which I have enjoyed very much. I also want to thank the
SFB 478 for its hospitality during almost three years in M�unster. In particular, my
work was supported by the

� EU-Network Quantum Spaces - Non-commutative Geometry
(Contract No.HPRN-CT-2002-00280) and the

� Deutsche Forschungsgemeinschaft (SFB 478).
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2 Preliminaries

This section gives the preliminaries to the de�nition of stable homotopy theory for C∗-
algebras and the formulation of its properties. The de�nition of stable homotopy will be
given in the next section. For introductory information about C∗-algebras see appendix
C.1. There can be found a de�nition of all symbols and short notations that are used
throughout the text. Almost all C∗-algebras that appear in these notes are separable
(see appendix C.1 for a de�nition).

In the �rst part we want to introduce the theory of asymptotic morphisms. We
discuss the notion of homotopy of asymptotic morphisms. The concept of an asymptotic
morphism is central for a concrete understanding of a suitable homotopy theory of C∗-
algebras. We will clarify what 'suitable' means in this context. The original de�nition
of stable homotopy theory for C∗-algebras was based on asymptotic morphisms and
given by A. Connes and N. Higson in [13] and M. D�ad�arlat in [20].

The second part clari�es the relation between extensions of C∗-algebras and asymp-
totic morphisms. This requires a notion of homotopy of extensions. The ideas in this
part are taken from [34].

In a third part we give a de�nition of the concepts of bivariant and triangulated
homology theories. The de�nition of triangulated homology theory seems to be new
in the context of operator algebras. We do not claim any originality, since the idea
of approximating categories with a notion of homotopy using triangulated categories
is indeed old (e.g. in the context of topological spaces, chain complexes etc.) and
has a long history. Triangulated categories were used implicitly in the construction of
E-theory by N. Higson in [30] as we will explain at the end of section 3.

2.1 What is an asymptotic morphism ?

An asymptotic morphism between C∗-algebras is a generalization of a ∗-homomorphism.
The idea of asymptotic morphisms goes back to the work of A. Connes and N. Higson
[13] and was further developed in the articles [20] by M. D�ad�arlat and [34] by K. Thom-
son, and T.G. Houghton-Larsen. A self-contained treatment of the theory of asymptotic
morphisms can be found in [28]. The concept of asymptotic morphisms is far more ex-
ible than the notion of ∗-homomorphism and allows to construct a homotopy category
of separable C∗-algebras with the desired exactness properties.

Let us start with the de�nition of the asymptotic envelope of a C∗-algebra.

Definition 2.1.1 For any C∗-algebra A de�ne a(A) to be the quotient in the fol-

lowing exact sequence.

0 //A[0, 1) //Ab[0, 1) //a(A) // 0

9



We call the algebra a(A) the asymptotic envelope of A. There is a natural

inclusion αA : A → a(A) which sends the element a ∈ A to the image of the

constant function {[0, 1) 3 t 7→ a} ∈ Ab[0, 1).

Note that there is an injection A⊗Cb[0, 1) ↪→ Ab[0, 1) which is not surjective unless
A is �nite dimensional. In particular, Ab[0, 1) (and therefore also a(A)) cannot be easily
described as the algebra of A-valued functions on a compact space. Note further that
the asymptotic envelope of an algebra (except in the trivial case of the zero algebra) is
not separable. These will be about the only non-separable C∗-algebras that appear in
these notes.

Lemma 2.1.2 The assignment a : A 7→ a(A) of a C∗-algebra to its asymptotic

envelope extends to a functor a : C → C from the category of C∗-algebras to itself.

Proof: Let φ : A → B be a ∗-homomorphism between C∗-algebras. It induces
natural ∗-homomorphisms A[0, 1) → B[0, 1) and Ab[0, 1) → Bb[0, 1). The uniqueness
of the induced ∗-homomorphism between the quotients proves the functoriality. This
�nishes the argument.

Lemma 2.1.3 The inclusion A ↪→ a(A) of a C∗-algebra into its asymptotic envelope

extends to a natural transformation α : idC → a.

The proof is obvious.

Using the asymptotic envelope we are able to de�ne the notion of an asymptotic
morphism.

Definition 2.1.4 An asymptotic morphism between C∗-algebras A and B is a ∗-
homomorphism A → a(B). (We will either speak about a ∗-homomorphism A →
a(B) or an asymptotic morphism A→ B.)

Note that any ordinary ∗-homomorphism A → B gives rise to an asymptotic mor-

phism by composition with the natural map B
�(B)→ a(B).

Having a de�nition, we want to review another picture of asymptotic morphisms
which is quite useful for concrete constructions and computations. By the theorem of
Bartle-Graves (see appendix C.1.14), there is a bounded continuous (not necessarily lin-
ear, ∗-preserving or multiplicative) split of the surjection Bb[0, 1) → a(B). Composing
any asymptotic morphism with co-domain B with this split we get a continuous map
A→ Bb[0, 1). Considering the evaluations at the points in [0, 1), one can interpret the
asymptotic morphism as a family of maps satisfying the relation of a ∗-homomorphisms
if the parameter t tends to 1. The precise statement is subsumed in the following
theorem.
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Theorem 2.1.5 (A. Connes, N. Higson in [13]) Let φt : A → B (for t ∈ [0, 1)) be

a uniformly bounded continuous family of continuous maps satisfying

lim
t!1
‖φt(a+ b) − φt(a) − φt(b)‖ = 0

lim
t!1
‖φt(ab) − φt(a)φt(b)‖ = 0

lim
t!1
‖φt(a∗) − φt(a)∗‖ = 0

for all a, b ∈ A. It de�nes an asymptotic morphism by regarding the family as

a map A → Bb[0, 1) and passing to the quotient a(B). Conversely any asymptotic

morphism from A to B is represented by such a family, and the family is unique

up to addition of a map A→ B[0, 1).

To understand the nature of asymptotic morphisms geometrically one should look
at what it means to have an asymptotic morphism between commutative algebras. The
following theorem was proved by M. D�ad�arlat and is taken from [20].

Theorem 2.1.6 (M. Dădărlat in [20]) Let X and Y be compact topological spaces

and f be an asymptotic morphism from C(X) to C(Y). Denote by M(X) the space

of probability measures on X equipped with the weak-∗-topology.
An asymptotic morphism f gives rise to a continuous family of continuous

maps µt : Y → M(X) such that µt(y) converges to X (embedded as the space of

point measures) for all y ∈ Y as the parameter t tends to one.

Conversely any such family de�nes an asymptotic morphism from C(X) to C(Y)

and two such families give rise to the same class of asymptotic morphisms if and

only if their di�erence converges pointwise to zero in the weak- ∗-topology of C(X) ′.

The last theorem tells that an asymptotic morphism is quite close to an ordinary
∗-homomorphism. Indeed, there is a description of asymptotic morphisms using strong
shape theory (see the work of M. D�ad�arlat in [21]). We are not considering strong
shape theory here but we want to emphasize that it is very useful, since it allows to �nd
obstructions to the existence of asymptotic morphisms which is di�cult in the other
pictures. Theorem 2.2.15 allows a further clari�cation of the geometric meaning of an
asymptotic morphism in the case of �nite CW-complexes or more generally ANRs.

Next we want to de�ne the notion of an asymptotic homotopy between asymptotic
morphisms. The basic question here is which interval functor one should take. There
are essentially two possibilities. Either one takes a(A)[0, 1] or a(A[0, 1]). It turns out
that the second possibility is suited much better for our purposes.

Definition 2.1.7 Two morphisms

φ,ψ : A→ a(B)
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are called asymptotically homotopic , if there is a morphism H : A→ a(B[0, 1]) such

that a(ev0) ◦H = φ and a(ev1) ◦H = ψ.

In order to ensure that the relation of homotopy is an equivalence relation we have
to remark for the transitivity that, by lemma 2.5 in [28], there is a natural isomorphism
a(A[0, 1])⊕a(A) a(A[0, 1]) ∼= a(A[0, 1]). Reexivity and symmetry are obvious.

We denote the set of asymptotic homotopy classes of asymptotic morphisms from A

to B by [[A,B]]. Given an asymptotic morphism α : A → B, we denote its asymptotic
homotopy class by [[α]] ∈ [[A,B]].

Note that any ray in hom(A,B) gives rise to a morphism A→ a(B). Furthermore,
given an asymptotic morphism, any reparametrisation of the half-open interval will
produce a new one. Only our choice of the notion of homotopy ensures that one can show
that these trivially constructed asymptotic morphisms are all asymptotically homotopic.

Composition of asymptotic morphisms is in general a subtle issue. It is obvious how
one can compose an asymptotic morphism with an ordinary ∗-morphism. It is much less
obvious how to compose two asymptotic morphisms. Some remarks about composition
of asymptotic morphisms are in order. To de�ne the composition we introduce a third
picture of asymptotic morphisms along the lines of [28] (see de�nition 2.7 in [28]). First
of all, instead of morphisms A → a(B) up to homotopies A → a(B[0, 1]) we consider
morphisms A → an(B) up to homotopies A → an(B[0, 1]) for any n ∈ N. We denote
the homotopy relation of morphisms A→ an(B) by ∼n. All those morphisms assemble
in the co-limit

colimnhom(A,an(B))/ ∼n

where the co-limit is taken in the category of sets and with respect to the maps

hom(A,an(B[0, 1]))
�(an(B[0;1]))◦? // hom(A,an+1(B[0, 1])).

The following result relates this apparently more general situation to what we already
considered. A proof can be found in [28].

Lemma 2.1.8 Let A and B be separable C∗-algebras. The canonical map

hom(A,a(B))/ ∼1 // colimnhom(A,an(B))/ ∼n

is an isomorphism of sets.

The only purpose of considering this co-limit is that it allows to de�ne a composition
product. Given f : A → an(B) and g : B → am(C), we can de�ne a composition
an(g) ◦ f : A → an+m(C). In order to get an associative composition product up to
homotopy one still has to prove some things. The statement with a full proof can be
found as proposition 2.12 in [28]. We only state the �nal conclusion.
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Theorem 2.1.9 Let A,B and C be separable C∗-algebras. There is an associative

composition product [[A,B]] × [[B,C]] → [[A,C]]. It allows to de�ne a category

asC with objects separable C∗-algebras and morphisms asC(A,B) = [[A,B]]. The

category asC is called the asymptotic homotopy category .

The canonical map hom(A,B)→ [[A,B]] can be extended to a functor sC → asC
from the category of separable C∗-algebras into the asymptotic homotopy category.

In [28] it is shown that the symmetric monoidal structure which comes from the
maximal tensor product (see appendix C.4) extends to the category asC such that the
functor sC → asC becomes a symmetric monoidal functor. For a proof and related
results see chapter 4 in [28]. We state theorem 4.6 in [28].

Theorem 2.1.10 The category asC is symmetric monoidal with respect to the max-

imal tensor product.

Up to now, it has not become clear why we did not take the ordinary notions of
morphism and homotopy. The next section will clarify the advantages of the approach
using asymptotic morphism and asymptotic homotopy.

It would be very pleasant to construct the asymptotic homotopy category as the
'homotopy category' of a strict category with nice properties. In order to make this
precise one has to explain what one means by the term 'homotopy category'. The right
framework to do this is the context of 'model categories' (see e.g. [31]). The construction
of a suitable set-up will be content of a forthcoming article. This involves ideas coming
from strong shape theory which were developed in the context of C∗-algebras by M.
D�ad�arlat in [21].

2.2 Extensions vs. asymptotic morphisms

Important examples of asymptotic morphisms arise via extensions. In fact, there is
a very close connection between asymptotic morphisms and extensions of C∗-algebras
which will be explained in this part. For the main statements in this part it is important
to assume that all C∗-algebras in question are separable. Let us start with the de�nition
of the concept of extension (compare also appendix C.3).

Definition 2.2.1 Let A,B and C be C∗-algebras. An extension of C by A is a

diagram of the form

0 // A
f // B

g // C // 0

where A
f→ B is a kernel of B

g→ C and B
g→ C is a co-kernel of A

f→ B. (This

is equivalent to saying that f is injective, f(A) is a closed 2-sided ideal in B,

the composition g ◦ f is equal to zero and the induced map B/f(A)
g→ C is an

isomorphism of C∗-algebras.)
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There is a manifoldness and ambiguity in the class of extensions. Indeed, the class
of extensions between two algebras does not even form a set. In order to rectify this am-
biguity we want to introduce a notion of isomorphism and homotopy of extensions (the
treatment is taken from [34]). The equivalence classes with respect to those relations
do form sets.

Definition 2.2.2 Let

0 // A // C // B // 0

and

0 // A // C ′ // B // 0

be extensions of B by A.

� The extensions above are called isomorphic , if there exists a commutative

diagram as follows.

0 // A // C //

f
��

B // 0

0 // A // C ′ // B // 0

(Note that the morphism f : C→ C ′ clearly has to be an isomorphism. Thence

the relation is an equivalence relation.)

� The extensions above are called homotopic , if there is an extension

0 //A[0, 1] // C ′′ // B // 0

such that there exists a commutative diagram of the following form.

0 // A // C // B // 0

0 //A[0, 1] //

ev0

OO

ev1

��

C ′′ //

OO

��

B // 0

0 // A // C ′ // B // 0

Remark 2.2.3 The notion of homotopy we are using in this context is called 'weak

homotopy' in [34] but we want to omit the word 'weak', since we are not going to

use any stronger notions.

Lemma 2.2.4 The relation of homotopy of extensions is an equivalence relation.
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Proof: Given two composable homotopies, we obtain a diagram with �ve rows. We
can take the pull-back of each column of the middle three rows. One easily checks that
the resulting middle row is again exact and, since A⊕A A ∼= A and B[0, 1]⊕B B[0, 1] ∼=

B[0, 1], this proves the transitivity of the relation. Symmetry follows by the existence
of the following extension.

0 //A[0, 1] // C[0, 1]⊕B[0;1] B // B // 0

(The pull-back in the middle is taken with respect to the canonical map C[0, 1]→ B[0, 1]

and the inclusion of the constant functions B → B[0, 1].) The constructed extension
maps to

0 // A // C // B // 0

either by evaluating at 0 or 1. Reexivity is obvious. (An alternative proof can be
found in [34].)

Definition 2.2.5 Let A and B be separable C∗-algebras. Denote by ext(A,B) the set

of homotopy classes of extensions of B by A. (Note that this is indeed a set, since

the category of separable C∗-algebras is skeletally small and isomorphic extensions

are, in particular, homotopic.)

Definition 2.2.6 � Denote by Σ : sC → sC the functor which is given by suspen-

sion (i.e. Σ(A) = C(S1, 1;A), see de�nition C.1.5).

� Denote by t : Σ → Σ the natural transformation which is given by the twist

of the suspension (i.e. the map which is induced by complex conjugation on

S1 ⊂ C).

� Let

0 // A
g // B

h // C // 0

be an extension. We call the extension

0 // Σ(A)
t�(f) // Σ(B)

�(h) // Σ(C) // 0

the twisted suspended extension.

� Denote by Σ : ext(A,B) → ext(Σ(A), Σ(B)) the map which assigns to an ex-

tension the twisted suspended extension. (One easily checks that suspending

is compatible with homotopy.)

Our next aim is to relate ext(A,B) to [[B,A]]. We follow the lines of K. Thomsen
and T.G. Houghton-Larsen in [34] and introduce, �rst of all, a procedure of assigning
an asymptotic morphism to an extension and, secondly, a procedure which is inverse
up to suspension.
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Following N. Higson and A. Connes in [13] we can naturally associate to any homo-
topy class of extensions represented by, say

0 // A // C // B // 0

a homotopy class of asymptotic morphisms [[α]] : Σ(B) → A such that the homotopy
class depends only on the homotopy class of the extension and induces the connecting
morphism in the long exact sequence that arises in homology theories such as K-theory.
We want to recall this construction, since it is central for the theory.

Lemma 2.2.7 (Connes-Higson-Construction) Let

0 // A // C // B // 0

be an extension of separable C∗-algebras. We can assign to it a ∗-homomorphism

γ : Σ(B)→ a(A), such that the asymptotic homotopy class of γ does not depend on

the choice of the representative in the homotopy class of extensions given by the

extension.

The statement of the lemma is a little vague, since we cannot formulate the interesting
properties of this assignment yet. They will become clear later. The statement of the
lemma ensures only that it is well-de�ned for our purposes.

Proof: Choose a continuous approximate unit of A which is quasi-central in C. More
precisely we choose a ray u : [0, 1)→ A such that

lim
t!1
‖x− utx‖ = 0

for all x ∈ A and
lim
t!1
‖cut − utc‖ = 0

for all c ∈ C. (Such a ray can be obtained by linear interpolation of a quasi-central
approximate unit. The existence of quasi-central approximate units is classical and
proved in [47].) We de�ne γ by

γt(f⊗ b) = f(ut)s(b)

for f ∈ Σ and b ∈ B and where s : B → C is any continuous bounded split of the
surjection from C to B. (Such splits exist by the theorem of Bartle-Graves (see C.1.14).)
By the properties of the approximate unit, the continuous family (γt) induces a ∗-
homomorphism Σ ⊗alg B → a(C) which can be extended to a ∗-homomorphism from
the full tensor product (see e.g. theorem C.4.3). Furthermore, its homotopy class is
independent of the choice of the split s and independent of the choice of the approximate
unit. Indeed, the set of choices was convex in both cases.
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A homotopy of extensions de�nes a homotopy of asymptotic morphisms in an obvi-
ous way. This proves the homotopy invariance and hence �nishes the proof. Full details
can be found in [28] or [20].

The existence of quasi-central approximate units was crucial in the last proof. The
proof of its existence relies on the separability of the algebras in question. This is the
only but crucial and indispensable step where we really need the separability condition.

Definition 2.2.8 We denote the assignment of a homotopy class of asymptotic

morphisms to any extension which was established in the last lemma by

λA;B : ext(A,B)→ [[Σ(B), A]].

Now, we come to a sort of inverse procedure. It is not quite an inverse, but it is an
inverse up to suspension as will become clear in the next theorem. We associate to any
asymptotic morphism β : A→ B an extension

0 // Σ(B) // E // A // 0

such that the homotopy class of the extension only depends on the homotopy class
of the asymptotic morphisms. This result appears as theorem 5.12 in [28]. We give a
short argument, since the construction is central for the construction of stable homotopy
theory.

Lemma 2.2.9 Let A and B be separable C∗-algebras and let α : B → a(A) be an

asymptotic morphism from B to A. There is a short exact sequence

0 // Σ(A) // E� // B // 0

with

E� = {(b, f) ∈ B⊕Ab([0, 1), 0) : α(b) = q(f) ∈ a(A)} = B⊕a(A) Ab([0, 1), 0)

where q : Ab([0, 1), 0)→ a(A) denotes the canonical quotient map. The algebra E�

is separable. Furthermore, the homotopy class of the extension depends only on

the homotopy class of the asymptotic morphism.

Proof: The exactness of the sequence follows from the following diagram.

0 // Σ(A) // E�

��

// B

�

��

// 0

0 // Σ(A) //Ab([0, 1), 0)
q //a(A) // 0

Note that the right hand square is a pull-back by de�nition of E�. This implies the
exactness of the upper sequence. The algebra E� is separable, since B and Σ(A) are
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separable. To see this choose inverse images {bn, n ∈ N} of a countable dense subset of B.
Let {an, n ∈ N} be a countable dense subset of Σ(A). The set {an+bm, (n,m) ∈ N×N}

is dense in E� by a standard argument using the de�nition of the quotient norm.
Let h : B → a(A[0, 1]) be a homotopy such that h0 = α. Since our construction of

an extension is functorial, we get a commutative diagram as follows.

0 // Σ(A) // E� // B // 0

0 // Σ(A[0, 1]) //

ev0

OO

ev1

��

Eh //

OO

��

B // 0

0 // Σ(A) // Eh1
// B // 0

This establishes the existence of the required homotopy and hence �nishes the proof.

Definition 2.2.10 We denote the assignment of a homotopy class of extensions to

an asymptotic morphism which was established in the last lemma by

µA;B : [[B,A]]→ ext(Σ(A), B).

Composing these two constructions we end up essentially with a suspended asymp-
totic morphism or a twisted suspended extension as will be made precise in the next
theorem. A proof of this can be found in [34].

Theorem 2.2.11 (K. Thomsen, L. Houghton-Larsen in [34]) Let A and B be

separable C∗-algebras. Let

λA;B : ext(A,B)→ [[Σ(B), A]]

and

µA;B : [[B,A]]→ ext(Σ(A), B)

be the maps as de�ned before.

The following two diagrams are commutative.

ext(A,B)

�

��

�A;B // [[Σ(B), A]]

�A;�(B)vvmmmmmmmmmmmmm
[[B,A]]

�

��

�A;B

vvmmmmmmmmmmmmm

ext(Σ(A), Σ(B)) ext(Σ(A), B)
��(A);B// [[Σ(B), Σ(A)]]

This theorem is absolutely crucial to most of the constructions in the �rst sections
of this thesis. It allows to identify asymptotic morphisms between separable algebras
and 1-step extensions. It helped us to recognize how important extensions are and
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how they can be used to construct universal bivariant homology theories. Note that
the notion of extension is much more general than the notion of asymptotic morphism.
To make the theory of asymptotic morphisms work one uses very special properties of
separable C∗-algebras (i.e. the existence of quasi-central approximate units etc.). The
insight gained from this theorem has led to the de�nition of the notion of extension
categories (see appendix C.3). The possibility of constructing an extension category
is not particular to the category of separable C∗-algebras. First of all, it immediately
applies to all sorts of topological algebras but also to completely di�erent situations.
See the work of J. Cuntz in [18], where he uses similar constructions and arguments
which motivated our de�nition of extension category very much. We hope that it has
fruitful applications not only in the context of operator algebras.

We continue with some technical lemmas which are important if one wants to un-
derstand how the assignment λ?;? behaves in standard situations. They were proved by
M. D�ad�arlat in [20].

Lemma 2.2.12 � Let

0 // Σ(A) // c(A)
ev1 // A // 0

be the cone extension of A (see de�nition C.1.6). Its image under λ�(A);A :

ext(Σ(A), A)→ [[Σ(A), Σ(A)]] is the class of id�(A).

� Consider extensions γ of C by A and γ ′ of C ′ by A. Suppose there is a

commutative diagram

0 // A // B // C // 0

0 // A // B ′ //

OO

C ′ //

f

OO

0

with f injective. Then λA;C ′(γ
′) = λA;C(γ) ◦ Σ(f) as elements in [[Σ(C ′), A]]

� Consider extensions γ of C by A and γ ′ of C by A ′. Suppose there is a

commutative diagram

0 // A // B // C // 0

0 //A ′ //

f

OO

B ′ //

OO

C // 0

with f injective. Then λA;C(γ) = f ◦ λA ′;C(γ) as elements in [[Σ(C), A]].

Proof: The proofs are not di�cult and can be found in [20].

Having provided these technical properties we are going to prove an important
lemma which is frequently used in further constructions. Let us start with a de�ni-
tion.
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Definition 2.2.13 Let f : A→ B be a homomorphism. The cone of f which will be

denoted by c(f) is given by the pull-back c(B)⊕BA (see de�nition C.1.6) along the

obvious maps. Note that there is always a canonical map ker(f) → c(f) given by

a 7→ (0, a).

The next lemma will make apparent why we use asymptotic morphisms. The con-
struction of long exact sequences in bivariant homology theories falls into two parts.
First of all, one has to construct the mapping cone sequence. Its exactness is obvious
in most of the situations. Secondly, one has to identify the cone of a surjection with its
kernel. In KK-theory this was achieved for surjections with completely positive split by
J. Cuntz and G. Skandalis in [19]. The next lemma shows that the required statement
is true in the asymptotic homotopy category after suspending.

Lemma 2.2.14 Let f : A→ B be a surjective homomorphism. The canonical map

π : ker(f)→ c(f)

is an asymptotic homotopy equivalence after suspending once.

Proof: We have to construct an inverse of Σ(π). Let ψ be the asymptotic morphism
that corresponds to the following extension.

0 // Σ(ker(f)) // c(A) // c(f) // 0

It is an asymptotic left inverse up to homotopy of Σ(π) by the following commutative
diagram

0 // Σ(ker(f)) // c(A) // c(f) // 0

0 // Σ(ker(f)) // c(ker(f)) //

OO

ker(f) //

�

OO

0

and lemma 2.2.12 which shows that ψ ◦ Σ(π) = idker(f).
To show that ψ is also a right inverse consider the diagram

0 // Σ(c(f)) // c(c(f)) // c(f) // 0

0 // Σ(ker(f)) //

�(�)

OO

c(A) //

OO

c(f) // 0

where c(A)→ c(c(f)) takes at to (f(as+t-st), at). Again, the claim follows from lemma
2.2.12 which shows that Σ(π) ◦ψ = idc(f). This �nishes the proof.

The last lemma is the only purpose of introducing asymptotic morphisms, since it
allows to construct a suitable homotopy category without having the notion of co�bra-
tion.
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In the category of compactly generated spaces there is a distinguished class of maps
which are called co�brations. Co�brations (depending on the model structure one
chooses) are essentially retractions of cellular extensions and they are always closed
embeddings and hence correspond to certain surjections of the associated algebras of
functions. Since most interesting objects in algebraic topology can be made out of
cells by gluing them together, this is a su�ciently rich class of maps. The properties
of co�brations su�ce to prove that the exact analogue of lemma 2.2.14 holds in the
category of compactly generated spaces. The analogue statement is that the cone of a
co�bration identi�es up to homotopy with the quotient. We are getting this result in
the asymptotic homotopy category only after suspending once but this will be su�cient
for our purposes, since we are considering only stable phenomena.

Since there is no obvious analogue of the notion of a co�bration for C∗-algebras and
the approach of cellular extensions seems to be inappropriate for several reasons, one
has to �nd a suitable way around this lack of structure. The method proposed by A.
Connes and N. Higson enlarges the set of morphisms so that there exists the required
homotopy equivalence for any surjection after suspending once. This is about the best
thing that could possibly happen.

The next theorem which was proved by M. D�ad�arlat shows that although we have
enlarged the class of morphisms we did not change the homotopy category of �nite
CW-complexes.

Lemma 2.2.15 Let (X, x) and (Y, y) be compact Hausdor� pointed topological spaces

and let, furthermore, X be an ANR, locally contractible at x. The canonical map

[Y, X]+ → [[C(X, x), C(Y, y)]]

is an isomorphism.

Proof: Let φ : C(X, x) → a(C(Y, y)) be a ∗-homomorphism. By lemma 2.1.6, there
exists a map family of maps ψt : Y →M(X) which approaches X (here,M(X) denotes the
space of probability measures on X equipped with the weak-∗-topology). Since X is an
ANR, we can �nd a retraction of a neighborhood of X insideM(X) (the embedding being
the one given by the point measures). The image of Y will lie inside this neighborhood
for su�ciently large values of the parameter t by compactness of Y. Composing with the
retraction gives a continuous map Y → X which is not necessarily pointed but the image
of y is close to x. Since X is locally contractible at x, we can retract a neighborhood of
y to y in order to get a pointed map from Y to X. This proves surjectivity. Injectivity
follows by a relative argument. This �nishes the (outline of the) proof.

A more general statement which we need later is the following.

Lemma 2.2.16 Let A be a C∗-algebra and (X, x) be a compact Hausdor� pointed

topological space. If hom(A,Mn) is an ANR, then the canonical map
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[A,Mn(C(X, x))]→ [[A,Mn(C(X, x))]]

is an isomorphism.

Proof: The proof of this statement goes along the lines of the proof of lemma 2.2.15.
It can be found in detail in the work of M. D�ad�arlat [20].

The last lemmas are also of some importance, since they allow the computation of
some sets or groups of homotopy classes of asymptotic morphisms by classical means.
In general, our scheme of the construction of an interesting bivariant homology theory
falls into two parts. First of all one has to construct it and to show that is satis�es
certain abstract properties, maybe even a universal property. Secondly, one has to
compute at least the coe�cients to give a geometric interpretation of the theory. The
computation of the coe�cients of stable homotopy and connective E-theory for C∗-
algebras relies on the last lemmas, since they allow to reduce the questions about
homotopy classes of asymptotic morphisms to questions about homotopy classes of
ordinary ∗-homomorphisms.

The next part will answer some questions that might have occurred after the last
comments. It will give de�nitions of the main object of study in this thesis.

We �nish this part by providing another result about extensions. According to
lemma 2.4 in [28] the functor a : C → C is exact. This result is recalled in the following
proposition which we do not want to prove here.

Proposition 2.2.17 The functor a : C → C is exact. This means that for every

extension

0 // A
f // B

g // C // 0

the diagram

0 // a(A)
a(f) // a(B)

a(g) // a(C) // 0

is also an extension. For a �xed extension γ we denote the application of the

functor a to it by a(γ). (Note that this assignment is in general not compatible

with the notion of homotopy of extensions.)

2.3 What is a bivariant theory ?

In this part we want to introduce a partially new aspect of bivariant homology theories
on the category of separable C∗-algebras such as E-theory, KK-theory and so on. In
the following de�nitions we want to abstract the properties from those theories which
make the algebraic machinery work. There have been other de�nitions, and we do not
claim any originality of the concepts.
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We begin this part with a de�nition of what we understand as a bivariant (resp. tri-
angulated) homology theory. For the de�nition and properties of triangulated categories
see appendix A.1.

