Lisa Julia Nebel and Oliver Sander, TU Dresden - Institute of Numerical Mathematics

Formation of wrinkles in a bi-layer system using manifold-valued finite elements

GAMM 2023 Dresden, June 2nd, 2023

Formation of wrinkles in bi-layer systems

- project with Leibniz-Institute for Polymer Research Dresden
- goal: creation of wrinkles of different wavelengths (sub- μm) with sharp transition areas while controlling the splitting behavior
- experiments:

1. stretching of the base material (elastic polymer layer)
2. creation of a thin structured layer on top through different gas treatments
3. relaxation of the base layer

Simulation of the bi-layer system

- modelling the bi-layer system:
- combination of an elastic 3D-model and an elastic shell model
- minimization problem of a non-linear and non-convex energy functional
- simulation of the minimization problem:
- discretization using appropriate finite elements
- solve the discrete problem numerically
- analytical results: existence of solutions of the continuous and discrete minimization problem

Combination of an elastic 3D-model and an elastic shell model

- elastic 3D-model: Mooney-Rivlin material model
- elastic shell model: Cosserat shell model
- base material in stress-free state is $\Omega \subset \mathbb{R}^{3}$, stretched state is $\varphi_{0}(\Omega)$
- \quad shell in stress-free state is the curved manifold $\varphi_{0}\left(\Gamma_{\text {shell }}\right) \subset \partial \varphi_{0}(\Omega)$
- parameter domain $\omega_{h} \subset \mathbb{R}^{2}$ with $y_{0}\left(\omega_{h}\right)=\varphi_{0}\left(\Gamma_{\text {shell }}\right), y_{0} \in H^{1}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$

Shell model: Cosserat shell model with initial curvature

- shell in stress-free state is the curved manifold $y_{0}\left(\omega_{h}\right)$
- deformed configuration given through pair (m, Q)
- deformation function $m: \omega_{h} \rightarrow \mathbb{R}^{3}$, microrotation $Q: \omega_{h} \rightarrow \mathrm{SO}(3)$
- no normality assumptions, in-plane rotations

Shell model: Cosserat shell model with initial curvature

- shell in stress-free state is the curved manifold $y_{0}\left(\omega_{h}\right)$
- deformed configuration given through pair (m, Q)
- deformation function $m: \omega_{h} \rightarrow \mathbb{R}^{3}$, microrotation $Q: \omega_{h} \rightarrow \mathrm{SO}(3)$
- no normality assumptions, in-plane rotations

[N., Sander, Neff, Bîrsan. (2023). A geometrically nonlinear Cosserat shell model for orientable and non-orientable surfaces: Discretization with geometric finite elements. Submitted.]

Shell model: Cosserat shell model with initial curvature

- shell in stress-free state is the curved manifold $y_{0}\left(\omega_{h}\right)$
- deformed configuration given through pair (m, Q)
- deformation function $m: \omega_{h} \rightarrow \mathbb{R}^{3}$, microrotation $Q: \omega_{h} \rightarrow \mathrm{SO}(3)$
- no normality assumptions, in-plane rotations

Dirichlet nodes in pink.
[N., Sander, Neff, Bîrsan. (2023). A geometrically nonlinear Cosserat shell model for orientable and non-orientable surfaces: Discretization with geometric finite elements. Submitted.]

Combination of an elastic 3D-model and an elastic shell model

- mismatch of the stress-free states results in wrinkled configuration
- configuration: deformation and microrotation function pair (φ, Q)
- deformations $\varphi: \Omega \rightarrow \mathbb{R}^{3}$ and $m: \omega_{h} \rightarrow \mathbb{R}^{3}$
- microrotation $Q: \omega_{h} \rightarrow \mathrm{SO}(3)$

Combination of an elastic 3D-model and an elastic shell model

- wrinkled configuration (φ, Q) is a minimizer of the combined functional

$$
\begin{gathered}
J=J_{3 D}(\nabla \varphi)+J_{\text {shell }}(\nabla m, Q, \nabla Q) \quad \text { with } \varphi\left(\Gamma_{\text {shell }}\right)=m\left(\omega_{h}\right) \\
\text { on } A=\left\{(\varphi, Q) \in W^{1, q}\left(\Omega, \mathbb{R}^{3}\right) \times H^{1}\left(\omega_{h}, \mathrm{SO}(3)\right) \mid q>3, \varphi_{\left.\right|_{d}}=I d, \varphi_{\left.\right|_{\text {shell }}} \in H^{1}\right\}
\end{gathered}
$$

- existence of minimizing function pairs follows with the direct method

Discretization of the continuous model

- discretize Ω using an appropriate triangulation \mathcal{T}
- yields matching triangulation τ of ω_{h}
- Lagrange finite elements of order p_{1} for the deformation: $\varphi_{h} \in V_{p_{1}}\left(\mathcal{T}, \mathbb{R}^{3}\right)$
- rotation function Q maps to the nonlinear manifold SO(3) \rightarrow manifold-valued FE space $V_{p_{2}}(\tau, \mathrm{SO}(3)) \subset H^{1}(\tau, \mathrm{SO}(3))$
- generalize Lagrange interpolation to a nonlinear Riemannian manifold \mathcal{M}

