

Lisa Julia Nebel

Numerical treatment of a geometrically nonlinear Cosserat shell model with nonplanar stress-free configuration

Dresden - SPAM Seminar, January 28, 2021

Shell models

- Goal: Model the deformation of thin bodies under load
- Approach: Use physically reasonable assumptions to reduce a 3D-model to a 2D-model consisting of a midsurface with thickness h > 0
- Assumptions of the Cosserat shell model:
 - thickness does not change during deformation
 - straight lines normal to the midsurface remain straight (but not necessarily normal) after deformation
 - complete behavior under load is modeled using a deformation function together with independent local microrotations

Numerical treatment of a geometrically nonlinear Coserat shell model with nonplanar stress-free configuration TU Dresden - Institut für Numerische Mathematik // Lisa Julia Nebel Dresden - SPAM Seminar, January 28, 2021

The Cosserat shell model with nonplanar stress-free configuration *

- stress-free configuration $\omega_{\xi} \subset \mathbb{R}^3$
- deformed surface $\omega_c \subset \mathbb{R}^3$
- deformation function of the midsurface $\varphi_{\xi} : \omega_{\xi} \to \omega_{c}$, so $\omega_{c} := \varphi_{\xi}(\omega_{\xi})$
- microrotation R_{ξ} : $\omega_{\xi} \rightarrow SO(3)$, $R_{\xi}(\xi) = (d_1|d_2|d_3)$

*[Bîrsan, Ghiba, Martin & Neff. (2019). Refined dimensional reduction for isotropic elastic Cosserat shells with initial curvature.]

The Cosserat shell model with nonplanar stress-free configuration

• map a planar reference configuration ω to ω_{ξ}

$$y_0:\omega\subset\mathbb{R}^2 o\mathbb{R}^3$$
 , so $y_0(\omega)=\omega_\xi$ and $\omega_c=arphi_\xi\circ y_0(\omega)$

- initial microrotation: $Q_0(x_1, x_2) := \text{polar}(\nabla y_0 \mid \mathbf{n_0})$, $\mathbf{n_0}$ is the normal vector to ω_{ξ} $Q_0 = (d_1^0 \mid d_2^0 \mid d_3^0) \in SO(3), d_i^0$ are all orthonormal to each other and $\mathbf{n_0} = d_3^0$
- total shell deformation $m(x_1, x_2) := \varphi_{\xi} \circ y_0(x_1, x_2) : \omega \to \omega_c$
- microrotation of the shell $Q_e(x_1, x_2) := R_{\xi} \circ y_0(x_1, x_2) : \omega \to SO(3)$

Numerical treatment of a geometrically nonlinear Cosserat shell model with nonplanar stress-free configuration TU Dresden - Institut für Numerische Mathematik // Lisa Julia Nebel Dresden - SPAM Seminar, January 28, 2021

Slide 4 of 16

Terms from differential geometry

The domain ω_{ξ} is a manifold parametrized by y_0 , so for each $\xi \in \omega_{\xi}$ we have:

- covariant base vectors of the tangent plane to ω_{ξ} at a point :

$$a_1 := \frac{\partial y_0}{\partial x_1}, \ a_2 := \frac{\partial y_0}{\partial x_2}$$

and their contravariant counterparts: a^1 , a^2

• surface gradient for a vector field **f**

$$\mathsf{Grad}_{s} \mathbf{f} \mathrel{\mathop:}= \sum_{\alpha=1,2} \frac{\partial}{\partial x_{\alpha}} \mathbf{f} \otimes \boldsymbol{a}^{\alpha}$$

• the first and second fundamental tensor and the alternator tensor

$$\mathbf{a} := \sum_{\alpha = 1,2} \mathbf{a}_{\alpha} \otimes \mathbf{a}^{\alpha}, \qquad \mathbf{b} := -\operatorname{Grad}_{s} \mathbf{n}_{0}, \qquad \mathbf{c} := -\mathbf{n}_{0} \times \mathbf{a}$$

- Gauss and mean curvature $K := \kappa_1 \cdot \kappa_2$, $H := \frac{\kappa_1 + \kappa_2}{2}$, where κ_1 and κ_2 are the maximal and the minimal curvature
- surface element $a(x_1, x_2) = \sqrt{\det\left((\nabla y_0)^T \nabla y_0\right)}$

