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ABSTRACT. Generalized Nash equilibrium problems have become very important as a modeling tool dur-

ing the last decades. The aim of this survey paper is twofold. It summarizes recent advances in the research

on computational methods for generalized Nash equilibrium problems and points out current challenges.

The focus of this survey is on algorithms and their convergence properties. Therefore, we also present

reformulations of the generalized Nash equilibrium problem, results on error bounds and properties of the

solution set of the equilibrium problems.

Keywords: generalized Nash equilibrium problem, reformulation, algorithms, local and global conver-

gence, error bounds, structural properties.

1 INTRODUCTION

In a Nash equilibrium problem (NEP for short), N players compete with each other. Every player
is allowed to choose a strategy from his strategy set in order to minimize his objective. The
objective of a player may depend on both the player’s and the rival players’ strategies. A vector
of strategies for all players is called Nash equilibrium or simply solution of a NEP if none of

the players is able to improve his objective by solely changing his strategy. NEPs were defined
in 1950 by John F. Nash [60, 61]. The generalized Nash equilibrium problem (GNEP for short)
was introduced in 1952 by Gerard Debreu [12]. In a GNEP, the strategy set of each player may

also depend on the strategies of the other players.

GNEPs have become an important field of research during the last two decades and gained in
importance for many practical applications, for example in economics, computer science, and
engineering. In [28] many references for applications can be found. Particularly, three problems

were described in more detail: the economy model by Arrow and Debreu, a power allocation
problem in telecommunications, and a competition among countries that arises from the Kyoto
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protocol to reduce air pollution. Further problems in different applications were successfully

modeled as (generalized) Nash equilibrium problems in recent years, for example let us men-
tion problems in cloud computing [1, 2, 10], in electricity generation [11, 62, 67], in wireless
communication [43, 57, 66, 71], in adversarial classification [7, 8], and in the non-life insurance

market [22].

The paper [28] from 2010 is not only a reference for applications, rather it also offers an excellent
survey for GNEPs. Since then there were important new developments in the context of GNEPs
so that we think it is worth to report on such advances. Besides that, our aim is to indicate current

challenges and to motivate future research.

The main focus of this paper is on algorithms for the solution of GNEPs and related issues.
Therefore, globally convergent methods as well as methods with fast local convergence are pre-
sented. We concentrate on recently developed algorithms and well known methods for which

new convergence results have been obtained in the last years. There is a very recent survey pa-
per [21] that gives a detailed description of some algorithms, mainly for some equation-based
reformulations of GNEPs.

From the theoretical point of view our focus lies on structural properties of the solution set of

GNEPs and on error bound results. The latter play an important role for the local convergence
analysis of several algorithms. For other theoretical results, in particular on existence, we refer
to the survey papers [28] and [20] and references therein. In [28] also a detailed overview on

the history of the generalized Nash equilibrium problem can be found. Stochastic and time-
dependent GNEPs are not in the scope of our paper, see [46] for a recent book.

The paper is organized as follows. In the remaining part of the Introduction the generalized Nash
equilibrium problem is described and basic definitions are given. Reformulations of GNEPs by

means of other problem classes are presented in Section 2. Such reformulations turn out to be
useful from the theoretical as well as from the algorithmic point of view. Section 3 is devoted
to local error bound results for GNEPs, whereas Section 4 reviews structural properties of the

solution set of GNEPs. Section 5 deals with globally convergent algorithms and, in Section 6, we
describe methods with locally fast convergence for the solution of GNEPs and some globalization
techniques.

1.1 Problem statement

Let us consider a game of N players ν = 1, . . . , N . Each player ν controls his strategy vector

xν := (
xν1 , . . . , xνnν

)� ∈ Rnν

of nν decision variables. The vector

x :=

⎛
⎜⎜⎝

x1

...

x N

⎞
⎟⎟⎠ ∈ Rn

Pesquisa Operacional, Vol. 34(3), 2014
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contains the n = ∑N
ν=1 nν decision variables of all players. To emphasize the ν-th player’s

variables within x , we sometimes write (xν, x−ν) instead of x , where

x−ν := (xμ)Nμ=1,μ �=ν.

Each player ν has an objective function θν : Rn → R that may depend on both the player’s
decision variables xν and the decision variables x−ν of the rival players. With respect to the

practical setting, the objective function of a player is sometimes called utility function, payoff
function or loss function. Moreover, each player’s strategy xν has to belong to a set Xν(x−ν) ⊆
R

nν that is allowed to depend on the rival players’ strategies. Xν(x−ν) is called feasible set

or strategy space of player ν. In many applications the feasible set is defined by inequality
constraints, i.e., for each ν = 1, . . . , N , there is a continuous function gν : Rn → R

mν so that

Xν(x
−ν) = {xν ∈ Rnν | gν(xν, x−ν) ≤ 0}. (1)

For any given x ∈ Rn , let us define

X (x) :=
N∏
ν=1

Xν(x
−ν) = {y ∈ Rn | yν ∈ Xν(x

−ν) for all ν = 1, . . . , N}. (2)

Note that xν ∈ Xν(x−ν) holds for all ν = 1, . . . , N if and only if the fixed point condition

x ∈ X (x) is satisfied.

If we fix the rival players’ strategies x−ν, the aim of player ν is to choose a strategy xν ∈ Xν(x−ν)
which solves the optimization problem

min
xν

θν(x
ν , x−ν) s.t. xν ∈ Xν(x

−ν). (3)

The GNEP is the problem of finding x∗ ∈ X (x∗) so that, for all ν = 1, . . . , N ,

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν) for all xν ∈ Xν(x
∗,−ν )

holds. Such a vector x∗ is called generalized Nash equilibrium (NE for short) or simply solution
of the GNEP. By SOL(GNEP) we denote the set of all solutions of the GNEP. If the feasible sets
of all players do not depend on the rival players’ strategies, the GNEP reduces to the classical

Nash equilibrium problem.

1.2 Further definitions and notation

Among all GNEPs, player convex GNEPs play an important role. We call a GNEP player convex
if, for every player ν and for every x−ν, the set Xν(x−ν) is closed and convex and the objective

function θν(·, x−ν) is convex. This is a slightly weaker notion than the player convexity used
in [45], where Xν(x−ν) is given by (1) with continuous and componentwise convex functions
gν(·, x−ν).

Pesquisa Operacional, Vol. 34(3), 2014
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A further useful class of GNEPs is described by the existence of a nonempty set X ⊆ R
n with

the property
Xν(x

−ν ) = {xν ∈ Rnν | (xν, x−ν) ∈ X } (4)

for all ν = 1, . . . , N and all x−ν . Members of this class are often called GNEPs with common
or shared constraints.

Proposition 1.1 (see [74]). For GNEPs satisfying (4) the following equivalences hold:

x ∈ X (x) ⇔ xν ∈ Xν(x
−ν) for all ν = 1, . . . , N ⇔ x ∈ X .

Proposition 1.1 tells us that in the case of a GNEP with shared constraints the fixed points of

the point-to-set map x 
→ X (x) coincide with the elements of X . However, note that for given
x ∈ X , the sets X and X (x) need not coincide. More precisely, neither X (x) ⊆ X nor X ⊆ X (x)
hold in general.

An important subclass of GNEPs with shared constraints are the jointly convex GNEPs. A GNEP

is called jointly convex if, for every player ν and for every x−ν , the function θν(·, x−ν) is convex
and if (4) holds with a nonempty, closed, and convex set X ⊆ R

n . The set X is often described
by

X = {x ∈ Rn | G(x) ≤ 0}, (5)

where G : Rn → R
M denotes a componentwise convex function. Then, (4) becomes

Xν(x
−ν) = {xν ∈ Rnν | G(xν , x−ν) ≤ 0}.

Obviously, a jointly convex GNEP is also player convex. To deal with more complicated cases,
several authors (e.g., see [18]) consider the set

W := {x ∈ Rn | xν ∈ Xν(x
−ν ) for all ν = 1, . . . , N}. (6)

This set coincides with the set of the fixed points of the point-to-set map x 
→ X (x). In the case
of shared constraints (4) we have W = X .

Proposition 1.2 (see [18]). For any GNEP with W defined by (6) the following equivalences
hold:

x ∈ X (x) ⇔ xν ∈ Xν(x
−ν ) for all ν = 1, . . . , N ⇔ x ∈ W.

Note that, for given x ∈ W , the sets W and X (x) need not coincide. Furthermore, W is noncon-
vex in general, even if the GNEP is player convex.

Finally, let us state some basic notation. Throughout, ‖ · ‖ indicates the Euclidean vector norm.

Sometimes, the maximum vector norm ‖ · ‖∞ is used. By Bδ(z) := {x ∈ Rn | ‖x − z‖ ≤ δ} the
closed ball around z ∈ Rn with radius δ > 0 is denoted. As before, the set of all solutions of a
GNEP is denoted by SOL(GNEP). More general, we will use SOL() to denote the solution set

of a certain problem . For a given function F its Jacobian is indicated by J F . We sometimes
use ∇F(x) := J F(x)�. The Hadamard product of the vectors a and b is denoted by a ◦ b, i.e.,
(a ◦ b)i := ai bi for all i. Finally, R+ (R++) denote the nonnegative (positive) reals.

Pesquisa Operacional, Vol. 34(3), 2014
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2 REFORMULATION OF GNEPS

This section is devoted to several reformulations of the generalized Nash equilibrium problem.
Such reformulations turn out to be useful to prove theoretical results, for instance on existence.

Even more important, reformulations are often the key to the design of numerical algorithms for
the solution of GNEPs.

2.1 Variational reformulations

Quasi-variational inequalities (QVIs) and, as a subclass, variational inequalities (VIs) play an
important role for understanding and solving GNEPs. Before discussing relations between QVIs,

VIs, and GNEPs let us introduce the corresponding notions. To this end, let F : Rn → R
n be

continuous and let K : Rn ⇒ R
n denote a point-to-set map so that K (x) is closed and convex

for all x ∈ Rn . Then, the problem of finding x∗ satisfying

x ∈ K (x) and F(x)�(y − x) ≥ 0 for all y ∈ K (x)

is called quasi-variational inequality and denoted by QVI(K , F). If, for some closed convex set
K ⊆ R

n , it holds that K (x) = K for all x ∈ Rn then QVI(K , F) is called variational inequality

and denoted by VI(K , F). To link QVIs to GNEPs let us define F : Rn → R
n by

F(x) :=

⎛
⎜⎜⎝

∇x1 θ1(x)
...

∇x N θN (x)

⎞
⎟⎟⎠ , (7)

assuming that θ1, . . . , θN are C 1-functions. If the point-to-set map X : Rn ⇒ R
n given by (2) is

closed and convex then QVI(X, F) is well defined.

