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Goals of this Graduate Lecture
Why are we (still) here and what will we (also) learn?

1st lecture (last week, in case you forgot)

• developed (an easy) physical model of elasticity and plasticity
• considered engineering approaches for typical materials (e.g. steel)

2nd lecture (now, live and in color)

• proof some nice results from convex analysis

3rd lecture (next week)

• look into duality of discrete problems and optimization
• choose time/space discretization schemes
• if the time allows it: present a numerical algorithm to solve the problems
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Summary from last week

• Stress, Displacement

σ ∈ R3×3sym , u ∈ R3

• Strain

ε = e + p =
1

2

(
∇u +∇uT

)
∈ R3×3sym

• Yield function with hardening

Φ(σ, α, g) = φ(σ + α) + g ≤ 0

• Law of equilibrium:

− div σ = f
• Hooke’s law:

∃C ∈ R(3×3)×(3×3) : σ = Ce

• Maximum work

ṗ ∈ NE(σ)
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Convex sets and functions

first tiny steps in convexity:

• let X denote a finite vector space
• a set M ⊂ X is called convex, if

x, y ∈ M, t ∈ [0,1] ⇒ tx + (1− t)y ∈ M
• a function f : Ω ⊂ X → R is called convex, if

epi(f ) := {(x, y) ∈ Ω× R : f (x) ≤ y}
is convex
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Convex 6= continuous
• functions may jump to∞ at the the boundary of Ω!

• we call a function proper, if
f (x) > −∞ ∀x ∈ Ω, dom(f ) := {x ∈ Ω : f (x) <∞} 6= ∅

• and f is lower semicontinuous (l.s.c.), if
lim infn→∞ f (xn) ≥ f (x)

for all sequences xn → x
• or, equivalently:

L(α) := {x ∈ Ω : f (x) ≤ α}

is closed for all α ∈ R
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Equivalent definitions
we want to show

lim infn→∞ f (xn) ≥ f (x) ∀ xn → x ⇔ L(α) := {x ∈ Ω : f (x) ≤ α} is closed ∀α ∈ R

• let α ∈ R and x ∈ X , s.t. f (x) > α

• from lim inf we know: ∀ε > 0 ∃δ > 0 :

f (y) > f (x)− ε ∀y ∈ Bδ(x)

• for ε = f (x)− α > 0, this means

f (y) > α ∀y ∈ Bδ(x)

• ⇒ Bδ(x) ⊂ L(α)C
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Lower semicontinuous functions and the epigraph

• our first theorem: for any f : Ω ⊂ X → R we have

epi(f ) is closed ⇔ f is l.s.c.
proof: ”⇒”
• let epi(f )C be open
• let (x, y) ∈ epi(f )C , i.e., f (x) > y
• there is an open neighborhood (x, y) ∈ U × (−∞, y + ε) ⊂ epi(f )C
• therefore, f (z) ≥ y + ε for z ∈ U
• this means lim infz→x f (z) ≥ y + ε

• choose y + εmaximal: lim infz→x f (z) ≥ f (x)
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Lower semicontinuous functions and the epigraph

• our first theorem: for any f : Ω ⊂ X → R we have

epi(f ) is closed ⇔ f is l.s.c.
proof: ”⇐”
• let (x, y) ∈ epi(f )C , i.e., f (x) > y
• set µ = f (x)+y

2
, and therefore, µ < f (x)

• x ∈ U := {z ∈ Ω : f (z) > µ} and U is open
• and U × (−∞, µ) ⊂ epi(f )C
• therefore, epi(f )C is open
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Dual spaces

• we define the dual space X ′ of X by
X ′ := {m : X → R, m is linear and contiuous}

• usually, elements of X ′ are denoted by x∗
• the dual pairing is denoted by

X ′ × X → R : 〈x∗, x〉 := x∗(x)

• and in case of X = Rd, we can identify X ′ = Rd:

〈x∗, x〉 = (x∗)Tx
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Dual functions?

• if there are dual spaces, why shouldn’t we define dual functions?
• so let f : X → R, then

f ∗ : X ′ → R, f ∗(x∗) := sup
x∈X
{〈x∗, x〉 − f (x)}

is called polar or conjugate function of f

• interesting: f ∗ is convex and l.s.c.
• let’s proof this!
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Proof – convexity

f ∗ : X ′ → R, f ∗(x∗) := sup
x∈X
{〈x∗, x〉 − f (x)}

• since x∗ is linear by definition, we know that 〈·, ·〉 is bilinear
• therefore, 〈·, x〉 − f (x) is an affine function

• so we have

f ∗ (tx∗ + (1− t)y∗) = sup
x∈X
{t〈x∗, x〉 − tf (x) + (1− t)〈y∗, x〉 − (1− t)f (x)}

≤ t sup
x∈X
{〈x∗, x〉 − f (x)}+ (1− t) sup

x∈X
{〈y∗, x〉 − f (x)}
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Proof – l.s.c.