Construction using geodesic distances

- for $T \in \tau$ consider Lagrange nodes a_{1}, \ldots, a_{m} and polynomials $\lambda_{1}, \ldots, \lambda_{m}: T \rightarrow \mathbb{R}$
- recall p-th order Lagrange polynomial interpolation of a function $f: T \rightarrow \mathbb{R}$

$$
f_{h}(\xi)=I_{p}^{\text {poly }}\left(f\left(a_{1}\right), \ldots, f\left(a_{m}\right), \xi\right):=\sum_{i=1}^{m} \lambda_{i}(\xi) f\left(a_{i}\right) \text { is equivalent to }
$$

$$
f_{h}(\xi)=\underset{x \in \mathbb{R}}{\arg \min } \sum_{i=1}^{m} \lambda_{i}(\xi)\left|f\left(a_{i}\right)-x\right|^{2}
$$

Construction using geodesic distances

- Lagrange interpolation

$$
f_{h}(\xi)=\underset{x \in \mathbb{R}}{\arg \min } \sum_{i=1}^{m} \lambda_{i}(\xi)\left|f\left(a_{i}\right)-x\right|^{2}
$$

Construction using geodesic distances

- Lagrange interpolation

$$
f_{h}(\xi)=\underset{x \in \mathbb{R}}{\arg \min } \sum_{i=1}^{m} \lambda_{i}(\xi)\left|f\left(a_{i}\right)-x\right|^{2}
$$

- define geodesic interpolation of $R: T \rightarrow \mathcal{M}$

$$
R_{h}(\xi)=I_{p}^{\text {geo }}\left(R\left(a_{1}\right), \ldots, R\left(a_{m}\right), \xi\right):=\underset{M \in \mathcal{M}}{\arg \min } \sum_{i=1}^{m} \lambda_{i}(\xi) \operatorname{dist}\left(R\left(a_{i}\right), M\right)^{2}
$$

Construction using geodesic distances

- define geodesic interpolation of $R: T \rightarrow \mathcal{M}$

$$
R_{h}(\xi)=I_{p}^{\text {geo }}\left(R\left(a_{1}\right), \ldots, R\left(a_{m}\right), \xi\right):=\underset{M \in \mathcal{M}}{\arg \min } \sum_{i=1}^{m} \lambda_{i}(\xi) \operatorname{dist}\left(R\left(a_{i}\right), M\right)^{2}
$$

Construction using geodesic distances

- define geodesic interpolation of $R: T \rightarrow \mathcal{M}$

$$
R_{h}(\xi)=I_{p}^{\text {geo }}\left(R\left(a_{1}\right), \ldots, R\left(a_{m}\right), \xi\right):=\underset{M \in \mathcal{M}}{\arg \min } \sum_{i=1}^{m} \lambda_{i}(\xi) \operatorname{dist}\left(R\left(a_{i}\right), M\right)^{2}
$$

- minimizer can be found by Newton-type method
- define global finite element space $V_{p}^{\text {geo }}(\tau, \mathcal{M})$ by demanding continuity on τ

Discrete minimization problem

Problem

Minimize

$$
J\left(\varphi_{h}, Q_{h}\right)=J_{3 D}\left(\nabla \varphi_{h}\right)+J_{\text {shell }}\left(\nabla m_{h}, Q_{h}, \nabla Q_{h}\right) \quad \text { with } \varphi\left(\Gamma_{\text {shell }}\right)=m_{h}\left(\omega_{h}\right)
$$

in the admissible set

$$
A_{h}=\left\{\left(\varphi_{h}, Q_{h}\right) \in V_{p_{1}}\left(\mathcal{T}, \mathbb{R}^{3}\right) \times V_{p_{2}}(\tau, \mathrm{SO}(3)) \mid\left(\varphi_{h}\right)_{\left.\right|_{d}}=I d\right\} .
$$

Theorem

The above minimization problem has a solution if f fulfills reasonable assumptions.
Proof: Direct method in the calculus of variations:

- J is bounded from below, weakly lower semi-continuous and coercive.
- The limit of a pointwise convergent function sequence in A_{h} is again in A_{h}.

Algebraic minimization problem

Problem

Minimize

$$
J\left(\vec{\varphi}_{h}, \vec{Q}_{h}\right)=J_{\text {MR }}\left(\vec{\varphi}_{h}\right)+J_{\text {shell }}\left(\vec{m}_{h}, \vec{Q}_{h}\right) \quad \text { with } \varphi_{h}\left(\Gamma_{\text {shell }}\right)=m_{h}\left(\omega_{h}\right)
$$

in the admissible set

$$
\vec{A}_{h}=\left\{\left(\vec{\varphi}_{h}, \vec{Q}_{h}\right) \text { coefficients for }\left(\varphi_{h}, Q_{h}\right) \mid\left(\varphi_{h}\right)_{\left.\right|_{d}}=I d\right\} .
$$

- $\vec{A}_{h} \subset \mathbb{R}^{3 N_{3 D}} \times(\mathrm{SO}(3))^{N_{2 D}}$
- $N_{3 D}$ and $N_{2 D}$: total number of degrees of freedom in triangulations \mathcal{T} and τ
- nonlinear, nonconvex minimization problem on $\mathbb{R}^{3 N_{3 D}} \times(\mathrm{SO}(3))^{N_{2 D}}$
- solve using Riemannian trust-region method
or Riemannian proximal Newton method

Riemannian trust-region method for $J: \mathcal{M} \rightarrow \mathbb{R}$
Given an iterate $M_{k} \in \mathcal{M}$, a retraction $R_{M_{k}}: T_{M_{k}} \mathcal{M} \rightarrow \mathcal{M}$ and a Trust-Region radius r_{k} :