Theorem 2.1 ([6]). Let the functions θ1, . . . , θN be C 1 and the GNEP be player convex. Then,
any solution x∗ of the GNEP is a solution of the QVI(X, F), and vice versa.

Developing methods for broader classes of QVIs is challenging but seems quite helpful for the

solution of GNEPs.

If the GNEP is a NEP, i.e., if for every ν there is a set Xν ⊆ R
nν such that Xν(x−ν) = Xν for all

x−ν , the above theorem tells us that, under a convexity assumption, any solution x∗ of the NEP
is a solution of the variational inequality VI(�N

ν=1Xν, F), and vice versa. More interestingly, we

will see in Subsection 4.2 that solutions of an appropriate VI may provide certain solutions of a
GNEP. A basic result in this direction is

Theorem 2.2 ([3, 26]). Let the functions θ1, . . . , θN be C 1 and let the GNEP be jointly convex.

Then, SOL(VI(X, F)) ⊆ SOL(GNEP).

The set X in the previous theorem is connected to a jointly convex GNEP by its definition,
see Subsection 1.2. Under the conditions of Theorem 2.2, any solution of VI(X, F) is called
normalized Nash equilibrium or variational equilibrium. By means of the Nikaido-Isoda function

Pesquisa Operacional, Vol. 34(3), 2014
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this notion can be extended to the case of only continuous functions θ1, . . . , θN , see [72, 74],

for example.

2.2 Reformulations based on Nikaido-Isoda functions

Throughout this subsection it is assumed that the functions θν are at least continuous. For some
parameter α ≥ 0, let the map �α : Rn × Rn → R be defined by

�α(x, y) :=
N∑
ν=1

[
θν(x

ν, x−ν)− θν(y
ν , x−ν)

] − α

2
‖x − y‖2.

Taking α = 0, this is the classical Nikaido-Isoda function [63] (NI function for short). �0 is also
known as Ky-Fan function. For α > 0, �α is the regularized Nikaido-Isoda function introduced
in [74]. To understand the benefit of the (regularized) NI function let

V̂α(x) := sup
y∈X (x)

�α(x, y), (8)

Ŷα(x) := {y ∈ X (x) | V̂α(x) = �α(x, y)}
be defined for any x ∈ Rn .

Theorem 2.3. Let the GNEP be player convex. Then, it holds for α ≥ 0:

(a) V̂α(x) ≥ 0 for all x satisfying x ∈ X (x).

(b) x∗ is a NE if and only if x∗ ∈ X (x∗) and V̂α(x∗) = 0.

(c) x∗ is a NE if and only if x∗ is a fixed point of the point-to-set map x 
→ Ŷα(x).

(d) If α > 0 then, for every x ∈ X (x), a unique vector ŷα(x) ∈ X (x) exists so that
Ŷα(x) = {ŷα(x)} with

ŷνα(x) = argmin
yν∈Xν (x−ν )

[
θν(y

ν , x−ν)+ α

2
‖xν − yν‖2

]
.

This theorem summarizes results in Theorem 2.2 and Proposition 2.3 of [74], where the GNEP
is assumed to be jointly convex. However, the proofs directly extend to player convex GNEPs,
see [18]. For the classical NI function (α = 0), the assertions (a)–(c) even hold without player
convexity. Given x ∈ X (x), the set Ŷ0(x) might be empty. Only under strong convexity assump-

tions for the functions θν it can be shown that Ŷ0(x) is single-valued. Based on Theorem 2.3,
several (quasi-) optimization and fixed point problems can be formulated. In general, the result-
ing problems are nonsmooth. The terminus “quasi” emphasizes the situation that the description

of the feasible region X (x) itself depends on the varying variable x . Taking into account Propo-
sition 1.1, a “real” but still complicated (nonsmooth) optimization problem can be considered for
GNEPs with shared constraints. Then, a vector x∗ is a NE if and only if V̂0(x∗) = 0 and x∗ is a

global solution of
min

x
V̂0(x) s.t. x ∈ X . (9)

Pesquisa Operacional, Vol. 34(3), 2014
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For player convex GNEPs with shared constraints this statement is also valid for V̂α with α > 0.

Nevertheless, problem (9) remains nonsmooth in general. For obtaining smooth reformulations
jointly convex GNEPs can be considered. To this end, in the definition of V̂α and Ŷα above X (x)
is replaced by X , i.e.,

Vα(x) := sup
y∈X

�α(x, y) and Yα(x) := {
y ∈ X | Vα(x) = �α(x, y)

}
are defined for any x ∈ Rn . Then, connections to normalized NE can be established.

Theorem 2.4 (see [74]). Let the GNEP be jointly convex. Then, it holds for α ≥ 0:

(a) Vα(x) ≥ 0 for all x ∈ X.

(b) x∗ is a normalized NE if and only if x∗ ∈ X and Vα(x∗) = 0.

(c) x∗ is a normalized NE if and only if x∗ is a fixed point of the point-to-set map x 
→ Yα(x).

(d) If α > 0 then, for every x ∈ X, a unique yα(x) ∈ X exists so that Yα(x) = {yα(x)} with

yα(x) = argmax
y∈X

�α(x, y)

and the map x 
→ yα(x) is continuous.

(e) If α > 0 and if θ1, . . . , θN are C 1-functions then the function Vα is C 1.

Theorem 2.4 leads to smooth constrained optimization and fixed point reformulations for jointly

convex GNEPs. In particular, x∗ is a normalized NE if and only if Vα(x∗) = 0 and x∗ is a global
solution of

min
x

Vα(x) s.t. x ∈ X . (10)

Moreover, under the conditions in Theorem 2.4 (e), the objective in (10) becomes continuously
differentiable. Results similar to those of Theorems 2.3 and 2.4 were presented in [54] for a
modification with a player related regularization of the NI function.

A smooth unconstrained reformulation is given in

Theorem 2.5 (see [74]). Let the GNEP be jointly convex. Then, it holds for β > α > 0:

(a) Vαβ(x) := Vα(x)− Vβ(x) ≥ 0 for all x ∈ Rn.

(b) x∗ is a normalized NE if and only if Vαβ(x∗) = 0.

(c) If θ1, . . . , θN are C 1-functions then the function Vαβ is C 1.

Thus, if the GNEP has at least one normalized NE, the set of global minimizers of Vαβ is equal
to the set of normalized NE.

Taking into account Proposition 1.2, a similar unconstrained reformulation (with smoothness
properties) can be established which characterizes Nash equilibria of certain player convex but

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/10/2 — 16:48 — page 528 — #8
�

�

�

�

�

�

528 GENERALIZED NASH EQUILIBRIUM PROBLEMS

not necessarily jointly convex GNEPs, see [18]. For W according to (6), let S denote the closure

of the convex hull of W . Moreover, with

PS(x) := argmin
w∈S

(‖x − w‖2), V̄α(x) := max
y∈X (PS(x))

�α(x, y), ȳα(x) := argmax
y∈X (PS (x))

�α(x, y)

the following result is known.

Theorem 2.6 (see [18]). Let the GNEP be player convex with Xν(x−ν) given by componentwise
convex functions gν(·, x−ν) according to (1). Moreover, suppose that W �= ∅ and X (x) �= ∅ for
all x ∈ S. Then, it holds for β > α > 0 and c > 0:

(a) V̄αβ(x) := V̄α(x) − V̄β(x) + c‖x − PS(x)‖2 ≥ 0 for all x ∈ Rn.

(b) x∗ is a NE if and only if V̄αβ(x∗) = 0.

Note, that a constrained reformulation for player convex GNEPs can be obtained from problem

(9) when replacing the function V̂0 and the set X by V̂α(α > 0) and W according to Proposition
1.2 (see [45] for detailed studies).

2.3 Karush-Kuhn-Tucker conditions

Throughout this subsection we assume that the objective functions θν are continuously differ-
entiable for all ν = 1, . . . , N and that the feasible sets of the players are defined by inequality
constraints. More precisely, for each player ν = 1, . . . , N and each vector x−ν let Xν(x−ν) be

given by
Xν(x

−ν) = {xν ∈ Rnν | gν(xν , x−ν) ≤ 0} (11)

with C 1-functions gν : Rn → R
mν . To keep it simple, we assume that only inequality constraints

appear, cf. Remark 2.1 below. Let x∗ be a solution of the GNEP. Then, for every ν = 1, . . . , N ,
the vector x∗,ν is a solution of the optimization problem (3) with x−ν := x∗,−ν . Therefore, if

an appropriate constraint qualification is satisfied in x∗,ν , there are vectors λ∗,ν ∈ Rmν such that
(x∗,ν , λ∗,ν) satisfies the classical Karush-Kuhn-Tucker (KKT) conditions

∇xν Lν(xν , x∗,−ν, λν) = 0,

0 ≤ λν ⊥ − gν(xν, x∗,−ν ) ≥ 0,
(12)

where Lν : Rn ×Rmν → R denotes the Lagrangian of problem (3), i.e.,

Lν(x, λ
ν) := θν(x) + gν(x)�λν.

Conversely, if the GNEP is player convex, it is well known that any solution of the KKT system
(12) yields a solution of the optimization problem (3) with x−ν := x∗,−ν . Concatenating the
KKT systems of all players we obtain the KKT system associated to the GNEP, namely

L(x, λ) = 0,

0 ≤ λ⊥ − g(x) ≥ 0,
(13)

Pesquisa Operacional, Vol. 34(3), 2014
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where

λ := (λν)Nν=1 ∈ Rm , g(x) := (gν(x))Nν=1 ∈ Rm

with m := m1 + . . .+ mN , and

L(x, λ) := (∇xν Lν(x, λ
ν))Nν=1 ∈ Rn.

Summarizing our above observations we have

Theorem 2.7. Suppose that the feasible sets of the players are given by (11) and that θν : Rn →
R and gν : Rn → Rmν are C 1-functions. Then, the following assertions hold:

(a) If x∗ is a solution of the GNEP and if, for every ν = 1, . . . , N, an appropriate constraint

qualification is satisfied in x∗,ν , then there is λ∗ ∈ R
m so that (x∗, λ∗) solves the KKT

system (13).

(b) If the GNEP is player convex and if (x∗, λ∗) solves the KKT system (13), then x∗ is a
solution of the GNEP.

Remark 2.1. If equality constraints appear in the GNEP, they can easily be incorporated in the
KKT system (13). Doing this, assertion (a) of Theorem 2.7 remains true, whereas assertion (b)
can be kept in case of affine equality constraints.