Definition 2.3.1 A bivariant homology theory on sC is a functor H : sC → (R, Σ)

into an additive category R together with an automorphism Σ : R → R which

satis�es the following conditions.

� The functor H is homotopy-invariant (i.e. f and g homotopic implies H(f) =

H(g)).

� For any extension

0 // A
f // B

g // C // 0

and any D ∈ ob(R) the following induced sequences of Abelian groups are

exact.

homR(D,H(A))→ homR(D,H(B))→ homR(D,H(C))

homR(H(C), D)→ homR(H(B), D)→ homR(H(A), D)

� There is a natural isomorphism of functors H ◦ Σ ∼= Σ ◦ H. A choice of this

isomorphism is part of the data of a bivariant homology theory. (We want to

omit the explicit mentioning of this isomorphism in many contexts although

it might not be the identity.)

Remark 2.3.2 The second property is usually referred to as 'excision' or 'half-

exactness' (see e.g. [7]).

Definition 2.3.3 A triangulated homology theory on sC is a functor H : sC →
(T, Σ-1) into a triangulated category (T, Σ-1) such that the following conditions are

satis�ed.

� The functor H is homotopy invariant.

� For any extension

0 // A
f // B

g // C // 0

there is a natural choice of a map α : Σ(H(C))→ H(A) such that the triangle

Σ(H(C))
� // H(A)

H(f) // H(B)
H(g) // H(C)

is distinguished. (Naturality of the choice means naturality with respect to

mappings of extensions.)
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One might wonder why the triangulated structure is de�ned with respect to the
inverse of Σ. This is of course pure convention. We have chosen this apparently annoying
variant, since it prevents us from having more trouble later. Note, for example, that
the category of �nite CW-complexes sits contravariantly inside sC. Hence one expects
a contravariant functor from the stable homotopy category of �nite CW-complexes
into a triangulated homology theory of C∗-algebras. Contravariant functors between
triangulated categories indeed make sense, since the opposite of a triangulated category
is indeed triangulated but with the inverse automorphism.

Proposition 2.3.4 Any triangulated homology theory is, in particular, a bivariant

homology theory.

Proof: Note that the exactness properties of a bivariant homology theory are auto-
matically satis�ed if the conditions in the preceding de�nition of a triangulated homol-
ogy theory hold, since the hom-groups of a triangulated category T are homological resp.
co-homological (see appendix 2 for de�nitions) with respect to distinguished triangles.

It remains to provide a natural transformation. Given a C∗-algebra A, there is a
natural extension

0 // Σ(A) // c(A)
evA
1 // A // 0

(see de�nition C.3.9 in the appendix) which gives rise to a natural map Σ(H(A)) →
H(Σ(A)) which is an isomorphism, since c(A) is contractible and H is a homotopy
invariant functor. This �nishes the proof.

A bivariant (resp. triangulated) homology theory can also be de�ned with respect to
a distinguished class of extensions in an obvious way. Here, the class of semi-split exten-
sions is the most important one to mention. It would lead to a stable homotopy category
which is closer related to KK-theory. In fact, also the parallel theory of asymptotic
morphisms has an analogue. It could be replaced by the theory of 'completely positive'
asymptotic morphisms as de�ned in [34]. We do not follow this line of arguments here.

It is also obvious that the concept of a bivariant (resp. triangulated) homology
theory can be used in similar situations, since it is not using special properties of C∗-
algebras at all.

Remark 2.3.5 Most of the time the objects of a bivariant (or triangulated) homol-

ogy theory will be separable C∗-algebras or pairs of a separable C∗-algebra and an

integer. In both cases we do not distinguish between the algebra and its image in

the bivariant (or triangulated) homology theory for simplicity.

We will show that most of the known bivariant homology theories on sC are in fact
naturally triangulated. Moreover any bivariant homology theory on sC is a triangulated
module (see appendix 2 for a de�nition) over a triangulated homology theory on sC.
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Definition 2.3.6 Let T be a triangulated homology theory. We call the bivari-

ant homology theory which is given by forgetting the triangulated structure the

associated bivariant homology theory.

Definition 2.3.7 Let (R, Σ) be a bivariant homology theory. We use the notation

Rn(A,B) = homR(A,Σ
n(B)).

Note that this de�nition enriches the category R over Z-graded Abelian groups (i.e.

we can think of the category R as a category with morphisms Z-graded Abelian

groups R∗(A,B) rather than just Abelian groups homR(A,B) = R0(A,B)).

Now, we are going to remind the reader about the consequences of the de�nition
of a bivariant homology theory. Theorems in this spirit can be found in articles by C.
Schochet [57, 58] and by J. Cuntz and G. Skandalis [19].

Theorem 2.3.8 Let (R, Σ) be a bivariant homology theory. Furthermore, let A be

a separable C∗-algebra and

0 // B // C // D // 0

be an extension of separable C∗-algebras. The following sequences are exact.

. . . // Rn+1(A,D) // Rn(A,B) // Rn(A,C) // Rn(A,D) // . . .

. . . // Rn+1(B,A) // Rn(D,A) // Rn(C,A) // Rn(B,A) // . . .

Proof: The proof is based on a classical observation about the homotopy type of
iterated mapping cones. Observe that the mapping cone of a surjection is isomorphic to
the kernel of the surjection in the category R. The proof of this statement is analogous
to the proof of lemma 2.2.14. This �nishes the proof.

In order to construct long exact sequences one has to identify the cone of a surjec-
tion with its kernel. This is not di�cult, if one requires the exactness properties (see
the proof of lemma 2.2.14 in the preceding section or proposition 21.4.1 and 21.4.1 in
[7]). However, the situation is usually a di�erent one. Usually, one has to prove the
identi�cation above in order to get the exactness property of the bivariant homology
theory. See also the remarks before and after lemma 2.2.14.

In the construction of the long exact sequence it is important to �x a cone and hence
a mapping cone construction. We �x the one which comes from the cone C([0, 1], 0).
Taking the other choice gives almost the same sequence but with di�erent signs. Our
choice ensure that the cone extensions associated to C([0, 1], 0) gives rise to the identity
as boundary map as one easily checks.

The existence of long exact sequences is of course of great importance in the com-
putation of certain groups.
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Definition 2.3.9 If one of the entries in the bivariant or triangulated homology

theory is just C we are using the following convenient notations.

R∗(A) = R∗(C, A)

R∗(A) = R∗(A,C)

The groups are called R-homology resp. R-cohomology groups.

We are also going to consider homology or co-homology theories which do not neces-
sarily come from a bivariant homology theory. Denote the category of Z-graded Abelian
groups by Ab∗. We denote the shift functor which assigns to any graded Abelian group
(An)n∈N the shifted group (An+1)n∈N by Σ : Ab∗ → Ab∗.

Definition 2.3.10 A homology theory on the category of separable C∗-algebras is

a homotopy invariant functor H : sC → Ab∗ into the category of Z-graded Abelian

groups such that for any extension

0 // A // B // C // 0

� there is a natural (with respect to mappings of extensions) morphism

Σ(H(C))→ H(A)

of graded Abelian groups and

� the sequence of graded Abelian groups

Σ(H(C))→ H(A)→ H(B)→ H(C)

is exact at H(A) and H(B).

There are other de�nitions but they are all equivalent and it is maybe possible to
weaken the condition even further. The example that one should have in mind is K-
theory or maybe K-theory with coe�cients in some �nitely generated Abelian group.
Again, the obvious long exact sequences of Abelian groups can be constructed. The
de�nition of co-homology theory is dual.

Definition 2.3.11 A bivariant or triangulated homology theory or a homology the-

ory is said to satisfy

� matrix stability, if the canonical rank 1 inclusion into the upper left corner

idA ⊗ ι2 : A→M2A

induces an isomorphism.
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� stability, if the canonical rank 1 inclusion into the upper left corner

idA ⊗ ι1 : A→ A⊗ K

induces an isomorphism.

The next proposition states a standard fact about the existence of Mayer-Vietoris
sequences. A neat proof of the following proposition in a general context was given by
R. Meyer in [40].

Proposition 2.3.12 Let

A
f //

g

��

B

h

��
C

k // D

be a pull-back square in the category of separable C∗-algebras and let H : sC → Ab∗

be a homology theory. If the ∗-homomorphism h : B → D is surjective then there

exists a boundary map δ : ΣH(D) → H(A) such that the following Mayer-Vietoris

sequence is exact.

· · · // Hn(A) // Hn(B)⊕Hn(C) // Hn(D)
�n-1 // Hn-1(A) // · · ·

The morphisms in the sequence are (up to sign) the ones which are induced by

the pull-back diagram. Furthermore, the Mayer-Vietoris sequence is natural with

respect to mappings of pull-back diagrams.

Most of the examples of bivariant or triangulated homology theories carry an ad-
ditional structure which comes from the maximal tensor product of C∗-algebras. The
abstract setting is �xed in the next de�nition.

Definition 2.3.13 We speak of monoidal bivariant homology theories H : sC →
(R, Σ) (or monoidal triangulated homology) theories if the respective categories

are symmetric monoidal (or triangulated monoidal (see de�nition A.1.5 in the

appendix)) and the functors preserve the symmetric monoidal structure.

This means that there are natural isomorphisms in the category R.

H(A)⊗H(B)→ H(A⊗ B)

which are compatible with the symmetry and associativity isomorphisms of the

respective symmetric monoidal structures.
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There are several notions of monoidal triangulated categories (see e.g. P. May in
[38]). We only require a naive notion of compatibility which is explained in de�nition
A.1.5 in the appendix. Our main examples turn out to satisfy the stronger requirements
stated in [38].

It often happens that bivariant homology theories appear naturally as modules over
triangulated homology theories (see de�nition A.1.10). (Later, we will see that this is
always the case.) In the next de�nition and proposition we give an explicit construction
of such bivariant homology theories arising from monoid objects. We abbreviate A⊗B
by AB.

Definition 2.3.14 Let T be a symmetric monoidal category with unit U. An object

A together with morphisms m : A⊗A→ A and ι : U→ A is called a monoid object

if

� m ◦ (m⊗ idA) = m ◦ (idA ⊗m) : A3 → A

� m ◦ (ι⊗ idA) = m ◦ (idA ⊗ ι) = idA : A→ A

The morphisms are called multiplication and unit respectively.

Proposition 2.3.15 Let (T, Σ) be a triangulated monoidal category and A be a

monoid object in T . There is an associated triangulated module (TA, Σ) with

TA(U,U) ∼= T(U,A) and a functor (T, Σ)→ (TA, Σ).

Proof: De�ne TA to be a category with the same objects as T . De�ne

homTA(B,C) =def homT (B,CA)

and let the composition product be given as follows.

homTA(B,C)× homTA(C,D) =def homT (B,CA)× homT (C,DA)
id×?⊗A
−→

homT (B,CA)× homT (CA,DA
2)→ homT (B,DA

2)
(idD⊗m)∗

−→ homT (B,DA)

=def homTA(B,D)

The identities in TA are given by tensoring the identities in T with the unit of the
multiplication. The associativity of the composition follows from the associativity of
the multiplication of the monoid object. The unit property of the identities follows
from properties of the unit of the multiplication. The functor T → TA is given by the
tensor product with the unit. The properties are now obvious. This �nishes the proof.

It is now clear that every ring spectrum - seen as an object in the stable homotopy
category of spectra (see appendix B for de�nitions) - gives rise to a bivariant homol-
ogy theory. On the other hand it follows from the representability theorem of E.H.
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Brown and its variants (see e.g. [37]) that any bivariant homology theory on �nite
CW-complexes can be obtained from a ring spectrum. We do not want to give precise
statements and just refer to the classical sources (e.g. [65, 37]). The representability
theorem of E.H. Brown says that all co-homology theories on the category of spectra
are in some sense inner (i.e. represented by a spectrum). This is far from being true
for the category of �nite CW-complexes. Theories such as K-theory or even singular
cohomology cannot be represented by a �nite complex.

The situation for C∗-algebras is in some sense a little better. It will turn out that
theories such as connective K-theory, K-theory or singular cohomology can be easily
described using homotopy classes of (asymptotic) morphisms and certain representing
C∗-algebras like Mn or the algebra of compact operators on a separable Hilbert space.
We refer to section 4.5 for precise statements of the results.
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3 Stable homotopy theory

In this section we want to de�ne stable homotopy theory for separable C∗-algebras as
a bivariant homology theory. Furthermore, we want to show that it is the universal
bivariant homology theory and in fact triangulated with respect to a natural class of
distinguished triangles (see de�nitions 2.3.1, 2.3.3 and appendix A.1).

First, we recall the original approach and the approach of K. Thomsen and G.T.
Houghten-Larsen (see [34]) which is more conceptional and explains the universal prop-
erties. Thirdly we give a new picture using the concept of extension categories (see
appendix C.3). This picture simpli�es the proof of the universal properties even further
and is used in the main theorem.

Having introduced stable homotopy theory we want to show that it is the universal
triangulated homology theory on the category of separable C∗-algebras. These results
seem to be partially folklore or considered to be abstract nonsense. We want to give
complete proofs, since these results have appeared to our knowledge nowhere in the
literature and are used in the subsequent sections.

3.1 Definition

The theory of triangulated categories was developed in order to apply to the case of
CW-complexes and stable maps of those. It is therefore natural to look at the opposite
of the category of separable C∗-algebras rather than at the category itself. We do not
want to take this point of view, since there is also some tradition of bivariant theories
of algebras.

Definition 3.1.1 Let A and B be separable C∗-algebras. We de�ne the stable ho-

motopy classes of morphisms from A to B to be the Abelian group

{A,B} = colimn[[Σ
nA,ΣnB]].

The co-limit is taken with respect to the suspension of asymptotic morphisms as

follows

hom(Σn(A), a(ΣnB))
id�⊗?→ hom(Σ1+n(A), Σ(a(ΣnB)))→ hom(Σ1+n(A), a(Σ1+nB)).

Remark 3.1.2 The set {A,B} of homotopy classes of asymptotic morphisms car-

ries the natural structure of an Abelian group and composition distributes over

addition.

Proof: This follows essentially from the existence of the pinching map Σ ⊕ Σ → Σ

and the observation that the functor sC → asC preserves �nite products (see lemma 2.5
in [28]).
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This de�nition was �rst given independently by A. Connes and M. D�ad�arlat in
analogy to the classical case. The crucial di�erence to the classical case was that they
were considering homotopy classes of asymptotic morphisms in order to gain the desired
exactness properties. By lemma 2.2.15, we recover the classical de�nition of the stable
homotopy groups for �nite CW-complexes which was �rst given by E.H. Spanier and
J.H.C. Whitehead in the early 50s. The aim of these notes is to generalize some aspects
of classical stable homotopy theory to the realm of non-commutative geometry.

In the context of C∗-algebras we refer to the description of stable homotopy given
in de�nition 3.1.1 as the standard picture.

Proposition 3.1.3 There is an additive category S with objects separable C∗-

algebras and morphisms stable homotopy classes of asymptotic morphisms. There

is a functor s : sC → S which sends a ∗-homomorphism to its stable homotopy

class.

Proof: For the additivity of S it remains to show that there exist products. Note
that this is obvious, since the product ⊕ commutes with suspension. Again, we use
that the product in asC coincides with the one in sC (lemma 2.5 in [28]).

Definition 3.1.4 De�ne S to be the category with objects pairs (A,n) - where A

is a separable C∗-algebra and n is an integer - and morphisms S((A,n), (B,m)) =

{Σp+nA,Σp+mB} for p su�ciently large.

Note that
S((A,n), (B,m)) =def colimp[[Σ

p+nA,Σp+mB]]

canonically with the obvious composition product.

The next proposition and remark clarify the relation between S and S.

Proposition 3.1.5 � There is an additive automorphism Σ : S→ S which maps

(A,n) 7→ (A,n+ 1).

� The functor Φ : (A,n) 7→ (Σ(A), n−1) is naturally equivalent to idS. (We will

use this equivalence implicitly but not mention it explicitly in most contexts.)

Proof: It is obvious that Σ : S → S de�nes an additive automorphism. Its inverse
Σ-1 maps (A,n) to (A,n− 1).

In order to prove the second claim we show that there are natural transformations
α : idS → Φ and β : Φ → idS which are inverse to each other. To de�ne α and β
consider

α : S((A,n), (B,m)) =def colimp[[Σ
p+nA,Σp+mB]] ∼=

colimp[[Σ
p+n-1ΣA,Σp+m-1ΣB]] =def S((ΣA,n− 1), (ΣB,m− 1)) : β.

Since the isomorphism is canonical, α and β de�ne natural transformations and are
inverse to each other by de�nition. This �nishes the proof.
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Remark 3.1.6 The preceding proposition shows that the category S di�ers from

the category S essentially only with respect to the invertibility of the suspension

(as a functor). The functor Σ : S → S is invertible, ι : S → S is a full and faithful

inclusion and we have a natural equivalence of functors Σ ◦ ι ∼= ι ◦Σ. (It is obvious
that S is universal with respect to these properties.)

Proposition 3.1.7 The categories S (resp. S) are symmetric monoidal with the

maximal tensor product (resp. a canonical extension of the maximal tensor product

to S according to the assignment (A,n)⊗ (B,m) = (A⊗ B,m+ n).)

Proof: This is just an easy check of de�nitions.

In the book by H.R. Margolis [37] the notion of pre-triangulated category is de�ned.
A pre-triangulated category di�ers from a triangulated category only with respect to the
invertibility of the endomorphism Σ. (Note that Margolis' notion of 'pre-triangulated
category' di�ers from the one used by Neeman in [43].) Most of the results which can be
proved in triangulated categories are also true in pre-triangulated categories. In some
sense it is more natural to work with pre-triangulated categories but we do not want to
take this point of view.

3.2 Three different pictures of stable homotopy

In this section we want to give three di�erent pictures of stable homotopy theory and
compare them. These are

� the standard picture using homotopy classes of asymptotic morphisms and stabi-
lizing with respect to the suspension

� the Thomsen-picture using homotopy classes of 1-step extensions and stabilizing
with respect to the suspension and

� the Yoneda-picture using homotopy classes of extensions and stabilizing with re-
spect to the cone extensions (for a de�nition see appendix C.3).

The standard picture is of course the one which was �rst introduced by A. Connes
and M. D�ad�arlat. In the last section (theorem 2.2.11) we have seen that stable homo-
topy for separable C∗-algebras can be described using 1-step extensions of algebras, i.e.
the second picture. But note that there is no obvious composition product on 1-step ex-
tensions up to suspension and only the identi�cation of the two �rst approaches allows
to de�ne a composition product on those. Therefore the second picture seems to be
rather arti�cial. Yet, there is a composition product on extensions which is the Yoneda
product. But composing two 1-step extensions using the Yoneda product gives a 2-step
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extension and not a 1-step extension. In appendix C.3 the de�nition of extension cat-
egories is given and its elementary properties are developed. The composition product
in extension categories is based on the Yoneda product.

This extension category will again be equivalent to stable homotopy for separable C∗-
algebras. It will be of great use in proving the universal properties of stable homotopy
theory.

As already mentioned the construction of an extension category is not particular to
the category of separable C∗-algebras. There is a general procedure which produces a
triangulated category out of data of very general type. Actually, to do the construction
requires only the existence of a suitable interval functor and a class of extensions which
is closed under certain constructions. We do not develop this theory here and want to
prove the existence of the triangulated structure only in the special case of the category
of separable C∗-algebras. The general construction will be content of a forthcoming
article.

An immediate implication of theorem 2.2.11 is the following result which we implic-
itly stated in the preceding remarks.

Theorem 3.2.1 Let A and B be separable C∗-algebras. The set of stable homotopy

classes of maps {A,B} can be described using 1-step extensions. More precisely

{A,B} ∼= colimnext(Σ
n+1(B), Σn(A))

where the co-limit is taken with respect to the connecting maps

ext(Σn+1(B), Σn(A))
�→ ext(Σn+2(B), Σn+1(A)) given by taking the twisted sus-

pended extension.

Proof: This is obvious in the light of theorem 2.2.11.

Now, we turn to an identi�cation of the extension category of separable C∗-algebras
with stable homotopy theory. This will also rely upon theorem 2.2.11. Let S be the
stable homotopy category (without arti�cial desuspension) as de�ned in section 3.1.
Denote by S ′ the extension category of the category of separable C∗-algebras as de�ned
in appendix C.3. We want to construct functors P : Sop → S ′ and Q : S ′ → Sop which
are inverse equivalences.

First of all, using lemma 2.2.14, we want to prove a strengthening of lemma 2.2.12.

Lemma 3.2.2 Consider a commutative diagram of extensions

a ′ :

��

0 // A ′ //

f

��

B ′
� //

g

��

C ′ //

h

��

0

a : 0 // A // B
� // C // 0.
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The diagram of asymptotic morphisms

Σ(C ′)
�A ′;C ′ (a

′) //

�(h)

��

A ′

f

��
Σ(C)

�A;C(a) // A

commutes up to asymptotic homotopy after suspending once.

Proof: Consider the following diagram of asymptotic morphisms.

Σ2(C ′) //

�2(h)
��

Σc(α) //

��

ΣA ′

�(f)

��
Σ2(C) // Σc(β) // ΣA

The horizontal arrows in the right-hand square are the connecting morphisms coming
from the extensions

0 // Σ(A ′) // c(B ′) // c(α) // 0

and

0 // Σ(A) // c(B) // c(β) // 0.

By lemma 2.2.14, they are the asymptotic homotopy inverses to the suspensions of
the canonical inclusions A ′ → c(α) and A→ c(β). The left-hand square in the diagram
above commutes, since the diagram of extensions was commutative. The right-hand
square commutes, since the diagram

A ′ //

f

��

c(α)

��
A // c(β)

clearly commutes (by the commutativity of the diagram of extensions) and the hori-
zontal arrows become asymptotic homotopy equivalences after suspending. Finally, we
have to convince ourselves that the composition of the vertical arrows is exactly what
we want.

Consider the following diagram

0 // Σ(A) // Σ(B)

��

�(�) // Σ(C) //

��

0

0 // Σ(A) // c(B) // c(β) // 0.

There is an analogous diagram concerning α. By lemma 2.2.12, this proves our claims.
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This already implies that stable homotopy is a bivariant homology theory but we
do not want to give the argument and instead, we are going to show directly that it
is triangulated. The construction of the functor Q : S ′ → Sop is a special case of
the universal property of the extension category. We will formulate the result in a
greater generality, since we will use related constructions several times. Note that the
preceding results concerning boundary morphisms can be obtained in any bivariant
homology theory. We will formulate the crucial results in the following theorem. In the
statement of the following theorem we do not distinguish between objects in sC and
their images in a bivariant homology theory (R, Σ).

Theorem 3.2.3 Let H : sC → (R, Σ) be a bivariant homology theory. Then the

following conditions hold:

� Let

0 // A // B // C // 0

be an extension of separable C∗-algebras. There is a natural (natural with

respect to mappings of extensions) morphism Σ(C) → A in the category R

(i.e. an element in homR(Σ(C), A)) which induces the boundary map in the

long exact sequences.

� The cone extension of the algebra A gives rise to the identity element in

homR(Σ(A), Σ(A)) as a boundary map.

� The boundary map which is induced by the twisted suspension of a given

extension is the suspension of the boundary map of the extension.

Proof: The �rst part is a combination of the naturality of the long exact sequence
and the Yoneda lemma. A proof of results which immediately imply our claims can be
found in [19, 57, 58].

The second part is somewhat circular, since the construction of the long exact se-
quence is just made such that the condition holds. (Again, this is about the question
whether one works with C([0, 1], 0) or C([0, 1], 1) as the cone. Note that the procedure
of forming the mapping cone is crucial in the proof of the existence of a long exact
sequence. Both choices of the cone will do, but one has to work consistently with one
choice in order to prevent problems with signs. We choose to work with C([0, 1], 0).)

The third part is an easy and classical observation about the homotopy type of
certain mapping cones and the well known fact that the ip on the 2-sphere induces
−[idS2 ] in π2(S

2).

The conditions in theorem 3.2.3 do not imply the exactness properties of a bivariant
homology theory. Although they are weaker they are su�cient to make the following
theorem work. Recall that there is a functor sext : sC → S ′

op according to lemma C.3.17.
It maps a ∗-homomorphism to its cone extension.
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Theorem 3.2.4 Let H : sC → (R, Σ) be a functor from the category of separable

C∗-algebras which satis�es the conditions in theorem 3.2.3. There exists a functor

HS : S ′op → (R, Σ) such that

Hs ◦ sext = H.

Proof: Let a be a representative of a class in S ′(A,B). It is given by a n-step
extension in Extn(ΣnA,B). We decompose it into n 1-step extensions a1, . . . , an with
ai ∈ Ext1(Ai-1, Ai), A0 = ΣnA and An = B. Let fi ∈ homR(Σ(Ai), Ai-1) be the
corresponding boundary morphism (see theorem 3.2.3) for i = 1, . . . , n. Consider their
composition

f1 ◦ Σ(f2) ◦ Σ2(f3) ◦ · · · ◦ Σn-1(fn) ∈ homR(Σ
n(B), Σn(A)) = homR(B,A).

First of all, the constructed bivariant homology class is independent of the decompo-
sition we have chosen. Indeed, this follows by an easy application of the naturality of the
boundary map. By the homotopy invariance, it is also independent of the representative
in the homotopy class of extensions.

The second result in theorem 3.2.3 tells us that cone extensions induce the identity as
a boundary morphism. Note further that the boundary of the twisted suspended exten-
sion is the suspension of the boundary map. This together implies that the assignment
is well-de�ned on S ′(A,B). Thence we get a map S ′(A,B)→ homR(B,A).

We still have to show functoriality but this is obvious, since a particular decompo-
sition of a Yoneda product is given by concatenating the decompositions of the factors.
This �nishes the proof of the existence of the functor Hs.

Corollary 3.2.5 There is a functor Q : S ′ → Sop that is compatible with the maps

λ?;? considered in theorem 2.2.11.

Proof: This is implied by lemma 2.2.12 and lemma 3.2.2 which show that stable
homotopy theory satis�es the properties of theorem 3.2.3. Hence we can apply theorem
3.2.4.

Next we want to construct a functor P : Sop → S ′ which will serve as an inverse for
Q. Note that S(B,A) can be described by the co-limit of

hom(ΣmB, an(ΣmA))/ ∼n

where ∼n identi�es morphisms which are homotopic via elements in

hom(ΣmB, an(ΣmA[0, 1])).

The construction proceeds in several steps. First of all, we construct a functor that
assigns to an asymptotic morphism an extension of possibly non-separable algebras.
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For this purpose we denote the extension category of non-separable algebras by S ′ns.
(A priori it is not clear that S ′ns is a category (i.e. that the class of homotopy classes
of extensions always form sets etc.). This is shown by an argument similar to lemma
3.2.7. We omit a proof, since we may as well work with the essentially small category
of algebras having a dense subset of cardinality 2N.)

The second step is a reduction to extensions of separable algebras (i.e. we are going to
show that S ′ → S ′ns is the inclusion of a full sub-category). Let us start by constructing
an assignment S(B,A)→ S ′ns(A,B). We use the abbreviation Ab for Ab([0, 1), 0).

Consider the 1-step extension

0 // Σ(A) // Ab // a(A) // 0

for any C∗-algebra A and denote it by αA ∈ Ext1(Σ(A), a(A)). Consider the n-step
extension which is given by the Yoneda product

α�n-1(A) · a(α�n-2(A)) · a2(α�n-3(A)) · · · · · an-1(αA) ∈ Extn(Σn(A), an(A))

and denote it by αnA (see proposition 2.2.17 for an explanation of the notation). Note
that αnA = αn-1

�(A) · an-1(αA).
An element in S(B,A) = {B,A} is represented by a homomorphism f : Σm(B) →

an(Σm(A)) for some n and m. First of all, we can assign to it the following pull-back
extension

0 // Σn+m(A) // . . . // an-1(Σm(A)b)⊕an(�m(A)) Σ
m(B) //

��

Σm(B)

f

��

// 0

0 // Σn+m(A) // . . . // an-1(Σm(A)b) // an(Σm(A)) // 0,

which we denote by αn�m(B) ◦ f ∈ Extn(Σn+m(A), Σm(B)), and map it to
Extn+m(Σn+m(A), B) using the canonical element in Extm(Σm(B), B). (We are using
a notation for the pull-back of an extension which is introduced in appendix C.3,
de�nition C.3.7.) We have to show that this assignment is well-de�ned as a map
S(B,A)→ S ′ns(A,B). We do this in successive steps.

1. It is well-de�ned on hom(Σm(B), an(Σm(A)))/ ∼n.

Proof: Indeed, an element in hom(Σm(B), an(Σm(A)[0, 1])) is assigned to a ho-
motopy of extensions which obviously restricts to the respective extensions which
are assigned to the evaluations.

2. It is well-de�ned on colimnhom(Σm(B), an(Σm(A)))/ ∼n.

Proof: Let f : Σm(B)→ an(Σm(A)) be a ∗-homomorphism. We have to show that

α(an(Σm(A)) ◦ f : Σm(B)→ an+1(Σm(A))
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gives rise to the same class in S ′ns(A,B). Consider the following diagram

0 // Σn+m+1(A) // c(Σn+m(A)) //

��

Σn+m(A) //

�(�n+m(A))

��

0

0 // Σn+m+1(A) // Σn+m(A)b // a(Σn+m(A)) // 0.