1. approximate J around M_{k} using a quadratic model

$$
\begin{gathered}
q_{k}: T_{M_{k}} \mathcal{M} \rightarrow \mathbb{R} \\
q_{k}(s)=J\left(M_{k}\right)+\left\langle\operatorname{grad}_{M} J_{\mid M_{k}}, s\right\rangle+\frac{1}{2}\left\langle\operatorname{Hess}_{M} J_{\mid M_{k}} \cdot s, s\right\rangle \\
\text { where } \operatorname{grad}_{M} \in T_{M} \mathcal{M} \text { and } \operatorname{Hess}_{M} \cdot s \in T_{M} \mathcal{M}
\end{gathered}
$$

2. minimize q_{k} inside the trust region

$$
\begin{gathered}
s_{k}=\underset{s \in T_{M_{k}} \mathcal{M},\|s\| \leq r_{k}}{\arg \min } q_{k}(s) \\
\text { i.e. solve } \quad \operatorname{Hess}_{M} J_{\mid M_{k}} s_{k}=-\operatorname{grad}_{M} J_{\left.\right|_{M_{k}}},\|s\| \leq r_{k}
\end{gathered}
$$

3. if $J\left(R_{M_{k}}\left(s_{k}\right)\right) \geq J\left(M_{k}\right)$ or q_{k} approximates J badly: decrease r_{k} and repeat step if $J\left(R_{M_{k}}\left(s_{k}\right)\right)<J\left(M_{k}\right)$ and q_{k} approximates J well: set $M_{k+1}=R_{M_{k}}\left(s_{k}\right)$, increase r_{k} according to quality of q_{k}
4. return M_{k+1} once $\left\|s_{k}\right\|<$ tol
[Absil, Mahony, \& Sepulchre. (2008). Optimization Algorithms on Matrix Manifolds. Princeton, New Jersey.]

Riemannian Proximal Newton method for $J: \mathcal{M} \rightarrow \mathbb{R}$
Given $M_{k} \in \mathcal{M}$, retraction $R_{M_{k}}: T_{M_{k}} \mathcal{M} \rightarrow \mathcal{M}$ and a regularization parameter p_{k} :

1. approximate J around M_{k} using a quadratic model

$$
\begin{aligned}
& \qquad q_{k}: T_{M_{k}} \mathcal{M} \rightarrow \mathbb{R} \\
& q_{k}(s)=J\left(M_{k}\right)+\left\langle\operatorname{grad}_{M} J_{\left.\right|_{m_{k}}}, s\right\rangle+\frac{1}{2}\left\langle\left[\operatorname{Hess}_{M} J_{M_{k}}+p_{k} \cdot \mid d\right][s], s\right\rangle \\
& \text { where } \operatorname{grad}_{M} \in T_{M} \mathcal{M} \text { and } \operatorname{Hess}_{M}[s] \in T_{M} \mathcal{M}, \\
& p_{k} \text { such that }\left[\operatorname{Hess}_{M} J_{M_{k}}+p_{k} \cdot \mid d\right] \text { is positive definite } \\
& \text { 2. minimize } q_{k} \quad s_{k}=\underset{s \in T_{M_{k}} \mathcal{M}}{\arg \min } q_{k}(s)
\end{aligned}
$$

i.e. solve

$$
\left[\operatorname{Hess}_{M} J_{M_{k}}^{s \in M_{k} \cdot p_{k} \cdot l d}\right] s_{k}=-\operatorname{grad}_{M} J_{M_{k}}
$$

3. if $J\left(R_{M_{k}}\left(s_{k}\right)\right) \geq J\left(M_{k}\right)$ or q_{k} approximates J badly: increase p_{k} and repeat step if $J\left(R_{M_{k}}\left(s_{k}\right)\right)<J\left(M_{k}\right)$ and q_{k} approximates J well: set $M_{k+1}=R_{M_{k}}\left(s_{k}\right)$, decrease p_{k} according to quality of q_{k}
4. return M_{k+1} once $\left\|s_{k}\right\|<$ tol
[Huang \& Wei. (2019). Riemannian proximal gradient methods. Mathematical Programming, Springer, Issue 194.] [N. Formation of wrinkles in bi-layer systems. Dissertation.]

Algebraic minimization problem

Problem

Minimize

$$
J\left(\vec{\varphi}_{h}, \vec{Q}_{h}\right)=J_{3 D}\left(\vec{\varphi}_{h}\right)+J_{\text {shell }}\left(\vec{m}_{h}, \vec{Q}\right) \quad \text { with } \vec{\varphi}_{h}\left(\Gamma_{\text {shell }}\right)=\vec{m}_{h}\left(\omega_{h}\right)
$$

in the admissible set $\overrightarrow{A_{h}} \subset \mathbb{R}^{3 N_{3 D}} \times(\mathrm{SO}(3))^{N_{2 D}}$.
One iteration:

1. Setup the problem: $\operatorname{At}\left(\vec{\varphi}_{h}, \vec{Q}_{h}\right)_{k}$, calculate (analytic or automatic differentiation)

$$
\operatorname{grad}_{\text {coefficients }} J\left(\vec{\varphi}_{h}, \vec{Q}_{h}\right)_{k}, \quad \text { Hess coefficients } J\left(\vec{\varphi}_{h}, \vec{Q}_{h}\right)_{k}
$$

2. Solve the inner, constrained or modified problem
\rightarrow both methods: global convergence, superlinear local convergence
\rightarrow depends on the problem and the infrastructure, which method is better
\rightarrow both methods might even find different local minima

Simulations: Wavelength transitions

- all simulations using the Dune libraries
- 79.578 second-order nodes in \mathcal{T}
- 9.801 second-order nodes in τ

[Knapp, N., Nitschke, Sander, Fery. (2021). Controlling line defects in wrinkling: a pathway towards hierarchical wrinkling structures. Soft Matter, Issue 17.]
[Youett. (2015). Dynamic large deformation contact problems and applications in virtual medicine.]