It is well known that the KKT system (13) can be reformulated as a nonlinear and possibly

nonsmooth system of equations. Such reformulations may be important for the construction of
algorithms for the solution of (13) as well as for the analysis of properties of the solution set.
The nonsmooth reformulation

Hmin(z) := Hmin(x, λ) :=
(

L(x, λ)

min{λ,−g(x)}

)
= 0, (14)

is, for instance, used in [27] and [49]. The minimum has to be taken componentwise. Obviously,
a point z∗ = (x∗, λ∗) is a solution of (13) if and only if Hmin(z∗) = 0. A further useful reformu-

lation of the KKT system associated to a GNEP is given by the following constrained system of
equations:

H (z) := H (x, λ, w) :=
⎛
⎜⎝ L(x, λ)

g(x)+w

w ◦ λ

⎞
⎟⎠ = 0 s.t. z ∈ 
 := R

n ×Rm+ × Rm+. (15)

Obviously, a point (x∗, λ∗) is a KKT point of the GNEP if and only if (x∗, λ∗,−g(x∗)) is a
solution of (15). The reformulation (15) was used in [16] and [15] to describe and analyze
algorithms for the solution of (13).

Next, let us consider a jointly convex GNEP. According to its definition (see Subsection 1.2),

the feasible set (11) of player ν is given by Xν(x−ν) = {xν ∈ R
ν | G(xν , x−ν) ≤ 0} with a

Pesquisa Operacional, Vol. 34(3), 2014
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componentwise convex function G : Rn → R
M , where m1 = · · · = mN = M . Due to the

convexity assumptions for the constraints and the objective functions, the KKT conditions (13)
are sufficient conditions.

In Theorem 2.2 it was stated that any solution of the variational inequality VI(X, F) associated
to a jointly convex GNEP is also a solution of the GNEP. Now, with some multiplier vector

� ∈ RM , the KKT system of VI(X, F) reads as

F(x)+ J G(x)�� = 0,

0 ≤ �⊥ − G(x) ≥ 0.
(16)

The next theorem states relations between solutions of a jointly convex GNEP, of the KKT system
(13) for this GNEP, of the variational inequality VI(X, F) associated to the GNEP, and of the

KKT system (16) belonging to VI(X, F). For a proof see [26].

Theorem 2.8. Let the GNEP be jointly convex with C 1-functions θ1, . . . , θN and G. Then, the
following assertions are valid.

(a) Let x∗ be a solution of VI(X, F) and�∗ ∈ RM so that (x∗, �∗) solves the KKT conditions

(16). Then, x∗ is a solution of the GNEP and (x∗, λ∗) is a solution of the corresponding
KKT conditions (13) with λ∗,1 := . . . := λ∗,N := �∗.

(b) Let x∗ be a solution of the GNEP and λ∗ ∈ R
m so that the KKT conditions (13) are

satisfied with λ∗,1 = . . . = λ∗,N . Then, x∗ is a solution of VI(X, F) and (x∗, �∗) satisfies
the corresponding KKT conditions (16) with�∗ := λ∗,1.

Theorem 2.8 also characterizes the normalized NEs defined in Subsection 2.1.

3 ERROR BOUNDS

Throughout this section we consider GNEPs where, for ν = 1, . . . , N , the optimization problem

of player ν is given by

min
xν
θν (x

ν, x−ν) s.t. gν(xν, x−ν) ≤ 0.

Moreover, we also assume that the problem functions θν and gν are C 2. From systems of equa-

tions, optimization problems, or variational inequalities it is well known that error bounds can
be very useful for the design and convergence analysis of algorithms and for deriving theoret-
ical results, see, e.g., [23, 32, 47, 64]. However, the field of error bounds for GNEPs is in its
beginning.

Our aim is to provide recent local error bound results for the solution set of the KKT system (13)
of a GNEP. To this end, let Z denote the set of all points z = (x, λ) that solve (13). Throughout
this section we suppose that z∗ = (x∗, λ∗) is an arbitrary but fixed element of Z . In Section 2.3
we mentioned that (13) can be reformulated by

Hmin(z) = 0
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with z = (x, λ) and Hmin defined by (14). We say that Hmin provides a local error bound at z∗
if there are δ > 0 and ω > 0 such that

ω dist[z, Z ] ≤ ‖Hmin(z)‖ for all z ∈ Bδ(z∗), (17)

where dist[z, Z ] := inf{‖z − ξ‖ | ξ ∈ Z } denotes the (Euclidean) distance of z to the set Z .
In the first part of this section we will state conditions that imply the existence of δ and ω such

that (17) holds.

Proposition 3.1. Suppose that the functions θ1, . . . , θN are quadratic and that the functions

g1, . . . , gN are affine. Then, there is ω > 0 so that (17) is satisfied for any δ > 0.

This assertion follows from a well known result on polyhedral multifunctions [70], see also
[27, Theorem 8]. Although the particular class of GNEPs in Proposition 3.1 may appear in
applications, one is interested in dealing with more general cases. A first result is Theorem 9 in

[27]. For its description the map H ∗
min needs to be defined by deleting certain rows from Hmin.

More in detail, H ∗
min is obtained from Hmin by successively removing rows min{λμj ,−gμj (x)} if

gμj (x
∗) = 0 and another (undeleted) row min{λνi , gνi (x)} exists with gνi = gμj . Note that H ∗

min
has less components than n + m if at least one constraint being active at x∗ is shared by more
than one player.

Theorem 3.1. Suppose that strict complementarity holds at z∗, i.e., gνi (x
∗) = 0 implies λ∗,ν

i > 0

for arbitrary ν ∈ {1, . . . , N} and i ∈ {1, . . . ,mν}. If the Jacobian J H ∗
min(z

∗) has full row rank
then there are δ > 0 and ω > 0 such that (17) is satisfied.

Note that the strict complementarity assumption guarantees that Hmin and H ∗
min are continuously

differentiable in a certain neighborhood of z∗. In particular, the Jacobian J H ∗
min(z

∗) is well

defined.

In [49] a weaker condition is derived that also ensures that Hmin provides a local error bound at
z∗. In particular, this condition does not require strict complementarity at z∗. Before stating the
result some further definitions are needed. For simplicity of presentation, let us assume that only

shared constraints occur, i.e., that there is a function G : Rn → R
M with g1 = · · · = gN = G.

Then, with the index sets

I0 := I0(x
∗) := {i ∈ {1, . . . , M} | Gi (x

∗) = 0}
and

Iν0+ := Iν0+(x∗, λ∗) := {i ∈ I0 | λ∗,ν
i > 0}

for all ν = 1, . . . , N , let the matrix J (x∗, λ∗) be defined by

J (x∗, λ∗) :=
(

∇x L(x∗, λ∗) E+(x∗, λ∗)
∇GI0 (x∗)� 0

)
,

where E+(x∗, λ∗) := blockdiag(∇x1 GI1
0+
(x∗), . . . ,∇x N GIN

0+
(x∗)). Note that for any index set

I ⊆ {1, . . . , M} the function GI : Rn → R
|I| consists of all components of G with indices in I .

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/10/2 — 16:48 — page 532 — #12
�

�

�

�

�

�

532 GENERALIZED NASH EQUILIBRIUM PROBLEMS

Theorem 3.2. Consider a GNEP with shared constraints only and suppose that J (x∗, λ∗) has

full row rank. Then, there are δ > 0 and ω > 0 so that (17) is satisfied.

In [49, Remark 1] the authors explain that the full row rank assumption of Theorem 3.2 can
even be weakened. Independently of [49] and nearly at the same time the paper [15] was sub-
mitted which also deals with sufficient conditions for a local error bound to hold. There, another

reformulation of the KKT system of a GNEP is considered, namely the constrained system of
equations

H (z) = 0 s.t. z ∈ 
,
where H , z, and 
 are defined in (15). Due to the differentiability assumptions for the GNEP

in the beginning of this section, H is C 1. This might be an advantage compared to Hmin. By
the definition of H , one cannot expect that H provides a local error bound of the form (17) with
H instead of Hmin. Rather, one has to intersect the neighborhood of z∗ with 
. For the sake of
simplicity, we state the result from [15] only for GNEPs with shared constraints. Z H denotes the

solution set of the constrained system (15).

Theorem 3.3. Consider a GNEP with shared constraints only and suppose that for any i ∈ I0

an index ν(i) ∈ {1, . . . , N} exists so that λ∗,ν(i)
i > 0 and that the matrix(

∇x L(x∗, λ∗) Ẽ(x∗, λ∗)
∇GI0 (x∗)� 0

)

is nonsingular, where Ẽ(x∗, λ∗) := blockdiag(∇x1 GJ1 (x∗), . . . ,∇x N GJN (x∗)) with Jν := {i ∈
I0 | ν = ν(i)} (ν = 1, . . . , N). Then, there are δ > 0 and ω > 0 so that

ω dist[z, Z H ] ≤ ‖H (z)‖ for all z ∈ Bδ(z∗) ∩
. (18)

If δ, ω > 0 exist so that (18) holds H is said to provide a local error bound at z∗ on 
.

4 STRUCTURAL PROPERTIES

This section is devoted to some structural properties of generalized Nash equilibria. The next
subsection is based on [13, 14] and highlights certain generic properties of solutions, in partic-

ular related to their isolatedness or nonisolatedness. Subsection 4.2 deals with approaches for
characterizing all or a subset of solutions of a GNEP.

4.1 Generic properties

We consider GNEPs where, for every ν = 1, . . . , N , the ν-th player’s optimization problem is
given by

min
xν
θν(x

ν , x−ν) s.t. gν(xν, x−ν) ≤ 0, G(xν , x−ν) ≤ 0 (19)

with C 2-functions θν : Rn → R, gν : Rn → R
mν , and G : Rn → R

M . The common con-
straints G(x) ≤ 0 are shared by all players while the inequalities gν(x) ≤ 0 describe individual
constraints.
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Let us first explain what is meant by “generically satisfied property”. Obviously, every GNEP

is characterized by its defining problem functions θν , gν and G. We assumed that all these
functions are twice continuously differentiable. Let the space C 2(Rn) of twice continuously
differentiable functions be endowed with the Whitney topology and the product space of GNEP

defining functions
N∏
ν=1

C 2(Rn)︸ ︷︷ ︸
θν

×
N∏
ν=1

mν∏
i=1

C 2(Rn)︸ ︷︷ ︸
gνi

×
M∏

i=1

C 2(Rn)︸ ︷︷ ︸
Gi

with the product-Whitney topology. For the definition of the Whitney topology we refer to
[13, 14] and references therein. We say that a property of GNEPs is satisfied generically if,
regarding the Whitney topology, there is an open and dense subset of the space of GNEP defining

functions such that the property holds for all instances of this subset.