We can extend this to a diagram of (n + 1)-step extensions using the naturality
of α as follows.

0 // Σn+m+1(A) // c(Σn+m(A)) //

��

· · ·

0 // Σn+m+1(A) // (Σn+m(A))b // · · ·

· · · // an-1(Σm(A)b) //

�(an-1(�m(A)b))

��

an(Σm(A)) //

�(an(�(A)))

��

0

· · · // an(Σm(A)b) // an+1(Σm(A)) // 0

The diagram shows that there is a congruence between c�n+m(A) · (αn�m(A) ◦ f) and
αn+1
�m(A)◦(α(an(Σm(A)))◦f) in Extn+1(Σn+m+1(A), Σm(B)). This is what we wanted

to show.

3. It is well-de�ned on S(A,B).

Proof: We have to show that the assignment is compatible with suspension. Let
again f : Σm(B)→ an(Σm(A)) be a homomorphism. Its suspension in the sense of
asymptotic morphisms is given by the composition Σ1+m(B)→ Σ(an(Σm(A)))→
an(Σ1+m(A)). Consider the following diagram.

0 // Σm+1(B) //

�(f)

��

c(Σm(B)) //

c(f)

��

Σm(B) //

f

��

0

0 // an(Σm+1(A)) // an(c(Σm(A))) //

��

an(Σm(A)) //

an(�(�m(A)))

��

0

0 // an(Σm+1(A)) // an((Σm(A))b) // an+1(Σm(A)) // 0

The diagram shows that (αn
�m+1(A)

◦ Σ(f)) · C�m(B) is congruent to αn+1
�m+1(A)

◦
(an(α(Σm(A))) ◦ f). This is not quite what we wanted, since a priori
an(α(Σm(A))) ◦ f and α(an(Σm(A))) ◦ f might di�er. But by proposition 2.8 in
[28] the compositions α(an(Σm(A))) ◦ f and an(α(Σm(A)) ◦ f are ∼n+1-equivalent.
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Therefore we can conclude by step 1 in the proof that Σ(f) and α(an(Σm(B))) ◦ f
are sent to the same element in S ′ns(A,B). Thence we are done by step 2. This
�nishes the proof of the existence of an assignment S(B,A)→ S ′ns(A,B) which is
compatible with µ?;?.

Lemma 3.2.6 The assignment S(B,A)→ S ′ns(A,B) de�nes a functor P : Sop → S ′ns.

Proof: First of all, without loss of generality, we restrict to the case where we do not
stabilize with respect to suspensions. Secondly, we simplify the problem quite a bit by
noting that by lemma 2.1.8 any homotopy class of asymptotic morphisms in [[B,A]] is
represented by a morphism f : B→ a(A), since A and B are separable algebras. Given
another class in [[C,B]] represented by g : C → a(B), their composite is given by the
class a(f) ◦ g : C→ a2(A).

These morphisms are sent to extensions

0 // Σ(A) // Ab ⊕a(A) B // B // 0

0 // Σ(B) // Bb ⊕a(B) C // C // 0

Consider now the following diagram.

0 // Σ2(A) // Σ(Ab ⊕a(A) B) //

��

Bb ⊕a(B) C //

��

C // 0

0 // Σ2(A) // (Σ(A))b // a(Ab)⊕a2(A) C //

��

C //

a(f)◦g
��

0

0 // Σ2(A) // (Σ(A))b // a(Ab) // a2(A) // 0

The extension in the middle is the image of the composite a(f) ◦ g. Indeed, by
de�nition it is the pull back of α2C along a(f) ◦g. The upper extension is the composite
of the images of f and g in the extension category. The diagram shows that there is a
congruence between the two. This proves the functoriality of the assignment P.

It remains to show that everything already happens with extensions of separable
algebras instead of extensions of arbitrarily large algebras. The following lemma will
allows us to draw this conclusion.

Lemma 3.2.7 Let

a : 0 // A0 // A1 // · · · // An-1
// An // 0
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be a n-step extension of C∗-algebras such that A0 and An are separable. There

exists a n-step extension

b : 0 // A0 // B1 // · · · // Bn-1
// An // 0

with Bi separable for i ∈ {1, . . . , n− 1} and a morphism of extensions

b :

��

0 // A0 // B1 //

��

· · · // Bn-1

��

// An // 0

a : 0 // A0 // A1 // · · · // An-1
// An // 0.

Moreover given two n-step extension b and b ′ consisting of separable algebras and

morphisms of extensions b
�→ a and b ′

� ′→ a there exists a n-step extension b ′′

consisting of separable algebras and a morphism of extensions b ′′
� ′′→ a such that

both α and α ′ factorize through α ′′.

Proof: Given an extension

0 // A
 // B

� // C // 0

and a sub-algebra B ′ of B, the following diagram

0 // ψ(A) ∩ B ′ // B ′ // φ(B ′) // 0

is also an extension.
We apply this principle from the right to the left. First choose a separable sub-

algebra Bn-1 of An-1 which maps onto An. This de�nes a separable sub-algebra of
ker(An-1 → An) = coker(An-3 → An-2). Now choose again a separable sub-algebra
Bn-2 of An-2 that maps onto the sub-algebra and so on. At the last step we may choose
a separable sub-algebra of A1 which contains A0, since A0 is separable itself. This
�nishes the �rst part of the proof.

Given two morphisms as stated in the lemma, we may choose the sub-algebras of Ai
always such that they also contain the separable images of the morphisms, if we again
do it from the right to the left by induction. This proves also the second part of the
lemma and �nishes the proof.

It is now obvious that we can always reduce to the situation of extensions consisting
of separable algebras. The following theorem puts everything together.

Proposition 3.2.8 The functor from the extension category of separable C∗-

algebras to the extension category of C∗-algebras is the inclusion of a full sub-

category.

Proof: This is what the last lemma shows.
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Theorem 3.2.9 The functors Q : S ′ → Sop and P : Sop → S ′ are inverse equiva-

lences.

Proof: This is obvious from the fact that the functors are well-de�ned and compatible
with the maps considered in theorem 2.2.11.

Now, we succeeded in identifying two possible de�nitions of a stable homotopy
theory for separable C∗-algebras. The extension picture will simplify proofs regarding
universal properties. The picture of asymptotic morphisms will be useful for concrete
computations (see lemma 2.2.15).

3.3 Stable homotopy is triangulated

In this section we are going to show that stable homotopy for separable C∗-algebras is
a triangulated homology theory. First of all, we show that it is a triangulated category.
The properties of a triangulated homology theory are then obvious from the properties
of the triangulation. The classical counterpart was proved long ago by D. Puppe in [49].

We start with an important lemma.

Lemma 3.3.1 Up to desuspension every morphism in S is in the essential image

of s : sC → S. More precisely, let f : (A,n) → (B,m) be a morphism in S. There

exist a separable C∗-algebra B ′, an integer q ∈ N and a morphism of C∗-algebras

f ′ : Σn+q+1(A) → B ′ such that there exists the following commutative square in

which the left vertical arrow is the natural equivalence and the right vertical arrow

is an isomorphism in S.

(A,n)
f //

��

(B,m)

��
(Σn+q+1(A),−q− 1)

�-q-1(s(f ′)) // (B ′,−q− 1)

Proof: A morphism f : (A,n) → (B,m) in S is by de�nition represented by an
asymptotic morphism f ′′ : Σq+n(A) → Σq+m(B) for some q ∈ N. Without loss of
generality and to simplify the notation we assume that q+ n = q+m = 0. According
to lemma 2.2.9 we have an extension as follows.

0 // Σ(B) // Ef ′′
� // A // 0

The cone extension of π looks as follows.

0 // Σ(A)
 // c(π) // Ef ′′ // 0

The algebra c(π) is isomorphic to A(0, 1]⊕AEf ′′ . Denote the canonical map Σ(B)→
c(π) by ι. We want to show that the following diagram commutes up to homotopy as
diagram of asymptotic morphisms after suspending once.
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Σ(A)
 // c(π)

Σ(A)
�(f ′′) // Σ(B)

�

OO

Consider also the algebra c(γ) which comes with the following extension.

0 // Σ(c(π)) // c(γ) // Σ(A) // 0

There is a commutative diagram of extensions as follows.

0 // Σ(c(π)) // c(γ) // Σ(A) // 0

0 // Σ2(B) //

�(�)

OO

Σ(Ef ′′) //

OO

Σ(A) // 0

The existence of the diagram implies the claim by lemma 3.2.2 and theorem 2.2.11.
This �nishes the proof, since we can now just take B ′ = c(π), f ′ = γ and note that ι
becomes an isomorphism in the category S.

Remark 3.3.2 The last lemma shows not only that we can replace morphisms in

S (up to desuspension and isomorphism) by images of s : sC → S but that the same

is true for �nite diagrams with the property that there is at most one ingoing

morphism at each object. The proof goes by an easy induction argument.

Next we want to establish a triangulation on the category S. Note that to give a
triangulation on S amounts to specify an additive automorphism and a class of dis-
tinguished triangles satisfying certain axioms (see appendix A.1). We take Σ-1 as the
automorphism. This choice is compatible with the fact that the classical stable ho-
motopy category is supposed to be contravariantly included into the stable homotopy
category of C∗-algebras. (Note that the opposite of a triangulated category is naturally
triangulated if one takes the inverse automorphism.) We omit the mentioning of the
functor s in the next de�nition.

Definition 3.3.3 We call a triangle

Σ(C)
a // A

b // B
c // C

in S distinguished if for some n ∈ N and some ∗-homomorphism f : A ′ → B ′ the

triangle

Σ(ΣnC)
(-�)na // ΣnA

�nb // ΣnB
�nc // ΣnC

is isomorphic to a triangle

Σ(B ′) // c(f) // A ′
f // B ′

with the natural maps involved.
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In the de�nition of triangulated categories the triangles are of a di�erent form. Note
that we are working with the inverse of Σ as automorphism so that everything �ts.

Remark 3.3.4 Note that it follows from the de�nition that if one of the triangles

Σ(C)
a // A

b // B
c // C

and

Σ(Σ(C))
-�(a) // Σ(A)

�(b) // Σ(B)
�(c) // Σ(C)

is distinguished, then so is the other.

Theorem 3.3.5 The category S together with the functor Σ-1 and the class of

distinguished triangles which was speci�ed in the last de�nition form a triangulated

category.

Proof: We have to check the conditions of de�nition A.1.2. We already noted that
Σ is an additive automorphism. Therefore only conditions 1− 6 have to be checked.

1. Condition 1 requires that the class of distinguished triangles is closed under iso-
morphism. This is part of the de�nition of the class of distinguished triangles.

2. Condition 2 is ful�lled, since, given an object (A,n) ∈ ob(S), we can consider the
morphism 0→ A. A suitable (de)suspension (see remark 3.3.4) of the correspond-
ing distinguished triangle

Σ(A)
id // Σ(A) // 0 // A

is the one we wanted.

3. Condition 3 is obvious after having proved lemma 3.3.1 which shows that up
to isomorphism and desuspension every morphism is in the image of s : sC → S.
Since distinguished triangles are closed under isomorphism and desuspension, this
proves the claim (modulo the next condition).

4. To show condition 4 we have to prove two things. Up to desuspension and iso-
morphism we can restrict our considerations to standard triangles. Consider dis-
tinguished triangles

Σ(B) // c(f)
ev1 // A

f // B

and
Σ(A) // c(ev1) // c(f)

ev1 // A
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We have a homotopy commutative diagram of ∗-morphisms as follows.

Σ(A)
t�(f) // Σ(B) //

�

��

c(f)

Σ(A) // c(ev1) // c(f)

Indeed, the right square commutes by construction. The left square commutes up
to homotopy as one easily checks.

Note that we have shown in lemma 2.2.14 that Σ(B) is asymptotically homotopy
equivalent to c(ev1) by π : Σ(B) → c(ev1) after suspending once. Putting all
together we get a triangle as follows.

Σ(A)
-�(f) // Σ(B) // c(f)

ev1 // A

The other direction of condition 4 follows by applying our result three times and
using remark 3.3.4.

5. The idea of the proof of condition 5 is classical. Even an operator algebraic
reformulation can be found in the literature as proposition 2.9 in [57]. Since it is
an important step in the proof of the existence of a triangulation, we want to give
the proof in some detail.

Proof: Up to isomorphism the triangles are desuspensions of cone sequences.
Hence up to desuspension we may assume that all morphisms are represented by
asymptotic morphisms and the situation is the following. Consider the following
diagram, where all horizontal morphisms are actually morphisms of C∗-algebras
and only the vertical ones are possibly asymptotic.

Σ(B) //

�(g)

��

c(f) //

��

A
f //

h

��

B

g

��
Σ(B ′) // c(f ′) // A ′

f ′ // B ′

Given that the right square is a homotopy commutative diagram of asymptotic
morphisms, we have to show the existence of the dotted arrow γ making the whole
diagram homotopy commutative.

Let ht : A → B ′[0, 1] be an (asymptotic) homotopy such that ht;0 = gt ◦ f and
ht;1 = f ′ ◦ht for all t ∈ [0, 1). Note that c(f) = B(0, 1]⊕BA and de�ne γt : c(f)→
c(f ′) by setting γt(br, a) = (ht;2r(a), ht(a)) for 0 6 r 6 1

2
and γt(br, a) = gt(b2r-1)

for 1
2
6 r 6 1.

One easily checks that this is well-de�ned and satis�es all the properties needed.
This �nishes the proof.
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6. The last condition, which is commonly called Verdier's Axiom, follows similarly
to condition 4 from the classical proof of proposition 2.10 in [57]. Since our for-
mulation is somewhat di�erent from the classical octahedron which is considered
in proposition 2.10 of [57], we want to give a complete proof.

Proof: Consider a diagram as follows.

Σ2(A) //

��

Σ(c(f)) //

��

Σ(B)
�(f) //

��

Σ(A)

��
0 //

��

c(g) //

�

��

c(g) //

��

0

��
Σ(A)

� //

id

��

c(f ◦ g) �C //



��

C
f◦g //

g

��

A

id

��
Σ(A) // c(f)

�B // B
f // A

First we want to argue that this is already the general situation. First of all, we
may assume that f and g are represented by morphisms between C∗-algebras. Fur-
thermore, up to desuspension and isomorphisms, we can assume that our triangles
are cone triangles.

Note that the lower right square is commutative. Hence there is a canonical map
γ : c(f◦g)→ c(f) which is given by c(f◦g) ∼= A(0, 1]⊕AC 3 (ar, c) 7→ (ar, g(c)) ∈
A(0, 1] ⊕A B ∼= c(f). The map δ is de�ned as before in the proof of condition 5.
It remains to show that c(g) is naturally homotopy equivalent to c(γ). This is a
classical argument which we do not want to repeat.

We �nish the proof by showing that the square

c(f ◦ g)ev1 //



��

C

g

��
c(f)

ev1 // B

is homotopy Cartesian. That is, we have to show that there is a triangle of the
form

Σ(B)
� // c(f ◦ g) (ev1) // c(f)⊕ C

(-ev1
g )

// B

for some η.

Consider the map of C∗-algebras η = ι ◦ Σ(f) : Σ(B) → c(f ◦ g). We get a cone
extension as follows.

0 // Σ(c(f ◦ g)) // c(η) // Σ(B) // 0
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A short computation shows that c(η) is isomorphic to c(µ : Σ(C) → c(f)). Fur-
thermore, there is a split Σ(C) → c(µ). It is given by mapping the element
(t 7→ ct) ∈ Σ(C) to (t, s) 7→ ((f ◦ g)(cs+t-st), g(ct), cs)). This implies that c(η)
becomes isomorphic to Σ(c(f ◦ g))⊕ Σ(C) in S as we wanted it to be.

We still have to show that the maps induced by this isomorphism are the required
ones. The split s is chosen such that Σ(C)

s→ c(η) → Σ(B) equals tΣ(g). The
other composition Σ(c(f))→ c(η)→ Σ(B) is just the suspension of the evaluation
ev1. Consider the composition Σ(c(f ◦ g)) → c(η) → Σ(C). It is the suspension
of the canonical evaluation ev1 onto C. The map Σc(f ◦ g) → Σc(f)→ c(η) is the
inclusion in the exact sequence given above. Putting all this information together
we get a distinguished triangle of the following form.

Σ2(B)
�(�)// Σ(c(f ◦ g)) �(ev1) // Σ(c(f))⊕ Σ(C)

(�(ev1)

-�g )
// Σ(B)

After desuspending this distinguished triangle once we get the following distin-
guished triangle.

Σ(B)
� // c(f ◦ g) (ev1) // c(f)⊕ C

(-ev1
g )

// B

This shows precisely what we wanted to prove. The square above is indeed ho-
motopy Cartesian.

This �nishes the proof that (S, Σ-1) forms a triangulated category.

Theorem 3.3.6 The stable homotopy category S and the canonical functor s : sC →
S constitute the universal triangulated homology theory.

Proof: First of all, we have to convince ourselves that s : sC → S is indeed a
triangulated homology theory. Let

0 // A
g // B

f // C // 0

be an extension. We get a triangle

Σ(C) // c(f) // B
f // C

in S. By lemma 2.2.14, c(f) is naturally isomorphic to ker(f) ∼= A in S such that we get
a triangle as follows.

Σ(C) // A
g // B

f // C

It is an easy check that it is natural with respect to morphisms of extensions. It is
obvious that all triangles (up to isomorphism and (de)suspension) are of this form.
This shows that s : sC → S is triangulated homology theory.
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Let R : sC → (P, Σ) be another triangulated homology theory. The associated bi-
variant homology theory satis�es the conditions of theorem 3.2.3 and therefore theorem
3.2.4 can be applied. We get a functor L ′ : S→ P which descends to a functor L : S→ P,
since the suspension is invertible in P. Since the triangles in S are just the ones which
come from extensions in sC, they are mapped to triangles in P. Furthermore, the func-
tor L : S → P is clearly compatible with the respective suspension functors and hence
it is a triangulated functor. This �nishes the proof.

Theorem 3.3.7 Stable homotopy theory of separable C∗-algebras is a monoidal

triangulated category and the functor s : sC → S is a functor of monoidal categories.

Proof: This is now an easy consequence of the exactness of the maximal tensor
product as discussed in theorem C.4.4. The existence of the monoidal structure was
remarked before and the compatibility with the class of distinguished triangles follows,
since the tensor product with a �xed algebra preserves extensions and hence distin-
guished triangles.

Theorem 3.3.8 Any bivariant homology theory is a triangulated module (see def-

inition A.1.10) over the stable homotopy category.

Proof: This is again an application of theorem 3.2.4. The existence of the comparison
functor was stated there. The exactness properties of de�nition A.1.10 are obvious, since
again triangles in stable homotopy theory correspond to extensions and extensions lead
to long exact sequences in a bivariant homology theory.

Having constructed the universal theories, we go on to construct certain theories in
the next section which have certain universal properties. A second point will be to �nd
non-trivial applications for the universal properties.

We also want to state and prove a theorem concerning homology theories. In fact,
it is implied by theorem 3.2.4 as we will see. There will be one important application
of the following theorem in section 4.4.

Theorem 3.3.9 Let R : sC → Ab∗ be a homology theory on the category of separable

C∗-algebras. There exists a product map

R(A)⊗ S(A,B)→ R(B)

which gives the functor R the structure of a S ′-module. (This just means that the

obvious associativity condition is satis�ed.)

Proof: De�ne RZ to be the category with objects pairs (A,n), consisting of a separa-
ble C∗-algebras A and an integer n, and morphisms between objects (A,n) and (B,m)

given by homAb∗(Σ
nR(A), ΣmR(B)). This is in general not a bivariant homology theory.
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But still, it satis�es the conditions of theorem 3.2.3. Hence we get a functor R ′s : S→ RZ.
It is clear that this functor descents to a functor

Rs : S→ RZ.

The existence of the module structure is now obvious. This �nishes the proof of the
theorem.

Corollary 3.3.10 Let R : sC → Ab∗ be a homology theory on the category of sepa-

rable C∗-algebras. Assume that there is an isomorphism R0(C) = Z. There exists

a natural transformation S∗(A)→ R∗(A).

Proof: This is obvious by theorem 3.3.9.

The existence of universal bivariant homology theories can be proved by di�erent
methods. An abstract existence proof could also follow the lines of the work of Nigel
Higson in [30]. Although he is not using the concept of a triangulated category his
procedure in proving the existence of E-theory is the following.

� Establish the structure of a triangulated category on the ordinary (without asymp-
totic morphisms) stable homotopy category for separable C∗-algebras. The trian-
gles in this triangulated category are just the co-�ber sequences. This can be done
by completely classical arguments.

� Construct a monad (for a de�nition see [30] or a classical reference like [59]) corre-
sponding to the idempotent process of stabilization with the compact operators.
The category of algebras over the monad will again be triangulated. This only
uses properties of rank one projections in the algebra of compact operators.

� Localize at the class of arrows ker(f) → c(f) for any surjection f between C∗-
algebras. (In [30] a di�erent class is considered but these are the essential mor-
phisms that have to be inverted.) This is done by Verdier localization (see ap-
pendix 2).

In [30] the localization process is done by hand and hence the construction gets
complicated and seems to be a little arti�cial. Nevertheless in the framework of trian-
gulated categories it is the canonical thing to do. For a further simpli�cation the second
step could be subsumed in the third one if one adds the inclusions A → A ⊗ K to the
arrows that have to be inverted. Having the right language at hand Higson's result gets
a rather easy consequence of the existence of localizations in triangulated categories.

Note that if one omits the second step in the proof of N. Higson in [30] one ends up
with stable homotopy for C∗-algebras.

One might ask why we have not given Higson's proof if it is so much simpler. The
point is that it is a major achievement (essentially due to A. Connes and N. Higson

48



[13]) to have a concrete presentation of the universal homology theory by something
which is more tractable than a category of fractions. The description using asymptotic
morphisms has already proved to be useful in a lot of contexts, in particular, for concrete
computations and examples. For the results in the next section it will be essential that
we have a concrete description. The abstract existence would not help very much.

Note that the description using the extension category has the advantage that it
can be used for a de�nition for non-separable algebras as well. (In fact, the existence
of a suitable stable homotopy category for all C∗-algebras can not (at least to our
knowledge) be achieved by abstract arguments, since set-theoretic problems prevent us
from knowing whether the category of fractions exists.) Secondly, the approach using
the extension category can be used in other contexts as well and therefore seems to be
of interest from an abstract point of view.
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4 Connective E-theory and bivariant homology

This section contains material about concrete triangulated and bivariant homology the-
ories.

In the �rst part we recall properties of E-theory (see [28]). It contains no new results,
but our presentation has to be considered as providing a new look at E-theory using
the language of triangulated categories.

The second part is about a connective version of E-theory which is called bu. The
main feature is that it is no longer 2-periodic and therefore intrinsically much more
complicated. The connective theory lacks one important property which is stability.
Stability is very useful for computations in (non-connective) E-theory. We restrict our
study of connective E-theory to a category of non-commutative cell complexes on which
it is computable to some extend. We establish the existence of useful spectral sequences
which in some sense replace the K�unneth theorem and the universal coe�cient theorem
in KK-theory. This part also contains a discussion of duality.

The third part contains examples and computations. In particular, we are going to
determine the bu-type of matrix bundles and certain non-commutative algebras which
are naturally associated to pairs consisting of a compact locally Hausdor� space and a
Hausdor� open cover of the space.

In a fourth part we establish an interesting relation between connective E-theory
and negative algebraic K-theory which goes back to the work of Jonathan Rosenberg
in [53].

The �fth part contains the de�nition of a bivariant homology theory which gener-
alizes singular homology from the category of �nite CW-complexes to the category of
separable C∗-algebras. We compute the algebra of cohomology operations and discuss
the classical Chern character in this more general context. Finally, we establish the ex-
istence of an Adams spectral sequence and provide a K�unneth theorem and an universal
coe�cient theorem for bivariant homology.

Considering bivariant and triangulated homology theories, all our examples will have
the property that the categories will have the same objects as sC (or pairs consisting
of a C∗-algebra and an integer) and the functor is just the identity on objects (or the
inclusion into the pairs of the form (A, 0)). We will therefore omit the mentioning of
the functor.

4.1 Revisiting E-theory

Theorem 4.1.1 The localization (see appendix A.2.2) of stable homotopy theory as

a triangulated category with respect to the class of morphisms {ι1⊗idA : A→ K⊗A}

is a monoidal triangulated homology theory E whose associated bivariant homology

theory is isomorphic to E-theory as de�ned by A. Connes and N. Higson in [13].
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Proof: This follows either from the universal properties that are satis�ed by (clas-
sical) E-theory or by a direct argument as follows. The morphisms in the localization
are by theorem A.2.6 given as

E(A,B) = colimp;n[[Σ
nA,KpΣnB]]

By classical results in Connes-Higson E-theory (Actually one only needs suitable
isomorphisms K2 ∼= K and KΣ ∼= KΣ3 in the homotopy category of asymptotic morphism
asC.), one does not need to take the co-limits. The map

[[ΣA,KΣ(B)]]→ colimp;n[[Σ
nA,KpΣnB]]

is always an isomorphism. This just shows that the localization indeed identi�es with
classical E-theory.

Theorem 4.1.2 (G.G. Kasparov, C. Schochet) Let (X, x) and (Y, y) be �nite

pointed CW-complexes. Then we have the following isomorphism.

En(C(Y, y), C(X, x)) ∼= colimm[Σm+nX,BUm ∧ Y]+

In the last statement BU∗ denotes the non-connective topological K-theory spec-

trum.

This theorem is stated only for sake of completeness, since similar statements will
appear later. It was proved by G.G. Kasparov in [35] for KK-theory instead of E-theory.
The result follows, since we know that for nuclear algebras KK-theory and E-theory
coincide (see [30]). This �nishes the proof.

The coe�cient ring of E is given by E(C,C) = Z[u, u-1] where the degree of u is
equal to two. In particular, E-theory is 2-periodic. A neat proof of the preceding state-
ment was given by J. Cuntz using the Toeplitz extension and quasi-homomorphisms,
see [17].

The element u is the class of the Bott map σ ∈ hom(Σ,M2Σ
3) and induces the

periodicity of E-theory. The Bott map in E-theory can be concretely given by a map
σ : Σ → M2Σ

3 as we will see in detail later. The inverse of the Bott map involves
necessarily the compact operators. It is, for example, given by

� connecting morphism of the Toeplitz extension

0 // K // τ0 // Σ // 0

or

� a choice of asymptotic morphism Σ2 → K corresponding to a non-trivial pair of
asymptotically commuting unitaries (see [68]).
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There is an obvious asymmetry in the presentation of the Bott element and its in-
verse. One occurs naturally as a map between the 3-sphere and the 1-sphere just by
introducing matrices. In certain contexts relatives of this map occur even as maps be-
tween spaces (e.g. the Adams map [2]). The inverse of the Bott map appears only after
bringing the compact operators into play. In sub-section 4.2 we will use this asymmetry
to �nd �ner invariants of C∗-algebras than ordinary K-theory which obviously treats
the compact operators as being the same as matrices.

The obvious questions that arise with this result are the following.

� 'What triangulated homology theories do we get if we localize with respect to
other natural classes of morphisms ?'

� 'What are other natural classes of morphisms ?' and

� 'Are other geometrically motivated or geometrically relevant bivariant homology
theories obtainable through localization ?'

There is an important corollary to the characterization of E-theory.

Corollary 4.1.3 Let H : sC → (R, Σ) be a bivariant homology theory. If for any sep-

arable C∗-algebra A the map H(idA⊗ι1) ∈ homR(A,A⊗K) is an isomorphism, then

the bivariant homology theory is 2-periodic (i.e. there exists a natural equivalence

H ◦ Σ2 ∼= H).

4.2 Connective E-theory

This sub-section introduces a new triangulated homology theory. It is constructed by a
similar procedure as E-theory and indeed carries a lot of similar properties. An impor-
tant computation shows that it generalizes connective K-theory. In the following we
want to analyze its abstract properties and give a couple of computations for interesting
algebras.

Theorem 4.2.1 The localization (see appendix A.2.2) of stable homotopy theory

as a triangulated category with respect to the class of morphisms {idA ⊗ ι2 : A →
M2(A)} is a triangulated monoidal homology theory bu whose associated bivariant

homology theory generalizes connective K-theory.

More precisely the following holds for any �nite pointed CW-complexes (X, x)

and (Y, y).

bun(C(Y, y), C(X, x)) ∼= colimm[Σm+nX, bum ∧ Y]+

In the last statement bu denotes the connective K-theory spectrum.
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Remark 4.2.2 Since the category of separable C∗-algebras is essentially small, we

are not going to have any sort of set theoretic problems with the existence of the

quotient. Erik Pedersen would kindly remark that the Adams-Bous�eld story does

not apply.

Theorem 4.2.3 The coe�cient ring of bu is given by bu(C,C) = Z[u] where the

degree of u is equal to two. The element u is again the Bott map but it is not

invertible.

Proof of theorem 4.2.1 and 4.2.3: By the concrete form of the localization we have
a natural isomorphism (see appendix A.2.2)

bup(C(Y, y), C(X, x)) ∼= colimm;n[[Σ
mC(Y, y), Σm+pMnC(X, x)]].

