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Goals of this Graduate Lecture

Why are we (still) here and what will we (also) learn?

1st lecture (two weeks ago)

• developed (an easy) physical model of elasticity and plasticity
• considered engineering approaches for typical materials (e.g. steel)

2nd lecture (last week)

• proofed some nice results from convex analysis

3rd lecture (today)

• formulate two coupled systems (dual, primal)
• give hints for implementations
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Summary – basic equations

• Stress, Displacement

σ ∈ R3×3sym , u ∈ R3

• Strain

ε = e + p =
1

2

(
∇u +∇uT

)
∈ R3×3sym

• Yield function with hardening

Φ(σ, α, g) = φ(σ + α) + g ≤ 0

• Law of equilibrium:

− div σ = f

• Hooke’s law:

∃C ∈ R(3×3)×(3×3) : σ = Ce

• Maximum work

ṗ ∈ NE(σ)
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Summary – generalized variables

• Generalized Stress

Σ := (σ, α, g) ∈ R3×3sym × R3×3sym × R

• Generalized Strain

P := (p,a, η) ∈ R3×3
sym,0 × R3×3

sym,0 × R≥0

• Yield function with hardening

Φ(σ, α, g) = φ(σ + α) + g

defining the elastic region

E = {Σ : Φ(Σ) ≤ 0}

• we concluded

a = p

• typical relations

α = −k1p
g = −k2η

• We proofed in just 50 minutes

Ṗ ∈ NE(Σ) ⇔ Σ ∈ ∂D(Ṗ)

• How do we couple these equations?
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1st try: dual formulation

let us begin with the first ansatz: dual formulation

• here, we consider stress σ and displacement u as unknowns
• starting point is the line

Ṗ ∈ NE(Σ)

• this is by definition
〈Ṗ, Σ̃− Σ〉 ≤ 0 ∀Σ̃ ∈ E

• but first, we define some (bi-)linear functions and stick them together

On plastic deformation, Lecture II

Institut für Numerische Mathematik // Patrick Jaap

Dresden, July 2, 2019

Slide 5 of 24



1st try: dual formulation

let us begin with the first ansatz: dual formulation

• here, we consider stress σ and displacement u as unknowns
• starting point is the line
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dual formulation – (bi-)linear functions

• for the force field f we had
− div σ = f

• with that in mind, we define a linear functional l(t)

〈l(t),u〉 := −
∫

Ω
f (t) · udx

• and a bilinear form b(·, ·)

b(u, σ) := −
∫

Ω
ε(u) : σ dx

• this yields with integration by parts

b(ũ, σ) = 〈l(t), ũ〉 ∀ũ
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dual formulation –more bilinear functions

from now on, we assume the Hooke tensor C to be invertible and symmetric

• stress – stress mapping:

a(σ, σ̃) :=

∫
Ω
σ : C−1σ̃ dx

• and for the generalized variables

c1(α, α̃) :=

∫
Ω

1

k1
α : α̃dx

c2(g, g̃) :=

∫
Ω

1

k2
g · g̃ dx

• resulting in
A(Σ, Σ̃) := a(σ, σ̃) + c1(α, α̃) + c2(g, g̃)
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dual formulation

• back to ∫
Ω
〈Ṗ, Σ̃− Σ〉dx ≤ 0 ∀Σ̃ ∈ E

• this is ∫
Ω
ṗ : (σ̃ − σ) + ȧ : (α̃− α) + η̇ · (g̃ − g)dx ≤ 0

• and now we use
α̇ = −k1ȧ, ġ = −k2η̇

• and for ṗ with Hooke’s law

ε(u̇) = ṗ + ė = ṗ + C−1σ̇ ⇒ ṗ = ε(u̇)− C−1σ̇
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dual formulation

• this is ∫
Ω
ṗ : (σ̃ − σ) + ȧ : (α̃− α) + η̇ · (g̃ − g)dx ≤ 0

• and now we use

α̇ = −k1ȧ, ġ = −k2η̇, ṗ = ε(u̇)− C−1σ̇

• which means∫
Ω
ε(u̇) : (σ̃ − σ)︸ ︷︷ ︸
−b(u̇,σ̃−σ)