Strain and curvature measures

• shell strain tensor, measures displacement from stress-free state:

$$E^e := Q_e^T \operatorname{Grad}_s m - \mathbf{a} \in \mathbb{R}^{3 \times 3}$$

as $h \ll 1$, "no" strain in thickness direction, so we can find a coordinate system

where
$$E^e \approx \begin{pmatrix} \epsilon_{11} & \epsilon_{12} & 0\\ \epsilon_{21} & \epsilon_{22} & 0\\ 0 & 0 & 0 \end{pmatrix}$$
 with $\epsilon_{11}, \epsilon_{22}$ $\epsilon_{12}, \epsilon_{21}$

• shell bending-curvature tensor, measures how much the mid-suface bends away from the mid-surface in stress-free state:

$$\mathcal{K}^{e} := \sum_{\alpha=1,2} Q_{e}^{T} \Big(\mathsf{axl} \left(\frac{\partial Q_{e}}{\partial x_{\alpha}} Q_{e}^{T} \right) \Big) \otimes \boldsymbol{a}^{\alpha} \in \mathbb{R}^{3 \times 3 *}$$

again
$$\mathcal{K}^e \approx \begin{pmatrix} \kappa_{11} & \kappa_{12} & 0\\ \kappa_{21} & \kappa_{22} & 0\\ 0 & 0 & 0 \end{pmatrix}$$
, with κ_{11}, κ_{22}
*For $Q \in \mathbb{R}^{3 \times 3}$ skew-symmetric: $ax|(Q) = Q_{23}e_1 + Q_{21}e_2 + Q_{12}e_3 \in \mathbb{R}^3$

Resulting minimization problem

- external loads result in the potential $\overline{\Pi}(m, Q_e)$
- Dirichlet boundary conditions on $\gamma_d \subset \partial \omega$ given by $m_{|\gamma_d} = g_d \in H^1(\omega, \mathbb{R}^3)$
- Assumption: the shell consists of an hyperelastic material, so there is an energy density function for the shell
- deformation and microrotation (*m*, *Q_e*) minimize the total energy functional for shells:

$$I(m, Q_e) = \int_{\omega} \left[W_{\text{memb}}(E^e, K^e) + W_{\text{bend}}(K^e) \right] a(x_1, x_2) dx_1 dx_2 - \overline{\Pi}(m, Q_e)$$

Resulting minimization problem

The total energy functional for shells

 $I(m, Q_e) = \int_{\omega} \left[W_{\text{memb}}(E^e, K^e) + W_{\text{bend}}(K^e) \right] a(x_1, x_2) dx_1 dx_2 - \overline{\Pi}(m, Q_e)$

- consists of:
- the membrane part

$$W_{\text{memb}}(E^e, \mathcal{K}^e) = \left(h - \mathcal{K}\frac{h^3}{12}\right) W_m(E^e) + \left(\frac{h^3}{12} - \mathcal{K}\frac{h^5}{80}\right) W_m(E^e \mathbf{b} + \mathbf{c}\mathcal{K}^e)$$
$$+ \frac{h^3}{6} W_m(E^e, \mathbf{c}\mathcal{K}^e \mathbf{b} - 2H\mathbf{c}\mathcal{K}^e) + \frac{h^5}{80} W_{mp}((E^e \mathbf{b} + \mathbf{c}\mathcal{K}^e)\mathbf{b})$$

• the bending-curvature part

$$W_{\text{bend}}(\mathcal{K}^{e}) = \left(h - \mathcal{K}\frac{h^{3}}{12}\right)W_{\text{curv}}(\mathcal{K}^{e}) + \left(\frac{h^{3}}{12} - \mathcal{K}\frac{h^{5}}{80}\right)W_{\text{curv}}(\mathcal{K}^{e}\mathbf{b}) + \frac{h^{5}}{80}W_{\text{curv}}(\mathcal{K}^{e}\mathbf{b}^{2})$$

- with the bilinear forms W_m , W_{mp} and W_{curv}
- the thickness h > 0, the tensors a, b, c, the Gauss curvature K, the mean curvature H, and the surface element a(x1, x2) as defined before

Resulting minimization problem: Existence of minimizers

Goal: Find (m, Q_e) minimizing the total energy functional for shells in the admissible set $\mathcal{A} = \left\{ (m, Q_e) \in H^1(\omega, \mathbb{R}^3 \times SO(3)) \mid m_{|_{\gamma_d}} = g_d \right\}$:

Theorem (Existence of minimizers*)

The minimization problem admits at least one solution pair $(m, Q_e) \in \mathcal{A}$ if:

- $h \ll 1$ is small enough such that $\left(h K\frac{h^3}{12}\right) > 0$ and $\left(\frac{h^3}{12} K\frac{h^5}{80}\right) > 0$ and therefore $W_{memb}(E^e, K^e)$ and $W_{bend}(K^e)$ are uniformly convex
- the potential $\overline{\Pi}(m, Q_e)$ is weakly lower semi-continuous and bounded
- the boundary data satisfies $g_d \in H^1(\omega, \mathbb{R}^3)$
- *y*₀ *fulfills the requirements in* (*)

Proof: The direct method of variations.

*[Ghiba, Bîrsan, Lewintan & Neff (2020). The isotropic Cosserat shell model including terms up to O(h⁵). Part II: Existence of Mimimizers.]

Numerical treatment: Discretization

- discretize ω_{ξ} using an appropriate triangulation \mathcal{T} : ω_h
- using the theory from above: transform each triangle $\tau \in \mathcal{T}$ to a reference triangle:

$$\int_{\tau} \dots d\tau \text{ to } \int_{T} \dots a(x_1, x_2) dx_1 dx_2$$

- deformation *m*: Lagrangian finite elements of order p_1 : $V_{p_1,h}(\omega_h, \mathbb{R}^3)$
- microrotation Q_e : Geodesic Finite Elements (*) of order p_2 : $V_{p_2,h}(\omega, SO(3))$
- discrete function space $S_h := V_{p_1,h}(\omega_h, \mathbb{R}^3) \times V_{p_2,h}(\omega_h, SO(3))$
- *H*¹-conforming discretization:

$$(\varphi_h, R_h) \in \mathcal{S}_h \subset H^1(\omega_h, \mathbb{R}^3 \times \mathsf{SO}(3))$$

*[Sander, Neff & Bîrsan (2016). Numerical treatment of a geometrically nonlinear planar Cosserat shell model.]

Numerical treatment: Algebraic formulation

• algebraic formulation of the continuous minimization problem is

$$I(m_h, (Q_e)_h) = \int_{\omega_h} \left[W_{\text{memb}}(E_h^e, K_h^e) + W_{\text{bend}}(K_h^e) \right] d\omega_h - \overline{\Pi}(m_h, (Q_e)_h)$$

 $(m_h, (Q_e)_h) \in \mathcal{S}_h: \ I(m_h, Q_{eh}) \leq J(v, U) \quad \forall (v, U) \in \mathcal{S}_h$

- $(m_h, (Q_e)_h)$ given using values in the Riemannian manifold $\mathbb{R}^{3N} \times SO(3)^M$, N, M = degrees of freedom in $V_{p_1,h}(\omega, \mathbb{R}^3)$ and $V_{p_2,h}(\omega_h, SO(3))$
- solve using a Riemannian Trust-Region-Algorithm* with a direct solver for the constraint inner problems
- existence of minimizers can also be shown using the direct method of variations

* [Absil, Mahony, & Sepulchre. (2008). Optimization Algorithms on Matrix Manifolds . Princeton, New Jersey: Princeton University Press.

Slide 11 of 16

Numerical treatment: Experiments

- discretize ω_{ξ} using an appropriate triangulation \mathcal{T} : ω_h
- the moebius strip here is not homeomorphic to a flat domain in \mathbb{R}^2 !
- use dune-curvedgeometry for a better approximation of the geometry

Numerical treatment of a geometrically nonlinear Cosserat shell model with nonplanar stress-free configuration TU Dresden - Institut für Numerische Mathematik // Lisa Julia Nebel Dresden - SPAM Seminar, January 28, 2021

Buckling of a thin cylindrical shell under axial and torsional load *

- fundamental problems of elastic stability
- axial load: highly unstable response, settles into a localized form of the Yoshimura or diamond pattern
- torsional load: forms similar but oblique shapes, which can fold entirely flat

Yoshimura pattern

torsional load

*[Hunt,& Ario (2004). Twist buckling and the foldable cylinder: an exercise in origami.]