On the other hand by M. D�ad�arlat's characterization of connective K-theory accord-
ing to theorem 3.5 in [24] one has

colimm[Σm+pX, bum ∧ Y]+ ∼= colimm[ΣmC(Y, y), Σm+pC(X, x)⊗ K].

By lemma C.1.13 the following map is a natural isomorphism

colimm;n[Σ
m+pC(Y, y), ΣmMnC(X, x)]→

colimm[Σm+pC(Y, y), ΣmC(X, x)⊗ K]

whenever (Y, y) is locally contractible at y which is the case for CW-complexes.
This implies that we get a natural transformation of bivariant homology theories

(here we are using the term 'bivariant homology theory' informally for the category of
�nite CW-complexes and 'extensions' given by co-�ber sequences.)

colimm[Σm+pX, bum ∧ Y]+ → bup(C(Y, y), C(X, x))

which is an isomorphism on �nite CW-complexes if we can argue that it is an isomor-
phism on coe�cients. Indeed, the isomorphism on coe�cients follows from the fact
that

[Σn,MpΣ
m]→ [[Σn,MpΣ

m]]

is an isomorphism which in turn follows from lemma 2.2.16 and the observation that
hom(Σn,Mp) is an ANR (indeed, it is even a real algebraic variety). This �nishes the
proof.

The main part of the proof relies on theorem 3.5 in M. D�ad�arlat's and J. McClure's
foundational work [24] about connective K-theory. One should also mention that the
original idea of relating connective K-homology of a pointed space (X, x) to the ho-
motopy groups of the mapping space hom(C(X, x),Mn) is due to G. Segal [61]. The
computation above was also done by J. Rosenberg in [51].
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Lemma 4.2.4 We have a canonical functor ι : bu → E which compares the two

theories. Whenever B is stable the induced map bu(A,B)→ E(A,B) is an isomor-

phism.

Proof: There is an isomorphism φ : K⊗M2 → K⊗K such that the following diagram
commutes.

C

�2
��

�1 // K

idK⊗�2
��

K

idK⊗�1
��

M2

i1⊗idM2 // K⊗M2

� // K⊗ K
Note that in this diagram all horizontal and the rightmost vertical arrow go to

isomorphisms in E-theory. Thence ι2 is taken to an isomorphism. By the universal
property of bu, there is a unique transformation bu→ E.

This proves the lemma. The existence of the transformation is also obvious from
the concrete pictures that we have of the corresponding theories.

Our next de�nition introduces the notion of a (strong) non-commutative cell com-
plex which will replace �nite CW-complexes for many purposes in the non-commutative
setting. Strong cell complexes are certain type 1 C∗-algebras which are rather easy to
understand from an operator algebraic point of view. Still, their geometry is interest-
ing and captures a lot of phenomena which are quite di�erent from the ones in the
commutative setting.

Definition 4.2.5 We de�ne the category of non-commutative cell complexes to be

the full sub-category of separable C∗-algebras which contains Mn for all n ∈ N and

is closed under

� extensions (i.e. 2-out-of-3 for any extension of separable C∗-algebras),

� suspension and

� homotopy equivalence.

The category of strict cell complexes is de�ned in an analogous way but with the

requirements that is has to be closed under suspension and extensions only.

Lemma 4.2.6 Let A be a cell complex. The bu∗(A) is �nitely generated as a Z[u]-

module.

Proof: This is true for Mn, n > 1. The result now follows by nice properties of the
ring Z[u]. Indeed, any sub-module and any quotient of a �nitely generated Z[u] module
is �nitely generated. Furthermore, any extension of �nitely generated ones is �nitely
generated. This proves the claim, since the de�nition of cell complexes is recursive.
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4.2.1 Some spectral sequences

In this section we want to prove the existence of a K�unneth spectral sequence and
a universal coe�cient (UC) spectral sequence for connective E-theory. The methods
provided in this section will also be useful later.

Our arguments use geometric projective resolutions which were introduced in alge-
braic topology by F. Adams (see [1]), and brought to the operator algebraic context in
articles by J. Rosenberg and C. Schochet in [54].

First of all, let us consider algebras A such that bu∗(A) is �nitely generated as
a Z[u]-module. This is the case for all �nite cell complexes by the last lemma in the
preceding section. Denote the full sub-category of bu which is given by all algebras with
�nitely generated bu-homology groups by buf. In what follows we restrict our study to
buf. Most of the constructions have analogues in more general situations but we want
to stick to the �nitely generated case for simplicity. We denote the full sub-category
which is given by cell complexes by buc. There are obvious inclusions

buc ⊂ buf ⊂ bu.

Let A be an object in buf. Since bu∗(A) is �nitely generated, there exist integers
k1, · · · , kn ∈ Z and a map ⊕ni=1Σk

i → A which induces a surjection from the free bu∗-
module bu∗(⊕ni=1Σki) onto bu∗(A). Completing this map to a triangle yields

Σ(A1) // ⊕ni=1Σk
i // A // A1

for which we use the convenient short notation

A1

##

Aoo

⊕ni=1Σk
i

OO

where the dotted arrow is of degree minus one. Clearly bu∗(A1) is also �nitely generated
and we can continue this process. We obtain a diagram with A = A0 as follows.

· · · A4

##

A3

%%

oo A2

%%

oo A1

%%

oo A0oo

· · · ⊕n3i=1Σk
i
3

OO

⊕n2i=1Σk
i
2

OO

⊕n1i=1Σk
i
1

OO

⊕n0i=1Σk
i
0

OO

Note that we can choose the resolution such that n3 is zero, since Z[u] is of projec-
tive dimension 2. We only want to consider geometric projective resolutions with this
property. It implies that Ai → Ai+1 is a bu-equivalence whenever i > 3.

Proposition 4.2.7 Let A be a separable C∗-algebra. Denote a choice of Ai which

appeared in a geometric projective resolution of A for i > 3 by Aloc. There is a

map ψA : A→ Aloc. The pair (Aloc, ψA) is unique up to bu-equivalence.
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Proof: This is an adaption of a standard proof in homological algebra. Note that the
de�nition of a triangulated category was chosen just to make the important arguments
in homological algebra work.

Constructions of more general geometric projective resolutions and more general
sequences of this type can be found in an article by Daniel Christensen [12].

We call this a projective geometric resolution of the algebra A, since it induces a
sequence

· · · // bu∗+2(⊕n2i=1Σk
i
2) // bu∗+1(⊕n1i=1Σk

i
1) // bu∗(⊕n0i=1Σk

i
0) // bu∗(A)

which is a projective (indeed, free, since all projectives over Z[u] = bu∗ are free) reso-
lution of bu∗(A).

Remark 4.2.8 Similarly we can obtain a dual projective geometric resolution of

A which provides us with a projective resolution of bu∗(A) as a bu∗-module after

applying the contravariant functor bu∗ to it. Therefore duals of the following

theorems can be obtained.

We can apply several functors to this projective geometric resolution in order to
obtain exact couples that give rise to homology and cohomology spectral sequences.
Before doing so, we want to derive another result which will be of some importance.

Theorem 4.2.9 Let A be a separable C∗-algebra with bu∗(A) �nitely generated as a

Z[u]-module. There is a cell complex Ac and a map Ac
�A→ A such that the induced

map bu∗(A
c) → bu∗(A) induces an isomorphism. The pair (Ac, φA) is unique up

to a unique bu-equivalence.

Dually there is a cell complex Ac and a map A
�A→ Ac such that the induced

map bu∗(Ac)→ bu∗(A) is an isomorphism. Again, the pair (Ac, φA) is unique up

to bu-equivalence.

Proof: We only prove the �rst part of the statement, since the second part is dual.
Choose a geometric projective resolution (with A0 = A). Consider the cone of the map

⊕n2i=1Σk
i
2 // ⊕n1i=1Σk

i
1

and denote it by B1. Since the composition ⊕n2i=1Σk
i
2 → ⊕n1i=1Σki1 → A1 is zero, there is

an induced map B1 → ⊕n0i=1Σki0 . Its cone B0 maps to A0, since, again, the composition
B1 → ⊕n0i=1Σki0 → A is zero. At the level of Z[u]-modules it is easily seen that B0 → A

is an isomorphism. On the other hand B0 = Ac is a cell complex. The uniqueness of
the pair is obvious, since any transformation

bu(?, Ac)→ bu(?, A)
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of functors which is an isomorphism for C is an isomorphism for all cell complexes by
excision. Hence Ac plus the transformation to A is unique by the Yoneda lemma. This
�nishes the proof.

Proposition 4.2.10 Let A be a separable C∗-algebra with bu∗(A) �nitely generated.

There is a distinguished triangle

Ac
�A // A

 A // Aloc // Σ(Ac)

with Ac and Aloc as above.

Proof: This is just how we constructed Ac. For a complete proof one needs the
octahedron axiom of triangulated categories. We do not want to give complete details.

We will come back to the consequences of theorem 4.2.9 and proposition 4.2.10 in
the next subsection.

Theorem 4.2.11 (Künneth spectral sequence) Let A,B and C be separable C∗-

algebras. Moreover let bu∗(A) be �nitely generated as a bu-module. There is a

homology spectral sequence with

E2p;q = Tor
p;q

Z[u](bu∗(B,C),bu∗(A))

converging strongly to bu∗(B,A
c ⊗ C).

Proof: Apply the functor bu∗(B, ?⊗C) to a geometric projective resolution of A. We
de�ne an exact couple (see section 5.9 in [69] for de�nitions and properties) as follows.

⊕p;qbup+q(B,Ap ⊗ C)
i // ⊕p;qbup+q(B,Ap ⊗ C)

jsshhhhhhhhhhhhhhhhhhh

⊕p;qbup+q(B,⊕npi=1Σk
i
p ⊗ C)

k

kkVVVVVVVVVVVVVVVVVVV

In this diagram i is of bi-degree (1,−1), j is of bi-degree (−1, 0) and k is of bi-degree
(0, 0). We get a homology spectral sequence (see e.g. [69] pp. 153) with

E2p;q = Tor
p;q

Z[u](bu∗(B,C),bu∗(A))

using that
bu∗(B,⊕npi=1Σ

kip ⊗ C) = bu∗(B,C)⊗Z[u] bu∗(⊕npi=1Σ
kip).

(In this notation q denotes the degree of the shift and p the dimension of the Tor-
functor. For example, Tor0;q is just ⊗q, i.e. the part of the tensor product which is of
degree q.)
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In an ideal world this spectral sequence would converge to colim ibu∗(B,Ai ⊗ C) =

bu∗(B,A ⊗ C). But this is obstructed by the possibility that lim i bu(B,Ai ⊗ C) =

bu∗(B,A
loc⊗C) does not vanish even though bu∗(A

loc) of course vanishes. (Note that
clearly lim1

i bu(B,Ai ⊗ C) = 0)

Nevertheless if we replace A by Ac the spectral sequence does not change but it
now clearly limi bu(B,Ai ⊗ C) = bu∗(B, (A

c)loc ⊗ C), since (Ac)loc = 0. Note that we
obviously have that lim1

i bu(B,Ai ⊗ C) = 0 and hence the spectral sequence converges
conditionally to bu∗(B,A

c⊗C) (see [9]). The spectral sequence also converges strongly,
since the maps bu∗(B,Ai+1 ⊗C)→ bu∗(B,Ai+1 ⊗C) become isomorphisms if i > 3 for
a suitable geometric resolution, since Z[u] is of projective dimension 2. This proves the
theorem.

Note that there might be other reasons for lim n bu∗(B,An⊗C) to vanish. Of course,
it always vanishes if B and C are cell complexes. In this case we have that bu∗(B,A

c⊗
C) ∼= bu∗(B,A⊗ C).

Theorem 4.2.12 (UC spectral sequence) Let A and B be separable C∗-algebras.

Moreover let bu∗(A) be �nitely generated as a Z[u]-module. There is a cohomology

spectral sequence with

E
p;q
2 = Ext

p;q

Z[u](bu∗(A),bu∗(B))

converging strongly to bu∗(A
c, B).

Proof: The proof proceeds similarly to the proof of theorem 4.2.11. We apply the
functor bu∗(?, B) to a geometric projective resolution of A. The proof here uses that

bu(⊕nli=1Σ
ki
l, B) = homZ[u](bu∗(⊕nli=1Σ

ki
l),bu∗(B)).

(A reference for the co-homological spectral sequence constructed from an exact couple
is theorem 2.8 in the book by J. McCleary [39].) The arguments which are used to
obtain strong convergence are completely analogous to the arguments in the proof of
theorem 4.2.11.

Remark 4.2.13 Note that the ring Z[u] is of projective dimension 2. This implies

that all Torp;qZ[u] and Ext
p;q

Z[u] groups vanish whenever p > 3. Therefore the E2-term of

the spectral sequence carries only one non-vanishing di�erential and the E3-term

is already equal to the E1-term.

4.2.2 Duality

This part contains a short discussion of duality in the context of bu. We show that
certain objects are self-dual with respect to the natural notion of duality in bu. A short
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discussion of traces and the natural notions of Euler characteristic and Lefshetz number
is also contained in this part.

For a de�nition of duality in the context of triangulated categories see appendix A.3.
We start with the following observation which uses lemma A.3.3.

Proposition 4.2.14 Let A be a separable C∗-algebra such that bu∗(A) is �nitely

generated. The algebra is dualizable in bu if it is bu-equivalent to a cell complex.

Proof: Since the generating objects in the category of cell-complexes are dualizable
and dualizability is closed under suspensions and extensions (see lemma A.3.3), we have
nothing to prove.

Before we start, we have to recall some easy facts from homological algebra. We use
these considerations to de�ne a concrete trace on self-maps of objects in bu. The trace
takes values in Z[u]. Later, we compare the trace with a trace that comes from the
intrinsic notion of duality in buc and show that the traces coincide.

Let M be a �nitely generated free module over a graded commutative ring R. Let
f : M→M be a R-module homomorphism. One can de�ne a trace by picking generators
of M as free module, writing the homomorphism in matrix form and taking the sum of
the diagonal terms weighted by (−1)k where k is the degree of the generator of the free
module. The same procedure works for projective modules (i.e. summands of free ones).
If M is not free (but still �nitely generated) the de�nition of a su�ciently interesting
trace is more di�cult or even impossible. If the ring satis�es the following condition

’Any sub-module of a finitely generated free module is finitely generated.’

we can proceed as follows. The condition ensures that there is a resolution consisting
of �nitely generated free modules for any �nitely generated module. The self-map of
the module implies the existence of a self map of the resolution (which is unique up
to chain homotopy). Taking the alternating sum of the traces of this self-map we get
(either an in�nite sum of possibly non-zero terms or in case of �nite dimension) an
element in in the ring R which does neither depend on the choice of the resolution nor
the choice of the lifting of the self-map. This is an easy exercise in homological algebra.

Note that the ring Z[u] clearly satis�es the condition above. Furthermore, since any
projective module over Z[u] is already free and Z[u] is of �nite projective dimension,
we have to consider only �nite sums by a 'syzygy' argument. Note further that this
is an extension of the concept of trace on �nitely generated free modules, since they
constitute their own free resolutions.

Definition 4.2.15 Let M be a �nitely generated Z[u]-module and let f : M → M

be Z[u]-module map. We denote by τc(f) ∈ Z[u] the concrete trace which we can

assign to f by the procedure discusses above.
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Let f ∈ bu∗(A,A) be a self-map (in the graded sense) of A. We de�ne the

concrete trace of f to by τc(bu∗(f)).

Note that there is another trace which is de�ned using the notion of duality in the
triangulated category. For a de�nition see appendix A.3. The next theorem identi�es
the two notions of trace.

Theorem 4.2.16 The trace which is given by duality and the concrete trace coin-

cide for cell complexes.

Proof: This follows, since the traces coincide on generators and satisfy additivity
(see appendix A.3 for a de�nition). The duality trace satis�es additivity, since we can
identify this trace with a trace on the homotopy category of bu-module spectra which in
turn comes from a monoidal model category (see section 5). This result is proved in an
article by P. May [38]. The concrete trace satis�es additivity by an easy computation.

One might ask whether one can proof the additivity of the duality trace only using
operator theory. We do not try to prove this, since the concrete trace is the more
interesting and natural one anyway. In order to organize all the required homotopies
it seems to be useful to introduce the structure of a model category on a category of
operator algebras, but this has not been achieved yet.

Definition 4.2.17 � The Euler characteristic χ(A) of a dualizable algebra A is

de�ned to be τ(bu∗(idA)) ∈ Z.

� Let f : A → A be a self-map of a dualizable algebras A. Its Lefshetz number

is de�ned to be τ(f) ∈ Z.

Corollary 4.2.18 Let

0 // A // B // C // 0

be an extension of C∗-algebras. The following relation between the Euler charac-

teristics

χ(B) = χ(A) + χ(C)

holds.

Proof: This follows from the additivity of the trace.

A similar additivity result can be obtained for Lefshetz numbers. Since we have
no applications, we do not want to state it. The Euler characteristic is the most basic
invariant which one can assign to cell complex. We are going to compute the Euler
characteristic of a cell complex in theorem 4.5.22.
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Now, we come a di�erent aspect of duality. It is the natural notion of self-duality
in a triangulated category. Most of the dualities (i.e. Poincar�e duality, Atiyah duality,
Spanier-Whitehead duality etc.) that appear in algebraic topology can be traced to a
self-duality in a certain triangulated category. For a comprehensive guided tour through
the history of duality in algebraic topology see [6]. In our context we denote the duality
functor by D : buc → (buc)op.

Definition 4.2.19 A dualizable object A is said to satisfy Poincar�e duality if there

is an integer n ∈ N and an equivalence between A and Σn(D(A)).

Examples of objects satisfying Poincar�e duality in bu are of course given by mani-
folds with stably trivial normal bundle, e.g. Lie groups etc. The next proposition shows
that there are also natural non-commutative examples which satisfy Poincar�e duality
in bu.

Denote the cone of the Bott map by Z. In section 2.3 we study the properties of Z
more extensively.

Proposition 4.2.20 The cone of the Bott map satis�es Poincar�e duality. Indeed,

there is the following isomorphism.

Z→ Σ5(D(Z))

Proof: It is a general fact that the dual of a distinguished triangle in buc is distin-
guished (in buc). The cone of the Bott map appears in the triangle

Σ2
u // Σ4 // Z // Σ

The dual triangle is just

Σ-2 Σ-4
D(u)oo D(Z)oo Σ-1oo

If we shift the triangle to the left and suspend (and switch the direction of arrows)
we obtain the following the following one (this uses condition 4 in the de�nition of
triangulated categories).

Σ2
�5(D(u))// Σ4 // Σ5(D(Z)) // Σ

It is clear that Σ5(D(u)) is either equal to u or to −u. In either case we obtain a
morphism Z→ Σ5(D(Z)) by condition 5 in the de�nition of triangulated categories. It
has to be an isomorphism by the Yoneda-lemma. This �nishes the proof.

A more detailed discussion of properties of the cone of the Bott map is contained in
section 4.5.
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4.2.3 Localization

In the proof of theorem 4.2.12 we saw that the convergence of the UC spectral sequence
is obstructed by the possibility that bu∗(A,B) is not zero even though bu∗(B) is zero.
Moreover we saw that the obstruction vanishes if A is a cell complex. In this section we
want to study the local objects of the category of cell complexes and the localization
with respect to this sub-category. It will turn out to be a Bous�eld localization. The
corresponding quotient category behaves rather nicely with respect to convergence of
the UC spectral sequences as will become clear.

Most of the notations and de�nitions which we are using in this section can be found
the book by A. Neeman [43], chapter 8.

Recall that we denoted the full triangulated sub-category which is given by cell
complexes (and their desuspensions) by buc.

Definition 4.2.21 An algebra A in bu is called buc-local for every (de)suspension

C of a cell-complex all morphisms bu(C,A) 3 f : C→ A vanish.

Proposition 4.2.22 An algebra A is buc-local if and only if bu∗(C, A) = 0.

Proof: One direction is obvious, since all Σn are cell complexes. The other direction
follows by induction, since the de�nition of cell complexes is recursive. This �nishes
the proof.

Definition 4.2.23 The full sub-category of buc-local objects in buf is a thick sub-

category of buf. We denote the category of buc-local objects in buf by bul.

By theorem 9.1.13 in [43] and proposition 4.2.10 the Verdier localization functor
buf → buf/buc has a right adjoint. Those localizations are commonly called Bous�eld
localizations (see chapter 8 in [43]). Furthermore, by remark 9.1.15 in [43] we have that
the localization functor buf → buf/bul has a left adjoint. Indeed, the composition

bul ⊂ buf → buf/buc

is an equivalence of triangulated categories by theorem 9.1.16 in [43]. Dually also the
composition

buc ⊂ buf → buf/bul

is an equivalence of triangulated categories.

The category buf/bul has some nice properties. First of all, the objects are just
separable C∗-algebras and it therefore constitutes a triangulated homology theory on
the category of separable C∗-algebras. Since any map that induces an isomorphism
in bu-homology has to be a bu-equivalence (This is just, since the cone of the map
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has vanishing bu-homology and is therefore isomorphic to zero in buf/bul.), the UC
spectral sequence converges always to the correct bivariant group (compare theorem
4.2.12).

The following lemma is a general fact for Bous�eld localizations.

Lemma 4.2.24 The natural map buf(A,B) → (buf/bul)(A,B) is an isomorphism

for all A if and only if B is isomorphic in buf to (a desuspension of) a cell complex.

This is just an application of lemma 9.15 and corollary 9.1.14 in [43].

This, in particular, implies that the UC spectral sequence for buf/bul does not give
any new information. It is just transported in a framework which is a little bit more
convenient. We do not repeat the statements about the existence of certain spectral
sequences which we have made precise in section 4.2.1.

The category buc is of course a triangulated monoidal category. Although buf/bul

is equivalent to buc we were not able to show that buf/bul is monoidal as well. This is
due to the fact that bul is not a priori a monoidal sub-category, since a priori bu∗(A) = 0

does not imply that bu∗(A⊗A) = 0. Another way of looking at this phenomenon is to
note that the cell replacement which can be made functorial by the remarks above (this is
a non-trivial fact) is not necessarily a monoidal. Again, the possibility that bu∗(A) = 0

although bu∗(A⊗A) 6= 0 obstructs the existence of a monoidal replacement functor.

4.3 Examples and computations

4.3.1 Matrix bundles

Note that the group of algebra automorphisms of Mn is PSU(n) (see lemma C.1.12)
which acts by conjugation. Therefore every principal PSU(n)-bundle over X gives rise
to a bundle over X with �ber Mn. Since PSU(n) consists of algebra automorphisms,
the continuous sections of this bundle carry a natural algebra structure. Indeed, one
checks easily that the space of continuous sections forms a C∗-algebra. A C∗-algebra of
this kind is called n-matrix bundle (or n-homogenous) algebra.

Although these bundles are locally trivial over X they may be globally non-trivial.
Indeed, the isomorphism classes (over X) of such n-matrix bundles are in correspondence
with [X,BPSU(n)].

Definition 4.3.1 Let X be a compact Hausdor� topological space and φ : X →
BPSU(n) be a continuous map. Denote by Prin(φ) the principal PSU(n)-bundle

which is classi�ed by φ. Denote by E(φ) the algebra of continuous sections of the

bundle Prin(φ)×PSU(n) Mn → X.
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Now, we are computing the isomorphism type of the section algebras in the trian-
gulated homology theory bu. It turns out that the section algebras are all naturally
isomorphic to the algebra of continuous functions on the base space. This implies that
it is not possible to detect di�erent bundles using connective E-theory.

Lemma 4.3.2 Let n < m be integers and ιn;m-n : PSU(n)× PSU(m− n)→ PSU(m)

be canonical inclusion. Let φ1 : X → BPSU(n) and φ2 : X → BPSU(m − n) be

continuous maps.

There are induced maps ψ1 : E(φ1)→ E(B(ιn;m-n ◦ (φ1 ×φ2))) and ψ2 : E(φ2)→
E(B(ιn;m-n)◦ (φ1×φ2)) between the algebras of sections, which induce equivalences

in the category bu.

Proof: A bundle is given by patching information. Consider a �nite cover {Xi, 1 6
i 6 r} consisting of closed subsets of X such that the restrictions of E(φ1) and E(φ2) to
the Xi are trivial. The patching information consists of isomorphisms over X

α1;i;j : Mn(C(Xi ∩ Xj))→Mn(C(Xi ∩ Xj))

for E(φ1) and
α2;i;j : Mm-n(C(Xi ∩ Xj))→Mm-n(C(Xi ∩ Xj))

for E(φ2). The bundle E(B(ιn;m-n) ◦ (φ1 × φ2)) clearly corresponds to the patching
information

diag(α1;i;j, α2;i;j) : Mm(C(Xi ∩ Xj))→Mm(C(Xi ∩ Xj)).

The argument goes roughly as follows. From this concrete description we see that
the local maps ι : Mn(C(Xi)) → Mm(C(Xi)) can be glued together to a global map
ψ1 : E(φ1)→ E(B(ιn;m-n)◦(φ1×φ2)). At the same time using Mayer-Vietoris sequences
(see proposition 2.3.12) and the 5-lemma one can lift the local bu-equivalence to a global
bu-equivalence.

In fact, to prove the last assertion we make an induction argument. We prove
the existence of a natural map which induces a bu-equivalence for restrictions of the
bundle to any set of the form A1 ∪ · · · ∪Ak for any positive k, where Ai is of the form
Xi1 ∩ · · · ∩ Xil(i) . The induction goes over k. The case k = 1 is obvious. Now assume
the truth of the assertion for l < k and consider a set of the form A1 ∪ · · · ∪Ak. Denote
the restriction of the bundle E(ψ) to a closed subset Y ⊂ X by E(ψ)(Y). We have a
pull-back square

E(φ1)(A1 ∪ · · · ∪Ak) //

��

E(φ1)(A1 ∪ · · · ∪Ak-1)

��
E(φ1)(Ak) // E(φ1)((A1 ∪ · · · ∪Ak-1) ∩Ak)
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Note that we can apply the assumption to the sets A1 ∪ · · · ∪ Ak-1, Ak and (A1 ∪
· · · ∪ Ak-1) ∩ Ak. By the universal property of the pull-back, this implies that there
exists a natural map

E(φ1)(A1 ∪ · · · ∪Ak)→ E(B(ιn;m-n) ◦ (φ1 × φ2))(A1 ∪ · · · ∪Ak).

Considering the Mayer-Vietoris sequences coming with the pull-back squares we
conclude that it has to be a bu-equivalence by the naturality of the Mayer-Vietoris
sequence, the 5-lemma and the Yoneda-lemma. This �nishes the proof, since X =

X1 ∪ · · · ∪ Xr.

Theorem 4.3.3 Any two matrix bundles over a compact Hausdor� space X are

bu-equivalent. In particular, all such bundles are equivalent to C(X).

Proof: This follows from the last lemma.

4.3.2 Compact locally Hausdorff topological spaces

In this section we want to de�ne a functor which essentially assigns to any compact,
pointed, locally Hausdor� topological space a C∗-algebra up to bu-equivalence. The
prim spectrum with the hull-kernel topology of the constructed C∗-algebras will be
homeomorphic to the compact locally Hausdor� space we started with.

To give more precise statements we have to make some de�nitions. This construction
appears in A. Connes work for Hausdor� manifolds [14]. The attempt to construct C∗-
algebras with a prescribed non-Hausdor� spectrum is old and early results were obtained
by J. Dixmier [25]. The topological spaces which are considered in this section are not
much more di�cult to understand than Hausdor� spaces themselves, and the fact that
there exist C∗-algebras with such as prime spectrum, is well known.

Definition 4.3.4 Let T be the category with objects triples (X, x, {Ui, i ∈ ∆}) con-

sisting of

� a compact locally Hausdor� topological space X,

� a point x ∈ X and

� a �nite set ∆ and a cover {Ui, i ∈ ∆} of X− {x} by open Hausdor� subsets.

The morphisms in this category from (X, x, {Ui, i ∈ ∆}) to (X ′, x ′, {U ′i, i ∈ ∆ ′}) are

given by pairs (f, γ) where

� f : X→ X ′ is a continuous and base-point preserving mapping,

� γ : ∆ ′ → ∆ is an injective mapping of sets which satis�es

� f-1(U ′i) ⊂ U(i) for all i ∈ ∆ ′.
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The next is to de�ne a functor A : T op → sC. Given the data (X, x, {Ui, i ∈ ∆}), we
construct a certain C∗-algebra as a sub-algebra of B(⊕i∈�L2(U+

i )). We consider those
∆ × ∆-matrices where the (i, j)-entry is given by the multiplication operator induced
by an element in C0(Ui ∩ Uj). In order to understand the multiplication we have to
consider the multiplication of an (i, j)-entry with a (l, k)-entry. The product is zero if
j 6= l and otherwise given by the ordinary pointwise multiplication which de�nes a map

C0(Ui ∩Uj)× C0(Uj ∩Uk)→ C0(Ui ∩Uj ∩Uk) ↪→ C0(Ui ∩Uk).