−C−1σ̇ : (σ̃ − σ)︸ ︷︷ ︸
a(σ̇,σ̃−σ)

− 1
k1
α̇ : (α̃− α)︸ ︷︷ ︸
c1(α̇,α̃−α)

− 1
k2
ġ · (g̃ − g)︸ ︷︷ ︸
c2(ġ,g̃−g)

dx ≤ 0

• therefore,
A(Σ̇, Σ̃− Σ) + b(u̇, σ̃ − σ) ≥ 0 ∀Σ̃ ∈ E
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dual formulation – time discrete

• if we approximate the time derivative by finite (implicit) differences

A(Σ̇, Σ̃− Σ) + b(u̇, σ̃ − σ) ≥ 0 ∀Σ̃ ∈ E

• we will get

A(Σn − Σn−1, Σ̃− Σn) + b(un − un−1, σ̃ − σn) ≥ 0 ∀Σ̃ ∈ E

• and don’t forget
b(ũ, σn) = 〈ln, ũ〉 ∀ũ

• how do we solve this problem?
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dual formulation – solution algorithms

• how do we solve this problem?
• there are countless numerical schemes in literature...
• let’s look at the ”classical” strategy, which is the base of most schemes

• in each time step, we have to find Σn and un

A(Σn − Σn−1, Σ̃− Σn) + b(un − un−1, σ̃ − σn) ≥ 0 ∀Σ̃ ∈ E
b(ũ, σn) = 〈ln, ũ〉 ∀ũ

• we will predict an (incorrect) displacement and correct with a suitable
stress until convergence

• ⇒ this is called predictor–corrector method
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Predictor

let uin and Σi
n denote the currently known iterates

• we assume that we have an elastic process (may be wrong, of course):

σi+1n = Cε(ui+1n ) = Cε(uin + u
i+1
n − uin)

= σin + Cε(ui+1n − uin)

• this implies

〈ln, ũ〉 = b(ũ, σi+1n ) = b(ũ, σin) +

∫
Ω
Cε(ui+1n − uin) : ε(ũ)dx

• this is a linear equation in ui+1n , which can be solved with common

methods (no details here, sorry)
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Corrector

Of course, assuming an elastic process may have been wrong!

• now we have ui+1n given and try to find a Σi+1
n

• we set the so-called trial stress

Σtrial := Σn−1 +
[
Cε(ui+1n − un−1),0,0

]T
• and if we plug this in

A(Σtrail − Σi+1
n , Σ̃− Σi+1

n ) ≤ 0

one can show (due to lack of time, this person is not me) that this forms a

suitable pair

(Σi+1
n ,ui+1n )

if the inequality is solved for Σi+1
n
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Corrector

• it was a quadratic optimization, so again, there are efficient methods for
solving

• but σi+1n may (again) violate the first equation

(ũ, σi+1n ) = 〈ln, ũ〉 ∀ũ

• so we keep repeating the predictor–corrector algorithm until both
(in-)equalities are fulfilled

• under some elliptic assumptions on C, the algorithm will converge

• problem: the algorithm is slow in practice
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2nd try: primal formulation

• in the second lecture, we proofed
Ṗ ∈ NE(Σ) ⇔ Σ ∈ ∂D(Ṗ)

• D was the dissipation function of the yield function:

D(Ṗ) := sup
Σ∈E
{Ṗ : Σ}

• D can be expressed directly for Von Mises

D(Ṗ) =

{
σ0‖ṗ‖F ‖ṗ‖F ≤ η
∞ else

• and for Tresca flow rule

D(Ṗ) =

{
σ0‖ṗ‖2 ‖ṗ‖2 ≤ η
∞ else
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2nd try: primal formulation

• the formulation
Σ ∈ ∂D(Ṗ)

is defined by

D(P̃) ≥ D(Ṗ) + Σ : (P̃− Ṗ) ∀P̃

• which is

D(P̃) ≥ D(Ṗ) + σ : (p̃− ṗ) + α(ã− ȧ) + g · (η̃ − η̇) ∀P̃

• again, we use α = −k1a, g = −k1η and a = p!