Simulations: Wavelength transitions

- problem setup on 24 tasks, Intel(R) Xeon(R) CPU E5-2680, 2.50 GHz, 2.67 GB RAM
- trust-region: monotone multigrid method for constrained inner problems
- proximal Newton: CHOLMOD direct solver for modified inner problems

	steps	total time	setup	solve
trust-region	56	24.35 h	10.37 h	12.61 h
proximal Newton	120	40.4 h	38.4 h	1.39 h

[Knapp, N., Nitschke, Sander, Fery. (2021). Controlling line defects in wrinkling: a pathway towards hierarchical wrinkling structures. Soft Matter, Issue 17.]
[Youett. (2015). Dynamic large deformation contact problems and applications in virtual medicine.]

Simulations: Tri-layer system of polymer + Gold/polymer + Gold

- goal: create stretchable, flexible conductors
- apply gold layer of different thicknesses on top of a polymer base
- 132.718 second-order nodes in \mathcal{T}
- problem setup parallel on 24 tasks

[Chae, Choi, N., Cho, Besford, Knapp, Masushko, Zabila, Pylypovskyi, Avdoshenko, Sander, Makarov, Fery. (2022).
Three-dimensional complex of reticular metal-elastomer nanophases. Submitted.]

Summary

- combination of an elastic material model and a Cosserat shell model
- discretization using suitable finite elements
- geodesic FEs: construction using geodesic distances
- Riemannian trust-region method or Riemannian proximal Newton method

A: Properties of $V^{\text {proj/geo }}(\mathcal{T})$: Complete subset of $H^{1}(\omega, \mathcal{M})$

Theorem

Let \mathcal{M} be a complete metric space, and let $\left(R_{k}\right)$ be a sequence of geodesic finite element functions with $R_{k}: T \rightarrow \mathcal{M}$ for all $k \in \mathbb{N}$, converging pointwise to some limit function $R: T \rightarrow \mathcal{M}$. Then the limit function is also a geodesic finite element function.

A: Properties of $V^{\text {proj/geo }}(\mathcal{T})$: Complete subset of $H^{1}(\omega, \mathcal{M})$

Theorem

Let \mathcal{M} be a complete metric space, and let $\left(R_{k}\right)$ be a sequence of geodesic finite element functions with $R_{k}: T \rightarrow \mathcal{M}$ for all $k \in \mathbb{N}$, converging pointwise to some limit function $R: T \rightarrow \mathcal{M}$. Then the limit function is also a geodesic finite element function.

Proof.

- suppose the limit function R^{*} is not a minimizer of the form

$$
\underset{R \in \operatorname{SO}(3)}{\arg \min } \sum_{i=1}^{m} \lambda_{i}(v) \operatorname{dist}\left(Q\left(a_{i}\right), R\right)^{2}
$$

- then there is another minimizer \tilde{R}
- take a fraction of the difference $e=R^{*}-\tilde{R}$
- with this we can create a contradiction

B: The Cosserat shell model

$$
J_{\text {shell }}(m, Q)=\int_{\omega_{h}} W_{\text {shell }}\left(E^{e}, K^{e}\right) \cdot a\left(x_{1}, x_{2}\right) \mathrm{d} x
$$

- the only shell model where one can rigorously prove existence of solutions
- deduced from a 3D-Cosserat model
- approximation of the thin 3D-material using the midsurface
- stress-free state of the shell is the curved manifold $y_{0}\left(\omega_{h}\right)$

B: The Cosserat shell model

$$
J_{\text {shell }}(m, Q)=\int_{\omega_{h}} W_{\text {shell }}\left(E^{e}, K^{e}\right) \cdot a\left(x_{1}, x_{2}\right) \mathrm{d} x
$$

- co- and contravariant base vectors $a_{1}=\frac{\partial y_{0}}{\partial x_{1}}, a_{2}=\frac{\partial y_{0}}{\partial x_{2}}, a^{1}, a^{2}$
- first fundamental tensor $\mathbf{a}=\sum_{\alpha=1}^{2} a_{\alpha} \otimes a^{\alpha}$
- elastic shell strain tensor

$$
E^{e}: \omega_{h} \rightarrow \mathbb{R}^{3 \times 3}, \quad E^{e}:=\sum_{\alpha=1}^{2} Q^{T}\left(\frac{\partial m}{\partial x_{\alpha}}\right) \otimes a^{\alpha}-\mathbf{a}
$$

- elastic shell bending-curvature tensor

$$
K^{e}: \omega_{h} \rightarrow \mathbb{R}^{3 \times 3}, \quad K^{e}:=\sum_{\alpha=1}^{2} \operatorname{axl}\left(Q^{T} \frac{\partial Q}{\partial x_{\alpha}}\right) \otimes a^{\alpha}
$$

B: The Cosserat shell model

$$
J_{\text {shell }}(m, Q)=\int_{\omega_{h}} W_{\text {shell }}\left(E^{e}, K^{e}\right) \cdot a\left(x_{1}, x_{2}\right) \mathrm{d} x
$$