The involution is given by conjugating the (i, j)-entry and considering it as a (j, i)-entry.
In order to de�ne a functor we have to say a word about the morphisms between

objects in T . Given a morphism (f, γ) : (X, x, {Ui, i ∈ ∆}) → (X ′, x ′, {U ′i, i ∈ ∆ ′}), we
de�ne a mapping

A(X ′, x ′, {U ′i, i ∈ ∆ ′})→ A(X, x, {Ui, i ∈ ∆})

by sending the entry at (i, j) ∈ ∆ ′ × ∆ ′ which is given by some g ∈ C0(U ′i ∩ U ′j) to
a (γ(i), γ(j))-entry given by its image in C0(U(i) ∩ U(j)). To see that this algebra
contains a natural image of g, note that there is an open inclusion f-1(U ′i ∩ U ′j) =

f-1(U ′i) ∩ f-1(U ′j) ⊂ U(i) ∩U(j) and consider the pointed maps

(Ui ∩Uj)+ → (f-1(U ′i ∩U ′j))+ f→ (U ′i ∩U ′j)+

which induce the required map C0(U ′i ∩U ′j)→ C0(U(i) ∩U(j)).

This map clearly respects the involution and multiplication of (i, j)-entries with
(j, k)-entries. The injectivity of γ ensures that it also respects multiplication of (i, j)-
entries with (l, k)-entries in case that j 6= l. The functoriality of this assignment is
obvious.

We denote the intersection of open sets Ui1 , . . . , Uin by Ui1;:::;in and use the conve-
nient notation M�[C0(Ui;j)]i;j for the image of (X, x, {Ui, i ∈ ∆}) in sC under the functor
A.

Our goal is to show that the bu-type of the algebra M�[C0(Ui;j)]i;j is independent of
the choice of the cover. Up to now this is not even obvious if X itself is Hausdor�. Let us
consider this case �rst. We consider the algebras C0(Ui1;:::;ik) naturally as sub-algebras
of C(X, x).

Theorem 4.3.5 Let (X, x, {Ui, i ∈ ∆}) be a pointed compact Hausdor� space with a

cover. Fix an enumeration of ∆. The natural map M�[C0(Ui;j)]i;j → Mj�jC(X, x)

is a bu-equivalence. In particular, the bu-type of M�[C0(Ui;j)]i;j is independent of

the cover.

Before proving theorem 4.3.5, we need some lemmas.
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Lemma 4.3.6 Let (X, x, {Ui, i ∈ ∆}) be a triple as above. Let U(1;i) = U(2;i) = Ui

for i ∈ ∆. The image of the triple (X, x, {U(k;i), (k, i) ∈ {1, 2} × ∆}) under A is

naturally isomorphic to M2M�[C0(Ui;j)]i;j. The natural map (X, x, {U(k;i), (k, i) ∈
{1, 2} × ∆}) → (X, x, {Ui, i ∈ ∆}) which is the identity on X and maps ∆ 3 i 7→ (1, i)

corresponds to the inclusion into the upper left corner of the 2× 2-matrices under

this isomorphism.

Proof: The proof is almost obvious. One maps the ((k, i), (m, l))-entry to the ek;m⊗
(i, l)-entry in M2M�[C0(Ui;j)]i;j. The identi�cation of the map is easily checked.

Lemma 4.3.7 Let (X, x, {Ui, i ∈ ∆}) be a triple as above. Let ∆ ∪ {k} be a disjoint

union and let Uk be an open Hausdor� subset which is contained in Um for some

m ∈ ∆. The natural map (X, x, {Ui, i ∈ ∆ ∪ {k}}) → (X, x, {Ui, i ∈ ∆}) which is given

by the identity on X and the inclusion ∆ ↪→ ∆∪ {k} induces a bu-equivalence under

the functor A.

Proof: There is a map (X, x, {U(l;i), (l, i) ∈ {1, 2} × ∆}) → (X, x, {Ui, i ∈ ∆ ∪ {k}})

which is again given by the identity on X but this time it maps ∆ 3 i 7→ (1, i) and
k 7→ (2,m). This is clearly injective and satis�es the required conditions, since Uk ⊂ Um
by assumption.

By lemma 4.3.6, the composition

M�[C0(Ui;j)]i;j →M�∪fkg[C0(Ui;j)]i;j →Mf1;2g×�[C0(Ui;j)]i;j

is just the inclusion of M�[C0(Ui;j)]i;j into the upper left corner of M2M�[C0(Ui;j)]i;j
and therefore a bu-equivalence. One can check that the other composition is homotopic
to the inclusion of M�∪fkg[C0(Ui;j)]i;j intoM2M�∪fkg[C0(Ui;j)]i;j and hence induces a bu-
equivalence as well.

Indeed,

M�∪fkg[C0(Ui;j)]i;j →Mf1;2g×�[C0(Ui;j)]i;j →Mf1;2g×(�∪fkg)[C0(Ui;j)]i;j

�=→M2M�∪fkg[C0(Ui;j)]i;j

di�ers from the natural inclusion into the upper left corner just by the fact that k

is sent to (2,m) instead of (1, k). Note that the map factorizes through the algebra
Mf1;2g×(�∪fkg)[C0(Ui;j)]i;j where U(2;m) = Uk. Since in this algebra U(1;k) = U(2;m), this
implies that we can change our map by a homotopy given by a rotation into the inclusion
into the upper left corner. This �nishes the proof. We can now proceed with the proof
of theorem 4.3.5

Proof of theorem 4.3.5: We prove the result by induction on the cardinality of ∆.
The case |∆| = 1 is of course obvious. Suppose that the theorem is true if the cardinality
of ∆ is less that n.
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Consider a triple (X, x, {Uk, k ∈ ∆}) such that ∆ has precisely n elements. Take an
element Uk of the cover. Fix an enumeration of ∆. Consider the following diagram of
extensions.

0 //M�[C0(Uk;i;j)]i;j //

��

M�[C0(Ui;j)]i;j //

��

M�-fkg[C0(Ui;j −Uk)]i;j //

��

0

0 //MnC0(Uk) //MnC(X, x) //Mn(C(X−Uk, x) // 0

The left vertical map is a bu-equivalence by iterated application of lemma 4.3.7.
Indeed, all sets Ui;k are contained in Uk. By lemma 4.3.7, this implies that the in-
clusion C0(Uk) → M�[C0(Uk;i;j)]i;j is a bu-equivalence. The composition C0(Uk) →
M�[C0(Uk;i;j)]i;j → Mn(C0(Uk)) is just a rank 1 inclusion and hence also a bu-
equivalence. This implies our assertion about the left vertical map.

The right vertical map is a composition

M�-fkg[C0(Ui;j −Uk)]i;j →Mn-1(C(X−Uk, x))→Mn(C(X−Uk, x)).

The �rst map is a bu-equivalence by induction, since the cover has cardinality strictly
less than n. The second map is obviously a bu-equivalence. Hence the proof is �nished,
since the middle vertical map has to be a bu-equivalence as well.

Theorem 4.3.5 can also be obtained by a di�erent method. Let (X, x, {Ui, i ∈ ∆}) a
triple as above. Assume that x is isolated. Choose a partition of unity, say φi for i ∈ ∆,
subordinate to the cover {Ui, i ∈ ∆}. By sending f 7→ [f · φiφj)

1
2 ], we can de�ne a map

C(X) → M�[C0(Ui;j)]i;j. The properties of the partition of unity ensure that this is a
∗-homomorphism. Furthermore, �xing an enumeration of the set ∆, the composition
C(X) → M�[C0(Ui;j)]i;j → Mj�jC(X) is a rank one inclusion. It is easily shown that
it is a bu-equivalence. Similarly, by a short argument, the other composition is a bu-
equivalence. Up to some suitable choices, this identi�es the algebra M�[C0(Ui;j)]i;j as a
corner in Mj�jC(X, x) (i.e. there is a projection p = [(φiφj)

1
2 ] ∈ Mj�jC(X, x) such that

M�[C0(Ui;j)]i;j = pMj�jC(X, x)p).

It remains to prove that the choice of the cover does not matter for general locally
Hausdor� spaces. This is now an easy consequence of the following lemma.

Lemma 4.3.8 Let (X, x, {Ui, i ∈ ∆}) be an object in T . Let ∆ ∪ {k} be a disjoint

union and let Uk be an open and Hausdor� subset of X− {x}. The natural map

(X, x, {Ui, i ∈ ∆ ∪ {k}})→ (X, x, {Ui, i ∈ ∆})

which is given by the identity on X and the inclusion ∆ ↪→ ∆ ∪ {k} induces a

bu-equivalence after applying the functor A.
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An immediate corollary is the general independence result which we claimed above.

Corollary 4.3.9 The bu-type of the image of a locally Hausdor�, pointed, compact

topological space under the functor A is independent of the choice of the cover.

Proof: Given two covers, we consider the union of the covers. The algebra corre-
sponding to the union is equivalent to each of the ones corresponding to the two covers
by iterated application of lemma 4.3.8. This shows that the algebras corresponding to
the respective covers have to be equivalent as well.

Proof of lemma 4.3.8: Consider the following diagram of extensions:

0 //M�[C0(Uk;i;j)]i;j //

��

M�[C0(Ui;j)]i;j //

��

M�[C0(Ui;j −Uk)]i;j // 0

0 //M�∪fkg[C0(Uk;i;j)]i;j //M�∪fkg[C0(Ui;j)]i;j //M�[C0(Ui;j −Uk)]i;j // 0

The left vertical arrow induces a bu-equivalence by theorem 4.3.5, since everything
happens inside a Hausdor� set. Since the right vertical arrow is an identity, the arrow
in the middle has to be a bu-equivalence as well. This proves the lemma.

The outcome of this subsection is, �rst of all, the extension of some aspects of
algebraic topology to locally Hausdor� spaces. We can now compute in a coherent
manner the homology and cohomology of a locally Hausdor� space and can interpret its
geometric properties. In addition it provides a large class of examples of cell complexes.

Note that, for example, the dimension drop algebras are of this kind. They corre-
spond to the compact pointed locally Hausdor� space which is given as a set by

{∗} ∪ (0, 1) ∪ {y1, x1, y2, x2, . . . , yn, xn}

and topologized by requiring that limt!1t = xi and limt!0t = yi for all i ∈ {1, . . . , n}.
The basepoint is chosen to be the disjoint point ∗. The cover by Hausdor� sets is
provided by the sets Ui = (0, 1) ∪ {yi, xi} for i ∈ {1, . . . , n}.

It would be interesting to study spaces which give rise to special cell complexes as
e.g. the cone of the Bott map. Those locally Hausdor� spaces (in fact they cannot be
globally Hausdor�) should be of geometrical importance.

Going in a slightly di�erent direction it might be possible to understand the geo-
metric obstructions for a locally Hausdor� space to be be stably homotopy equivalent
to a globally Hausdor� space using connective E-theory.

Note that the construction in this section is a special case of the construction of the
convolution algebra of a compact orbifold groupoid (see [41] for de�nitions and further
examples). The category of compact orbifold groupoids could serve as another source
of examples of cell complexes but we do not develop the connections here.
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4.4 Algebraic K-theory of operator algebras

In this subsection we are going to state and prove a theorem which shows that the
connective K-groups do not only generalize a geometrically relevant homology theory
from CW-complexes to C∗-algebras but also agree with a fundamental object in the
study of algebraic properties of a ring, namely the algebraic K-theory. In this section
we only want to give a minimal statement. We will generalize that result in section 5.

Theorem 4.4.1 Let A be a strict cell complex. There is a natural isomorphism

bup(A)→ Kalg
p (A) for all p 6 0.

Proof: We are using the universal property of connective E-theory with respect
to the properties of homotopy invariance, excision and stability under tensoring with
matrix algebras. Excision was proved for negative algebraic K-theory by H. Bass in [5].
Stability under tensoring with matrix algebras is obvious from the general properties
of algebraic K-theory. Homotopy invariance is a priori not clear. J. Rosenberg proved
in [53] that negative algebraic K-theory is homotopy invariant for commutative C∗-
algebras (i.e. that Kalg

p (C(X)[0, 1)) = 0 for p 6 0) which immediately extends to the
category of strict cell complexes by an excision argument.

Consider now the homology theory on the category of strict cell complexes which
is given by Kalg

i (?) for negative i and Ktop
i (?) for non-negative i. Since there is no

ambiguity in the de�nition of K0, they splice together to a homotopy invariant, excisive
homology theory which is stable under tensoring with matrix algebras. We denote this
theory by the symbol Kalg;top.

Although we do not know whether Kalg;top is homotopy invariant for all separable
C∗-algebras we would like to prove the existence of a transformation

bu∗(A)→ Kalg;top
∗ (A)

for strict cell complexes. There is a little argument that has to be carried out. Of
course, we would like to apply theorem 3.3.9 but this is a priori not possible. Con-
sidering the special case of strict cell complex and following the construction of the
transformation along the lines of the proof of theorem 3.2.4 we see that in the end we
only need that the homotopy invariance holds for the strict cell complex A and not for
all algebras appearing in the extension. This proves the existence of the transformation.

By the concrete computation of the coe�cient groups on the right hand side we can
conclude that it is an isomorphism on strict cell complexes. This �nishes the proof.

In general we can de�ne a map from bu to some sort of homotopy algebraic K-
theory (i.e. the algebraic K-theory of the simplicial ring associated to a C∗-algebra).
This map will restrict to the one discussed in the previous theorem. Since at this stage
of the thesis we cannot say more about the map than we have already said, we do not
discuss this more general case here. There will be a more detailed discussion of this
more general construction and its implications in section 5.
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4.5 Bivariant homology

4.5.1 Definition and properties

The generator of the coe�cient ring of connective E-theory is called the Bott map. In
this section we want to �x a homomorphism which is a representative of this generator.
Furthermore, we want to study the Bott map and want to derive a bivariant homology
theory that measures the failure of the Bott map inducing an isomorphism.

The Bott map is concretely given by a ∗-morphism σ : Σ → M2Σ
3. There is an

identi�cation

hom(Σ,M2Σ
3) ∼= Map(S3, hom(Σ,M2))+

∼= Map(S3, U(2))+

so that
[Σ,M2Σ

3] ∼= π3(U(2)) ∼= Z.

The Bott map corresponds to a generator of Z under this identi�cation. We choose the
inclusion of the unit quaternions into U(2).

Denote the class [σ] of the Bott map in bu by u ∈ bu2(C,C). Let Z be the cone of the
Bott map. We want to understand the behavior of the cone of the bott map or rather its
fourth desuspension Σ-4(Z). Our aim is to show that Σ-4(Z) is a monoid object in bu.
This then allows to de�ne a bivariant homology theory which is a triangulated module
over bu and measures the defect of the Bott map. (Note that the fourth desuspension
may not exist as a C∗-algebra. Although this is not the reason why we introduced
desuspensions it turns out to be useful (although not necessary) here.)

There is an exact sequence

0 // Σ(M2Σ
3) // Z // Σ // 0

or rather a triangle

Σ(Σ)
�(u)// Σ(M2Σ

3)
� // Z

� // Σ

in bu which gives the following exact sequences.

bun-3(A,B)
u // bun-1(A,B)

[�⊗idB]∗ // bun(Z⊗A,B)
[�⊗idB]∗ // bun-4(A,B)

bun+2(A,B)
u // bun+4(A,B)

[�⊗idA]∗ // bun(A,Z⊗ B)
[�⊗idA]∗ // bun+1(A,B)

The second sequence with A = B = C allows to conclude that bu-4(C, Z) ∼= Z

with generator [α] and zero in other dimensions. Using this and the �rst sequence with
A = C and B = Z we conclude that bu∗(Z,Z) = Z[t]/(t2) with a generator in degree
−3. This allows to deduce that bu∗(Z,Z) carries a Z[u]-module structure with trivial
action of the Bott element. This is to say that u(idZ) = 0 ∈ bu2(Z,Z).
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We can conclude that

bu4(Z
2, Z)

[�⊗idZ]∗

−→ bu0(Z,Z)

is an isomorphism. This indeed follows from 0 = u(idZ)
∗ : bu0(Z,Z) → bu2(Z,Z) and

0 = [β ⊗ idZ]∗ : bu3(Z,Z) → bu4(Z
2, Z) and the �rst sequence for A = B = Z. We

denote the element that is mapped to [idZ] by η ∈ bu4(Z
2, Z). The corresponding class

η ∈ bu0(Σ
-4(Z)2, Σ-4(Z)) will de�ne a multiplication with unit [α] for the monoid object

Σ-4(Z). We have to show associativity and two conditions on the unit (see de�nition
2.3.14).

First, we want to consider the unit. Note that η satis�es η ◦ ([α] ⊗ idZ) = [idZ] by
de�nition. Now, we show the second condition that has to be satis�ed by the unit of a
monoid object. Note that there is an isomorphism [α]∗ : bu0(Z,Z)→ bu-4(C, Z) which
assigns

η ◦ ([α]⊗ idZ) 7→ η ◦ ([α]⊗ idZ) ◦ [α].

The image is η ◦ ([α] ⊗ [α]) and therefore agrees with the image of η ◦ (idZ ⊗ [α]).
This shows that

η ◦ (idZ ⊗ [α]) = [idZ].

Next we want to show associativity of the multiplication. We compute bu2(Z
2, Z) =

0 by the second sequence with A = B = Z. A computation gives now an isomorphism

bu8(Z
3, Z)

[�⊗id2
Z

]∗

−→ bu4(Z
2, Z).

Indeed, by a similar argument as above 0 = u(idZ)∗ : bu4(Z
2, Z) → bu6(Z

2, Z) and
0 = [β ⊗ idZ2 ]∗ : bu7(Z

2, Z) → bu8(Z
3, Z) in the second sequence with A = Z2 and

B = Z.
For the associativity we have to show that η◦ (η⊗ idZ) = η◦ (idZ⊗η) as elements in

bu8(Z
3, Z). The following computation shows that the images under the isomorphisms

above agree. At the one hand

η ◦ (η⊗ idZ) ◦ ([α]⊗ id2Z) ◦ ([α]⊗ idZ) = η ◦ ([α]⊗ idZ) = idZ ∈ bu0(Z,Z)

and on the other hand

η ◦ (idZ ⊗ η) ◦ ([α]⊗ id2Z) ◦ ([α]⊗ idZ) = η ◦ (idZ ⊗ η) ◦ ([α]⊗ [α]⊗ idZ)

= η ◦ ([α]⊗ idZ) = idZ ∈ bu0(Z,Z).

This shows the associativity of the multiplication. The preceding results are put to-
gether in the following theorem.

Theorem 4.5.1 The object Σ-4(Z) together with the multiplication map η ∈
bu0(Σ

-4(Z)2, Σ-4(Z)) and unit [α] ∈ bu0(C, Σ
-4(Z)) de�ne a monoid object in bu.

72



Remark 4.5.2 The class of η de�nes a canonical splitting Σ-4(Z)2 ∼= Σ-4(Z) ⊕
Σ-1(Z).

The main reason for studying the cone of the Bott map was that it measures the
defect of the Bott map. Now, we are going to de�ne a bivariant homology theory that
will serve for that purpose.

Definition 4.5.3 We de�ne bivariant homology H to be the bivariant homology

theory that corresponds to the monoid object Σ-4(Z).

H∗(A,B) = bu∗(A,B⊗ Σ-4(Z))

In particular, this is a bivariant homology theory H with H∗(C,C) = Z. The theory
H is a triangulated module over bu and hence inherits all invariance properties of bu.
In particular, it satis�es matrix stability (i.e. is invariant under tensoring with matrix
algebras or equivalently invariant under Morita equivalence of unital algebras).

Theorem 4.5.4 The bivariant homology theory H generalizes singular homology

with integer coe�cients in the sense that we have natural isomorphisms as follows.

Hn(C(Y, y), C(X, x)) ∼= colimm[Σm+nX,K(Z)m ∧ Y]+

(Here K(Z)∗ denotes the Eilenberg-MacLane spectrum corresponding to the inte-

gers.)

This isomorphism is also compatible with the composition product. A proof of this
result can be found at the end of section 5.1. Indeed, in remark 5.1.4 we will make
precise the relationship between the cone of the Bott map in the world of C∗-algebras
and the homotopy �ber of the non-trivial self-map of connective K-theory spectrum bu

(see section 5 for more details).
At least the non-bivariant cases follow also by the characterization theorem of sin-

gular homology and co-homology by S. Eilenberg and N. Steenrod.

Theorem 4.5.5 Bivariant homology measures the failure of Bott periodicity on

connective E-theory in the sense that there is an exact sequence for any A and B

as follows.

· · · // bun-2(A,B)
u // bun(A,B)

[�⊗idB]∗ //Hn(A,B)
[�⊗idB]∗ // bun-3(A,B) // · · ·

We refer to this sequence as the fundamental sequence in bivariant homology

for C∗-algebras.
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Let us give some �rst results about the homology for non-commutative spaces. There
will be some surprises.

Lemma 4.5.6 Let A and B be separable C∗-algebras. We have that H∗(A,B) is zero

whenever A or B are stable.

Proof: Since we have a composition product, it is su�cient to proof that H(A,B)

is zero whenever B is stable. But we know that bu(A,B) = E(A,B) for stable B by
lemma 4.2.4 and that the Bott map is an isomorphism in E. This implies that there
is no failure of the Bott map and hence H∗(A,B) is equal to zero by the fundamental
sequence. This �nishes the proof.

I am indebted to Eberhard Kirchberg for pointing out the following far more general
result to me.

Lemma 4.5.7 Let A be a separable C∗-algebra. If there exists a stable sub-algebra

E that generates A as an ideal, then A is isomorphic to the zero object in the

category H. In particular, the homology and cohomology of A vanishes.

Proof: The hereditary sub-algebra generated by E is also stable. This follows, since
stability is equivalent to the existence of a unital embedding of O1 in the multiplier
algebra of A such that the sum of the canonical projections in O1 converges strongly to
the identity element in M(E). Since the inclusion E ↪→ EAE is non-degenerate, we can
extend this map uniquely to a map of multiplier algebras. (This extension is of course
strongly continuous, being a homomorphism of unital algebras.) This shows that EAE

is stable also.
Therefore we can assume without loss of generality that E is hereditary. Let us also

assume that it is a split corner. This means that there exists a projection p in the
multiplier algebra of A such that pAp = E. The projection p is full, since E generates
A as an ideal. Let us now look at projections in M(A ⊗ K). By Laurence Brown's
result (see [10]), 1A ⊗ 1K is Murray-von Neumann equivalent to p⊗ 1K. Since pAp was
assumed to be stable, p⊗1K is in turn Murray-von Neumann equivalent to p⊗e11. This
implies the existence of a partial isometry v such that vv∗ = p⊗ e11 and v∗v = 1A⊗ 1K.

Let s be the unilateral shift. Consider the ∗-homomorphism α : A ⊗ K → A ⊗ K
which is given by a 7→ (e11 + svs∗)a(e11 + sv∗s∗). (Note that e11 + svs∗ is an isometry.)
The image of α is contained in M2(A) embedded as the upper left corner in A⊗K. Note
that the composition A→ A⊗ K �→M2(A) is just the inclusion of A in the upper left
corner of M2(A). Since this inclusion map factors through something stable, it must be
zero in H(A,M2A). On the other hand it is the image of idA under the isomorphism
H(A,A)→ H(A,M2A). This implies that H(A,A) = 0 and hence A isomorphic to the
zero object in the category H.

Returning to the case of full generality we note that A → M2(A) factors through
the hereditary sub-algebra of M2(A) which is generated by A ⊗ e11 and E ⊗ e22. This
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algebra contains E as a split corner and hence has zero homology. This implies that A
is isomorphic to the zero object and �nishes the proof.

4.5.2 Some computations

In this section we want to provide some computations that allow to get a feeling how
connective K-theory and bivariant homology behave in easy situations.

Proposition 4.5.8 Let A and B be cell complexes. Let a ∈ bu(A,B) be a morphism

in bu (of degree zero). The homomorphism of graded Abelian groups H∗(a) :

H∗(A)→ H∗(B) is an isomorphism if and only if a is a bu-equivalence.

Proof: Since the Z[u]-module bu∗(A) is bounded below, the fundamental sequence of
bivariant homology is also bounded below. This implies by induction on the dimension
and the 5-lemma that bu∗(a) : bu∗(A) → bu∗(B) is also an isomorphism of graded
Abelian groups. This proves our claim by the Yoneda lemma, since bu(?, A)→ bu(?, B)

is now an equivalence of functors on the category of cell complexes.

Proposition 4.5.9 The canonical map A ∗ B→ A⊕ B is a bu-equivalence.

Proof: The proof consists just of an investigation of the proof of the corresponding
statement for K-theory which was proved by J. Cuntz in [15]. An extension of the result
to amalgamated free products with respect to certain split sub-algebras is possible.

The last proposition has a nice interpretation. In an additive category product and
co-product coincide almost by de�nition. What we just showed is that the functor bu

preserves �nite co-products. This is a nice feature and was not to be expected. Indeed,
it is far from being true in the stable homotopy category of C∗-algebras.

One can go one step further and consider the universal triangulated monoidal cat-
egory with respect to the property that the functor preserves �nite co-products. This
will again be a Verdier quotient of the stable homotopy category. It turns out that
this category is nothing else but bu. The proof of this characterization relies on the
following simple observation.

Proposition 4.5.10 Consider the evaluation m : C ∗ C → C ⊕ C. Its kernel is

isomorphic to c(ι2) where ι2 : C→M2 is the canonical inclusion.

This is, for example, proved by J. Cuntz in [16]. The result follows, since we are
requiring the quotient to be monoidal.

Let us now come to some consequences of Bott periodicity.

75



Example 4.5.11 Let A = {f ∈ C([0,∞],∞; K); f(t) ∈ pnKpn,∀t < n}. The algebra A

is strongly Morita equivalent to the contractible algebra C([0,∞),∞; K) and hence

its K-theoretic invariants all vanish.

On the other hand we have an extension.

0 // A // A ′ //K // 0

with A ′ = {f ∈ C([0,∞]; K); f(t) ∈ pnKpn,∀t < n}. Since the homology of K is

zero and A ′ is homotopy equivalent to C, we get that H∗(C, A) = Z. In particular,

MnA is not homotopy equivalent to zero for any n ∈ N.

Example 4.5.12 Let Z be the cone of the Bott map. It is clear that all K-theoretic

invariants of this algebra must vanish, since the Bott map is an isomorphism in

K-theory. Still, one can compute its homology and it is non-trivial as we have

seen.

This observation has an interesting corollary.

Corollary 4.5.13 The algebra Z is not bu-equivalent to an algebra of functions on

a �nite pointed CW-complex.

Proof: The proof will be at the same time a motivation for the next section which
contains more subtle considerations of the same kind. A �rst simple proof of the theorem
above is given by noting that K0(Z) = 0 but H0(Z) = Z. This implies that there
cannot be a rational isomorphism between the K0(Z) and the even cohomology groups
of groups of Z. If Z were bu-equivalent to an algebra of functions on a �nite pointed
CW-complex, then there had to exist a rational isomorphism by the Chern isomorphism
theorem. Hence we get a contradiction which �nishes the proof.

In the next section we want to study some deeper reasons for the truth of the
preceding theorem. In particular, we want to consider what remains of the Chern
character and study cohomology operations that detect the genuine non-commutativity
of a space.

The next de�nition contains the notion of matrix homotopy equivalence. This notion
is a substantial weakening of the notion of homotopy equivalence. Indeed, the matrix
homotopy type seems to be accessible by purely algebraic tools as we will see.

Definition 4.5.14 Let A and B be cell complexes. The algebras A and B are called

matrix homotopy equivalent, if there are integers n and m ∈ N and homomor-

phisms α : A→MnB and β : B→MmA such that

(β⊗ idMn
) ◦ α : A→MmnA
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and

(α⊗ idMm
) ◦ β : B→MmnB

are homotopic to the inclusions idA⊗ ιnm and idB⊗ ιnm into the upper left corner

of the matrix algebras.

Definition 4.5.15 Let (X, x) and (Y, y) be �nite pointed CW-complexes. The spaces

(X, x) and (Y, y) are called matrix homotopy equivalent if the algebras C(X, x) and

C(Y, y) are matrix homotopy equivalent.

Note that it is a priori di�cult to check whether a map induces a matrix homotopy
equivalence, since it always requires the construction of an inverse.

By the work of M. D�ad�arlat and J. McClure in [24] two �nite connected CW-
complexes are matrix homotopy equivalent if and only if they are equivalent in bu.
The following theorem will bring homology into play. In fact, it has to be considered as
an easy corollary of the deep work of M. D�ad�arlat and J. McClure. We state and prove
our formulation, since homology is a little easier to deal with than connective K-theory.

Theorem 4.5.16 Let (X, x) and (Y, y) be connected �nite pointed CW-complexes.

The pointed spaces (X, x) and (Y, y) are matrix homotopy equivalent if and only if

there exists a map φ : C(X, x)→MnC(Y, y) for some integer n ∈ N that induces an

isomorphism in homology.

Proof: Note that, in particular, C(X, x) and C(Y, y) are cell complexes. By propo-
sition 4.5.8, we get that the class bu(a) has to be an equivalence. Now, we use M.
D�ad�arlat's result from [24] which implies that (X, x) and (Y, y) are matrix homotopy
equivalent.