In the following we first consider a subclass of GNEPs, namely problems without common con-
straints. Thus, for every ν = 1, . . . , N , the optimization problem of player ν is

min
xν
θν(x

ν, x−ν) s.t. gν(xν , x−ν) ≤ 0. (20)

Let us fix ν for the moment and let x∗,−ν be given. Recall that the KKT conditions of problem
(20) with x−ν := x∗,−ν are given by (12). A solution (x∗,ν , λ∗,ν) of (12) is called a nondegener-
ate KKT point of problem (20) if the following conditions are satisfied:

– LICQ is satisfied in x∗,ν ,

– strict complementarity holds in (x∗,ν , λ∗,ν),

– the matrix
V �∇2

xν Lν(x
∗,ν , x∗,−ν, λ∗,ν)V

is nonsingular, where the columns of V ∈ Rn×(n−|Iν0 (x∗)|) form a basis of the tangent space

{d ∈ Rn | ∇xν gνj (x
∗,ν , x∗,−ν)�d = 0 for all j ∈ Iν0 (x∗)},

where Iν0 (x∗) := { j ∈ {1, . . . ,mν} | gνj (x
∗,ν , x∗,−ν ) = 0}.

Concatenating the KKT systems of all players the KKT system of the GNEP

L(x, λ) = 0,

0 ≤ λ⊥ − g(x) ≥ 0
(21)

is obtained, cf. Section 2.3. A solution (x∗, λ∗) is called a nondegenerate KKT point of the

GNEP if, for every ν = 1, . . . , N , (x∗,ν , λ∗,ν) is a nondegenerate KKT point of the optimization
problem (20) with x−ν = x∗,−ν . The x-part of a nondegenerate KKT point of a GNEP is not
necessarily an isolated Nash equilibrium (although the points x∗,ν are isolated solutions of the

optimization problems (20), given x∗,−ν). Thus, to ensure isolatedness, a further condition is
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needed. To this end, for a KKT point (x∗, λ∗) of the GNEP, the functionF1 : Rn+m → R
n+m is

defined by

F1(x, λ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇x1θ1(x)+ ∑
j∈I1

0 (x
∗) λ

1
j∇x1 g1

j (x)
...

∇x N θN (x) +∑
j∈IN

0 (x
∗) λ

N
j ∇x N gN

j (x)(
g1

j (x)
)

j∈I1
0 (x

∗)
...(

gN
j (x)

)
j∈IN

0 (x
∗)

λ1
{1,...,m1}\I1

0 (x
∗)

...

λN
{1,...,m N }\IN

0 (x
∗)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By m we still denote the total number of (individual) constraints, i.e., m = ∑N
ν=1 mν . Every

solution (x, λ) of the nonlinear system F1(x, λ) = 0 with λ ≥ 0 and g(x) ≤ 0 is a KKT
point of the GNEP. The converse is generally not true. However, if (x∗, λ∗) is a nondegenerate

KKT point of the GNEP, at least every solution of (21) in a certain neighborhood of (x∗, λ∗)
solves the problemF1(x, λ) = 0. Note that, due to the differentiability assumptions made in this
subsection, F1 is continuously differentiable.

A KKT point (x∗, λ∗) is called a jointly nondegenerate KKT point of the GNEP if (x∗, λ∗) is a

nondegenerate KKT point of the GNEP and the matrix JF1(x∗, λ∗) is nonsingular. Obviously,
a jointly nondegenerate KKT point is a locally unique solution of F1(x, λ) = 0. The following
result is Theorem 3.2 from [13].

Theorem 4.1. Generically, for a GNEP without common constraints the following property is
satisfied. For every solution x∗ of the GNEP there is a unique vector λ∗ of multipliers so that

(x∗, λ∗) is a jointly nondegenerate KKT point of the GNEP.

In the case of GNEPs where common constraints occur, i.e., where the ν-th players’ problem is
given according to (19) it cannot be expected that every solution of the GNEP provides a KKT

point, see [14, Example 2]. This example is stable with respect to small perturbations of the
defining functions. This motivates to consider Fritz-John (FJ) points instead of KKT points. Let
ν ∈ {1, . . . , N} and x∗,−ν be arbitrary but fixed. Then the FJ conditions of problem (19) with
x−ν := x∗,−ν are given by

ξ ν∇xν θν(xν, x∗,−ν )+ ∑mν

j=1 λ
ν
j∇xν gνj (x

ν , x∗,−ν)+∑M
j=1�

ν
j∇xν G j (xν , x∗,−ν) = 0,

0 ≤ λν ⊥ − gν(xν , x∗,−ν) ≥ 0,

0 ≤ �ν ⊥ − G(xν , x∗,−ν) ≥ 0,

ξ ν ≥ 0.
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By concatenating the FJ conditions of all players, the FJ conditions of the GNEP are obtained. A

solution (x∗, ξ ∗, λ∗, �∗) ∈ Rn+N+m+N M of the FJ conditions is called a FJ point of the GNEP.

There is a relation between the set of FJ points of the GNEPs and the solution set of the nonlinear
system F2(x, γ ) = 0, where F2 : Rn+N+m+N M → R

n+m+M+N is defined by

F2(x, γ ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γ 1
0 )+∇x1 θ1(x)+ ∑m1

j=1(γ
1
j )+∇x1 g1

j (x) +∑M
j=1(γ

1
m1+ j)+∇x1 G j (x)

...

(γ N
0 )+∇x N θN (x)+ ∑m N

j=1(γ
N
j )+∇x N gN

j (x) +∑M
j=1(γ

N
m N + j)+∇x N G j (x)(

−g1
j (x)+ (γ 1

j )−
)m1

j=1
...(

−gN
j (x)+ (γ N

j )−
)m N

j=1(
−G j (x)+

(
γ 1

m1+ j , . . . , γ
N

m N + j

)
∗

)M

j=1∑m1+M
j=0 (γ 1

j )+ − 1

...∑m N +M
j=0 (γ N

j )+ − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, for y ∈ R, y+ := max{0, y} and y− := min{0, y} and, for y1, . . . , yp ∈ R,

(y1, . . . , yp)∗ :=
{

0 if ∃ j ∈ {1, . . . , p} : y j ≥ 0,
−∏ p

j=1 |y j | else.

The next proposition is about the characterization of the set of FJ points of the GNEP by means
of the nonsmooth functionF2. For a proof we refer to [14, Lemma 2.1].

Proposition 4.1. For a GNEP and x∗ ∈ Rn, the following assertions are equivalent.

(i) There are ξ ∗ ∈ RN , λ∗ ∈ Rm and �∗ ∈ RN M such that (x∗, ξ ∗, λ∗, �∗) is a FJ point of
the GNEP.

(ii) There is γ ∗ ∈ RN+m+N M such that F2(x∗, γ ∗) = 0.

Before we state the next result let us define the sets

M := {(ν, j ) | ν ∈ {1, . . . , N}, j ∈ {0, . . . ,mν + M}}
and, for γ ∈ RN+m+N M ,

M0(γ ) := {(ν, j ) ∈M | γ νj = 0}.

Theorem 4.2. Generically, for a GNEP with common constraints the following properties are
satisfied.
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(a) For any solution (x∗, γ ∗) of the system F2(x, γ ) = 0 it holds that |M0(γ
∗)| ≤ (N − 1)M

and that all matrices V ∈ ∂F2(x∗, γ ∗) have full row rank.

(b) The set F−1
2 (0) is a Lipschitz manifold of dimension (N − 1)M.

This result follows from Theorem 2.2 and Corollary 2.3 in [14], where the reader can also find
the definition of a Lipschitz manifold. The main conclusion of the assertion (b) of Theorem 4.2
is that generically FJ points of a GNEP are not isolated.

In [14] a Newton-type projection method for the solution of the system F2(x, γ ) = 0 is pro-

vided. In each step of this method a linear system of equations must be solved, for details on
convergence properties of the resulting algorithm see [14].

4.2 Description of all solutions of a GNEP

As it can already be seen from simple examples, the solution set of a GNEP may consist of

nonisolated solutions. Therefore, ways for characterizing all (or a subset of all) solutions of a
GNEP by means of a parametrized simpler problem are useful, particularly within applications
where one is interested in having a good approximation of the solution set. The definition of

suitable parametrized problems is still a big challenge. At least for jointly convex GNEPs results
exist. Below, we will review some of them. To this end, let us consider F : Rn → R

n given by
(7) and let us define Fb : Rn → R

n by

Fb(x) :=

⎛
⎜⎜⎝

b1∇x1 θ1(x)
...

bN ∇x N θN (x)

⎞
⎟⎟⎠

for a parameter vector b = (b1, . . . , bN )
� ∈ (0,∞)N .

Theorem 4.3. Let θ1, . . . , θN be C 1-functions and let the GNEP be jointly convex. Then,⋃
b∈(0,∞)N

SOL(VI(X, Fb)) ⊆ SOL(GNEP).

This theorem is a direct consequence of Theorem 2.2 since SOL(GNEP) does not change if
θν is replaced by bνθν for ν = 1, . . . , N . Using this theorem one can (in principle) obtain a

certain subset of solutions of the GNEP by solving the simpler variational inequalities VI(X, Fb))

for all b ∈ (0,∞)N . This subset is the set of all normalized Nash equilibria of the GNEP.
To compute other solutions as well by means of a VI one can try to substitute the set X or the

map F by a suitably parametrized object. This idea was dealt with in [59]. To review a first result
let Fω : Rn → R

n be defined by

Fω(x) := F(x) + (∇xν G(x)ων
)N
ν=1 ,

where ω = (ων)N
ν=1 ∈ [0,∞)M N is a vector of parameters and G : Rn → R

M is a component-
wise convex and continuous function used to define the set X in (5).
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Theorem 4.4. Let G and θ1, . . . , θN be C 1-functions and let the GNEP be jointly convex with

X given in (5). If, for any solution x∗ of the GNEP, a multiplier vector λ∗ exists so that the KKT
conditions (13) with gν := G for ν = 1, . . . , N are satisfied for (x, λ) := (x∗, λ∗), then

SOL(GNEP) ⊆
⋃

ω∈[0,∞)M N

SOL(VI(X, Fω)).

A further result in [59] uses the parametrized set

Xβ := {x1 ∈ Rn1 | g1(x
1) ≤ β1} × · · · × {x N ∈ RnN | gN (x

N ) ≤ βN },

where β = (β1, . . . , βN )
� ∈ R

N and gν : Rnν → R
M , ν = 1, . . . , N , are componentwise

convex and continuous functions. These functions are used to define the map G : Rn → R
M in

(5) in the following separable sense, namely

G(x) :=
N∑
ν=1

gν(x
ν ) for all x ∈ Rn. (22)

Theorem 4.5. Let θ1, . . . , θN be C 1-functions and let the GNEP be jointly convex with X given
by (5) and G given by (22). Then, withA := {β ∈ RN | β1 + · · · + βN = 0},

SOL(GNEP) ⊆
⋃
β∈A

SOL(VI(Xβ , F)).

For refinements of the above two theorems and additional results we refer the reader to [59].
Another way of overestimating SOL(GNEP) is given in [36]. To review this let X y denote the
feasible set of the NEP whose ν-th player solves the problem

min
xν
θν(x

ν, x−ν) s.t. gν(x
ν ) ≤ gν(y

ν )− 1

N
G(y),

where y denotes any element from X .