- co- and contravariant base vectors $a_{1}=\frac{\partial y_{0}}{\partial x_{1}}, a_{2}=\frac{\partial y_{0}}{\partial x_{2}}, a^{1}, a^{2}$
- first fundamental tensor $\mathbf{a}=\sum_{\alpha=1}^{2} a_{\alpha} \otimes a^{\alpha}$
- elastic shell strain tensor, there is a coordinate system in which

$$
E^{e} \approx\left(\begin{array}{ccc}
\epsilon_{11} & \epsilon_{12} & 0 \\
\epsilon_{21} & \epsilon_{22} & 0 \\
0 & 0 & 0
\end{array}\right), \quad \epsilon_{11}, \epsilon_{22}
$$

- elastic shell bending-curvature tensor, there is a coordinate system in which

$$
K^{e} \approx\left(\begin{array}{ccc}
\kappa_{11} & \kappa_{12} & 0 \\
\kappa_{21} & \kappa_{22} & 0 \\
0
\end{array}\right), \quad \kappa_{11}, \kappa_{22}, \kappa_{12}, \kappa_{21}
$$

B: The Cosserat shell model

$$
\begin{aligned}
& J_{\text {shell }}(m, Q)=\int_{\omega_{h}}\left(W_{\text {memb }}\left(E^{e}, K^{e}\right)+W_{\text {bend }}\left(K^{e}\right)\right) \cdot a\left(x_{1}, x_{2}\right) \mathrm{d} x \\
& W_{\text {memb }}\left(\boldsymbol{E}^{e}, \boldsymbol{K}^{e}\right):=\left(h-K \frac{h^{3}}{12}\right) W_{\mathrm{m}}\left(\boldsymbol{E}^{e}\right)+\left(\frac{h^{3}}{12}-K \frac{h^{5}}{80}\right) W_{\mathrm{m}}\left(\boldsymbol{E}^{e} \mathbf{b}+\mathbf{c} \boldsymbol{K}^{\boldsymbol{e}}\right) \\
&+\frac{h^{3}}{6} W_{\mathrm{b}}\left(\boldsymbol{E}^{e}, \mathbf{c} \boldsymbol{K}^{e} \mathbf{b}-2 H \mathbf{c} \boldsymbol{K}^{e}\right)+\frac{h^{5}}{80} W_{\mathrm{mp}}\left(\left(\boldsymbol{E}^{e} \mathbf{b}+\mathbf{c} K^{e}\right) \mathbf{b}\right) \\
& W_{\text {bend }}\left(\boldsymbol{K}^{e}\right):=\left(h-K \frac{h^{3}}{12}\right) W_{\text {curv }}\left(\boldsymbol{K}^{e}\right)+\left(\frac{h^{3}}{12}-K \frac{h^{5}}{80}\right) W_{\text {curv }}\left(\boldsymbol{K}^{e} \mathbf{b}\right)+\frac{h^{5}}{80} W_{\text {curv }}\left(\boldsymbol{K}^{e} \mathbf{b}^{2}\right)
\end{aligned}
$$

- $W_{\mathrm{m}}, W_{\mathrm{mp}}, W_{\text {curv }}$ quadratic forms bounding the norms of their arguments
- W_{b} bilinear form, can be absorbed into $W_{\mathrm{m}}, W_{\mathrm{mp}}, W_{\text {curv }}$
- $\mathbf{b}=-\sum_{\alpha} \frac{\partial n_{0}}{\partial x_{\alpha}} \otimes a^{\alpha}$ second fundamental tensor, \mathbf{c} alternating pseudo-tensor
- K, H are Gauss and mean curvature of ω_{h}
- h is the shell thickness, if h is small enough, all prefactors are positive

B: The Cosserat shell model

$$
\begin{aligned}
& J_{\text {shell }}(m, Q)=\int_{\omega_{h}}\left(W_{\text {memb }}\left(E^{e}, K^{e}\right)+W_{\text {bend }}\left(K^{e}\right)\right) \cdot a\left(x_{1}, x_{2}\right) \mathrm{d} x \\
& W_{\text {memb }}\left(\boldsymbol{E}^{e}, \boldsymbol{K}^{e}\right):=\left(h-K K^{\frac{h^{3}}{12}}\right) W_{\mathrm{m}}\left(\boldsymbol{E}^{e}\right)+\left(\frac{h^{3}}{12}-K \frac{h^{5}}{80}\right) W_{\mathrm{m}}\left(\boldsymbol{E}^{e} \mathbf{b}+\mathbf{c} \boldsymbol{K}^{e}\right) \\
&+\frac{h^{3}}{6} W_{\mathrm{b}}\left(\boldsymbol{E}^{e}, \mathbf{c} \boldsymbol{K}^{e} \mathbf{b}-2 H \mathbf{c} \boldsymbol{K}^{e}\right)+\frac{h^{5}}{80} W_{\mathrm{mp}}\left(\left(\boldsymbol{E}^{e} \mathbf{b}+\mathbf{c} \boldsymbol{K}^{e}\right) \mathbf{b}\right) \\
& W_{\text {bend }}\left(\boldsymbol{K}^{e}\right):=\left(h-K \frac{h^{3}}{12}\right) W_{\text {curv }}\left(\boldsymbol{K}^{e}\right)+\left(\frac{h^{3}}{12}-K \frac{h^{5}}{80}\right) W_{\text {curv }}\left(\boldsymbol{K}^{e} \mathbf{b}\right)+\frac{h^{5}}{80} W_{\text {curv }}\left(\boldsymbol{K}^{e} \mathbf{b}^{2}\right)
\end{aligned}
$$

Theorem ($J_{\text {shell }}$)

If h is small enough, the parametrization y_{0} is smooth enough and $m_{\left.\right|_{\gamma_{d}}}=I d$, then

- Jshell is coercive.
- Jshell is bounded from below on A.
- $J_{\text {shell }}$ is $H^{1}\left(\omega_{h}, \mathbb{R}^{3}\right) \times H^{1}\left(\omega_{h}, \mathrm{SO}(3)\right)$-weakly lower semi-continuous.
[Ghiba, Birsan, Lewintan \& Neff. (2020). The isotropic Cosserat shell model including terms up to $O\left(h^{5}\right)$. Part II: Existence of minimizers. J Elast 142.]