As an interesting example we can recall that the Poincar�e 3-sphere permits a map
from the usual 3-sphere which induces an isomorphism in homology. By the preceding
theorem, this implies that they are matrix homotopy equivalent. In some sense the
passage to the non-commutative context does neglect certain highly non-commutative
phenomena as, for example, a perfect fundamental group of a space.

4.5.3 Cohomology operations

In one of the preceding sections we already computed the graded ring bu∗(Z,Z). It
was given by Z[t]/(t2) with a generator in degree −3. We denote this ring by A.
This is clearly the ring of cohomology operations of bivariant homology with respect
to connective E-theory. (Note that the ring of cohomology operations with respect to
stable homotopy of C∗-algebras might be much more di�cult but we do not consider
it here.) The Z/(2)-analogue contains also a Bockstein element of degree −1. An
easy computation shows that it is given by (Z/(2))[t, β]/(t2, β2). The structure of this
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ring is rather surprising. It is much easier to understand than the Steenrod algebra of
cohomology operations on Z/(2)-cohomology. It seems natural to consider the Frobenius
category of modules over the ring (Z/(2))[t, β]/(t2, β2) (see [37] for de�nitions and
properties) and to try to classify the modules using the theory of Margolis homology
groups (see [37]) with respect to the operations t and β. We do not want to follow this
line and rather stick to the integral theory.

The operation t is of subtle nature, since it detects algebras which are not bu-
equivalent to commutative algebras. In order to understand this phenomenon let us
�rst state the following theorem from rational homotopy theory.

Theorem 4.5.17 There are no non-trivial rational stable cohomology operations

on singular cohomology.

This implies that the image of any stable cohomology operation in integral singular
cohomology has to be torsion, since it lifts to the zero operation in rational singular
cohomology. On the other hand the operation t sometimes survives rationalization in
the non-commutative case. The easiest example is the algebra Z. The operation t

clearly acts on bu∗(Z,Z) in a way which remains non-trivial after rationalization.

The following corollary is a consequence of the preceding theorem.

Corollary 4.5.18 Let A and B be separable C∗-algebras. If A and B are bu-

equivalent to algebras of functions on pointed CW-complexes that vanish at the

basepoint, then the image of t : bun(A,B)→ bun-3(A,B) has to be torsion for any

n ∈ N.

Proof: The image has to vanish after rationalization. Therefore it has to be torsion.
This �nishes the proof.

In the next section we will see how the operation t appears as a di�erential in a
spectral sequence and obstructs the existence of a rational Chern character.

4.5.4 The Bockstein-Chern spectral sequence

In this section we want to analyze the fundamental sequence of bivariant homology
with respect to its algebraic properties. We derive some properties which might be
useful in concrete computations. Furthermore, the existence of the Chern character for
commutative algebras will be clari�ed. An analogous object in the non-commutative
setting is provided by the Bockstein-Chern spectral sequence. For simplicity we argue
only for cell complexes. Although we do not make this explicit we are partially working
with Z/(2)-graded bivariant homology theories in this section. Note that any Z-graded
bivariant homology theory naturally induces a Z/(2)-graded bivariant homology theory
by considering its even and its odd part.
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The fundamental sequence of Abelian groups

· · · // bun-2(A,B)
u // bun(A,B)

[�⊗idB]∗ //Hn(A,B)
[�⊗idB]∗ // bun-3(A,B) // · · ·

can be put into the following triangular form.

⊕sbus(A,B)
u // ⊕sbus(A,B)

�vvmmmmmmmmmmmm

⊕sHs(A,B).

�

hhQQQQQQQQQQQQ

Here u is of degree 2, α is of degree zero and β of degree −3. This implies that the
kernel and co-kernel of u give rise to an extension

0 // coker(u)s //Hs(A,B) // ker(u)s-3 // 0.

Since the co-kernel identi�es with the s-part of bu∗(A,B)⊗Z[u]Z and the kernel identi�es
with Tor1;s-3Z[u] (bu∗(A,B),Z), we end up with the following description (compare [63] for
an analogous result in the commutative case).

Theorem 4.5.19 Let A and B be cell complexes. The following diagram is exact.

0 // bu∗(A,B)⊗Z[u] Z
//H∗(A,B) // Tor1;∗-3Z[u] (bu∗(A,B),Z) // 0

Here Z is the Z[u]-module on which u acts as zero.

The triangle gives rise to an exact couple and hence we get a spectral sequence.
Since u is not of degree zero, the spectral sequence is somewhat distorted. Under the
assumption that bu∗(A,B) is �nitely generated as a Z[u]-module no element can be
in�nitely divisible by u. So the exact couple gives rise to the following isomorphism
(by proposition 5.9.10 in [69]).

bun(A,B)

∪1i=1ker(ui : bun(A,B)→ bun+2i(A,B)) + u(bun-2(A,B))

�
−→ E1n (A,B).

On the other hand the spectral sequence is clearly bounded below and hence con-
verges to colimnbu∗(A,B) (by theorem 5.9.7 in [69]) where the co-limit is taken with
respect to morphisms given by multiplication with u. (Note that the co-limit is nat-
urally a Z/(2)-module.) We can identify the target of the spectral sequence with
bu∗(A,B) ⊗Z[u] Z (where Z is regarded as Z/(2)-graded Z[u]-module with u acting
as 1).

Since Z (with the module structure above) is a at Z[u]-module, the natural map
bu∗(A,B) ⊗Z[u] Z → E∗(A,B) ⊗Z[u] Z is a transformation of Z/(2) bivariant homology
theories. It is an isomorphism on coe�cients and hence for cell complexes. We use the
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notation E ′∗(A,B) = E∗(A,B)⊗Z[u]Z. Note that this is the usual (i.e. according to [28])
description of E-theory as a Z/(2)-graded bivariant homology theory.

Note that the di�erential in the exact couple is given by α ◦ β, i.e. by the action
of the cohomology operation t ∈ Z[t]/(t2) = bu∗(Z,Z). If we specialize to the case
where A and B are commutative (i.e. algebras of functions on a �nite pointed CW-
complex vanishing at the basepoint) the di�erential vanishes after rationalization by
the preceding discussion of rational cohomology operations for singular cohomology.
By induction and an inspection of the di�erentials of the derived couples (see de�nition
5.9.1 in [69]), it is obvious that also the induced di�erentials on the derived exact couples
have to vanish. Hence the E1-term of the rationalized spectral sequence is equal to the
Z/(2)-graded bivariant group H∗(A,B)⊗Q.

The statement is now that for commutative A and B there is a �ltration on E ′∗(A,B)⊗
Q such that the sub-quotients are isomorphic to H∗(A,B) ⊗ Q. Since we are working
over Q, this clearly lifts to a natural isomorphism E ′∗(A,B)⊗Q→ H∗(A,B)⊗Q.

This is just the statement of the Chern isomorphism theorem and a concrete con-
struction of the isomorphism. In the integral case or for non-commutative algebras the
E1-term of the spectral sequence does not have to do so much with H∗(A,B) (apart
from being a sub-quotient, of course). The spectral sequence allows the precise analy-
sis of the obstruction to the existence of a Chern character. Since the classical Chern
isomorphism theorem is a special case, we want to state it too.

Theorem 4.5.20 (Chern isomorphism theorem) Let A and B be rationally bu-

equivalent to algebras of functions on �nite pointed CW-complexes that vanish at

the basepoint. There is a natural map

E ′∗(A,B)⊗Q→ H∗(A,B)⊗Q

which is an isomorphism of Z/(2)-graded Abelian groups.

In fact, there is a converse to this statement.

Theorem 4.5.21 Let A be a cell complex. The following two conditions are equiv-

alent.

� There exists an abstract isomorphism of Z/(2)-graded Abelian groups E ′∗(A)

and H∗(A) after tensoring with Q.

� The algebra A is rationally bu-equivalent to a commutative algebra.

Proof: We have to prove only one direction, since the other direction is a special
case of the Chern isomorphism theorem. Note that bu⊗Q is a triangulated homology
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theory on the category of separable C∗-algebras. (One either checks the axioms directly
or constructs bu as a Verdier quotient.)

The proof is just a question about the possibilities that can occur. The coe�cient
ring of rational bu-theory is of dimension 1 so that the UC spectral sequence of rational
bu-theory collapses at the E2-term. This results in the usual UC sequence.

0 // Ext∗-1Q[u](bu∗(A)⊗Q,bu∗(B)⊗Q) // bu∗(A,B)⊗Q EDBC
GF@A

// homQ[u](bu∗(A)⊗Q,bu∗(B)⊗Q) // 0

The exactness of this sequence implies that any abstract isomorphism of Q[u]-
modules between, say bu∗(A) ⊗ Q and bu∗(B) ⊗ Q, can be lifted to a rational bu-
equivalence between A and B. It is therefore natural to look at the possible Q[u]-
modules that can occur. One convinces oneself very quickly that any �nitely generated
Q[u]-module decomposes as a �nite direct sum of shifted copies of �nitely generated
free modules and shifted copies of modules of the type Q[u]/(un). The second type of
summands are called Bott torsion modules.

All these indecomposable summands are represented as the rational connective K-
groups of certain cell complexes. The free modules are represented by suspensions or
desuspensions of the complex numbers C. The Bott torsion modules are represented
by suitable suspensions or desuspensions of the algebras constructed as the cone of a
suitable power of the Bott map.

Therefore by the UC sequence the decomposition of the Q[u]-module bu∗(A) ⊗ Q
can be lifted to a decomposition of A itself considered as an object in bu ⊗ Q into a
sum of algebras representing the di�erent summands of bu∗(A) in the category bu⊗Q.

It is clear how the di�erent summands of A contribute to the homology of the
algebra A. For a given summand, we denote by k the dimension of its generator as a
Q[u]-module. For the free modules one gets Q in dimension k and for the Bott torsion
module Q[u]/(un) one gets Q in dimension k and k + 2n + 1. This follows from the
fundamental sequence of bivariant homology.

The contribution of the summands to rational K-theory is computed by formally
inverting the Bott map [σ] = u. This implies that the free modules contribute Q in the
dimension of the generator modulo 2 and the torsion modules do not contribute at all.

The argument now goes as follows. If there is an abstract isomorphism, then the
Q[u]-module bu∗(A) ⊗ Q has to be free, since the dimensions of the Z/(2)-graded
vector spaces H∗(A) and K∗(A) do not match, if there are Bott torsion summands.
Furthermore, the dimensions of the generators clearly lie in non-negative dimensions.
Since the free Q[u]-module with a single generator in dimension k > 0 can be realized by
the commutative algebras C(Sk,+), we get an isomorphism of Q[u]-modules bu∗(A)→
bu∗(A

′) where A ′ is a commutative algebra (indeed a wedge of spheres). We can now use
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the UC sequence to lift this abstract isomorphism to an element in rational bu-theory
which has to be an isomorphism. This �nishes the proof.

The proof of the last theorem revealed that the structure of rational bu-theory is
somehow easy to understand. Note that there is the following commutative square for
the Lefshetz numbers (see de�nition 4.2.17). Denote by τQ the concrete trace for bu⊗Q.

bu∗(A,A)
� //

��

Z[u]

��
bu∗(A,A)⊗Q

�Q // Q[u]

By naturality of the construction of the concrete trace and atness of Q, the pre-
ceding diagram commutes.

In particular, this implies �rst of all that we can compute the Euler characteristics
rather easily.

Theorem 4.5.22 Let A be a cell complex. Its Euler characteristic satis�es the

following equality.

χ(A) = dimQ(K0(A)⊗Q) − dimQ(K1(A)⊗Q)

Proof: It is obvious from the de�nition of the concrete trace that χ(Σk) = (−1)k.
This implies by the additivity of the trace that the Euler characteristic of Bott torsion
modules vanishes. Hence the Euler characteristic does only see the free part of the
Q[u]-module. The generators in even degrees contribute +1 and the generators in odd
degrees −1. This proves our claim.

4.5.5 The Adams spectral sequence

Similarly to the construction of the UC spectral sequence in connective E-theory we
want to construct an Adams spectral sequences. We start out with the construction of
a geometric projective resolution related to homology. We again refer to the work of
D. Christensen in [12] for the abstract machinery which makes the following arguments
work.

Let A be a separable C∗-algebra with bu∗(A) �nitely generated. For simplicity let
us assume that A is a cell complex. A modi�ed result is true in the case of A not being
a cell complex.

By de�nition we have the equality H∗(A) = bu∗(C, A ⊗ Σ-4(Z)). By Poincar�e
duality (see proposition 4.2.20), Z is isomorphic to Σ5(D(Z)) and hence there is a
natural isomorphism

H∗(A) = bu∗(C, A⊗ Σ-4(Z)) ∼= bu∗(Σ
-1(Z), A).
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Since H∗(A) is �nitely generated as a A-module, there exist (by the description of
homology above) integers k1, · · · , kn and a map ⊕ni=1Σk

i

(Z) → A which induces a sur-
jection of the free A-module H∗(⊕ni=1Σki(Z)) onto H∗(A). Completing this map to a
distinguished triangle in bu yields a triangle

A1

%%

Boo

⊕ni=1Σk
i

(Z)

OO

where the dotted arrow is of degree minus one. Again, (like in the proof of the existence
of the geometric projective resolution) we can continue this process. We obtain a
diagram with A = A0 as follows.

· · · A4

%%

A3

''

�3

oo A2

''

�2

oo A1

''

�1

oo A0�0

oo

· · · ⊕n3i=1Σk
i
3(Z)

OO

⊕n2i=1Σk
i
2(Z)

OO

⊕n1i=1Σk
i
1(Z)

OO

⊕n0i=1Σk
i
0(Z)

OO

Note that applying bu∗(?, B) yields an exact couple

⊕p;qbup+q(Ap, B)
i // ⊕p;qbup+q(Ap, B)

jttiiiiiiiiiiiiiiiii

⊕p;qbup+q(⊕npi=1Σk
i
p(Z), B)

k

jjUUUUUUUUUUUUUUUUU

with bi-degrees of i,j and k equal to (−1, 1), (0, 0) and (1, 0). Note further that

bu∗(⊕npi=1Σ
kip(Z), B) = homA(H∗(⊕npi=1Σ

kip(Z)),H∗(B))

and that

· · · //H∗+2(⊕n2i=1Σk
i
2(Z)) //H∗+1(⊕n1i=1Σk

i
1(Z)) //H∗(⊕n0i=1Σk

i
0(Z)) //H∗(A)

is a projective resolution of H∗(A) as an A-module.

Collecting everything together we get (e.g. again by theorem 2.8 in the book by J.
McCleary [39]) a co-homological spectral sequence with

E
p;q
2 = Ext

p;q
A (H∗(A),H∗(B)).

We show that the spectral sequence is conditionally convergent (see de�nition 3.18

in [39] or de�nition 5.10 in [9]), i.e. we have to show (and this is the de�nition) that

limsbu∗(As, B) = lim1
sbu∗(As, B) = 0.
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The proof requires some preparations.

First of all, we have the following extension

0 //H∗+1(Al+1) //H∗(⊕nli=1Σk
i
l(Z)) //H∗(Al) // 0

of A-modules for l > 0. Since H∗(⊕nli=1Σk
i
l(Z)) is free as an Abelian group, the

sequence implies that H∗(Al) is free as an Abelian group for l > 1. Since Al is a
cell complex, the homology H∗(A1) is �nitely generated as Abelian group an therefore
concentrated in a certain range of dimensions. That is, there exists an integer N ∈ N
such that Hk(A1) is zero whenever k 6∈ [−N,N]. The next lemma shows that we can
�nd a certain geometric projective resolution for which much more is true.

Lemma 4.5.23 There exists a geometric projective resolution in the situation dis-

cussed above with the property that the homology of Al is concentrated in dimen-

sions [−N− 2(l− 1),N− 2(l− 1)], i.e. Hk(Al) = 0 whenever k 6∈ [−N− 2(l− 1),N−

2(l− 1)].

Proof: We proof the result by induction. The case l = 1 is trivially true. Observe
that the homology of Z is concentrated in dimensions −1 and −4 and the generators
of Hk(Al) correspond to maps Σ-1-k(Z) → Al. We take the map ⊕nli=1Σk

i
l(Z) → Al,

which corresponds to a minimal set of generators of H∗(Al) as an Abelian group, to be
the next step in the geometric projective resolution. A generator of Hk(Al) contributes
with Z in Hk(⊕nli=1Σk

i
l(Z)) and Hk-3(⊕nli=1Σk

i
l(Z)).

Since Hk(Al) is free Abelian for all k, the maps

HN-2(l-1)-j(⊕nli=1Σ
ki
l(Z))→ HN-2(l-1)-j(Al)

are isomorphisms of Abelian groups for j ∈ {0, 1, 2}. Furthermore, the groups
Hk(⊕nli=1Σk

i
l(Z)) vanish for k > N− 2(l− 1).

This proves that Hk(Al+1) vanishes if k > N − 2l. The vanishing of Hk(Al+1) in
dimensions below −N− 2l is obvious. This proves the lemma.

We can now proceed with the proof of the conditional convergence of the spectral
sequence. We assume that we are working with a geometric resolution which satis�es
the properties stated in the lemma above. The vanishing of the higher dimensional
homology groups imply that buk(Al)

u→ buk+2(Al) is an isomorphism whenever k >
N− 2(l− 1) − 3 = N− 2l− 1 by the fundamental sequence of bivariant homology.

Picking generators of buN-2l(Al) as Abelian group we get a distinguished triangle
in bu as follows.

Σ(Tl) // ⊕nli=1Σ-(N-2l) // Al // Tl

84



Note that bum(⊕nli=1Σ-(N-2l)) → bum(Al) is an isomorphism in dimensions m >
N− 2l. This implies that bu∗(Tl) is concentrated in dimensions [−N− 2l,N− 2l].

In order to show conditional convergence we want to show that the groups buk(Al, B)

actually vanish for �xed k if l is big enough. Using excision it remains to show that
buk(Σ

-(N-2l), B) = buk+N-2l(B) and buk(Tl, B) vanish whenever l is big enough. The
�rst group clearly vanishes for big values of l, since the Z[u]-module bu∗(B) is bounded
below, because it is �nitely generated.

The second group vanishes by the universal coe�cient spectral sequence for big
values of l, since the range of dimensions in which bu∗(Tl) is non-trivial decreases more
and more as l grows.

This proves that
limsbu∗(As, B) = lim1

sbu∗(As, B) = 0,

as claimed above. At the same time it becomes obvious that we have strong convergence,
since the image

bus+t(As+r, B)→ bus+t(As, B)

is getting trivial as r grows. This proves the following theorem.

Theorem 4.5.24 (Adams spectral sequence) Let A and B be cell complexes.

There exists a co-homological spectral sequence with

E
p;q
2 = Ext

p;q
A (H∗(A),H∗(B))

which converges strongly to bu∗(A,B).

4.5.6 Künneth theorem and UC theorem

In this section we want to provide a K�unneth theorem and a universal coe�cient theorem
for bivariant homology. Furthermore, we want to state that a version of the universal
coe�cient theorem which was developed by M. D�ad�arlat and T. Loring in [22] applies
as well to bivariant homology.

The statements of the K�unneth theorem and UC theorem for bivariant homology are
much easier to understand than the corresponding statements for connective K-theory.
Although the statements are in direct analogy with the corresponding statements in
singular homology and co-homology the proofs are quite di�erent. Only the analysis of
the cone of the Bott map allows to construct the geometric resolutions needed.

Theorem 4.5.25 (Künneth and UC theorem for bivariant homology) Let A

and B be cell complexes. There are short exact sequences as follows.

0 //H∗(A)⊗H∗(B) //H∗(A⊗ B) // Tor∗-1Z (H∗(A),H∗(B)) // 0
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0 // Ext∗-1Z (H∗(A),H∗(B)) //H∗(A,B) // homZ(H∗(A),H∗(B)) // 0

Furthermore, those sequences are natural in A and B and split unnaturally.

Proof: This follows by pure homological algebra (as in the other cases) once we have
provided a geometric projective resolution of the homology of A as a Z-module. One
�rst constructs the corresponding spectral sequences. Since Z has dimension one, there
are no non-vanishing di�erentials and therefore the spectral sequences give rise to the
extensions above.

In the proof of the existence of the Adams spectral sequence we even constructed
a geometric projective resolution (in fact, free resolution) of the homology of A as
an A-module which of course remains to be a projective resolution of Abelian groups
after forgetting the A-module structure. The naturality of the sequences above is again
pure homological algebra (i.e. the fact that Extp;q is independent of the choice of the
projective resolution plus the comparison theorem 2.2.6 in [69]).

The existence of splits is a general consequence. For the proof one splits A (un-
naturally) into A0 ⊕A1 where the homology of A0 is concentrated in even degrees and
the homology of A1 is concentrated in odd degrees. This is clearly possible by the
UC theorem. Similarly one splits B. The bivariant group H∗(A,B) then decomposes
as H∗(A0, B0)⊕H∗(A1, B0)⊕H∗(A0, B1)⊕H∗(A1, B1). For each of the summands the
exact sequences above split trivially degree-wise, since either the left or the right group
in the extension vanishes. This �nishes the proof.

The theorem above has an immediate corollary.

Corollary 4.5.26 Any cell complex is H-equivalent to a commutative algebra.

Proof: The proof is obvious, since the commutative algebras exhaust the possible ho-
mology groups. Indeed, since everything is �nitely generated we only have to pro-
vide commutative algebras Am;pn with the property that Hm(Am;pn) = Z/(pn) and
Hk(Am;pn) = 0 for k 6= m. The (de)suspensions of mod-pn Moore spaces (e.g. co-�bers
of multiplication by pn) have of course this property. The UC theorem above then shows
that an isomorphism of homology groups can be lifted to a morphism in the bivariant
homology theory H. This then has to be a H-equivalence by the Yoneda lemma and
the naturality of the UC sequence.

There is an interesting article by M. D�ad�arlat and T. Loring [22] in which they
provide a modi�ed version of the UC theorem for KK-theory. They consider all K-
groups with coe�cients in Z and in Z/(pn) together. There are natural operations of
degree minus one between those groups which are the Bockstein operations and the
natural mappings of degree zero which are induced by mappings of the coe�cients.
(See [22] or [58] for a detailed discussion of Bockstein operations in this context.) This
structure can be encoded by regarding the various K-groups as modules over a category
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or equivalently by considering the sum of the various K-groups of an algebra A (they
denote it by K(A), but we will rather use K(A) since K(?) is already in use) as a module
over a certain ring Λ consisting of the operations. Their main result ( 1.4 in [22]) is the
existence of an isomorphism

KK(A,B)
�=→ hom�(K(A),K(B))

whenever K∗(A) is �nitely generated as an Abelian group and A is in the bootstrap
category (see de�nition 22.3.4 in [7]). This is a complete algebraization of the problem
of computing bivariant KK-groups.

A similar result can be proved for bivariant homology groups. In fact, an analogous
result holds for any bivariant homology theory for which the ring of coe�cients has at
most dimension 1. We omit the proof, since it can be taken verbatim from [22]. Denote
by H(A) the sum of H∗(A) and H∗(A;Z/(pn)) for all primes p and all natural numbers
n. Note that the ring Λ which consists of Bockstein operations and induced mappings of
coe�cients acts on H(A) and, furthermore, that any class in H(A,B) induces a mapping
of Λ-modules H(A)→ H(B).

Theorem 4.5.27 (Algebraization of bivariant homology) Let A and B be cell

complexes. The natural map

H(A,B)→ hom�(H(A),H(B))

is an isomorphism.

This shows on the one hand that bivariant homology is in a certain sense under-
standable. On the other hand it reveals that a lot of structure is lost by the passage
from bu to H.
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5 Modules over ring spectra - some connections

In this section we will show how the relation between connective E-theory and algebraic
K-theory, which we stated in section 4.4, gives rise to precise statements of more general
type. Along the way we are going to �nd a resemblance of Gel'fand duality in the notions
of duality in the triangulated category of �nite module spectra over the connective K-
theory spectrum.

In fact, most of what we are doing for connective E-theory in this section can be
done for E-theory as well. There is an identi�cation of E-theory on the category of cell
complexes with the homotopy category of �nite BU-module spectra.

5.1 Connective E-theory, module spectra and co-assembly

Consider the functor KH : sC → Sp� from the category of separable C∗-algebras to the
strict category of symmetric spectra which assigns to a C∗-algebra the homotopy alge-
braic K-theory spectrum (see appendix D). For further information about symmetric
spectra we refer to the work of M. Hovey, J. Smith and B. Shipley in [33] and appendix
B. By the exterior multiplication which is discussed in appendix D, all the spectra in
the image are modules over the image of the complex numbers.

Proposition 5.1.1 The spectrum KH(C) is equivalent to the connective K-theory

spectrum.

This statement is proved in an article by Ulrike Tillmann [66]. For simplicity we
denote from now on KH(C) by bu.

The last proposition shows that all resulting spectra are modules over the connective
K-theory spectrum bu. All induced maps are maps of module spectra over bu. This
together implies that we can de�ne a functor from the category of separable C∗-algebras
to the homotopy category of module spectra over the connective K-theory spectrum.
This is a triangulated category and we denote it by Dbu. The strict category of module
spectra carries a stable model structure. The construction of this model structure and
a proof of its properties can by found in the work of S. Schwede and B. Shipley in [60].
We denote this functor by KH : sC → Dbu also.

Now, we are going to verify the three properties of KH needed in order to apply
theorem 3.3.6. The homotopy invariance follows by the properties of homotopy algebraic
K-theory (see appendix D). Furthermore, any short exact sequence gives rise to a
triangle by extending the result of A. Suslin and M. Wodzicki (see appendix D) to the
case of homotopy algebraic K-theory. This is also discussed in appendix D.

Since homotopy algebraic K-theory is obviously invariant under tensoring with ma-
trix algebras, by theorem 3.3.6, the functor above induces a functor bu→ Dbu. Let us
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subsume this statement, which is indeed a trivial combination of observations, in the
following theorem.

Theorem 5.1.2 There is a triangulated functor KH from the category bu to the

homotopy category of module spectra over the connective K-theory spectrum bu

which sends the generator C to the generator bu such that the induced map

bu∗(C,C)→ homDbu(bu, bu)

is an isomorphism of graded unital rings.

Proof: The existence of the transformation is clear by the preceding discussion. The
map bu∗(C,C)→ homDbu(bu, bu) is a map of graded unital rings by construction.

Note that there is a transformation from algebraic K-theory to the 'algebraic-
topological' K-theory (see section 4.4) for strict cell complexes. By the universal prop-
erty of KH (see remark D.1.11 in appendix D), this implies the existence of a trans-
formation KH to 'algebraic-topological' K-theory for strict cell complexes. (In order
to use the universal property of KH, we have to provide a transformation of symmet-
ric spectra from the spectra computing algebraic K-theory to the spectra computing
'algebraic-topological' K-theory. This can be easily constructed using the well known
transformation to topological K-theory.)

We have a diagram

bu∗(C,C) //

��

homDbu(bu, bu) //

��

Kalg;top
∗ (C)

��
Z[u]

� // Z[u]
� // Z[u]

of unital rings. Since β◦α is an isomorphism by the main theorem in section 4.4, β has
to be surjective and hence is an isomorphism. (Indeed, all surjective homomorphisms
Z[u] → Z[u] are isomorphisms.) This implies that α is an isomorphism and hence
�nishes the proof.

Note that there is an obvious forgetful functor from the strict category of bu-module
spectra to the category of symmetric spectra. This functor has a left adjoint which can
be thought of as a free functor. There is also a natural inclusion of the category of
pointed CW-complexes into the category of symmetric spectra which is given by forming
the suspension spectrum with the appropriate actions of the symmetric groups. This is a
right adjoint functor to taking the zeroth space of the symmetric spectrum. Composing
those two functors we can assign to any pointed CW-complex a strict bu-module in a
covariant functorial way (this is now also a left adjoint being the composition of left
adjoint functors). We denote this functor by F : CW+ → Sp�bu. We may assume that
the functor F takes values in �brant objects.
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Note that there is now a certain ambiguity in the computation of connective K-
groups for �nite CW-complexes. Let (X, x) be a �nite pointed CW-complex. We used
to compute the connective K-theory as the homotopy groups of mapbu(F(X), bu) which
is the same as [X, bu∗], since F was left adjoint to the forgetful functor. Now there is
another way to de�ne the connective K-groups. Just take the homotopy groups of
KH(C(X, x)). We better show that these de�nitions naturally agree. This is a matter of
co-assembly as Michael Joachim pointed out to me. The construction of the co-assembly
map is analogous to the construction of the assembly map. It goes along the lines of
the article of M. Weiss and B. Williams [71] but is dual.

Theorem 5.1.3 Let (X, x) be a �nite pointed CW-complex. There is a natural co-

assembly map

KH(C(X, x))→ mapbu(F(X, x), bu)

in the category Dbu and it is an isomorphism.

Proof: Let us �rst construct the map. Let (X, x) be a �nite pointed CW-complex.
Note that we have a split extension as follows.

0 // C(X, x) // C(X)
evx //

C
// 0

Since both sides of the equation are excisive, we can reduce the proof to the case of
unpointed spaces (or, equivalently, spaces with a disjoint basepoint).

Note that Sp�bu is a simplicial model category. This implies that we have the notions
of homotopy limit and homotopy co-limit. For a precise discussion of these concepts
see the transcript of P. Hirschhorn [31].