Theorem 4.6. Let the functions g1, . . . , gN be componentwise convex, θ1, . . . , θN be convex
and suppose that all these functions are C 1. Moreover, let the GNEP be jointly convex with
X given by (5) and G given by (22). If, for any solution x∗ of the GNEP, a multiplier vector

λ∗ exists so that the KKT conditions (13) with gν := G for ν = 1, . . . , N are satisfied for
(x, λ) := (x∗, λ∗), then

SOL(GNEP) ⊆
⋃
y∈X

SOL(VI(X y, F)).

Finally, we would like to direct the reader’s attention to [68], where relations between solutions

of a GNEP with shared constraints and the nondominated points of the set X in (4) are provided.
This may pave the way to the use of methods from multicriteria optimization for computing of
a subset of solutions of the GNEP.
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5 GLOBALLY CONVERGENT ALGORITHMS

The algorithms we present in this section generate a solution of a GNEP under certain assump-
tions for starting points that are not required to lie close to a solution. From our point of view,

these algorithms turned out to be promising under suitable (but possibly restricted) circum-
stances. There are further interesting approaches which we cannot discuss here, see [44, 53, 55]
for some recent ones.

5.1 Decomposition methods

Due to the special structure of GNEPs the use of decomposition methods is a very natural
approach to find a solution. Two important examples for decomposition methods are a Jacobi-

type method and a Gauss-Seidel-type method. The idea is the following. Let xk ∈ R
n be a

given iterate. Then, for each ν = 1, . . . , N , xνk+1 is determined as best response of player ν
to fixed strategies of the other players. Thus, xνk+1 has to be determined as a solution of the

minimization problem

minxν θν
(
x1

k , . . . , xν−1
k , xν, xν+1

k , . . . , x N
k

)
s.t. xν ∈ Xν

(
x1

k , . . . , xν−1
k , xν+1

k , . . . , x N
k

) (23)

in the case of a Jacobi-type method and of

minxν θν
(
x1

k+1, . . . , xν−1
k+1 , xν, xν+1

k , . . . , x N
k

)
s.t. xν ∈ Xν

(
x1

k+1, . . . , xν−1
k+1 , xν+1

k , . . . , x N
k

) (24)

in the case of a Gauss-Seidel-type method. Now, we describe the latter. The Jacobi-type method

uses subproblem (23) instead of (24).

Algorithm 1 (Gauss-Seidel-type Method).

(S0): Choose a starting point x0 ∈ X (x0). Set k := 0.

(S1): If xk is a solution of the GNEP: STOP.

(S2): For any ν = 1, . . . , N , determine xνk+1 as a solution of (24).

(S3): Set xk+1 := (x1
k+1, . . . , x N

k+1), k := k + 1 and go to (S1).

Unfortunately, despite their practical importance, convergence of Jacobi-type and Gauss-Seidel-

type methods is hard to prove so that they are used as heuristic methods. Only in some applica-
tions convergence of Algorithm 1 can be shown, see [65] for an example. In general, convergence
of such methods cannot be expected, even for quite well behaved problems, see [35, Section 3.1]

for an example.

However, a regularized version of the Gauss-Seidel-type method is analyzed in [35] and shown
below. The subproblems of this method are

min
xν
θν
(
x1

k+1, . . . , xν−1
k+1 , xν, xν+1

k , . . . , x N
k

) + τk‖xν − xνk ‖2

s.t. xν ∈ Xν
(
x1

k+1, . . . , xν−1
k+1 , xν+1

k , . . . , x N
k

)
.

(25)
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In comparison to (24), the subproblem (25) contains an additional regularization term in the

objective function, where τk > 0 is a parameter.

Algorithm 2 (Regularized Gauss-Seidel-type Method).

(S0): Choose a starting point x0 ∈ X (x0) and τ0 > 0. Set k := 0.

(S1): If xk is a solution of the GNEP: STOP.

(S2): For any ν = 1, . . . , N , determine xνk+1 as a solution of (25).

(S3): Set xk+1 := (x1
k+1, . . . , x N

k+1), k := k + 1, choose τk+1 > 0, and go to (S1).

The idea for Algorithm 2 comes from [42] where a regularized Gauss-Seidel-type method for

the solution of optimization problems is provided. In [35] convergence properties of Algorithm
2 are analyzed for a subclass of GNEPs with shared constraints, namely the generalized poten-
tial games (GPGs for short). A GNEP is called GPG if

(a) the feasible sets Xν(x−ν ) are given according to (4) with a nonempty, closed set X ⊆ R
n

and

(b) there is a continuous function Q : Rn → R so that, for all ν = 1, . . . , N , for all x−ν ∈
dom(Xν), and for all yν, zν ∈ Xν(x−ν),

θν(yν , x−ν)− θν (zν, x−ν) > 0

implies

Q(yν , x−ν)− Q(zν , x−ν) ≥ σ
(
θν (yν, x−ν)− θν(zν, x−ν)

)
for some forcing function σ : R+ → R+.

Here, dom(Xν) := {
x−ν | Xν(x−ν ) �= ∅}. Moreover, σ : R+ → R+ is called forcing function

if lim
k→∞ σ(tk ) = 0 implies lim

k→∞ tk = 0.

The definition of a GPG is inspired by [56], where NEP potential games are introduced. Property
(b) of a GPG is particularly satisfied if, for each ν, θν is continuous and depends only on the
strategies xν of player ν. Then, Q can be chosen as Q(x) = ∑N

ν=1 θν(x
ν ). Moreover, if, for each

ν, θν is continuous and θν(x) = c(x) + dν(xν ) with a function c that is the same for all players
and a function dν that depends only on the ν-th player’s variables, property (b) is also valid with
Q(x) = c(x) + ∑N

ν=1 dν(xν ).

For player convex GPGs, Theorem 4.3 in [35] for Algorithm 2 can be stated as follows.

Theorem 5.1. Consider a player convex GPG. Suppose that θ1, . . . , θN are continuous and that

the point-to-set maps Xν(·) are inner-semicontinuous relative to dom(Xν) for all ν = 1, . . . , N.
Moreover, suppose that τk = τ > 0 for all k ∈ N. Then, Algorithm 2 is well defined. If {xk} is a
sequence generated by Algorithm 2 every accumulation point of {xk} is a solution of the GPG.
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Due to the assumptions of the previous theorem, the subproblems (25) are strongly convex op-

timization problems and have a unique solution so that Algorithm 2 is well defined. The inner-
semicontinuity requirement for the maps Xν(·) in Theorem 5.1 says that if x̄ belongs to X and,
for any player ν, we consider any sequence {x−ν

k } ⊆ dom(Xν) with x−ν
k → x̄−ν , then there

are points xνk ∈ Xν(x
−ν
k ) so that xνk → x̄ν . This is not a too restrictive requirement, see [35,

Section 2] for a discussion.

A further result in [35] is on convergence properties of Algorithm 2 for GPGs that are not neces-
sarily player convex. Then, it is explicitly assumed that the subproblems of Algorithm 2 always

have a solution. Furthermore, a special updating rule for the parameters τk is used. More pre-
cisely, τk+1 in (S3) of Algorithm 2 is computed by

τk+1 := max

{
min

{
τk, max

ν=1,...,N
‖xνk+1 − xνk ‖

}
, 0.1τk

}
. (26)

The following theorem summarizes the results of Lemma 5.1 and Theorem 5.2 in [35].

Theorem 5.2. Consider a GPG. Suppose that θ1, . . . , θN are continuous and that the point-to-

set maps Xν(·) are inner-semicontinuous relative to dom(Xν) for all ν = 1, . . . , N. Moreover,
suppose that the subproblems of Algorithm 2 always have a solution and that τk+1 in (S3) is
obtained by (26) for all k ∈ N. If a sequence {xk} generated by Algorithm 2 has an accumu-
lation point then {τk } converges to 0. Furthermore, if K denotes an infinite subset of N with

τk+1 < τk for all k ∈ K then every accumulation point of the subsequence {xk}k∈K is a solution
of the GPG.

Note that, even if the entire sequence {xk} has an accumulation point the existence of an accu-
mulation point of the subsequence {xk }k∈K is not guaranteed.

5.2 Penalty methods

In this subsection we consider GNEPs where, for any ν = 1, . . . , N , the optimization problem

of player ν is given by
min

xν
θν(x

ν , x−ν) s.t. gν(xν , x−ν) ≤ 0 (27)

with C 1-functions θν : Rn → R and gν : Rn → R
mν . Moreover, we assume that, for all

x−ν ∈ Rn−nν , the function θν(·, x−ν) is convex and gν(·, x−ν) is componentwise convex.

The penalty algorithm that we are going to describe was first proposed in [33] and analyzed in

more detail in [29]. The subproblems of the method are NEPs where the ν-th players’ optimiza-
tion problem

min
xν

(
θν(x

ν , x−ν)+ ρν‖gν(xν, x−ν)+‖γ
)

(28)

arises from (27) by penalization with a penalty parameter ρν > 0. The NEP resulting from
concatenating (28) for ν = 1, . . . , N is denoted by PNEPρ with ρ = (ρ1, . . . , ρN )

� . By ‖z‖γ :=(∑
i |zi |γ

)1/γ the γ -norm of a vector z is denoted for some fixed γ ∈ (1,∞). For γ = 2 we
still write ‖ · ‖. Moreover, z+ := max{0, z} is understood componentwise. Note that, for any
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x−ν , the optimization problem (28) is unconstrained, convex, and nonsmooth. To deal with the

nonsmoothness of ‖ · ‖γ let the index set

P(x) := {
ν ∈ {1, . . . , N} | ∃i ∈ {1, . . . ,mν} : gνi (x) > 0

}
be defined for any x ∈ Rn . The penalty method in [29] updates the penalty parameters as follows.

For given iterates x and ρ = (ρ1, . . . , ρN )
�, the parameter ρν with ν ∈ P(x) is replaced by

2ρν if
‖∇xν θν (x)‖ > cν ρν

∥∥∇xν
( ‖gν(x)+‖γ

) ∥∥ (29)

holds with some fixed cν ∈ (0, 1). The idea behind this is to increase ρν only if the gradient of
the penalty term is not sufficiently larger than the gradient of the objective function. Note that
the gradient ∇xν

( ‖gν(x)+‖γ
)

is well defined due to the definition of P(x). To formulate the

penalty method we suppose that there is an iterative algorithm A which, starting from a point
xk , determines a new point xk+1 := A[xk] and so on. Moreover, for any ρ = (ρ1, . . . , ρN )

�
and any starting point x0 ∈ R

n , Algorithm A is assumed to generate a sequence {xk} whose

accumulation points solve PNEPρ . Now, we are in the position to state the penalty algorithm
from [29].

Algorithm 3 (Penalty Method).