B: The Cosserat shell functional in detail

Bilinear and quadratic forms:

- $W_{\mathrm{b}}(S, T)=\mu\langle\operatorname{sym}(S), \operatorname{sym}(T)\rangle+\mu_{c}\langle\operatorname{skew}(S), \operatorname{skew}(T)\rangle+\frac{\lambda \mu}{\lambda+2 \mu} \operatorname{tr}(S) \cdot \operatorname{tr}(T)$
- $W_{\mathrm{m}}(S)=W_{\mathrm{b}}(S, S)$
- $W_{\mathrm{mp}}(S)=W_{\mathrm{m}}(S)+\frac{\lambda^{2}}{2(\lambda+2 \mu)}[\operatorname{tr}(S)]^{2}$
- $W_{\text {curv }}(S)=\mu L_{c}^{2}\left(b_{1}\|\operatorname{sym}(S)\|^{2}+b_{2} \|\right.$ skew $\left.(S) \|^{2}+\left(b_{3}-\frac{b_{1}}{3}\right)[\operatorname{tr}(S)]^{2}\right)$
where
- μ, λ are the Lamé parameters
- $\mu_{c} \geq 0$ is the Cosserat couple modulus
- $L_{c}>0$ represents an internal length which is characteristic for the material
- $b_{1}, b_{2}, b_{3}>0$ are dimensionless constitutive coefficients
- c alternating pseudo-tensor, $\mathbf{c}:=\frac{1}{a\left(x_{1}, x_{2}\right)}\left(a_{1} \otimes a_{2}-a_{2} \otimes a_{1}\right): \omega_{\xi} \rightarrow \mathbb{R}^{3 \times 3}$.
- interesting/critical: $h \rightarrow 0, \mu_{c} \rightarrow 0, L_{c} \rightarrow 0$

C.1: General Trust-Region-Method in \mathbb{R}^{N}

- nonlinear minimization problem with a functional $J: \mathbb{R}^{N} \rightarrow \mathbb{R}$
- given a current iterate $x_{k} \in \mathbb{R}^{N}$: approximate J in a neighborhood around x_{k} using a model $m_{k}: \mathbb{R}^{N} \rightarrow \mathbb{R}$

$$
m_{k}(s)=J\left(x_{k}\right)+\partial J\left(x_{k}\right) \cdot s+\frac{1}{2} s^{T} \cdot \partial^{2} J\left(x_{k}\right) \cdot s
$$

C.2: General Trust-Region-Method in \mathbb{R}^{N}

One trust region step:

1. setup model m_{k} in a neighborhood r_{k} around x_{k}
2. solve quadratic constraint problem

$$
s_{k}=\underset{s \in \mathbb{R}^{N},| | s \|_{\infty} \leq r_{k}}{\operatorname{argmin}} m_{k}(s)
$$

in an inner iteration, might be non-convex
3. accept or decline the correction $s_{k}: \rho_{k}=\frac{J\left(x_{k}\right)-J\left(x_{k}+s_{k}\right)}{m_{k}(0)-m_{k}\left(s_{k}\right)}$
if : $\rho_{k} \ll 1$ or $J\left(x_{k}+s_{k}\right)>J\left(x_{k}\right)$
set $x_{k+1}=x_{k}$ and decrease radius, e.g. $r_{k+1}=\frac{1}{2} r_{k}$
else : set $x_{k+1}=x_{k}+s_{k}$
if : $\rho_{k} \gg 1$: increase radius, e.g. $r_{k+1}=2 r_{k}$
else : keep radius $r_{k+1}=r_{k}$

C.3: General Trust-Region-Algorithm in R^{N}

D: The space $H^{1}\left(\omega_{h}, \mathrm{SO}(3)\right)$

Defined as

$$
H^{1}\left(\omega_{h}, \mathrm{SO}(3)\right):=\left\{v \in H^{1}\left(\omega_{h}, \mathbb{R}^{3 \times 3}\right) \mid v(x) \in \iota(\mathrm{SO}(3)) \text { almost everywhere }\right\} .
$$

- using the canonical immersion ι of $\mathrm{SO}(3)$ into $\mathbb{R}^{3 \times 3}$
- $H^{1}\left(\omega_{h}, \mathrm{SO}(3)\right)$ is complete because it is a closed subset of $H^{1}\left(\omega_{h}, \mathbb{R}^{3 \times 3}\right)$.

E: Properties of geodesic FEs: Completeness

Theorem

Let \mathcal{M} be a complete metric space, and let $\left(R_{k}\right)$ be a sequence of geodesic finite element functions with $R_{k}: T \rightarrow \mathcal{M}$ for all $k \in \mathbb{N}$, converging pointwise to some limit function $R: T \rightarrow \mathcal{M}$. Then the limit function is also a geodesic finite element function.

Proof.