Numerical treatment of a geometrically nonlinear Cosserat shell model with nonplanar stress-free configuration TU Dresden - Institut für Numerische Mathematik // Lisa Julia Nebel Dresden - SPAM Seminar, January 28, 2021

Slide 13 of 16

Buckling of a thin cylindrical shell under axial and torsional load

- radius = 10, height = 10, 400 elements
- thickness h = 0.1
- fixed at x = 0

torsional twist of 45°

Numerical treatment of a geometrically nonlinear Cosserat shell model with nonplanar stress-free configuration TU Dresden - Institut für Numerische Mathematik // Lisa Julia Nebel Dresden - SPAM Seminar, January 28, 2021

Slide 14 of 16

Force on a Moebius strip

- radius = 1, height = 1
- 80 elements
- thickness h = 0.01
- fixed at *x* > 0.8
- Force of (2,0,0) at x < 0

Further applications for shell models

- cooperation with the Institut für Polymerforschung
- goal: simulate certain wavelengths, hierarchical wrinkle formation (transition between different wavelengths) and even a combination of different shells
- simulation: coupling of the shell-models and classical 3D-elasticity

A.1 General Trust-Region-Method in \mathbb{R}^N

- nonlinear minimization problem with a functional $J : \mathbb{R}^N \to \mathbb{R}$
- given a current iterate $x_k \in \mathbb{R}^N$: approximate *J* in a **neighborhood** around x_k using a model $m_k : \mathbb{R}^N \to \mathbb{R}$

$$m_k(s) = J(x_k) + \partial J(x_k) \cdot s + \frac{1}{2}s^T \cdot \partial^2 J(x_k) \cdot s$$

A.2 General Trust-Region-Method in \mathbb{R}^N

One trust region step:

1. setup model m_k in a neighborhood r_k around x_k

2. solve quadratic constraint problem

$$s_k = \operatorname*{argmin}_{s \in \mathbb{R}^N, \; ||s||_\infty \leq r_k} m_k(s)$$

in an inner iteration, might be non-convex

3. accept or decline the correction s_k : $\rho_k = \frac{J(x_k) - J(x_k + s_k)}{m_k(0) - m_k(s_k)}$ if : $\rho_k \ll 1$ or $J(x_k + s_k) > J(x_k)$ set $x_{k+1} = x_k$ and decrease radius, e.g. $r_{k+1} = \frac{1}{2}r_k$ else : set $x_{k+1} = x_k + s_k$ if : $\rho_k \gg 1$: increase radius, e.g. $r_{k+1} = 2r_k$ else : keep radius $r_{k+1} = r_k$

A.3 General Trust-Region-Algorithm in R^N

A.4 Riemannian Trust-Region-Algorithm

Trust-Region-Algorithm for the Riemannian manifold $\mathcal{M} := \mathbb{R}^{3N_1} \times SO(3)^{N_2}$

• map the minimization problem for $J : \mathcal{M} \to \mathbb{R}$ to a minimization problem for the pullback of J under R_{x_k} (retraction from $\mathcal{T}_{x_k}\mathcal{M}$ to \mathcal{M}):

$$\hat{J}_{x_k}: T_{x_k}\mathcal{M}
ightarrow \mathbb{R}, \ \hat{J}_{x_k}(s) = J(R_{x_k}s)$$

• model m_k given by:

$$m_k(s) = J(x_k) + \langle \operatorname{grad} J(x_k), s \rangle + \frac{1}{2} \langle \operatorname{Hess}(J(x_k))[s], s \rangle$$

• minimization problem in tangent plane $T_{x_k}\mathcal{M}$ at the point x_k

$$s_k = \underset{s \in T_{x_k}\mathcal{M}, ||s||_{\infty} \leq r_k}{\operatorname{argmin}} m_k(s)$$

•
$$\rho_k = \frac{J(x_k) - J(R_{x_k}(s_k))}{m_k(0) - m_k(s_k)}, \quad x_{k+1} = R_{x_k}(s_k)$$

A.5 Convergence of the Riemannian Trust-Region-Algorithm

- Riemannian Trust-Region-Algorithm converges to a set of critical points if we achieve a certain energy decrese in each step (*)
- not guaranteed that it converges to a local minimizer
- actually possible to construct problems where this algorithm gets stuck in a saddle point