We are attempting to de�ne a contravariant functor from �nite CW-complexes to
bu-modules which is homotopy invariant. First, we include the category of �nite CW-
complexes into the category of �nite pointed CW-complexes by adding a disjoint base
point and then apply the functor KH which sends a pointed space to a bu module
spectrum. Note that this step is necessary, since the business of assembly (as developed
in [71]) and the dual notion of co-assembly do not work for pointed spaces. We denote
this composition by KH(C(?+,+)) : CWfin → Sp�bu.

Denote by sp(X) the category whose objects are maps ∆n → X and morphisms
∆m → ∆n over X which are induced by monotone injective mappings from {0, . . . ,m}

to {0, . . . , n} in the obvious way. Now, we are going to de�ne certain homotopy limits
and homotopy co-limits with respect to this category.

Note that we have internal hom's (which we denote by map bu) in the category of
bu-module spectra and that KH(C(∆0+,+)) = bu by de�nition. We have a diagram in
the strict category of bu-module spectra as follows.
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KH(C(X+,+))
� // holimsp(X)opK

H(C(∆n+,+))

holimsp(X)opK
H(C(∆0+,+))

�

OO



��
holimsp(X)opmapbu(F(∆

0), bu)

mapbu(hocolimsp(X)F(∆
0), bu)

�

OO

mapbu(F(X), bu) mapbu(F(|sp(X)|), bu)

�

OO

�oo

We want to argue that all maps that are appearing in this diagram are in fact
well-de�ned, natural, and induce isomorphisms in Dbu.

First of all, let us say a word about the map α, since it is the actual co-assembly map.
Note that the maps ∆n → X induce a natural maps KH(C(X+,+)) → KH(C(∆n+,+))

which give a natural transformation from the constant functor sp(X) → Sp�bu (which
maps everything to KH(C(X+,+))) and the functor sp(X) → Sp�bu which assigns to
the object ∆n → X in sp(X) the spectrum KH(C(∆n+,+)). The homotopy limit of
the constant functor is just KH(C(X+,+)) and α is the map induced by the natural
transformation.

The map ν is induced by the map X→ |sp(X)| which is a weak equivalence of CW-
complexes and hence is a homotopy equivalence. This implies that it induces a weak
equivalence after applying F. The maps β comes from projections ∆n+ → ∆0+ which
are homotopy equivalences. Since F takes values in �brant objects, the induced map
of homotopy limits is a weak equivalence also (see [31] theorem 19.4.3). The same is
true for the map γ. By theorem 19.1.12 in [31], the map δ induces an equivalence. In
fact, this is a triviality once one has a de�nition of homotopy limit and homotopy co-
limit. We restated the needed results from [31] in appendix B.2. The map η induces an
equivalence, since realization commutes with homotopy co-limits (see e.g. [31] theorem
19.8.7). Taking everything together this implies the existence of the required map, since
all weak-equivalences are inverted in Dbu.

It remains to show that α (which is the only interesting piece of our co-assembly
map) and hence our co-assembly map also induces an isomorphism in Dbu. This can be
seen by noting that both functors satisfy excision and are isomorphic at the one-point
space X = ∗ in Dbu. By excision, this implies that they are weakly homotopy equivalent
for �nite CW-complexes. This �nishes the proof.
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Remark 5.1.4 We de�ned bivariant homology in section 4 using the cone of the

Bott map in the C∗-algebra setting. By theorem 5.1.2, it has become obvious that

the cone of the Bott map in the category of C∗-algebras indeed corresponds to

the homotopy �ber of the Bott map of the connective K-theory spectrum. Indeed,

one checks that there is an isomorphism KH(Σ-1(Z)) ∼= K(Z) of bu-modules in

Dbu. Here, we regard K(Z) as a �brant object in Sp�bu with its natural bu-module

structure.

(Note that in the preceding remark K(?) denotes the functor which sends an Abelian
group to its Eilenberg-MacLane spectrum, where, in distinction, K(?) denotes the func-
tor which sends a ring to is algebraic K-theory spectrum.)

Now, we are able to prove theorem 4.5.4. Indeed, let (X, x) and (Y, y) be �nite
pointed CW-complexes. we have the following natural isomorphisms as follows.

bu(C(Y, y), C(X, x)⊗ Σ-4(Z)) ∼= bu(C(Y, y)⊗ Σ-1(Z), C(X, x))

∼= homDbu(K
H(C(Y, y)),KH(Σ-1(Z)⊗ C(X, x)))

∼= homDbu(K
H(C(Y, y)),KH(Σ-1(Z)) ∧ KH(C(X, x)))

∼= homDbu(mapbu(F(Y, y), bu),K(Z) ∧ mapbu(F(X, x), bu))

∼= homDbu(mapbu(F(Y, y), bu),K(Z) ∧ mapbu(F(X, x), bu))

∼= homDbu(F(X, x),K(Z) ∧ F(Y, y))

∼= colimn[Σ
n(X),K(Z)∗ ∧ Y]+

It is obvious that the isomorphisms are compatible with the composition product.
This �nishes the proof of theorem 4.5.4.

5.2 Gelf’fand duality vs. Spanier-Whitehead duality

This part contains a remark about the intertwining of di�erent notions of duality which
has been achieved implicitly in the preceding section.

There is an interesting interpretation of theorem 5.1.3. In some sense it matches
Spanier-Whitehead duality and Gel'fand duality. Note that mapbu(F(X), bu) is the
Spanier-Whitehead dual of F(X). Let

D : Dbu → (Dbu)op

be the duality functor.
The following diagram commutes up to a natural equivalence.
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CWop G //

Fop

��

sC

KH

��
Dopbu

Dop // Dbu

Here, the upper horizontal arrow is given by Gel'fand duality, the lower horizontal
arrow is given by Spanier-Whitehead duality. The left vertical arrow is the free functor
into bu-modules and the right vertical arrow is the functor that assign to a separable
C∗-algebra its homotopy algebraic K-theory spectrum which is naturally a bu-module
spectrum.

The equivalence which establishes the commutativity of the diagram is given by the
co-assembly map which we have constructed in theorem 5.1.3.
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A Triangulated categories

A.1 Definitions

A self-contained treatment of triangulated categories can be found in [43]. In this section
we want to recall the de�nition of a triangulated category. We also want to de�ne what
we mean by a triangulated module. The original de�nition of triangulated categories
goes back to independent work of D. Puppe [49] and J.L. Verdier [67]. It was designed
to reveal the structure of the stable homotopy category and of derived categories of
modules over a ring. Later, there were applications in representation theory and non-
commutative algebra.

Our applications are in the spirit of stable homotopy theory. The main result in
section 5 is that a certain universal triangulated homology theory (which is in particular
a triangulated category) on the category of separable C∗-algebras can be identi�ed with
the homotopy category of module spectra over the connective K-theory spectrum bu.
The identi�cation is an equivalence of triangulated categories.

This result links two parts of mathematics which are not disjoint but previously
have not been considered to be so closely connected.

Definition A.1.1 Let T be an additive category and let Σ be an additive automor-

phism. A triangle in T is a diagram of the form

A
u // B

v // C
w // Σ(A)

such that the compositions v ◦ u, w ◦ v and Σ(u) ◦w are equal to zero.

If for some reason we are working with Σ-1 as the automorphism (and this will be
the case for triangulated homology theories for separable C∗-algebras) we are going to
use diagrams of the form

Σ(A) // B // C // A

rather than

A ′ // B ′ // C ′ // Σ-1(A ′).

Note that up to isomorphism of diagrams this does not make any di�erence.

Definition A.1.2 A triangulated category T is an additive category, together with

an additive automorphism Σ and a class of distinguished triangles. The following

conditions have to be satis�ed.

1. Any triangle which is isomorphic to a distinguished triangle is distinguished.
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2. The triangle

A
idA // A // 0 // Σ(A)

is distinguished for any A ∈ ob(T).

3. For any morphism f : A→ B in T there exists a distinguished triangle of the

following form.

A
f // B // C // Σ(A)

4. Consider the following two triangles.

A
u // B

v // C
w // Σ(A)

B
-v // C

-w // Σ(A)
-�(u) // Σ(B)

If one is distinguished, then so is the other.

5. For any commutative diagram of the form

A //

f

��

B //

��

C // Σ(A)

�(f)

��
A ′ // B ′ // C ′ // Σ(A ′)

where the rows are distinguished triangles there exists a morphism h : C→ C ′

which makes the diagram commutative.

6. Let f : A→ B and g : B→ C be morphisms in T . Let the following triangles

A
f // B // D // Σ(A)

A
g◦f // C // F // Σ(A)

B
g // C // E // Σ(B)

be distinguished. We can complete these to a diagram

A
f //

idA

��

B //

g

��

D //

��

Σ(A)

�(idA)

��
A

g◦f //

��

C //

��

F //

��

Σ(A)

��
0 //

��

E
idE //

��

E //

��

0

��
Σ(A)

�(f) // Σ(B) // Σ(D) // Σ2(A)
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such that the �rst two rows and the second column are the given triangles, all

rows and columns are distinguished triangles and, furthermore, the square

B //

g

��

D

��
C // F

is homotopy Cartesian (see de�nition A.1.3).

Definition A.1.3 A square

A
g //

f

��

B

h

��
C

j // D

is called homotopy Cartesian if there exists a distinguished triangle

A
( f-g)// C⊕ B

(j h) // D
� // Σ(A)

for some boundary map δ.

Definition A.1.4 Let (T ′, Σ ′) and (T ′′, Σ ′′) be triangulated categories. A triangu-

lated functor F : T ′ → T ′′ is an additive functor together with natural isomorphisms

φX : F(Σ ′(X))→ Σ ′′(F(X))

such that for any distinguished triangle

A
� // B

� // C
 // Σ ′(A).

in (T ′, Σ ′) the sequence

F(A)
F(�) // F(B)

F(�) // F(C)
�C◦F() // Σ ′′(F(A)).

is a distinguished triangle in (T ′′, Σ ′′).

There are notions of triangulated monoidal categories. The precise requirements on
the compatibility between the distinguished triangles and the tensor product are not
clear yet. Our de�nition follows the most naive notion of compatibility. There are more
subtle conditions according to P. May in [38]. They are very natural, since they are
satis�ed in stable homotopy theories coming from suitable monoidal model categories.
Since in our applications there is no model category, we stick to the naive notion.

Definition A.1.5 Let T be a triangulated category which is also monoidal. It is said

to be triangulated monoidal if the following compatibility conditions are satis�ed.

96



� The functors ? ⊗ A : T → T and A ⊗ ? : T → T are triangulated functors for

any object A ∈ ob(T).

� There are natural equivalences of functors r : Σ(?1 ⊗ ?2) → ?1 ⊗ Σ(?2) and

l : Σ(?1⊗ ?2)→ Σ(?1)⊗ ?2 such that for any A,B ∈ ob(T) the following diagram
is skew-commutative.

Σ2(A⊗ B)
�(r(A;B)) //

�(l(A;B))

��

Σ(A⊗ Σ(B))

l(A;�(B))

��
Σ(Σ(A)⊗ B)

r(�(A);B)
// Σ(A)⊗ Σ(B)

Remark A.1.6 � The diagram above just recalls the fact that in our context the

switch s : Σ2 → Σ2 is not the identity but minus the identity up to homotopy.

(There might be other contexts where this is not true. In those situations the

conventions have to be suitably adapted.) We are going to omit the explicit

mentioning of the isomorphisms, since all reasonable diagrams commute if

one is careful about switching suspensions.

� We abbreviate A⊗ B by AB.

Definition A.1.7 Let T be a triangulated category. Let A and B be objects in T .

De�ne Tn(A,B) = homT (Σ
nA,B).

The preceding de�nition enriches any triangulated category over Z-graded Abelian
groups. (This just means that there is an associated category with morphism between
A and B given by the Z-graded Abelian groups T∗(A,B). The old category is obtained
by forgetting the non-zero parts in the graduation.) Note that this de�nition is not in
contradiction with de�nition 2.3.7, since we are working with the inverse automorphism
in the setting of triangulated homology theories (see section 2.3). At this stage this
might cause some confusion but other conventions would cause even more.

Remark A.1.8 One important property of triangulated categories is that the hom-

functor is homological resp. co-homological in the variables. That is to say that

for any distinguished triangle

A // B // C // Σ(A)

and for any D in T there are long exact sequences as follows.

. . . // Tn+1(D,C) // Tn(D,A) // Tn(D,B) // Tn(D,C) // Tn-1(D,A) // . . .

. . . // Tn+1(A,D) // Tn(C,D) // Tn(B,D) // Tn(A,D) // Tn-1(C,D) // . . .
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In the next theorem we prove that several exact sequences one can get out of a
distinguished exact triangle assemble to an exact braided sequence.

Theorem A.1.9 Let

A // B // C // Σ(A)

be a distinguished triangle. The following braided diagram is exact along the waves

and commutes.

Tm+1(A,B)
++

''PPPPPPPPPPP
Tm+1(A,C)

**

''OOOOOOOOOOO
Tm(C,C)

''OOOOOOOOOOO

**
Tm-1(C,A)

++

''PPPPPPPPPPP
Tm-1(B,A)

Tm+1(B,C)

77nnnnnnnnnnn

''PPPPPPPPPPP
Tm(C,B)

77ooooooooooo

''OOOOOOOOOOO
Tm(A,A)

77ooooooooooo

''OOOOOOOOOOO
Tm(B,C)

77nnnnnnnnnnn

''PPPPPPPPPPP
Tm-1(C,B)

Tm(C,A)

77nnnnnnnnnnn

33
Tm(B,A)

77ooooooooooo

44
Tm(B,B)

77ooooooooooo

44
Tm(A,B)

77nnnnnnnnnnn

33
Tm(A,C)

Proof: The exactness of the diagram is obvious from the previous observation. Let
us prove commutativity. Any square (or deformed square) in this diagram is of the
form that the two ways in the square just di�er by the order of composition on the left
and right. Hence the associativity of the composition in T implies that those squares
commute. The hexagons in the diagram commute, since each way one can go gives zero.
This proves the claim.

Definition A.1.10 Let (T, Σ) be a triangulated category. An additive category P

together with a functor F : T → P is called a triangulated module over (T, Σ) if the

following conditions hold.

� The functor P(A, F(?)) : T → Ab is homological for any A ∈ ob(P).

� The functor P(F(?), B) : T → Ab is co-homological for any B ∈ ob(P).

Triangulated modules frequently arise. For example, de�nition 2.3.15 gives plenty
of examples. An obvious question under what conditions it is true that a triangulated
module sits inside a triangulated category such that the comparison functor becomes
triangulated. We do not know the answer to this question.

A.2 Localization

In this section of the appendix we want to discuss localization of classes of morphisms in
a triangulated category. It will turn out that there is a nice description of the category
obtained and, furthermore, it is again a triangulated category. The result which we
want to present are taken from [43]. We want to discuss a description of certain special
cases of localization in monoidal triangulated categories.
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Definition A.2.1 Let F : (T1, Σ) → (T2, Σ) be a triangulated functor. We denote

by ker(F) the full triangulated sub-category of (T1, Σ) whose objects map to objects

isomorphic to 0 in (T2, Σ).

Theorem A.2.2 Let (T, Σ) be an essentially small triangulated category and

(R, Σ) ⊂ (T, Σ) a triangulated sub-category. Then there exists a triangulated func-

tor F : (T, Σ) → (T/R, Σ) which is universal with respect to the property that R is

contained in ker(F), i.e. the category R is mapped to objects isomorphic to zero.

A proof of this theorem can be found in the book by A. Neeman [43]. We are not
going to prove it but we want to give the starting point. Note that A. Neeman uses a
di�erent notion of category in his book which is quite confusing. As far as localization
is concerned we are always working with essentially small categories. Therefore we do
not have to think about existence of categories of fractions and so on.

Suppose that (R, Σ) is a full triangulated sub-category of (T, Σ). Let TR be the sub-
category of morphisms with the property that their cones lie inside R. The objects of
the category T/R will just be the objects of T . For any pair of objects A and B we de�ne

Γ(A,B) to be the class of diagrams of the form A
�← C

�→ B with α ∈ homTR(C,A)

and β ∈ homT (C,B). We use the notation [α,C, β] to describe such a diagram. Two
triples [α1, C1, β1] and [α2, C2, β2] are considered to be equivalent, if there exists a triple
[α3, C3, β3] and morphisms δ : C3 → C1 and η : C3 → C2 such that the diagram

C1
�1

��~~~~~~~~
�1

��????????

A C3

�

OO

�

��

�3oo �3 // B

C2

�2

__@@@@@@@@ �2

??��������

commutes. (One has to show that this indeed de�nes an equivalence relation.) The
equivalence classes which are denoted by Γ(A,B) form a set, since our category was
required to be skeletally small. The proof proceeds with showing that Γ(A,B) carries an
associative composition product. Finally, one has to show that the resulting category
is triangulated and has the universal properties that are required. This �nishes our
outline of the idea of the proof.

Definition A.2.3 The quotient T/R is called the Verdier quotient of (T, Σ) by (R, Σ)

and the triangulated functor F is called the Verdier localization map .

Proposition A.2.4 Let (T, Σ) be an essentially small triangulated category. Let K

be any class of morphisms in the category T . There exists a triangulated functor

F : (T, Σ)→ (T [K-1], Σ) with the universal property that the morphisms in K map to

isomorphisms.
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Proof: Apply theorem A.2.2 to the full triangulated sub-category generated by the
cones of the morphisms in K. It is easy to see that the universal properties translate
into each other using general properties of triangulated categories.

Remark A.2.5 Suppose one starts with a triangulated monoidal category and re-

quires the universal property among triangulated monoidal functors into triangu-

lated monoidal categories. The construction of Verdier works also in this context

and the resulting category in our outline of the proof of theorem A.2.2 carries

indeed a natural monoidal structure.

The following theorem allows to identify the Verdier quotient of a category (T, Σ)

in easy situations with something understandable in terms of the category (T, Σ). In
particular, this will be useful in section 4.

Theorem A.2.6 Let (T, Σ) be a triangulated monoidal category. Let U be the unit

of the tensor product and let f : Q → U be a morphism in T . Suppose that the

switch s : Q2 → Q2 is equal to id ∈ homT (Q
2,Q2). The localization T [f-1] has the

following special form:

� ob(T [f-1]) = ob(T)

� homT [f-1](A,B) = colimn∈NhomT (Q
nA,B)

Outline of proof: One either checks that our setting allows an associative composition
product and de�nes a triangulated category with the universal property or goes through
the construction in the outline of the proof of theorem A.2.2.

This �nishes our discussion of localization. In section 4 we are going to apply the
categorical dual of theorem A.2.6.

A.3 Duality

In this part we discuss an intrinsic notion of duality in triangulated categories.

Definition A.3.1 Let A be an object in a monoidal triangulated category with unit

U. It is called dualizable, if there exists an object D(A) and morphisms ε : U →
D(A)⊗A and η : A⊗D(A)→ U such that the following conditions hold.

� The composite A
idA⊗�→ A⊗D(A)⊗A �⊗idA→ A is the identity.

� The composite D(A)
�⊗idD(A)→ D(A)⊗A⊗D(A)

idD(A)⊗�→ D(A) is the identity.

Theorem A.3.2 Let (T, Σ) be a triangulated category. Let A be dualizable, D(A)

denote its dual and η and ε be the maps discussed in the preceding de�nition.
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� The composite

homT (A⊗ B,C)→ homT (D(A)⊗A⊗ B,D(A)⊗ C)
(�⊗idB)∗→ homT (B,D(A)⊗ C)

is an isomorphism for all B and C.

� The composite

homT (B,C⊗A)→ homT (B⊗D(A), C⊗A⊗D(A))
(idC⊗�)∗→ homT (B⊗D(A), C)

is an isomorphism for all B and C.

We state a proposition which relates the notion of duality to the notion of distin-
guished triangles.

Proposition A.3.3 Let (T, Σ) be a triangulated category. Consider a distinguished

triangle

A
a // B

b // C
c // Σ(A)

in T . If two of the objects are dualizable, then so is the third.

Furthermore, the induced triangle

D(C)
D(b) // D(B)

D(a) // D(A)
D(c)// Σ(D(C))

is distinguished.

Using the two duality maps ε and η we can de�ne a T∗-valued trace.

Definition A.3.4 Let f : A → A be a self map of A (possibly not of degree zero).

Consider the following composition.

U
�// D(A)⊗A

idD(A)⊗f// D(A)⊗A // A⊗D(A)
� // U

We denote the element in T∗(U,U) which is de�ned by this composition by τ(f).

A treatment of the properties of traces in triangulated categories can be found in
[38].

Definition A.3.5 Let (T, Σ) be a triangulated category. A trace τ is called additive

if for any self-map of a distinguished triangle

X //

a

��

Y //

b

��

Z //

c

��

Σ(X)

�(a)

����
X // Y // Z // Σ(X)

the equality

τ(a) − τ(b) + τ(c) = 0

holds.
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Philosophically (according to P. May [38]) this should be true for any reasonable
trace. Nevertheless the proof for the particular trace de�ned above is di�cult, and in
[38] it is only carried out in the case, where (T, Σ) is the stable homotopy category of a
monoidal model category.
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B Spectra and cohomology theories

B.1 Definitions

The foundational reference on the theory of spectra and cohomology theories is the
famous book by F. Adams [1]. A more comprehensive introduction to this part of
algebraic topology can be found in the book by R.M. Switzer [65]. A comprehensive
treatment of spectra and symmetric spectra can be found in [33]. This section will
serve as a recollection of results about symmetric spectra. We will stick to the case of
spectra of simplicial sets, since some technicalities are easier to deal with in this case.
A detailed treatment of the theory of simplicial sets is given in the book by P.G. Goerss
and J.F. Jardine [27]. We do not want to repeat the de�nitions of a simplicial set and
the related notions. Those de�nitions can be found in [27] or any other book about
simplicial aspects of algebraic topology.

Denote by ∆ the category with objects the natural numbers {[n], n ∈ N} considered
as �nite totally ordered sets and morphisms monotone mappings. We denote by ∆[n]

the standard simplicial set hom�([?], [n]).
Recall that S1 is the simplicial set given by ∆[1]/∂∆[1]. We denote its n-fold smash

product by Sn =def S
1 ∧ · · ·∧ S1. Note that there is a natural action of the symmetric

group Σn on Sn which permutes the smash factors.

Definition B.1.1 � A (naive) spectrum is

1. A sequence X0, X1, . . . , Xn, . . . of pointed simplicial sets and

2. a pointed map

σn : S1 ∧ Xn → Xn+1

for any n > 0.

� A map of (naive) spectra (Xn, σn) and (X ′n, σ
′
n) is a sequence of pointed maps

fn : Xn → X ′n such that

σ ′n+1 ◦ (idS1 ∧ fn) = fn+1 ◦ σn : S1 ∧ Xn → X ′n+1.

This de�nes the category of (naive) spectra and very much (in fact, all the homotopy
theory) can be done using this category. It turns out that the homotopy category which
can be constructed is symmetric monoidal and it was a long standing question whether
a symmetric tensor product could be introduced at the strict level of spectra as well.
More modern developments showed that a di�erent notion of spectra was necessary in
order to achieve this goal. Those are called symmetric spectra and were de�ned by M.
Hovey, B. Shipley and J. Smith in [33]. There are also other approaches to construct
symmetric monoidal categories of spectra. References about those can be found in [33]
as well.
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Definition B.1.2 � A symmetric spectrum is

1. A sequence X0, X1, . . . , Xn, . . . of pointed simplicial sets,

2. a pointed map

σn : S1 ∧ Xn → Xn+1

for any n > 0 and

3. a basepoint preserving left action of the symmetric group Σn on Xn for

every n ∈ N such that the composition

σn+p-1 ◦ (idS1 ∧ σn+p-2) ◦ · · · ◦ (idSp-1 ∧ σn) : Sp ∧ Xn → Xn+p

is Σp × Σn-equivariant for all possible p and n.

� A map of symmetric spectra (Xn, σn) and (X ′n, σ
′
n) is a sequence of pointed

and Σn-equivariant maps fn : Xn → X ′n such that

σ ′n+1 ◦ (idS1 ∧ fn) = fn+1 ◦ σn : S1 ∧ Xn → X ′n+1.

Definition B.1.3 Denote the category of (naive) spectra by SpN and the category

of symmetric spectra by Sp�.

We state only results for the category of symmetric spectra, since they are non-
classical although the proofs are in most of the cases as easy or as hard as for the category
of (naive) spectra. Proofs of the following results and a much more comprehensive and
extensive treatment of them can be found in [33].

Proposition B.1.4 The category of symmetric spectra Sp� is bi-complete. Limits

and co-limits are formed degree-wise.

Definition B.1.5 ([33]) Let (Xn, σn) and (X ′n, σ
′
n) be symmetric spectra. The tensor

product (or smash product) (Xn, σn) ∧ (X ′n, σ
′
n) is de�ned to be

(∨p+q=nΣn+ ∧�p×�q (Xp ∧ Xq), σ
′′
n)

where the σ ′′n are the maps which are naturally induced.

Theorem B.1.6 The category of symmetric spectra with the smash product is sym-

metric monoidal closed (for a precise de�nition see [36]).

This theorem is very important for further constructions. It allows to speak about
monoids and modules over monoids in the category of symmetric spectra. The notion of
monoid and module over a monoid are purely category theoretic notions. For de�nitions
we refer to the standard source in this context [36].

It is an important consequence of the general theory that the categories of modules
over a commutative monoid in the category of symmetric spectra is again symmetric
monoidal closed.
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Definition B.1.7 Let R be a commutative monoid object in the category of sym-

metric spectra. Denote the category of R-module spectra by Sp�R.

An essential part of structure on the category of symmetric spectra is its model
structure. Since we are not going to de�ne the notion of a model category (see [33] for
a de�nition and further references), we are going to take a very informal point of view.
Let us start with a de�nition.

Definition B.1.8 A map f : (Xn, σn) → (X ′n, σ
′
n) of symmetric spectra is called

a stable equivalence if for any generalized cohomology theory E (de�ned on the

category of symmetric spectra) the induced map E∗(f) is an isomorphism. Denote

the class of stable equivalences by W.

Proposition B.1.9 Let f : (Xn, σn)→ (X ′n, σ
′
n) be a map of symmetric spectra. If f

induces an isomorphism of stable homotopy groups after forgetting the Σn-actions,

then f is a stable equivalence of symmetric spectra.

A proof of the preceding proposition can be found in [33], theorem 3.1.11.

Definition B.1.10 The homotopy category of symmetric spectra is de�ned to be

the category of fractions Sp�[W-1] and denoted by Ho(Sp�).

Of course, there is a question of existence of this category of fractions. This is where
model categories are used. Furthermore, the model structure allows to �nd a concrete
description of the sets of morphisms in the category of fractions in terms of homotopy
classes of maps between �brant and co-�brant replacements. The usefulness of a model
structure of course goes far beyond this implication.

In analogy one can de�ne a homotopy category of module spectra over a certain
monoid object in the category of symmetric spectra.

Definition B.1.11 Let R be a commutative monoid in the category of symmetric

spectra. The homotopy category of R-module spectra is de�ned to be Sp�R[(W ∩
Sp�R)

-1] and denoted by DR.

Again, the de�nition leaves the question about existence open. A monoidal model
structure on the category of module spectra Sp�R is provided in the work of S. Schwede
and B. Shipley in [60]. The term 'brave new algebra' is used for homotopy categories
of module spectra. This is because the homotopy categories of module spectra over
Eilenberg-MacLane spectra identify with the usual derived categories (for a proof see
[60]). Therefore the framework of symmetric spectra and module spectra extends the
framework of graded Abelian groups and chain complexes of modules over a ring.
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B.2 Homotopy limits and homotopy co-limits

In this section we subsume some results about homotopy limits and homotopy co-limits.
We do not give proper de�nitions and proofs and refer to [31] for a more comprehensive
treatment. Homotopy limits and homotopy co-limits replace limits and co-limits in
homotopy categories, since these do not behave so well. In order to construct homo-
topy limits and co-limits one usually uses a simplicial model structure (see [31] for a
de�nition).

We need the following abstract properties. Proofs can be found in [31].

Lemma B.2.1 Let C be a small category. Let F : C → M be a diagram in a

simplicial and monoidal model category. We denote by map(?, ?) the internal hom-
functor. The following natural map

holimCopmap(F(c), B)→ map(hocolimCF(c), B)

is an isomorphism in the homotopy category of M.

Lemma B.2.2 Let Fi : C → M for i = 1, 2 be diagrams in M that take values in

�brant objects. Let T : F1 → F2 be a natural transformation. If T is object-wise a

weak equivalence, then the induced map

holimCF1(c)→ holimCF2(c)

is a weak equivalence as well.

We do not want to say more about the notions of homotopy limit and homotopy
co-limit, since this would go beyond the scope of this thesis.
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C C∗-Algebras

In this part of the appendix we want to recall some de�nitions. We do not intend to
give an introduction to the theory of C∗-algebras but rather recollect some notations
and results needed.

C.1 Definitions

Definition C.1.1 � A complex Banach algebra is a C-algebra which (with the

same C-linear structure) is a complete normed vector space such that the

norm satis�es

∀x, y ∈ A : ‖xy‖ 6 ‖x‖‖y‖.