• for σ, we use
σ = Ce = C(ε(u)− p)
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2nd try: primal formulation

• we had

D(P̃) ≥ D(Ṗ) + σ : (p̃− ṗ) + α(ã− ȧ) + g · (η̃ − η̇) ∀P̃

• with α = −k1a, g = −k1η and a = p!

• fand
σ = Ce = C(ε(u)− p)

• and therefore∫
Ω
D(P̃)dx ≥

∫
Ω
D(Ṗ)+C(ε(u)−p) : (p̃−ṗ)−k1p : (p̃−ṗ)−k2η ·(η̃−η̇)dx ∀P̃
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2nd try: primal formulation

• and therefore∫
Ω
D(P̃)dx ≥

∫
Ω
D(Ṗ)+C(ε(u)−p) : (p̃−ṗ)−k1p : (p̃−ṗ)−k2η ·(η̃−η̇)dx ∀P̃

• now, use also that
− div σ · (ũ− u̇) = f · (ũ− u̇)

• integrated by parts∫
Ω
C(ε(u)− p) : (ε(ũ)− ε(u̇))dx =

∫
Ω
σ : (ε(ũ)− ε(u̇))dx =

∫
Ω
f · (ũ− u̇)dx
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primal formulation

• subtracting the last two (in-)equalities leads to

−
∫

Ω
f · (ũ− u̇)dx ≥

∫
Ω
D(Ṗ)− D(P̃)− C(ε(u)− p) : ((ε(ũ)− ε(u̇))− (p̃− ṗ))

− k1p : (p̃− ṗ)− k2η · (η̃ − η̇)dx ∀P̃, ũ

• then, we set w = (u,p, η) and define new (!) (bi-)linear function that
represent

−〈l(t), w̃ − ẇ〉 ≥ j(ẇ)− j(w̃)− a(w, w̃ − ẇ) ∀w̃

• or rearranged

a(w, w̃ − ẇ) + j(w̃)− j(ẇ) ≥ 〈l(t), w̃ − ẇ〉 ∀w̃
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primal formulation – time discrete

• like before, we replace the time derivative by an implicit finite difference
a(∆wn, w̃ −∆wn) + j(w̃)− j(∆wn) ≥ 〈ln, w̃ −∆wn〉︸ ︷︷ ︸

contains part of a

∀w̃ (1)

with

∆wn = wn − wn−1

• now we can use a result from convex optimization

Theorem

Solving the inequality (1) for ∆wn is equivalent to minimizing

L(∆wn) :=
1

2
a(∆wn,∆wn) + j(∆wn)− 〈ln,∆wn〉
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primal formulation – summary

Theorem

Solving the inequality (1) for ∆wn is equivalent to minimizing

L(∆wn) :=
1

2
a(∆wn,∆wn) + j(∆wn)− 〈ln,∆wn〉

• to compute the increment, we have to minimize a strictly convex function
• we get uniqueness and existence of solution for free
• but: L is not smooth everywhere!
• so classical minimizing algorithms won’t work, we need special solvers
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Summary

• we have seen two different formulations:
• primal:

– starting from Σ ∈ ∂D(Ṗ)
– resulting in an convex minimization problem

– efficient solvers are available (ask me ,)

• dual:
– starting from Ṗ ∈ NE(Σ)
– leading to optimization inequalities

– algorithms are mostly of predictor–corrector type

– but easy to implement
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Summary – overall

We did it!

• we have seen the engineering approach of plasticity
• we considered different elastic regions
• we have seen hardening rules
• an important theorem from convex analysis was proofed
• different approaches of solving the complete system were given

• Slides can be found here:

https://www.math.tu-dresden.de/~jaap/

• contact me for the simulations, programs, etc.
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Sources

• plasticity theory:
– Weimin Han & B. Daya Reddy, Plasticity, Mathematical Theory and Numerical

Analysis, Second Edition, Springer Science+Business Media, LLC 2013

• convex analysis/optimization
– Ivar Ekeland & Roger Temam, Convex Analysis and Variational Problems,

North-Holland Publishing Company, 1973
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