*[P.-A. Absil, R. Mahony, & R. Sepulchre. (2008). **Optimization Algorithms on Matrix Manifolds .** Princeton, New Jersey: Princeton University Press. p.149, Theorem 7.4.4]

B Geodesic Finite Elements

As the space $H^1(\omega, SO(3))$ is not linear, we do geodesic interpolation

- Let $T_{ref} \in \omega_h$ with nodes a_j , j = 1, ..., m and Lagrangian interpolation polynomials $\lambda_i : T_{ref} \to \mathbb{R}$, $\lambda_i(a_j) = \delta_{ij}$ for i, j = 1, ..., m and $\sum_{i=1}^m \lambda_i = 1$
- usual Lagrangian interpolation of a function $f : T_{ref} \to \mathbb{R}$ can be written as a minimization problem

$$v \mapsto \underset{w \in \mathbb{R}}{\operatorname{arg\,min}} \sum_{i=1}^{m} \lambda_i(v) |f(a_i) - w|^2$$

• analogously: interpolation of a function $f : T_{ref} \rightarrow SO(3)$

$$\xi \mapsto \underset{R \in SO(3)}{\arg\min} \sum_{i=1}^{m} \lambda_i(\xi) dist(f(a_i), R)^2$$

• unique minimizer if the *R_i* are close enough together (*)

*[Sander, O., Neff, P. & Bîrsan, M. (2016). Numerical treatment of a geometrically nonlinear planar Cosserat shell model.

Computational Mechanics 57(5): 817-840, p.8, Theorem 5]

C.1 Coupling of the System

- elastic substrate stretched, then coated with a thin, hard film
- Cosserat shell on top
- releasing the stretch results in mechanical instability phenomenon: formation of wrinkles

C.2 Mooney-Rivlin-Model

material behavior under stress given by

$$J_e(arphi) = \int_{\Omega} W_e(
abla arphi(x)) \, dx + \int_{\Gamma_n} arphi \cdot g \, dS$$

- reference domain $\Omega \subset \mathbb{R}^3$, deformation function $\varphi : \Omega \to \mathbb{R}^3$, $det(\nabla \varphi) > 0$
- force g applied at Neumann boundary Γ_n , Dirichlet boundary on the opposite side

C.3 Elastic Energy Density Function

• general Mooney-Rivlin energy density function:

$$W_{e}(\nabla \varphi) = \sum_{i,j=0}^{n} c_{ij}(\overline{I_{1}} - 3)^{i}(\overline{I_{2}} - 3)^{j} + \frac{1}{2}k \cdot \log(\det(\nabla \varphi))^{2}$$

- depending on the invariants I_1 and I_2 of the right Cauchy-Green deformation tensor $(\nabla \varphi)^T (\nabla \varphi)$
- $\overline{I_1} = \frac{h}{(det(\nabla\varphi))^{\frac{2}{3}}} = \frac{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}{(det(\nabla\varphi))^{\frac{2}{3}}} \text{ and } \overline{I_2} = \frac{h}{(det(\nabla\varphi))^{\frac{4}{3}}} = \frac{\lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_1^2 \lambda_3^2}{(det(\nabla\varphi))^{\frac{4}{3}}}$ with $\lambda_1, \lambda_2, \lambda_3$ eigenvalues of $\nabla\varphi$
- polyconvex density function for suitable parameters *c_{ij}*
- $\frac{1}{2}k \cdot log(det(\nabla \varphi))^2$ punishes large volume changes

C.4 Coupling of the System

Combine the Cosserat energy and the elastic energy:

$$J(\varphi, R) = \int_{\Omega} W_e(\nabla \varphi) \, dV + \int_{\Gamma_{\xi}} W_c(\varphi_{|_{\Gamma_{\xi}}}, R) \, dS$$
$$\varphi = Id \text{ on } \Gamma_d, \quad Q_e = Id \text{ in } \Omega \backslash \Gamma_{\xi}$$

- reference configuration $\Omega \subset \mathbb{R}^3$
- deformation $\varphi \in H^1(\Omega, \mathbb{R}^3)$
- microrotation $Q_e \in H^1(\Gamma_{\xi}, SO(3))$
- Cosserat boundary $\Gamma_{\xi} \subset \partial \Omega$
- Dirichlet boundary $\Gamma_d \subset \partial \Omega$