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1. Introduction

The ellipsoid method for minimizing a convex function was proposed independently by Yudin
and Nemirovski [8] in 1976 and by Shor in 1977 [6]. In the latter paper, the ellipsoid method
is presented as a special case of methods with space dilation in the direction of a subgradient.
Space dilation methods were proposed by Shor at the end of the sixties [5] with the aim of
speeding up the convergence of gradient methods. Based on the framework of methods with
space dilation, we suggest an ellipsoid method with space scaling by a parameter λ > 0. For
certain values of λ, existing variants of the ellipsoid method are obtained, namely those by Shor
[6], Nemirovski and Yudin [3, page 76]), and Khachiyan [2, Lemma 4]. For details see Table 3.

The ellipsoid method with space scaling is presented in Section 2. It is constructed to find an
ε-approximation to the minimum point of the convex function f : Rn → R. Moreover, Section 2
also includes theorems on the convergence of the proposed ellipsoid method with space scaling.
Finally, results of computational experiments for the three indicated variants of this method
applied to a piecewise linear function f are shown in Section 3.

Section 2 presents the computational scheme of the algorithm and theorems on its convergence.
Then, in Section 3, we show results of computational experiments for finding the ε-approximation
to the minimum point of a convex piece-wise linear function for small ε using the above three
variants of the ellipsoid method.

2. Algorithm EM22B for minimizing convex function

Again, let f : Rn → R be a convex function. Its minimum value is denoted by f∗ = f(x∗),
where x∗ is a minimum point. For any x ∈ Rn, let g(x) be a subgradient of f at x, i.e.,

(x− x∗)⊤g(x) ≥ f(x)− f∗ for all x ∈ Rn (1)

is satisfied.
The EM22B algorithm is designed to find a ε-approximation to x∗, i.e., a point x∗ε for which

f(x∗ε) − f∗ ≤ ε, where ε > 0 is given. Its name refers to ellipsoid method, the year 2022, and
the use of the B-form (see subsequent paragraph). The algorithm depends on the chosen scaling
parameter λ, the starting point x0, a radius r0, and the desired approximation precision ε.

For the space dilation, we are here using the B-form of such techniques, see [4]. To this
end, let us consider two spaces X = Y = Rn, a nonsingular matrix A ∈ Rn×n, and the space
transformation from x ∈ X to y ∈ Y defined by y := Ax. Then, with B := A−1, we get x = By
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for the inverse transformation. The following algorithm updates the B-matrix in each step.

Algorithm EM22B(λ, x0, r0, ε)

Step 0. Choose λ > 0, x0 ∈ Rn, r0 > 0, ε > 0 such that ∥x0 − x∗∥ ≤ r0.
Set B0 := In ∈ Rn×n (denoting the identity matrix) and k := 0.

Step 1. If
∥∥B⊤

k g(xk)
∥∥ rk ≤ ε, then STOP: k∗ := k, x∗ε := xk.

Step 2. Compute xk+1 := xk − rk
n+1Bkξk, where ξk :=

B⊤
k g(xk)

∥B⊤
k g(xk)∥ .

Step 3. Update Bk+1 := λ
(
Bk +

(√
n−1
n+1 − 1

)
(Bkξk) ξ

⊤
k

)
and rk+1 :=

1
λ

n√
n2−1

rk.

Step 4. Set k := k + 1 and go to Step 1.

Obviously, updating the B-matrix (see Step 3) requires O(n2) operations. This is due to the the
use of space scaling parameter λ and the space dilation operator Rα(ξ) : Rn → Rn defined as

Rα(ξ) := In + (α− 1)ξξ⊤, (2)

where α > 0 and ξ ∈ Rn with ∥ξ∥ = 1 is the direction of dilation. For each k, the above
algorithm uses ξk as new direction of dilation, see Step 2. Denoting the inverse dilation operator
as R−1

α (ξ) and setting β := 1/α, we have

R−1
α (ξ) = Rβ(ξ), Bk+1 = λBkRβ(ξk), and β =

√
n− 1

n+ 1
.

This also shows the roles of the parameter λ and the space dilation operator (2) for updating
B-matrices.