- suppose the limit function R^{*} is not a minimizer of the form

$$
\underset{R \in \operatorname{SO}(3)}{\arg \min } \sum_{i=1}^{m} \lambda_{i}(v) \operatorname{dist}\left(Q\left(a_{i}\right), R\right)^{2}
$$

- then there is another minimizer \tilde{R}
- take a fraction of the difference $e=R^{*}-\tilde{R}$
- with this we can create a contradiction

F: Projection-based construction

- for $T \in \tau$ consider Lagrange nodes a_{1}, \ldots, a_{m} and polynomials $\lambda_{1}, \ldots, \lambda_{m}: T \rightarrow \mathbb{R}$
- recall p-th order Lagrange polynomial interpolation of a function $f: T \rightarrow \mathbb{R}$

$$
f_{h}(\xi)=l_{p}^{\text {poly }}\left(f\left(a_{1}\right), \ldots, f\left(a_{m}\right), \xi\right):=\sum_{i=1}^{m} \lambda_{i}(\xi) f\left(a_{i}\right)
$$

- with the embedding $\iota: \mathcal{M} \rightarrow \mathbb{R}^{N}$ and the closest point projection $P: \mathbb{R}^{N} \rightarrow \mathcal{M}$

$$
R_{h}(\xi)=I_{p}^{\text {proj }}\left(R\left(a_{1}\right), \ldots, R\left(a_{m}\right), \xi\right):=\mathrm{P}\left(\sum_{i=1}^{m} \lambda_{i}(\xi) \cdot \iota\left(R\left(a_{i}\right)\right)\right)
$$

- evaluation of derivatives with chain rule

F: Projection-based construction for $\mathrm{SO}(3)$

$$
\mathrm{SO}(3):=\left\{Q \in \mathbb{R}^{3 \times 3} \mid Q^{T}=Q^{-1}, \operatorname{det}(Q)=1\right\}
$$

- group of rotations in 3D
- representation using the coefficients $\vec{q}=\left(q_{1}, q_{2}, q_{3}, q_{4}\right) \in \mathbb{R}^{4}$ of unit quaternions

$$
\mathbb{H}:=\left\{\mathbf{q}=q_{1}+q_{2} \hat{\mathbf{\imath}}+q_{3} \hat{\jmath}+q_{4} \hat{\mathbf{k}} \mid q_{i} \in \mathbb{R}, \hat{\mathbf{I}}^{2}=\hat{\mathbf{\jmath}}^{2}=\hat{\mathbf{k}}^{2}=\tilde{\mathbf{\jmath}} \hat{\mathbf{k}}=-1\right\}
$$

with $\|\mathbf{q}\|^{2}=q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}=1$

- unit quaternions are homeomorphic to the unit sphere S^{3}
- embedding

$$
\iota \mathrm{SO}(3) \rightarrow \mathbb{H}\left(\begin{array}{ccc}
q_{1}^{2}+q_{2}^{2}-q_{3}^{2}-q_{4}^{2} & 2 q_{2} q_{3}-2 q_{1} q_{4} & 2 q_{2} q_{4}+2 q_{1} q_{3} \\
2 q_{2} q_{3}+2 q_{1} q_{4} & q_{1}^{2}-q_{2}^{2}+q_{3}^{2}-q_{4}^{2} & 2 q_{3} q_{4}-2 q_{1} q_{2} \\
2 q_{2} q_{4}-2 q_{1} q_{3} & 2 q_{3} q_{4}+2 q_{1} q_{2} & q_{1}^{2}-q_{2}^{2}-q_{3}^{2}+q_{4}^{2}
\end{array}\right)=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)
$$

- $1: 2$ - correspondence, as \mathbf{q} and - \mathbf{q} result in same rotation
- multiplication of quaternions corresponds to the multiplication in SO(3)

F: Projection-based construction for $\mathrm{SO}(3)$

$$
\mathrm{SO}(3):=\left\{Q \in \mathbb{R}^{3 \times 3} \mid Q^{T}=Q^{-1}, \operatorname{det}(Q)=1\right\}
$$

- projection $P: \mathbb{R}^{3 \times 3} \rightarrow \mathrm{SO}(3), P(A)=\operatorname{polar}(A)$, evaluate using Heron's method

1. initial iterate: $X_{1}=A$
2. iterate:

$$
X_{i+1}=\frac{1}{2}\left(X_{i}+X_{i}^{-T}\right)
$$

3. when $\left\|X_{i+1}-X_{i}\right\|_{F}<$ tolerance: return $X_{i+1}=\operatorname{polar}(A)$

- derivative of projection ∇_{A} polar $(A) \in \mathbb{R}^{3 \times 3 \times 3 \times 3}$ iteratively as well

F: Projection-based construction for $\mathrm{SO}(3)$

$$
\mathrm{SO}(3):=\left\{Q \in \mathbb{R}^{3 \times 3} \mid Q^{T}=Q^{-1}, \operatorname{det}(Q)=1\right\}
$$

- projection $P: \mathbb{R}^{3 \times 3} \rightarrow \mathrm{SO}(3), P(A)=\operatorname{polar}(A)$, evaluate using Heron's method

1. initial iterates: $X_{1}=A,(\nabla X)_{1}=1_{3 \times 3 \times 3 \times 3}$, with
2. iterate:

$$
\begin{gathered}
X_{i+1}=\frac{1}{2}\left(X_{i}+X_{i}^{-T}\right) \\
(\nabla X)_{i+1}=\frac{1}{2}\left((\nabla X)_{i}-X_{i}^{-T}\left(\nabla X^{T}\right)_{i} X_{i}^{-T}\right)
\end{gathered}
$$

3. when $\left\|X_{i+1}-X_{i}\right\|_{F}<$ tolerance: return $X_{i+1}=\operatorname{polar}(A),(\nabla X)_{i+1}=\nabla_{A} \operatorname{polar}(A)$