(S0): Choose x0 ∈ Rn , γ ∈ (1,∞), ρ1,0, . . . , ρN,0 > 0, and c1, . . . , cN ∈ (0, 1). Set k := 0.

(S1): If xk is a solution of the GNEP: STOP.

(S2): For any ν = 1, . . . , N : If ν ∈ P(xk) and if (29) is valid for x = xk and ρν = ρν,k , then set

ρν,k+1 := 2ρν,k. Else, set ρν,k+1 := ρν,k .

(S3): Determine xk+1 := A[xk], set k := k + 1 and go to (S1).

In [29, Theorem 2.5] the following convergence result is proven under the above assumption on
AlgorithmA.

Theorem 5.3. Let {xk, ρ1,k, . . . , ρN,k} be an infinite sequence generated by Algorithm 3 and let
the index set I∞ be defined by

I∞ := {
ν ∈ {1, . . . , N} | ρν,k → ∞ for k → ∞}

.

If I∞ = ∅, then every accumulation point x∗ of {xk} is a solution of the GNEP. If I∞ �= ∅
and if the sequence {xk} is bounded, then, for each ν ∈ I∞, there is an accumulation point x∗
of {xk} for which one of the following assertions is true:

(a) ‖gν(x∗,ν , x∗,−ν)+‖γ = min
xν∈Rnν

‖gν(xν, x∗,−ν )+‖γ > 0,

(b) x∗,ν is the primal part of a Fritz John point of problem (27) with x−ν := x∗,−ν but not a
global minimizer of (27),

(c) x∗,ν is a global minimizer of (27) with x−ν := x∗,−ν .
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Note that I∞ = ∅ means that all penalty parameters are updated a finite number of times

only while I∞ �= ∅ indicates that at least one penalty parameter grows to infinity. A sufficient
condition for I∞ = ∅ (if {xk} is bounded) is the extended Mangasarian-Fromovitz constraint
qualification (EMFCQ for short). A proof of this assertion can be found in [29, Theorem 2.8].

A GNEP satisfies the EMFCQ at a point x∗ if, for every player ν = 1, . . . , N , there is a vector
dν such that

∇xν gνi (x
∗)�dν < 0 for all i ∈ Iν+(x∗),

where Iν+(x∗) := {i ∈ {1, . . . ,mν} | gνi (x
∗) ≥ 0} denotes the index set of all active and violated

constraints at the point x∗ for the ν-th player.

Corollary 5.1. Let {xk } be a sequence generated by Algorithm 3. If this sequence is bounded
and if EMFCQ holds at every accumulation point of {xk} then each accumulation point of {xk}
is a solution of the GNEP.

In [29], another constraint qualification (named CQγ ) is shown to be weaker than EMFCQ but,
still, to imply that each accumulation point of a bounded sequence generated by Algorithm 3
solves the GNEP. The definition of CQγ and references where such a constraint qualification

was used in the case of optimization problems can be found in [29] and [31].

For jointly convex GNEPs with X given in (5) a slight modification of Algorithm 3 is analyzed
in [29] under the assumption that G : Rn → R

M is continuously differentiable. Then, if (S2) of
Algorithm 3 is replaced by

(S2’): If P(xk ) �= ∅ and
∥∥∥∇xνk

θν(xk)

∥∥∥ > cνρν,k
∥∥∥∇xνk

( ‖G(xk)+‖γ
) ∥∥∥ holds for ν = 1, . . . , N ,

then set ρν,k+1 := 2ρν,k for ν = 1, . . . , N .

Else, set ρν,k+1 := ρν,k for ν = 1, . . . , N , stronger results than in Theorem 5.3 were proved
in [29]. In particular, if the penalty parameters grows to infinity and {xk} is bounded, there is
an accumulation point x∗ of {xk} such that for each ν = 1, . . . , N one of the assertions (b) and

(c) from Theorem 5.3 is true. Moreover, it can be shown that Slater’s condition for the set X
guarantees that the penalty parameters are increased a finite number of times only.

The problem that is left is the choice of an appropriate algorithmA for the solution of a subprob-
lem PNEPρ . One possibility is to approximate the nonsmooth PNEPρ by a smooth one, where

the ν-th players’ optimization problem is given by

min
xν

⎡
⎣θν(xν , x−ν)+ ρν

( mν∑
i=1

(gνi (x)+)
γ + ε

)1/γ

+ ε

2
‖xν‖2

⎤
⎦ (30)

with some smoothing parameter ε > 0. The objective of (30) is strongly convex so that (30)
always has a unique solution. The resulting NEP is unconstrained, convex and smooth and is

denoted by PNEPρ(ε). Hence, PNEPρ(ε) can equivalently be written as

Fρ,ε(x) :=

⎛
⎜⎜⎝

∇x1 P1(x, ρ1, ε)

...

∇x N PN (x, ρN , ε)

⎞
⎟⎟⎠ = 0,
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where, for each ν, Pν(·, x−ν, ρν, ε) denotes the objective function of (30). If γ > 2 and if

θ1, . . . , θN and g1, . . . , gN are C 2-functions then Fρ,ε is an C 1-function since, for each ν =
1, . . . , N , the function Pν(·, ρν, ε) is C 2. In [29, Proposition 3.2] a result is proven showing
that, for arbitrary sequences {εk}, {ηk} ⊂ (0,∞) converging to 0, any accumulation point of a

sequence {x(εk )} satisfying

‖Fρ,εk (x(εk ))‖ ≤ ηk for all k ∈ N

is a solution of PNEPρ . Thus, one possibility to determine xk+1 in (S3) of Algorithm 3 is to
perform some steps of an equation solver applied to the equation Fρk ,εk (x) = 0 with some
εk > 0 until a certain accuracy is reached. The parameters εk have to be updated in the outer

iterations. For more details on the implementation of Algorithm 3 see [29].

The penalization approach described above transforms GNEPs into a sequence of NEPs. The
same idea can be used in different ways. In [31], a partial penalization is provided where con-
straints hν(xν ) ≤ 0 that depend only on the ν-th player’s variables are not penalized. The sub-

problems of the resulting algorithm are constrained and nonsmooth NEPs where the ν-th player’s
optimization problem is

min
xν

[
θν(x

ν , x−ν)+ ρν‖gν(xν, x−ν)+‖γ
]

s.t. hν(xν ) ≤ 0.

Another partial penalization approach is suggested in [40], where the nonsmoothness of z+ is
removed by introducing artificial variables.

5.3 Methods based on Nikaido-Isoda functions

In the beginning of this subsection, we consider jointly convex GNEPs where, for any ν =
1, . . . , N , the optimization problem of player ν is given by

min
xν
θν(x

ν , x−ν) s.t. (xν , x−ν) ∈ X

with C 1-functions θν : Rn → R. At the end of this subsection, the convexity requirements will
be weakened.

In order to compute normalized NEs for jointly convex GNEPs, we first exploit Theorem 2.5.

The following descent algorithm was established in [74] for treating the unconstrained optimiza-
tion problem

min
x

Vαβ(x).

Algorithm 4 (Gradient Method).

(S0): Choose x0 ∈ Rn , β > α > 0, ρ ∈ (0, 1). Set k := 0.

(S1): If xk is a solution of the GNEP (i.e., Vαβ(xk ) = 0): STOP.

(S2): Compute dk := −∇Vαβ(xk).
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(S3): Compute tk := max{2−l | l = 0, 1, 2, . . .} such that

Vαβ(xk + tkdk) ≤ Vαβ(xk)+ ρtk∇Vαβ(xk)
�dk . (31)

(S4): Set xk+1 := xk + tkdk, k := k + 1 and go to (S1).

A rule for computing ∇Vαβ(x) can be found in [74, Theorem 4.3]. According to this and also for

computing Vαβ(x), it is necessary to determine the solutions yα(x) and yβ(x) of two constrained
optimization problems (see part (d) of Theorem 2.4 for a definition). Initially, a Barzilai-Borwein
step size [4] was implemented in [74] to avoid evaluations of Vαβ caused by a line search.

Later on, in [19], the above algorithm with the Armijo line search formula (31) is combined
with a locally superlinearly convergent method (see Section 6). By standard arguments it can be
shown that each accumulation point of a sequence {xk} generated by Algorithm 4 is a stationary

point of Vαβ . Due to Theorem 4.5 of [74] such a point is a normalized NE of the GNEP pro-
vided that the gradients of Vαβ satisfy the following monotonicity property for all x ∈ Rn with
yβ(x) − yα(x) �= 0:

N∑
ν=1

[
∇θν(yνβ(x), x−ν )− ∇θν(yνα(x), x−ν )

]�
(yβ (x)− yα(x)) > 0.

Another way to compute a normalized NE of a jointly convex GNEP is offered by Theorem 2.4.
For treating the constrained optimization problem (10), i.e.,

min
x

Vα(x) s.t. x ∈ X,

the following algorithm was established and analyzed in [75]. It can be regarded as a relaxation
(see [72]) of the fixed point iteration for solving x = yα(x), see Theorem 2.4.

Algorithm 5 (Relaxation Method).

(S0): Choose x0 ∈ X , α > 0, ρ ∈ (0, 1). Set k := 0.

(S1): If xk is a solution of the GNEP (i.e., Vα(xk ) = 0): STOP.

(S2): Compute yα(xk) and set dk := yα(xk)− xk .

(S3): Compute tk := max{2−l | l = 0, 1, 2, . . .} such that

Vα(xk + tkdk) ≤ Vα(xk)− ρt2
k ‖dk‖.

(S4): Set xk+1 := xk + tkdk, k := k + 1 and go to (S1).

The following theorem presents the results of Theorems 4.1 and 5.1 in [75].

Theorem 5.4. Consider a jointly convex GNEP and let, for some α > 0, one of the following
two assumptions be satisfied:
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(a) For all x ∈ X with x �= yα(x) it holds

N∑
ν=1

[∇θν(xν , x−ν)− ∇θν(yνα(x), x−ν)
]�
(x − yα(x)) > 0.

(b) The function�α(·, y) is convex for every y in some open set containing X.

Then, any accumulation point x∗ of a sequence {xk} generated by Algorithm 5 is a normalized
NE of the GNEP.

In [75] it is shown that Assumption (b) of Theorem 5.4 still implies that every accumulation
point of {xk} is a normalized NE if the utility functions θν are continuous but not necessarily

differentiable.

For the remainder of this subsection let us briefly deal with the case of not necessarily jointly
convex, but player convex GNEPs. We assume that the feasible sets of the players Xν(x−ν) are
given by (1) with componentwise convex functions gν(·, x−ν). According to Theorem 2.6,

min
x

V̄αβ(x) (32)

is a suitable unconstrained optimization reformulation for player convex GNEPs. Under certain

conditions, V̄αβ is a piecewise continuously differentiable function, see [18] for details. In the
latter paper (and in [17] for the jointly convex case), a robust gradient sampling algorithm [9]
is used to minimize V̄αβ . In general, one can only expect to obtain a stationary point of V̄αβ .
However, as it is clear from Theorem 2.6, a global minimizer of V̄αβ is needed to obtain a NE.