f ∗ : X ′ → R, f ∗(x∗) := sup
x∈X
{〈x∗, x〉 − f (x)}

• we show {x∗ ∈ X ′ : f ∗(x∗) ≤ α} is closed for all α ∈ R
• we can conclude

sup
x∈X
{〈x∗, x〉 − f (x)} ≤ α ⇒ 〈x∗, x〉 − f (x) ≤ α ∀x ∈ X

• for each x this is the level set of an affine function
• so it is closed and the intersection of closed sets is closed
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Subdifferential
• for a convex function f : Ω ⊂ X → R we call

∂f (x) := {x∗ ∈ X ′ : f (y) ≥ f (x) + 〈x∗, y − x〉 ∀y ∈ X}
the subdifferential of f at x

• sure, if f is differentiable:
∂f (x) = {∇f (x)}

• now we have a nice theorem:
• for f : X → R proper, convex and l.s.c, we have

x∗ ∈ ∂f (x)⇔ x ∈ ∂f ∗(x∗) ∀x ∈ X , x∗ ∈ X ′
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But first, a lemma

• if f is convex and l.s.c., we have f = f ∗∗ with
f ∗∗ : X → R : f ∗∗(x) = sup

x∗∈X ′
{〈x∗, x〉 − f ∗(x∗)}

proof:

• assume f is greater than an affine function: f (x) > 〈x∗, x〉 − α
• in other words: α > 〈x∗, x〉 − f (x) ∀x ∈ X
• so:

α ≥ sup
x∈X
{〈x∗, x〉 − f (x)} = f ∗(x∗)
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But second, another lemma
• if f is convex and l.s.c., we have

f (x) = sup
(x∗,α)∈A

{〈x∗, x〉 − α}

where

(x∗, α) ∈ A ⇔ f (x) ≥ 〈x∗, x〉 − α ∀x ∈ X
idea of the proof:

• from the definition we know: f (x) ≥ sup(x∗,α)∈A{〈x∗, x〉 − α}
• by contradiction: assume f (x0) > a := sup(x∗,α)∈A{〈x∗, x0〉 − α}
• epi(f ) is closed (f is l.s.c.) ⇒ (x,a) can be separated by a linear functional

l(x) = 〈z∗, x〉 − β with a < l(x0) < f (x0) �
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Back to the first lemma
• if f is convex and l.s.c., we have f = f ∗∗ with

f ∗∗ : X → R(x) : f ∗∗(x) = sup
x∗∈X ′
{〈x∗, x〉 − f ∗(x∗)}

proof:

• so:
α ≥ sup

x∈X
{〈x∗, x〉 − f (x)} = f ∗(x∗)

• now we know:

f (x) = sup
(x∗,α)∈A

{〈x∗, x〉 − α} minimize α= sup
x∈X
{〈x∗, x〉 − f ∗(x)} = f ∗∗(x)
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Theorem Subdifferential
• we wanted to show that for f : X → R proper, convex and l.s.c, we have

x∗ ∈ ∂f (x)⇔ x ∈ ∂f ∗(x∗) ∀x ∈ X , x∗ ∈ X ′

now the proof:

• let x∗ ∈ ∂f (x), i.e., ∀y ∈ X :
f (y) ≥ f (x) + 〈x∗, y − x〉

= 〈x∗, y〉+ f (x)− 〈x∗, x〉︸ ︷︷ ︸
−α

• we know that α = f ∗(x∗) and therefore, for x = y
f (x) + f ∗(x∗) = 〈x∗, x〉
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Theorem Subdifferential
• we know that α = f ∗(x∗) and therefore, for x = y

f (x) + f ∗(x∗) = 〈x∗, x〉
• we also know that our f satisfies

f ∗∗(x) = f (x)

• so we have
f ∗(x∗) + f ∗∗(x) = 〈x∗, x〉

• by the definition f ∗∗(x) = supy∗∈X ′{〈y∗, x〉 − f ∗(y∗)} we conclude
f ∗(x∗) + 〈y∗, x〉 − f ∗(y∗) ≤ 〈x∗, x〉 ∀y∗ ∈ X ′
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Theorem Subdifferential

• by the definition f ∗∗(x) = supy∗∈X ′{〈y∗, x〉 − f ∗(y∗)} we conclude
f ∗(x∗) + 〈y∗, x〉 − f ∗(y∗) ≤ 〈x∗, x〉 ∀y∗ ∈ X ′

• or, rearranged:

f ∗(y∗) ≥ f ∗(x∗) + 〈y∗ − x∗, x〉 ∀y∗ ∈ X ′

• which is the definition of
x ∈ ∂f ∗(x∗)

• and: the part all arguments were equivalences!
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How does this correspond to plasticity?