- derivative of projection ∇_{A} polar $(A) \in \mathbb{R}^{3 \times 3 \times 3 \times 3}$ iteratively as well

F: Projection-based construction for $\mathrm{SO}(3)$ with quaternions

- evaluation of the function

$$
q_{h}(\xi)=\iota_{\mathrm{SO}(3) \rightarrow \mathbb{H}}\left(\operatorname{polar}\left(\sum_{i=1}^{m} \lambda_{i}(\xi) \cdot R\left(a_{i}\right)\right)\right)
$$

- evaluation of the derivative

$$
\frac{\partial}{\partial \vec{x}}\left(q_{h}\right)_{\mid \xi}=\underbrace{\nabla \iota_{\mathrm{SO}(3) \rightarrow \mathbb{H}}\left(R\left(a_{i}\right)\right)}_{\in \mathbb{R}^{4 \times(3 \times 3)}} \cdot \underbrace{\nabla_{A} \operatorname{polar}\left(\sum_{i=1}^{m} \lambda_{i}(\xi) \cdot R\left(a_{i}\right)\right)}_{\in \mathbb{R}^{3 \times 3 \times 3 \times 3}} \cdot \underbrace{\left(\sum_{i=1}^{m} \frac{\partial}{\partial \vec{x}} \lambda_{i}(\xi) \cdot R\left(a_{i}\right)\right)}_{\in \mathbb{R}^{(3 \times 3) \times \operatorname{dim}(T)}}
$$

G: Geodesic distances for $\mathrm{SO}(3)$

- intrinsic distance $\operatorname{dist}_{\mathrm{SO}(3)}(A, B)=\left\|\log \left(A^{\top} B\right)\right\|_{F}$, with matrix logarithm
- using quaternions: distance of two rotations \mathbf{q} and \mathbf{p} is

$$
\operatorname{dist}_{\mathrm{SO}(3)}(\mathbf{q}, \mathbf{p})=\left\{\begin{array}{lll}
2 \operatorname{acos}(\langle\vec{a}, \vec{p}\rangle), & \text { if } & 0 \leq 2 \operatorname{acos}(\langle\vec{q}, \vec{p}\rangle) \leq \pi \\
2 \pi-2 \operatorname{acos}(\langle\vec{q}, \vec{p}\rangle), & \text { if } & \pi<2 \operatorname{acos}(\langle\vec{q}, \vec{p}\rangle) \leq 2 \pi
\end{array}\right.
$$

- maximal distance is π, realized for $\langle\vec{q}, \vec{p}\rangle=0$, i.e. rotations that are " 180° apart"
- covariant derivatives, with $\mathrm{P}_{T_{\vec{p}} \mathrm{SO}(3)}:=$ projection to $T_{\vec{p}} \mathrm{SO}(3)$

$$
\frac{\partial}{\partial \vec{p}} \operatorname{dist}_{\mathrm{SO}(3)}(\mathbf{q}, \mathbf{p})^{2}=\mathrm{P}_{T_{\vec{p}} \mathrm{SO}(3)}\left(\frac{\mp 8 \operatorname{acos}(\langle\vec{q}, \overrightarrow{,}\rangle)}{\sqrt{1-(\langle\vec{q}, \vec{p}\rangle)^{2}}} \cdot \vec{q}\right)=\frac{\mp 8 \operatorname{acos}(\langle\vec{q}, \vec{p}\rangle)}{\sqrt{1-(\langle\vec{q}, \vec{p}\rangle)^{2}}} \cdot(\vec{q}-\langle\vec{q}, \vec{p}\rangle \vec{p}) \in T_{\vec{p}} \mathrm{SO}(3)
$$

- second covariant derivative $\left(\frac{\partial}{\partial \stackrel{\rightharpoonup}{p}}\right)^{2} \operatorname{dist}_{\mathrm{SO}(3)}(\mathbf{q}, \mathbf{p})^{2} \in \mathbb{R}^{4 \times 4}$

G: Geodesic distances for $\mathrm{SO}(3)$

- intrinsic distance $\operatorname{dist}_{\mathrm{SO}(3)}(A, B)=\left\|\log \left(A^{T} B\right)\right\|_{F}$, with matrix logarithm
- using quaternions: distance of two rotations \mathbf{q} and \mathbf{p} is

$$
\operatorname{dist}_{\mathrm{SO}(3)}(\mathbf{q}, \mathbf{p})=\left\{\begin{array}{lll}
2 \operatorname{acos}(\langle\vec{q}, \vec{p}\rangle), & \text { if } \quad 0 \leq 2 \operatorname{acos}(\langle\vec{q}, \vec{p}\rangle) \leq \pi \\
2 \pi-2 \operatorname{acos}(\langle\vec{q}, \vec{p}\rangle), & \text { if } \pi<2 \operatorname{acos}(\langle\vec{q}, \vec{p}\rangle) \leq 2 \pi
\end{array}\right.
$$

- maximal distance is π, realized for $\langle\vec{q}, \vec{p}\rangle=0$, i.e. rotations that are " 180° apart"
- retraction $=$ exponential map on S^{3}
- for $v \in T_{\mathbf{q}} S^{3}$, given as \vec{v} in quaternion coordinates

$$
R_{\mathbf{q}} v=\operatorname{Exp}_{\mathbf{q}} v=\cos (\|\vec{v}\|) \vec{q}+\sin (\|\vec{v}\|) \frac{\vec{v}}{\|\vec{v}\|}
$$