Therefore, it might be interesting to find conditions on the GNEP under which a stationary point
of V̄αβ turns out to be a global minimizer.

In [18], also a constrained optimization reformulation for player convex GNEPs was suggested
and analyzed. More in detail, for α > 0, V̂α and W according to (8) and (6), the problem

min
x

V̂α(x) s.t. x ∈ W (33)

is considered. In particular smoothness properties are analyzed in [18] and [45]. Since V̂α need
not be defined outside W a feasible direction algorithm for solving this problem is used in [45].

We would like to underline that the above two optimization reformulations (32) and (33) for
player convex and, consequently, also for jointly convex GNEPs allow a complete character-

ization of all NEs (see Theorem 2.6 with Proposition 1.2 and Theorem 2.3) and not only of
normalized NEs as it was possible by Theorems 2.4 and 2.5 in the case of exclusively jointly
convex GNEPs.

5.4 Potential reduction algorithm

This section is devoted to an algorithm for the solution of the KKT system (13) of a GNEP.
We assume that the feasible sets of the players ν = 1, . . . , N are given by (1). Moreover, let the
functions θν and gν be C 2 for all ν = 1, . . . , N .
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The KKT system (13) can be reformulated by (15), i.e., by the constrained system of equations

H (z) = 0 s.t. z ∈ 
,
with H , z, and 
 defined in (15). Due to our differentiability assumptions, H is a C 1-function.

The Potential Reduction Algorithm we are going to describe below is an interior point method
and based on the minimization of a potential function. Such a method was firstly proposed in [58]
for the solution of constrained nonlinear systems. In [16], it is applied to find a solution of
(15). Before we state the algorithmic framework let us provide some notation. Let the function
p : Rn × R2m++ → R be given by

p(u, v) := ζ log(‖u‖2 + ‖v‖2)−
2m∑
i=1

log(vi )

for some ζ > m. Furthermore, the set of all strictly feasible points for which the last 2m
components of H are positive is denoted by


I := {z = (x, λ, w) ∈ Rn × Rm++ × Rm++ | g(x)+ w > 0}
Now, the potential function ψ : 
I → R is defined by

ψ(z) := p(H (z)).

Algorithm 6 (Potential Reduction Algorithm).

(S0): Choose z0 ∈ 
I , ρ, σ̄ ∈ (0, 1), ζ > m. Set a� := (0�
n , 1�

2m) and k := 0.

(S1): If H (zk) = 0: STOP.

(S2): Choose σk ∈ [0, σ̄ ] and compute a solution dk of the linear system

J H (zk)d = −H (zk)+ σk
a� H (zk)

‖a‖2
a.

(S3): Compute tk := max{2−l | l = 0, 1, 2, . . .} such that

zk + tkdk ∈ 
I and ψ(zk + tkdk) ≤ ψ(zk)+ ρtk∇ψ(zk)
�dk .

(S4): Set zk+1 := zk + tkdk , k := k + 1 and go to (S1).

The following convergence result is Theorem 4.3 from [16]. A proof can be found there.

Theorem 5.5. Assume that J H (z) is nonsingular for all z ∈ 
I . Let {zk} be any sequence
generated by Algorithm 6. Then the following assertions hold:

(a) The sequence {H (zk)} is bounded.

(b) Any accumulation point of {zk} is a solution of (15).
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The nonsingularity of J H (z) on 
I guarantees that Algorithm 6 is well defined since all iterates
zk belong to 
I . This follows from z0 ∈ 
I and the step size rule in (S3). By definition of

I , none of the solutions of H (z) = 0 can belong to 
I . Thus, the nonsingularity of J H (z)
on 
I does not imply the nonsingularity of J H at a KKT point. In [16, 30] some sufficient
conditions for J H (z) to be nonsingular on
I are provided. Moreover, [16] contains discussions
on the numerical behavior of the potential reduction method and numerical results. In [30], the
potential reduction method is used for the solution of quasi-variational inequalities and results
from [16] are extended to that case.

6 LOCAL METHODS AND GLOBALIZATIONS

According to the reformulations described in Section 2, related local methods with superlinear
convergence can be found in literature. At first let us briefly consider the “partial” reformulation
of a jointly convex GNEP by means of the variational inequality VI(X, F) where F is defined
by (7) (see Theorem 2.2). For iteratively solving VI(X, F), the Josephy-Newton method [51]
can be exploited (see, e.g., [48] and [41]). This method generates a sequence of vectors {xk}
where xk+1 is a solution of the simpler problem VI(X, Fk) and Fk denotes the linearization of F
at xk , i.e.,

Fk(x) := F(xk )+ J F(xk)(x − xk).

Local quadratic convergence of the Josephy-Newton method is proved under strong assumptions.

6.1 Methods based on Nikaido-Isoda functions

In this subsection we consider jointly convex GNEPs. For any ν = 1, . . . , N , the optimization
problem of player ν is given by

min
xν
θν (x

ν, x−ν) s.t. (xν, x−ν) ∈ X := {x ∈ Rn | G(x) ≤ 0} (34)

where θ1, . . . , θN : Rn → R and G : Rn → R
M are C 2-functions with locally Lipschitz

continuous second-order derivatives.

Let us first describe a locally superlinearly convergent counterpart of the globally convergent
Algorithm 4 for dealing with the problem of minimizing Vαβ(x) over Rn . The following algo-
rithm is a nonsmooth Newton method from [69] applied to the system ∇Vαβ(x) = 0. Here,
Clarke’s generalized Jacobian of ∇Vαβ is denoted by ∂2Vαβ .

Algorithm 7 (Nonsmooth Newton-type Minimization Method).

(S0): Choose β > α > 0, x0 ∈ Rn . Set k := 0.

(S1): If xk is a solution of the GNEP (i.e., Vαβ(xk ) = 0): STOP.

(S2): Compute Hk ∈ ∂2Vαβ(xk) and dk as a solution of the linear system

Hkd = −∇Vαβ(xk).

(S3): Set xk+1 := xk + dk , k := k + 1 and go to (S1).
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Let x∗ be a normalized NE. Hence, x∗ is a solution of the system ∇Vαβ(x) = 0. To apply the

main convergence result of [69] semismoothness of ∇Vαβ at x∗ and the nonsingularity of all ele-
ments in ∂2Vαβ(x∗) are needed. In [73], it is shown that ∇Vαβ is semismooth in a neighborhood
of x∗ if the linear independence constraint qualification (LICQ) is satisfied in x∗. LICQ means

that the gradients ∇Gi (x∗) with i ∈ I0(x∗) = {i ∈ {1, · · · , M} | Gi (x∗) = 0} are linearly
independent. Putting things from [73] and [69] together we have

Theorem 6.1. Consider a jointly convex GNEP with X given in (5). Let x∗ be a normalized NE,
suppose that LICQ holds in x∗ and that all elements of ∂2Vαβ(x∗) are nonsingular. Then, there

is δ > 0 so that for every x0 ∈ Bδ(x∗) Algorithm 7 is well defined and any infinite sequence {xk}
generated by the algorithm converges Q-quadratically to x∗.

For Step (S2) of Algorithm 7 it is suggested [73] to compute H̃k := ∇2Vαβ(x̃k) with some
suitable x̃k ≈ xk instead of an element of ∂2Vαβ(xk). Moreover, it is shown that the convergence

properties of Algorithm 7 stay true for the resulting inexact method.

Combining Algorithms 4 and 7 global convergence can be obtained by taking the Newton-
direction whenever available and if it satisfies a suitable descent condition. Later on, this tech-
nique will be described in detail for the globalization of the following locally superlinear method

for treating jointly convex GNEPs where the players’ problems are given by (34).

In [76], Newton-type methods were applied to the equation

0 = �α(x) := yα(x)− x

according to the fixed point reformulation in Assertion (d) of Theorem 2.4. We recall that yα(x)

denotes the unique solution of the optimization problem

min
y

−�α(x, y) s.t. y ∈ X = {y ∈ Rn | G(y) ≤ 0}. (35)

In contrast to Algorithm 7, the computable generalized Jacobian ∂C�α described in [76] is
employed. To define ∂C�α(x) the constant rank constraint qualification (CRCQ) is used. The
CRCQ is satisfied in x ∈ X if there is δ > 0 so that, for any subset J ⊆ I0(x), the matrices

(· · · ∇Gi (w) · · · )i∈J have the same rank r(J) for all w ∈ Bδ(x).
Suppose that, for some x ∈ R

n , CRCQ is satisfied in yα(x). Then, it is well known [50] that
there is a (not necessarily unique) Lagrange multiplier vector � ∈ RM so that (yα(x), �) solves
the KKT system of the optimization problem (35):

−∇y�α(x, y) + J G(y)�� = 0,

0 ≤ �⊥ − G(y) ≥ 0.
(36)

Let L I (x) denote the set of all subsets J ⊆ I0(yα(x)) for which � ∈ R
M exists such that

(yα(x), �) solves (36), � j = 0 for all j ∈ I0(yα(x)) \ J, and the gradients ∇Gi (yα(x)) are
linearly independent for all i ∈ J. From a result in [76] it follows that L I (x) is nonempty if
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CRCQ is satisfied in yα(x). Moreover, in [76], the computable generalized Jacobian of �α at x

is defined by
∂C�α(x) := {∇ yJα (x)

� − In | J ∈ L I (x)}
with the identity matrix In ∈ Rn×n . Details and an explicit formula for ∇ yJα (x) can be found in

[76] and [19].

Now suppose that x∗ is a normalized NE and CRCQ is satisfied in x∗. Taking into account
Theorem 2.4, x∗ = yα(x∗) holds so that CRCQ is also valid in yα(x∗). Due to a result in [76]
it follows that CRCQ even holds in yα(x) for all x in some neighborhood of x∗. Therefore,

the computable generalized Jacobian ∂C�α(x) is nonempty for all x near x∗. Moreover, As-
sumption 6.1 below guarantees that any element of ∂C�α(x) is nonsingular for x in a certain
neighborhood of x∗.

Algorithm 8 (Nonsmooth Newton-type Fixed Point Method).

(S0): Choose α > 0, x0 ∈ X . Set k := 0.

(S1): If xk is a solution of the GNEP (i.e., �α(xk) = yα(xk)− xk = 0): STOP.

(S2): Compute Hk ∈ ∂C�α(xk ) and dk as solution of the linear system

Hkd = −�α(xk).

(S3): Set xk+1 := xk + dk , k := k + 1 and go to (S1).