� A C∗-algebra is a complex Banach algebra A with an involutive anti-

automorphism which we denote by x 7→ x∗ such that the following is true.

∀x ∈ A : ‖x∗x‖ = ‖x‖2

� Denote the category of C∗-algebras with ∗-preserving homomorphisms by C.
We denote the set of ∗-preserving homomorphisms between two C∗-algebras

A and B by hom(A,B).

Definition C.1.2 � A C∗-algebra is called separable if it has a countable dense

subset.

� Denote the full sub-category of C whose objects are separable C∗-algebras by

sC.

Remark C.1.3 � Note that the category sC is essentially small, since any sep-

arable C∗-algebra can be embedded into the algebra of bounded operators on

a Hilbert space of countable Hilbert space dimension. We may as well as-

sume that we are working with an equivalent small category and we will do

so without further mentioning.

� There are several choices of the tensor product on the category C. We will

always take the maximal tensor product and recall that it makes the category

C into a symmetric monoidal category (See appendix C.4 for de�nitions and

notation.).

� We will carelessly make no distinction between the word ∗-homomorphism,

homomorphism and morphism. As long as we are talking about C∗-algebras

these will always mean ∗-preserving homomorphism.

Definition C.1.4 Let X be a locally compact topological space.
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� We denote the Alexandrov compacti�cation (one-point compacti�cation) of

X by X+.

� Let Y be locally compact. The homotopy classes of maps from X to Y are

denoted by [X, Y].

� Assume that (X, x) and (Y, y) are pointed spaces. The (pointed) homotopy

classes of pointed maps from X to Y are denoted by [(X, x), (Y, y)]+.

Definition C.1.5 Let A be a C∗-algebra and (X, x) be a pointed compact Hausdor�

space.

� For any pointed compact Hausdor� space (X, x) denote the C∗-algebra of com-

plex valued functions on X vanishing at x ∈ X by C(X, x) or C0(X− {x}).

� Denote the algebra of A-valued continuous functions on X by C(X;A).

� Denote the algebra of A-valued continuous functions on X vanishing at x ∈ X
by C(X, x;A) or C0(X− {x};A).

� We denote the algebra of bounded functions on [0, 1) with values in A by

Ab[0, 1). The sub-algebra of functions vanishing in 0 is denoted by Ab([0, 1), 0)

which is sometimes abbreviated by Ab.

Definition C.1.6 We are going to use the following abbreviations. Let A be a

C∗-algebra.

� Denote by Σ(A) the algebra C(S1, 1;A).

� Denote by c(A) the algebra C([0, 1], 0;A). The cone comes with a canonical

evaluation at 1 which we denote by evA1 : c(A) → A. We use the convenient

abbreviation A(0, 1].

� Let f : A→ B be a ∗-homomorphism. Its cone c(f) is de�ned as the pull-back

c(B) ⊕B A along the evaluation map. It comes with an evaluation map to A

which we denote by ev1.

� Let f : A→ B be a ∗-homomorphism. Its cylinder cyl(f) is de�ned as the pull-

back B[0, 1]⊕B A along the evaluation map at 1. It comes with an evaluation

map to A which we denote by ev1.

Definition C.1.7 Let A and B be C∗-algebras. Two ∗-homomorphisms f, g : A→ B

are called homotopic, if there exists a homotopy H : A→ B[0, 1] such that ev0◦H = f

and ev1 ◦ H = g. Homotopy is an equivalence relation and we denote the set of

homotopy classes of ∗-homomorphisms from A to B by [A,B]. We denote the

homotopy class of a ∗-homomorphism f : A→ B by [f] ∈ [A,B].
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Remark C.1.8 Note that the algebras C(X, x;A) identify with the algebras A ⊗
C(X, x) in a canonical way.

Definition C.1.9 � We denote the algebra of complex n × n matrices by Mn.

We abbreviate the algebraic tensor product A⊗Mn by MnA.

� We denote the algebra of bounded compact linear operators on the standard

separable Hilbert space l2(N) by K.

Theorem C.1.10 (I. Gel’fand and M.A. Năımark) � The category of com-

mutative C∗-algebras and ∗-homomorphisms is contravariantly equivalent to

the category of pointed compact Hausdor� spaces and pointed continuous

maps.

� This contravariant equivalence restricts to a contravariant equivalence be-

tween the full sub-categories of separable C∗-algebras and metrizable compact

pointed Hausdor� spaces.

Definition C.1.11 Let A and B be C∗-algebras. We denote their co-product in the

category of C∗-algebras (which is commonly called 'free product') by A ∗ B. It is

given by the universal completion of the algebraic free product considered as a

sub-algebra of the of algebra of bounded operators on a Hilbert space.

We �nish this section of the appendix by collecting some theorems and lemmas
which we need at some point. The �rst lemma is a well known fact from linear algebra.

Lemma C.1.12 We have a canonical homeomorphism

PSU(n)+ → hom(Mn,Mn)

such that PSU(n) 3 A 7→ {B 7→ ABA∗} and ∗ 7→ {B 7→ 0}.

The following lemma is taken from the work of G. Segal in [61].

Lemma C.1.13 Let (X, x) and (Y, y) be �nite pointed CW-complexes. The canoni-

cal map

colimn[C(Y, y),Mn(C(X, x))]→ [C(Y, y), C(X, x)⊗K]

is an isomorphism.

This is just proposition 1.2 in [61]. The proof only requires that Y is locally con-
tractible at y ∈ Y.

The following theorem has become a standard result in the theory of Banach spaces.
It becomes important to us because it allows to split extensions of C∗-algebras at least
in the category of topological spaces.

Theorem C.1.14 (R. Bartle and L. Graves in [4]) Let A and B be Banach

spaces. Let f : A→ B be a bounded linear surjection. Then there exists a continu-

ous and bounded (not necessarily linear) split s : B→ A (i.e. f ◦ s = idB).
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C.2 Extensions

We will uses the terms 'extension' and 'short exact sequence' for the same things, namely
diagrams

0 // A // B // C // 0

where A→ B is a kernel of B→ C and B→ C is a co-kernel of A→ B. I.e. we require
that A → B is injective, that the image of A → B is a closed 2-sided ideal, that the
composition A → C is zero and that the induced map B/A → C is an isomorphism of
C∗-algebras.

Definition C.2.1 Let

0 // A // C // B // 0

and

0 // A // C ′ // B // 0

be extensions of B by A. The extensions are called isomorphic , if there is a com-

mutative diagram as follows in which the left and right most arrows are identities.

0 // A // C //

��

B // 0

0 // A // C ′ // B // 0

By the work of R. Busby in [11] it follows that the set of isomorphism classes of
extensions of A by B is in bijection with hom(A,Q(B)) where Q(B) denotes the Calkin
algebra (i.e. the quotient of the multiplier algebra M(A) by A). The identi�cation goes
as follows.

Let

0 // A
f // B

g // C // 0

be an extension. There is a commutative diagram

0 // A // B //

��

C //

��

0

0 // A //M(A) // Q(A) // 0

where the dotted arrow exists by the universal property of quotients. Conversely given
a map C → Q(A) we can complete it to a diagram as above by taking B to be the
pull-back M(A) ⊕Q(A) C. This gives an extension by an easy argument. One easily
shows that these assignments are inverse to each other.

An important observation is that the assignment (A,B) 7→ hom(A,Q(B)) is func-
torial in A, but not functorial in B. We are not using the description above in our
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arguments and only wanted to state the result because it is the classical description of
extensions.

In particular, the description above implies that the isomorphism classes of exten-
sions form a set for any C∗-algebras A and B.

C.3 The extension category

In this part we introduce the notion of 'extension category'. The possibility of its con-
struction is not particular to the category of separable C∗-algebras. It gives a general
procedure of constructing a concrete functor into a triangulated category with a pre-
scribed class of distinguished triangles. We already noted that the existence of such a
functor might be easy to proof using a naive stable homotopy category and localization
as described at the end of section 3.3. The important achievement is that there is a
concrete description of the set of morphisms using extensions and that there are lots of
motivating examples of morphisms arising obviously that way.

Note that J. Cuntz considers a related construction in [18]. However, his approach
uses special extension, like a Toeplitz extension and a certain universal extension, which
need not exist in more general situations. There were also earlier attempts to understand
KK-theory on the basis of n-step extensions, see [74].

Definition C.3.1 � Let A and B be C∗-algebras. Denote by extn(A,B) the class

of n-step extensions of B by A, i.e. diagrams of the form

0 // A // E1 // · · · // En // B // 0

for which there exists a decomposition into extensions

0 // A // E1 // F1 // 0

0 // F1 // E2 // F2 // 0

· · ·

0 // Fn-1
// En // B // 0.

� The n-step extensions form a category with morphisms commutative dia-

grams of the form

0 // A // E1 //

��

· · · // En //

��

B // 0

0 // A // F1 // · · · // Fn // B // 0.

The composition is given by vertical composition of diagrams.
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� Two n-step extensions of B by A are called congruent if they lie in the same

component of the category of n-step extensions (i.e. two n-step extensions

are congruent, if there exists a chain of morphisms of n-step extensions

connecting them).

� Two n-step extensions of B by A are called homotopic, if there is an extension

of B by A[0, 1] and a commutative diagram in which all vertical arrows are

surjections as follows.

0 // A // E1 // · · · // En // B // 0

0 // A[0, 1] //

ev0

��

ev1

OO

// H1

OO

��

// · · · // Hn //

OO

��

B // 0

0 // A // F1 // · · · // Fn // B // 0

In order to show that homotopy is an equivalence relation we need a lemma.

Lemma C.3.2 Consider a commutative diagram of extensions as follows.

0 // A ′ //

f

��

B ′ //

��

C ′ //

��

0

0 // A // B // C // 0

0 // A ′′ //

OO

B ′′ //

OO

C ′′ //

OO

0

Furthermore, assume that f is surjective. Then the induced sequence

0 // A ′ ⊕A A ′′ // B ′ ⊕B B ′′ // C ′ ⊕C C ′′ // 0

is exact.

Proof: The map B ′ ⊕B B ′′ → C ′ ⊕C C ′′ is surjective. Indeed, given a pair (c ′, c ′′) ∈
C ′ ⊕C C ′′ we �nd b ′ ∈ B ′ that maps to c ′ and b ′′ ∈ B ′′ that maps to c ′′. The di�erence
of the images of b ′ and b ′′ in B maps to 0 in C by assumption on c ′ and c ′′. Hence this
di�erence, say a ∈ B, lies in the image of A. By assumption on f : A ′ → A, we can lift
a to a ′ ∈ A ′ ⊂ B ′. The pair (b ′−a ′, b ′′) is an element of B ′⊕BB ′′ and maps to (c ′, c ′′).
This proves the surjectivity.

The kernel of this surjection obviously coincides with A ′⊕A ′′∩B ′⊕BB ′′ = A ′⊕BA ′′ =
A ′ ⊕A A ′′. This �nishes the proof.

Proposition C.3.3 Homotopy of extensions is an equivalence relation.
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Proof: The relation is clearly symmetric and reexive by similar arguments as in
proposition 2.2.4. In order to show transitivity consider two composable homotopies.
They give rise to a diagram with �ve rows. We proceed by taking the pull-back in the
middle. The resulting pull-back sequence de�nes a homotopy. Indeed, by lemma C.3.2
it is exact. Furthermore, all vertical arrows are surjective, since pull-backs of surjections
are surjective. This �nishes the proof.

Proposition C.3.4 Congruent extensions are homotopic.

Proof: Since we showed that homotopy is an equivalence relation, we only have to
show that a morphism of extensions gives rise to a homotopy. Let the diagram

0 // A // E1 //

��

· · · // En //

��

B // 0

0 // A // F1 // · · · // Fn // B // 0

be a morphism of extensions. We consider the diagram

0 // A[0, 1] //

evA
1

��

F1[0, 1] //

ev
F1
1

��

· · · // Fn[0, 1] //

ev
Fn
1

��

B[0, 1]

evB
1

��

// 0

0 // A // F1 // · · · // Fn // B // 0

0 // A // E1 //

f1

OO

· · · // En //

fn

OO

B // 0

Since the morphisms downwards pointing are surjections, the pull-back of this dia-
gram gives a n-step extension

0 // A[0, 1] // cyl(f1) // · · · // cyl(fn) // B[0, 1] // 0.

This n-step extensions comes together with a diagram

0 // A // E1 // · · · // En // B // 0

0 // A[0, 1] //

evA
0

��

evA
1

OO

cyl(f1)

��

OO

// · · · // cyl(fn)

��

OO

// B[0, 1]

evB
0

��

evB
1

OO

// 0

0 // A // F1 // · · · // Fn // B // 0

in which all vertical morphisms are epimorphisms. Taking the pull-back of the middle
extension along the inclusion of the constant functions

B
�(B)// B[0, 1]

gives the required homotopy and �nishes the proof.
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Definition C.3.5 Denote by Extn(A,B) the set of homotopy classes of n-step ex-

tensions of A by B. It is a fact, that the homotopy classes form a set, but we do

not want to prove it here.

Proposition C.3.6 There is an associative composition map Extn(A,B) ×
Extm(B,C) → Extn+m(A,C) which is given by the Yoneda product. We denote

the product by Extn(A,B)× Extm(B,C) 3 (a, b) 7→ a · b ∈ Extn+m(A,C)

Proof: One easily checks that the Yoneda product is compatible with the homotopy
relation.

There is also an action of the category sC on the set of extensions as will become
obvious in the following de�nition and the proposition below.

Definition C.3.7 Consider the diagram

C

f

��
0 // A // F1 // · · · // Fn // B // 0

in which the horizontal sequence is a n-step extension a ∈ Extn(A,B). The pull-

back extension

0 // A // F1 // · · · // Fn-1
// Fn ⊕B C // C // 0

is denoted by a ◦ f ∈ Extn(A,C). (This clearly well de�ned up to homotopy.)

Proposition C.3.8 Let a ∈ Extn(A,B), b ∈ Extm(B,C) be extensions and f : D→ C,

g : E→ D be ∗-homomorphisms. The following associativity rules hold.

(a · b) ◦ f = a · (b ◦ f) ∈ Extn+m(A,D)

(b ◦ f) ◦ g = b ◦ (fg) ∈ Extm(B, E)

Let us continue with another de�nition.

Definition C.3.9 � Let A be a C∗-algebra. We denote the cone extension

0 // Σ(A) // c(A)
evA
1 // A // 0

by CA ∈ Ext1(Σ(A), A).
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� Let A and B be C∗-algebras and let f : A → B be a ∗-homomorphism. We

denote the cone extension of f

0 // Σ(B) // c(f)
evA
1 // A // 0

by Cf ∈ Ext1(Σ(B), A). Note that according to this de�nitions the equality

CA = CidA holds.

We want to extend a de�nition which we already gave in section 2.2 to n-step
extensions.

Definition C.3.10 � Denote by t : Σ → Σ the twist of the suspension (i.e. the

map which is induced by complex conjugation on S1 ⊂ C).

� Let

0 // A
f // B

g // C // 0

be an extension a ∈ Ext1(A,C). We de�ne the suspended extension Σ(a) ∈
Ext1(Σ(A), Σ(C)) to be the following extension.

0 // Σ(A)
t�(f) // Σ(B)

�(g) // Σ(C) // 0

� The suspension of n-step extensions is de�ned by decomposing into 1-step

extensions and suspending those. This rule ensures that Σ(a ·b) = Σ(a) ·Σ(b).

Lemma C.3.11 The two maps Extn(A,B)→ Extn+1(Σ(A), B) which are given by

Extn(A,B) 3 a 7→ CA · a ∈ Extn+1(Σ(A), B)

and

Extn(A,B) 3 a 7→ Σ(a) · CB ∈ Extn+1(Σ(A), B)

are equal.

Proof: It su�ces to prove the result in the case n = 1, since the general result
follows by decomposing the n-step extension into 1-step extensions and an induction
argument.

Let

0 // A
f // B

g // C // 0

be the given extension.
It su�ces to �nd a congruence between the following two extensions.

0 // Σ(A) // c(A) // B
g // C // 0

0 // Σ(A)
t�(f) // Σ(B)

�(g) // c(C) // C // 0
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Consider the following diagram

0 // Σ(A) // c(A) //

��

B
g //

��

C // 0

0 // Σ(A) // c(B)
� // cyl(g)

ev0 // C // 0

0 // Σ(A)
t�(f) // Σ(B)

�

OO

�(g) // c(C)

OO

// C // 0

with α : c(B)→ cyl(f) and β : Σ(B)→ c(B) switching the direction of the interval.
The commutativity is easily checked. This �nishes the proof. Note that it was crucial
for the commutativity that we de�ned the suspension of an extension with the switch
of the interval.

Lemma C.3.12 The extensions Σ(cA) and c�(A) ∈ Ext1(Σ2(A), Σ(A)) are homotopic.

Proof: Consider the following diagram.

0 // c(Σ(A))
c(�) //

ev
�(A)
1

��

c(c(A)) //

ev
c(A)
1

��

c0(A)

evA
1

��

// 0

0 // Σ(A) // c(A) // A // 0

0 // 0 //

OO

c(A) //

OO

c(A)

evA
1

OO

// 0

The pull-back of this diagram is given by the extension

0 // Σ(Σ(A)) // c(c(A)) // c(A)⊕A c(A). // 0

Denote (only until the end of the proof) c(A) ⊕A c(A) by Q. The interval over this
extension comes with the following diagram

0 // Σ(Σ(A))[0, 1] //

ev0⊕ev1
��

c(c(A)[0, 1] //

ev0⊕ev1
��

Q[0, 1]

ev0⊕ev1
��

// 0

0 // Σ(Σ(A))⊕ Σ(Σ(A)) // c(c(A))⊕ c(c(A)) // Q⊕Q // 0

0 // Σ(Σ(A))⊕ Σ(Σ(A)) // c(Σ(A))⊕ Σ(c(A))

OO

// Σ(A)⊕ Σ(A)

(�;0)⊕(0;�)

OO

// 0

The pull-back of this diagram is again an extension. It comes with two natural
evaluations which map onto the extensions Σ(cA) and c�(A). The source of the homotopy
is Σ(Σ(A)[0, 1]. We still have to �x the target. If we can construct a map from Σ(A)

into the target of the pull-back such that both evaluations on Σ(A) are splittings, then
we can take the pull-back of the constructed extension along this map and obtain the
desired homotopy. The required maps are easily constructed.
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Remark C.3.13 Note that in the last lemma we cannot replace 'homotopic' by

'congruent'. It is therefore much harder to construct a strict extension category

rather than an extension category up to homotopy. We do not want to follow this

line here.

Now we are going to proceed by de�ning a category of extensions in which the cone
extension is inverted.

Definition C.3.14 Let A and B be C∗-algebras. De�ne sets

S ′(A,B) = colimnExt
n(Σn(A), B)

where the co-limit is taken with respect to the canonical maps given by the cone

extensions

Extn(Σn(A), B) 3 a 7→ C�n(A) · a ∈ Extn+1(Σn+1(A), B).

Theorem C.3.15 There is an associative product S ′(A,B) × S ′(B,C) → S ′(A,C)

extending the Yoneda-product

Proof: Given classes [a] ∈ S ′(A,B) and [b] ∈ S ′(B,C), we �nd n,m ∈ N and
representatives a ∈ Extn(Σn(A), B) and b ∈ Extm(Σm(B), C). De�ne the composition
product [a] · [b] to be the image of Σm(a) · b in S ′(A,C). We have to show that this is
well-de�ned. It su�ces to show that one can replace a by C�n(A) ·a and b by C�m(B) ·b.

Obviously [Σm(C�n(A) · a) · b] = [Σm(C�n(A)) · Σm(a) · b] By lemma C.3.12, the last
term is equal to [C�m+n(A) · Σm(a) · b] = [Σm(a) · b].

The other case is proved using lemma C.3.11 and similar arguments. This �nishes
the proof.

Definition C.3.16 We de�ne the category S ′ to be the category with objects sepa-

rable C∗-algebras and morphisms between algebras A and B the set S ′(A,B). The

identity morphism of an object A is given by the image of CA in S ′(A,A).

Lemma C.3.17 There is a functor sext : sC → S ′
op with sext(f) = Cf (see de�nition

C.3.9 for notations).

Proof: In order to show the functoriality we consider a composable pair of morphisms
A

f→ B
g→ C. Let Cf ∈ Ext1(Σ(B), A), Cg ∈ Ext1(Σ(C), B) and Cg◦f ∈ Ext1(Σ(C), A)

be the corresponding cones. It su�ces to construct a congruence between Σ(Cg) · Cf ∈
Ext2(Σ2(C), A) and Σ(CC) · Cg◦f.

Consider the diagrams

0 // Σ(C) // c(f) //

��

B

g

��

// 0

0 // Σ(C) // c(C) // C // 0
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and

0 // Σ(B)

�(g)

��

// c(g) //

��

A // 0

0 // Σ(C) // c(g ◦ f) // A // 0

Composing the suspension of the �rst diagram with the second diagram gives the
required congruence. Thence the proof is �nished.

C.4 Monoidal structure

Interesting enough there are di�erent monoidal structures on the category of C∗-
algebras. The most signi�cant ones are given by the minimal and the maximal tensor
product. We only want to de�ne and consider the maximal tensor product, since it
serves best for our purposes. We do not want to give proofs of the theorems, since they
are well known (see e.g. the book by G. Murphy [42] or the one by B. Blackadar [7]).

Definition C.4.1 Let A and B be C∗-algebras. The maximal tensor product is de-

�ned to be the universal C∗-completion of the algebraic tensor product of A and

B. We denote the maximal tensor product of A and B by A⊗ B.

The next series of theorems subsumes the most important properties of the maximal
tensor product.

Theorem C.4.2 The category C of C∗-algebras and the category sC of separable

C∗-algebras are symmetric monoidal categories with respect to the maximal tensor

product.

Theorem C.4.3 The maximal tensor product is universal with respect to the prop-

erty that whenever there are two commuting representations φ : A → C and

ψ : B→ C of A and B in C, then there is a unique morphism A⊗ B→ C.

Theorem C.4.4 The maximal tensor product is exact in the sense that the functor

?⊗A maps short exact sequences to short exact sequences.
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D Algebraic K-theory

D.1 Definitions

We do not intend to give an introduction to algebraic K-theory in this section. It only
serves as a place of recollections. For an introduction and a detailed list of references
we refer to [3].

The higher algebraic K-groups are best understood as the homotopy groups of a
spectrum. There are several fundamental constructions in algebraic topology that were
necessary to give a proper de�nition of higher algebraic K-theory. The main contribu-
tions are by D. Quillen [50]. The de�nition of negative algebraic K-groups goes back
to H. Bass [5] and was done before. They can be de�ned in a purely algebraic manner.
Shortly after Quillen's constructions there began a process of 'spaci�cation' in algebraic
K-theory which resulted in a number of spectra which were actually computing both,
the negative and the positive algebraic K-groups, as their homotopy groups (e.g. the
work of E. Pedersen and C. Weibel [46]). Later, the di�erent spectra were shown to be
equivalent in a homotopy category of spectra.

Denote the category of rings by Rng. Since we do not want to go through these
constructions, we will assume the existence of a functor

K : Rng −→ Sp�

from the category of rings to the category of symmetric spectra which has the properties
listed below. The existence of a functor with the properties below is a non-trivial fact.
A suitable candidate for a functor is provided in the thesis of M. Schlichting [56], section
7. The work of M. Schlichting [56] is to our knowledge the only reference which deals
with the non-connective case. The precise result which is required is not stated in
[56]. A precise proof of the result needed is work in progress of J. Hornbostel and M.
Schlichting, see [32]. Therefore this section will lack a de�nite mathematical accuracy.

� The i-th homotopy group of K(R) coincides with the i-th algebraic K-group of
the ring R for i ∈ Z.

� Let f : R → Q be a map of rings. The induced map on homotopy groups of
K-theory spectra is the usual map in algebraic K-theory.

� There is a transformation

K(R) ∧ K(Q) −→ K(R⊗Q)

such that

� the transformation is compatible with the associativity and commutativity iso-
morphism of the respective monoidal structures.
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The third property is the one which is not explicitly stated in the thesis of M.
Schlichting [56] but actually contained in the proof of lemma 7.7 in [56].

Proposition D.1.1 The properties of K imply that whenever Q is a R-module, then

the map above induces a K(R)-module structure on K(Q). Furthermore, for any

commutative ring R the functor K associates to R a commutative ring spectrum.

First of all, we want to extend K to the category of algebras (i.e. 'non-unital rings').
This is done by a standard procedure. Denote by hf (f) the homotopy �ber of a map of
symmetric spectra. The homotopy �ber is a certain homotopy limit. We do not want
to discuss its precise de�nition here.

Definition D.1.2 Let R be an algebra. Denote by R+ its unitalization (this is of

course a ring). There is a natural exact sequence in the category of algebras as

follows.

0 // R // R+ u //
Z

// 0

We de�ne K ′(R) = hf(K(R+)→ K(Z)).

If R is unital, then R+ splits in the category of rings as R⊕ Z. This shows that
in this case the natural map K ′(R) → K(R) is a weak equivalence. Hence K ′ is a

natural extension of K. Note that the properties of the functor K extend also.

Let

0 // A // B // C // 0

be an extension of algebras.
It is an important question to �nd conditions which ensure that the natural map

K(A)→ hf(K(B)→ K(C)) is an equivalence of symmetric spectra.

Definition D.1.3 If an algebra A satis�es the property above for all extensions

in which it appears as the ideal, then the algebra A is said to satisfy excision in

algebraic K-theory.

There is an amazing result by A. Suslin and M. Wodzicki [64] which entirely solves
the problem in the case of C∗-algebras.

Theorem D.1.4 (A. Suslin, M. Wodzicki in [64]) If A is C∗-algebra, then it sat-

is�es excision.

Indeed, much more is true but we do not want to go into details. The proof and the
precise statements can be found in [64].

For our purposes, the algebraic K-theory functor lacks one important property which
is homotopy invariance. This is not surprising, since we usually compute the algebraic
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K-theory after forgetting the topology. We have to bring the topology back into play.
This requires the extension of the algebraic K-theory functor to simplicial algebras
and a way to encode the topology of the rings into the simplicial structure. This is a
standard way to make functors homotopy invariant. A more extensive discussion of the
methods needed and the constructions made can be found in the work of M. Paluch
[45].

Definition D.1.5 Let A• be a simplicial algebra. The geometric realization of the

simplicial spectrum K(A•) is called the homotopy algebraic K-theory spectrum of

the simplicial ring A•.

Again, this extends the domain of de�nition of algebraic K-theory. Note that the
homotopy algebraic K-theory spectrum of the constant simplicial algebra associated
to an algebra R is naturally equivalent to the algebraic K-theory spectrum. There is
a standard simplicial algebra which is assigned to any topological algebra and which
encodes its topological structure to some extent.

Definition D.1.6 Let A be a topological algebra. Denote by A(∆n) the A-valued

continuous functions on ∆n. We call A(∆•) the simplicial algebra which is asso-

ciated to the topological algebra A. We denote the homotopy algebraic K-theory

spectrum of A(∆•) by KH(A).

Definition D.1.7 The homotopy algebraic K-groups are de�ned to be the homotopy

groups of the homotopy algebraic K-theory spectrum.

Proposition D.1.8 Let A and B be topological algebras. Furthermore, assume

that A is a B-module. Then KH(A) is naturally a KH(B)-module in the category

of symmetric spectra.

Proof: Note that the conditions of the theorem imply that A(∆n) is a B(∆n)-module
in a way which is coherent with the boundary maps etc. This implies that there is a
simplicial diagram of module structures. We can realize the diagram object-wise and
get the required statement, since the smash product commutes with realization. This
�nishes the proof.

Proposition D.1.9 Homotopy algebraic K-theory is homotopy invariant.

Proof: This is a standard argument. It can be found in [70].

Since there is an inclusion of the constant functions into the continuous functions
on a simplex, we get a natural transformation K → KH. Although the homotopy
algebraic K-groups are constructed in order to simplify matters for topological rings
it is important to have a device that allows to transport properties from the algebraic
setting to the homotopy algebraic setting. This is done via a spectral sequence.
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Theorem D.1.10 There is a right half-plane multiplicative spectral sequence with

E1p;q = Kq(A(∆p))

which converges to KH
p+q(A). The edge map Kp(A)→ KH

p (A) is just the one induced

by the natural transformation mentioned above.

Proof: This is a standard spectral sequence which allows the computation of homo-
topy groups of a simplicial space or a simplicial spectrum. The proof goes along the
lines of the proof of the existence an analogous spectral sequence in a more algebraic
setting, [70]. Another discussion of the proof can be found in [45].

Remark D.1.11 The preceding spectral sequence reveals also that KH is the uni-

versal homotopy invariant extension of algebraic K-theory. Indeed, let K → F be

a transformation (at the level of symmetric spectra) to a functor which is homo-

topy invariant functor after taking homotopy groups. We get a transformation

KH → FH. By the homotopy invariance, the spectral sequence for F collapses and

the edge map F(A)→ FH(A) is an isomorphism. This shows the universal property.

There is also a relative variant of this spectral sequence which we do not need but
which makes apparent that the excision properties extend to homotopy algebraic K-
theory. In particular, all C∗-algebras satisfy excision in homotopy algebraic K-theory.

For a detailed discussion of the statements above we refer to [45].
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