the answer needs some more definitions ,

• let M ⊂ X be a set. We define the indicator function

IM(x) :=

{
0 x ∈ M
∞ x /∈ M

• M convex⇔ IM convex
• M closed⇔ IM l.s.c.
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Indicator function

IM(x) :=

{
0 x ∈ M
∞ x /∈ M

let M be convex and closed
• for x ∈ int(M) : ∂IM(x) = {0}
• for x /∈ M : ∂IM(x) = {0}
• now for x ∈ ∂M (boundary):

x∗ ∈ ∂IM(x)⇔ IM(y) ≥ IM(x) + 〈x∗, y − x〉 ∀y ∈ X
• if y ∈ M : 〈x∗, y − x〉 < 0, i.e., x∗ points to the outside
• so, in other notation:

x∗ ∈ NM(x)

• it follows: ∂IM(x) = NM(x) for all x ∈ X !
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Last definition: Support function
let M ⊂ X again convex and closed
• we define the support function

sM : X ′ → R : sM(x∗) := sup
x∈M
{〈x∗, x〉}

• fun fact:
I∗M(x∗) = sup

x∈X
{〈x∗, x〉 − IM(x)}

will always be attained in M:
I∗M(x∗) = sup

x∈M
{〈x∗, x〉 − IM(x)} = sM(x∗)

On plastic deformation, Lecture II

Institut für Numerische Mathematik // Patrick Jaap

Dresden, June 25, 2019

Slide 22 of 29



Last definition: Support function
let M ⊂ X again convex and closed
• we define the support function

sM : X ′ → R : sM(x∗) := sup
x∈M
{〈x∗, x〉}

• fun fact:
I∗M(x∗) = sup

x∈X
{〈x∗, x〉 − IM(x)}

will always be attained in M:
I∗M(x∗) = sup

x∈M
{〈x∗, x〉 − IM(x)} = sM(x∗)

On plastic deformation, Lecture II

Institut für Numerische Mathematik // Patrick Jaap

Dresden, June 25, 2019

Slide 22 of 29



Last definition: Support function

• now we know
I∗M(x∗) = sM(x∗)

• thus, SM is convex and l.s.c.
• and, our final result

x∗ ∈ NM(x)⇔ x∗ ∈ ∂IM(x)⇔ x ∈ ∂sM(x∗)
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Summary – from the first lecture

• Stress, Displacement

σ ∈ R3×3sym , u ∈ R3

• Strain

ε = e + p =
1

2

(
∇u +∇uT

)
∈ R3×3sym

• Yield function with hardening

Φ(σ, α, g) = φ(σ + α) + g

• Law of equilibrium:

− div σ = f
• Hooke’s law:

∃C ∈ R(3×3)×(3×3) : σ = Ce

• Maximum work

ṗ ∈ NE(σ)
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Elastic region
• Elastic behavior if stress σ is located within the elastic region E ⊂ R3×3sym

Von Mises

σ1

σ2σ3

E

φ(σ) = ‖σ − 1
3

tr(σ)I‖F − σ0 ≤ 0

Tresca

σ1

σ2σ3

E

φ(σ) = max
1≤i,j≤3|σi − σj| − σ0 ≤ 0
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Generalized MaximumWork

• remember: Generalized stress Σ = (σ, α, g) and plastic strain P = (p,a, η)

Generalized Maximum Work Principle (von Mises, Taylor, Bishop, Hill)

For Φ(Σ) = 0 and d
dtΦ(Σ) > 0 we have

Σ : Ṗ := σ : ṗ + α : ȧ + g · η̇ ≥ T : Ṗ ∀T ∈ E
where E = {Σ : Φ(Σ) ≤ 0}.

• in other notation: Ṗ ∈ NE(Σ)

• note: E is convex and closed!

On plastic deformation, Lecture II

Institut für Numerische Mathematik // Patrick Jaap

Dresden, June 25, 2019

Slide 26 of 29



What we did last time

• generalized stress Σ = (σ, α, g) and plastic strain P = (p,a, η)

• we simply defined a dissipation function
D(P) := sup

Σ∈E
{P : Σ} ∈ R ∪ {∞}

• now we know, this is the support function of E !
• now we know, it is convex, l.s.c., proper
• and so we can tell

Ṗ ∈ NE(Σ) ⇔ Σ ∈ ∂D(Ṗ)
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What will happen next time?

• we are now able to express the evolution of the plastic strain in terms of
stress

• ... and the other way around!
• now we are able to state coupled systems of the plasticity problem
• present different approaches of solving the problem
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Sources

• plasticity theory:
– Weimin Han & B. Daya Reddy, Plasticity, Mathematical Theory and Numerical

Analysis, Second Edition, Springer Science+Business Media, LLC 2013

• proofs of convex analysis:
– Ivar Ekeland & Roger Temam, Convex Analysis and Variational Problems,

North-Holland Publishing Company, 1973

– Exercise sheets of University Ulm

– https://math.stackexchange.com
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