Assumption 6.1. For each J ∈ L I (x) and each � with (yα(x), �) satisfying (36) let

d�
⎛
⎝M(x, yα(x))+

∑
i∈J

�i∇2Gi (yα(x))

⎞
⎠ d �= 0 for all d ∈ T J(x) \ {0}

be satisfied, where T J(x) := {d ∈ Rn | d�∇Gi (yα(x)) = 0 for all i ∈ J} and

M(x, y) :=

⎛
⎜⎜⎝

∇2
x1 x1 θ1(y1, x−1) · · · ∇2

x1 x N θ1(y1, x−1)

...
. . .

...

∇2
x N x1θN (yN , x−N ) · · · ∇2

x N x N θN (yN , x−N )

⎞
⎟⎟⎠ .

Note that for x∗ = y∗ := yα(x∗) the Jacobian J F(x∗) of the function F defined in (7) is equal

to M(x∗, y∗).

Theorem 6.2 (see [76]). Consider a jointly convex GNEP with X given by (5). Let x∗ be a
normalized NE and suppose that CRCQ and Assumption 6.1 hold in x∗. Then there is δ > 0 so
that for every x0 ∈ Bδ(x∗) Algorithm 8 is well defined and any infinite sequence {xk} generated

by the algorithm converges Q-quadratically to x∗.
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Global convergence can be obtained by combining (see [19]) the globally convergent Gradient

Algorithm 4 and the current local algorithm (here Algorithm 8) by taking the Newton-direction
whenever available and if it satisfies a certain descent condition (see the tests in steps (S3) and
(S4) of the following algorithm).

Algorithm 9 (Globalized Nonsmooth Newton-type Fixed Point Method).

(S0): Choose x0 ∈ Rn , β > α > 0, s > 1, ρ, σ, τ ∈ (0, 1). Set k := 0.

(S1): If xk is a solution of the GNEP (i.e., �β(xk) = yβ(xk)− xk = 0): STOP.

(S2): If possible compute Hk ∈ ∂C�β(xk ) and dk as a solution of the linear system

Hkd = −�β(xk).

If this fails then compute dk := −∇Vαβ(xk) and go to (S5).

(S3): If Vαβ(xk + dk) ≤ τVαβ(xk) then set xk+1 := xk + dk , k := k + 1 and go to (S1).

(S4): If ∇Vαβ(xk)
�dk > −σ‖dk‖s then compute dk := −∇Vαβ(xk).

(S5): Compute tk := max{2−l | l = 0, 1, 2, . . .} such that

Vαβ(xk + tkdk) ≤ Vαβ(xk)+ ρtk∇Vαβ(xk)
�dk .

(S6): Set xk+1 := xk + tkdk, k := k + 1 and go to (S1).

Theorem 6.3 (see [19]). Consider a jointly convex GNEP with X given by (5). Then, Algo-
rithm 9 is well defined for any starting point x0 ∈ Rn and the following assertions hold:

(a) Let CRCQ hold for all x ∈ X. Let x̄ be an accumulation point of a sequence {xk} generated

by Algorithm 9. Then, x̄ is a stationary point of Vαβ , i.e., ∇Vαβ(x̄) = 0. Moreover, x̄ is a
normalized NE provided that, for all x ∈ Rn with yβ(x)− yα(x) �= 0, it holds

N∑
ν=1

[
∇θν(yνβ(x), x−ν )− ∇θν(yνα(x), x−ν )

]�
(yβ (x)− yα(x)) > 0.

(b) Let x∗ be a normalized NE and suppose that x∗ is an accumulation point of a sequence
{xk} generated by Algorithm 9. If CRCQ and Assumption 6.1 are satisfied in x∗, then the

sequence {xk} converges Q-quadratically to x∗.

6.2 Methods based on KKT conditions

This section is devoted to local algorithms for the solution of the KKT system (13) of a GNEP.
Global convergence can be obtained by line search techniques or by a combination with the
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Potential Reduction Algorithm introduced in Subsection 5.4. We assume that the feasible sets of

the players ν = 1, . . . , N are given by

Xν(x
−ν) = {xν ∈ Rnν | gν(xν, x−ν) ≤ 0},

where θν and gν are C 2-functions with locally Lipschitz continuous second-order derivatives.
In [27] Newton-type methods for KKT based reformulations for obtaining a NE were dealt with.
Both a reformulation of the KKT system arising from the variational inequality VI(X, F) (see

Subsection 2.1) and a reformulation of the (concatenated) KKT system (13) was considered.
The latter is the nonsmooth equation

Hmin(z) = 0

with Hmin : Rn+m → R
n+m and z ∈ Rn+m defined in (14). Since solutions of a GNEP are often

nonisolated fast methods for reformulations that do not restrict the set of solutions (for example
to normalized NEs) should take this into account. Levenberg-Marquardt methods [37, 38, 39, 77]

can serve as promising tool if one is able to provide an error bound under reasonable conditions.
The subproblems of this method are quadratic programs with a strongly convex objective. A first
approach in this direction to solve Hmin(z) = 0 was suggested in [27]. The subproblems of the
Levenberg-Marquardt method then read as

min
z

[
1

2
‖J Hmin(zk)(z − zk)+ Hmin(zk)‖2 + 1

2
μ(zk )‖z − zk‖2

]
with the regularization parameter μ(zk) := ‖Hmin(zk)‖. The new iterate zk+1 can be determined

as (the unique) solution of a linear system of equations. However, to obtain differentiability of
Hmin, at least in a certain neighborhood of a solution z∗ = (x∗, λ∗) of (14), strict complemen-
tarity at z∗ is required. Under this assumption and the local error bound (17) the Levenberg-

Marquardt method generates a well defined sequence for any z0 sufficiently close to z∗ and any
such sequence converges to a solution of (14) with a Q-quadratic rate. For sufficient conditions
to ensure this error bound see Section 3.

In order to weaken the strict complementarity assumption another reformulation of the KKT

system (13) was successfully applied in [15]. There, the KKT system is reformulated as the
constrained system of equations

H (z) = 0 s.t. z ∈ 
, (37)

where
H : Rn+2m → R

n+2m , z ∈ Rn+2m , and 
 ⊂ R
n+2m

are defined in (15). Due to the differentiability assumptions on the problem functions of the
GNEP, H is differentiable and has a locally Lipschitz continuous derivative. Instead of the strict
complementarity at (x∗, λ∗) a significantly weaker condition is used. For any constraint that

is active at a solution z∗ = (x∗, λ∗, w∗) of (37) at least one player with a positive Lagrange
multiplier for this constraint must exist within λ∗. A detailed description is given in Theorem 3.3
for the case of shared constraints.
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The LP-Newton Method was designed for solving general constrained equations with nonisolated

solutions and nonsmoothness, see [24] for details and a convergence analysis. The subproblems
of the LP-Newton method are linear programs. In [15] this method was applied to GNEPs within
a hybrid algorithm. It combines the Potential Reduction Method (Algorithm 6) with the LP-

Newton Method for obtaining both global and local fast convergence, see Algorithm 10 below.

A more general class of methods for solving (37) is presented in [25]. In particular, a constrained
Levenberg-Marquardt algorithm with the subproblems

min
z

[
1

2
‖J H (zk)(z − zk)+ H (zk)‖2 + 1

2
μ(zk )‖z − zk‖2

]
s.t. z ∈ 


belongs to this class. Whereas [5, 52] contain results for the convergence of constrained Leven-
berg-Marquardt methods for smooth problems, the analysis in [25] allows also nonsmooth cases.
The key for proving fast local convergence of the LP-Newton Method and of the constrained

Levenberg-Marquardt method lies in a suitable error bound for problem (37). A sufficient con-
dition for such an error bound is given in Theorem 3.3.

Recalling the definitions of the feasible region 
I and of the potential function ψ from Sec-
tion 5.4 we now state the hybrid algorithm from [15]. The LP-Newton-direction is taken when-

ever satisfying a descent condition with respect to ‖H (·)‖, otherwise a potential reduction step
is carried out.

Algorithm 10 (Potential Reduction LP-Newton Method).

(S0): Choose z0 ∈ 
I , β, ρ, σ̄ ∈ (0, 1), ζ > m, τmax > τmin > 0, τ0 ∈ [τmin, τmax].
Set a� := (0�

n , 1�
2m) and k := 0.

(S1): If zk is a solution of (15): STOP.
If ‖H (zk)‖ ≤ τk go to (S4), else go to (S2).

(S2): Choose σk ∈ [0, σ̄ ] and compute a solution dk of the linear system

J H (zk)d = −H (zk)+ σk
a� H (zk)

‖a‖2 a.

(S3): Compute tk := max{2−l | l = 0, 1, 2, . . .} such that

zk + tkdk ∈ 
I and ψ(zk + tkdk) ≤ ψ(zk)+ ρtk∇ψ(zk)
�dk .

Set zk+1 := zk + tkdk , ẑ := zk+1, τk+1 := τk , k := k + 1 and go to (S1).

(S4): Compute (z̃k+1, ηk+1) ∈ Rn+2m × R as a solution of the linear program

min
z,η

η s.t. z ∈ 
,
‖J H (zk)(z − zk)+ H (zk)‖∞ ≤ η‖H (zk)‖2∞,

‖z − zk‖∞ ≤ η‖H (zk)‖∞.

If ‖H (z̃k+1)‖ ≤ β‖H (zk)‖, set zk+1 := z̃k+1, τk+1 := τk , k := k + 1 and go to (S1), else
set zk+1 := ẑ, k := k + 1, choose τk+1 ∈ [τmin, τmax], and go to (S2).
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Theorem 6.4 (see[15]). Consider a GNEP with shared constraints. Assume that J H (z) is non-

singular for all z ∈ 
I . Then Algorithm 10 is well defined and, for any sequence {zk} generated
by the algorithm, the following assertions hold:

(a) The sequence {H (zk)} is bounded.

(b) Any accumulation point of {zk} is a solution of (15).

(c) If {zk} has an accumulation point z∗ satisfying the assumptions of Theorem 3.3 then the
sequence {zk} converges to z∗ with a Q-quadratic rate.

Global convergence results should also be possible for a modification of Algorithm 10 where the
Potential Reduction Algorithm is replaced by the Penalty Method described in Section 5.2. The
player convexity and regularity conditions required there for proving convergence to a solution

of the GNEP would make Theorem 6.4 also valid for the case that “solution of (15)” is replaced
by “solution of the GNEP”. This is justified by Theorem 2.7.

We finally would like to refer the reader to an approach in [14], where a Newton-like method is
applied to F2(x, γ ) = 0 (see Subsection 4.1) in order to find a Fritz-John point of a GNEP. The

local quadratic convergence of this method is claimed under quite strong conditions if it starts
sufficiently close to a solution (x∗, γ ∗) of F2(x, γ ) = 0. In particluar, all multipliers in γ ∗ were
required to be nonzero. As explained in [14] there is some hope to weaken those conditions.
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