Theorem 1. For any (λ, x0, r0, ε) ∈ (0,∞) × Rn × (0,∞) × (0,∞), algorithm EM22B is
well-defined and generates a sequence {xk}k

∗
k=0. With Ak := B−1

k , it holds that

∥Ak(xk − x∗)∥ ≤ rk for k = 0, 1, 2, . . ., k∗. (3)

The proof of Theorem 1 can be carried out similar to the one of Theorem 1 [1].
For any k ∈ {0, 1, . . . , k∗}, the set

Ek := {x ∈ Rn | ∥Ak(xk − x)∥ ≤ rk}
is an ellipsoid that, due to (3), contains x∗. For its volume, we have vol(Ek) = v0r

n
k/detAk,

where v0 is the volume of the Euclidean n-dimensional unit ball and detAk denotes the deter-
minant of Ak. The rate of convergence of the EM22B algorithm is determined by the ratio of
the volumes of two consecutively generated ellipsoids.

Theorem 2. There is k∗ ∈ N so that algorithm EM22B stops at Step 1 for k = k∗. For each
k with 1 ≤ k ≤ k∗, the ratio of the volumes of the ellipsoids Ek and Ek−1 is a constant qn with

qn =
vol(Ek)

vol(Ek−1)
=

√
n− 1

n+ 1

(
n√

n2 − 1

)n

< exp

{
− 1

2n

}
< 1. (4)

Moreover, f(xk∗)− f∗ ≤ ε is satisfied.
The proof of Theorem 2 can be done similar to that of [1, Theorem 2]. An important part is

as follows.
Using Theorem 2, the Cauchy-Schwarz inequality, and ∥ξk∥ = 1, we get for any k ∈ {0, . . . , k∗}

rk ≥ ∥Ak(xk − x∗)∥ = ∥B−1
k (xk − x∗)∥∥ξk∥ ≥ (B−1

k (xk − x∗))⊤ξk =
(xk − x∗)⊤g(xk)

∥B⊤
k g(xk)∥

. (5)

If the algorithm stops in Step 1, then
∥∥B⊤

k g(xk∗)
∥∥ rk∗ ≤ ε is fulfilled. This, (5), and (1) imply

ε ≥ rk∗∥B⊤
k∗g(xk∗)∥ ≥ (xk∗ − x∗)⊤g(xk∗) ≥ f(xk∗)− f∗.
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3. Computational experiment

The computational experiments were carried out on a computer with an AMD Ryzen 5 4500U
2.38 GHz processor and 16 GB memory on a Windows 10 system using GNU Octave version
6.2.0. The values of λ we considered correspond to three versions of the ellipsoid method by
Shor 1977 [6], Khachiyan 1980 [2], Nemirovski and Yudin 1979 [3], see Table 1 below.

Table 1. Characteristics of three variants of the ellipsoid method.
λ Update of the B-matrix Multiplications Updated radius Reference

1 B1 = B +
(√

n−1
n+1

− 1
)
(Bξ)ξ⊤ 3n2 + n r1 = n√

n2−1
r [6]

n√
n2−1

B2 = n√
n2−1

B1 4n2 + n r2 = r [2]

n

√
n+1
n−1

B3 =
(

n+1
n−1

) 1
2n

B1 4n2 + n r3 =
(

n−1
n+1

) 1
2n

r1 [3]

Algorithm EM22B is applied to f(x) =
10∑
i=1

2i−1|xi − 1|, a convex piecewise linear function.

For small ε, Table 2 shows results for computing x∗ε with f(x∗ε) ≤ f∗ + ε. Though the three
versions of EM22B are equivalent, we observe slight differences in the number of iterations for
ε ∈ {10−7, 10−8} due to accumulation of numerical errors. A study of such effects for different f ,
n, and ε is intended. Algorithm EMB22 can be accelerated by tighter ellipsoidal approximations
[7] and applied to convex programs or saddle point problems for convex-concave functions.

Table 2. Results for applying EM22B with x0 = (0, . . . , 0)⊤, r0 = 10.

Shor [6] Khachiyan [2] Nemirovski and Yudin [3]

ε f∗
ε k∗ ∥B∗

k∥ r∗k k∗ ∥B∗
k∥ r∗k k∗ ∥B∗

k∥ r∗k

1.0e-04 2.2e-06 3124 6.4e-13 6.6e+07 3124 4.2e-06 10 3124 2.6e+01 1.6e-06
1.0e-06 2.0e-09 4024 8.1e-17 6.1e+09 4024 4.9e-08 10 4024 2.8e+01 1.8e-08
1.0e-07 6.9e-09 4474 9.0e-19 5.8e+10 4474 5.2e-09 10 4490 2.8e+01 1.7e-09
1.0e-08 6.5e-10 4827 2.6e-20 3.4e+11 4934 5.0e-10 10 4953 2.8e+01 1.7e-10
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