2

Klausur Mathematik II

für Studierende der Fakultät Maschinenwesen und des Studiengangs Mechatronik mit Lösungsvorschlag

1. Es sei

$$\int_C (\frac{x}{z} d\mathsf{x} + \frac{z}{x^2 - 2} d\mathsf{y} + x^2 d\mathsf{z}).$$

(a) Untersuchen Sie dieses Kurvenintegral auf Wegunabhängigkeit. **Lösung:** Mit $P = \frac{x}{z}$ und $Q = \frac{z}{x^2 - 2}$ gilt $P_y = 0$ und $Q_x = -\frac{2xz}{(x^2 - 2)^2}$,

also $P_y \neq Q_x$, d.h. das Kurvenintegral ist wegabhängig.

(b) Berechnen Sie den Wert dieses Kurvenintegrals für den Fall, dass die Kurve C vom Punkt $P_1(0,1,2)$ zum Punkt $P_2(1,e,1)$ führt und durch die Parameterdarstellung

$$x(t) = \sqrt{t}, \quad y(t) = e^t, \quad z(t) = 2 - t$$

gegeben ist.

Lösung:

$$\begin{split} \int_C (\frac{x}{z} \mathsf{dx} + \frac{z}{x^2 - 2} \mathsf{dy} + x^2 \mathsf{dz}) &= \int\limits_{t = 0}^1 (\frac{\sqrt{t}}{2 - t} \cdot \frac{1}{\sqrt{t}} + \frac{2 - t}{t - 2} \cdot \mathsf{e}^t + t \cdot (-1)) \mathsf{dt} \\ &= -\frac{1}{2} \ln(2 - t) - \mathsf{e}^t - \frac{1}{2} t^2 |_{t = 0}^1 = \frac{1}{2} (1 + \ln 2) - \mathsf{e} \end{split}$$

2. Die Kurve \mathcal{E} in der x, y-Ebene sei als Lösungsmenge der Gleichung

$$5x^2 + 6xy + 5y^2 - 16 = 0$$

definiert. Unter allen Punkten der Kurve $\mathcal E$ gibt es mindestens einen Punkt, dessen Abstand vom Koordinatenursprung (0,0) minimal ist.

(a) Ermittlen Sie alle Punkte auf \mathcal{E} , deren Abstand zum Koordinatenursprung minimal ist. **Lösung:**

$$L(x, y, \lambda) = \sqrt{x^2 + y^2} + \lambda(5x^2 + 6xy + 5y^2 - 16)$$

$$L_x = \frac{x}{\sqrt{x^2 + y^2}} + \lambda(10x + 6y) \stackrel{!}{=} 0$$

$$L_y = \frac{y}{\sqrt{x^2 + y^2}} + \lambda(6x + 10y) \stackrel{!}{=} 0$$

$$L_\lambda = 5x^2 + 6xy + 5y^2 - 16 \stackrel{!}{=} 0$$

Falls 10x + 6y = 0, dann folgt x = 0, $y = 0 \Rightarrow$ Widerspruch in $L_{\lambda} = 0$.

Falls 6x + 10y = 0, dann folgt y = 0, $x = 0 \Rightarrow$ Widerspruch in $L_{\lambda} = 0$.

$$\Rightarrow \lambda = -\frac{x}{\sqrt{x^2 + y^2}(10x + 6y)} = -\frac{y}{\sqrt{x^2 + y^2}(6x + 10y)}$$

$$\Rightarrow 6x^2 + 10xy = 10xy + 6y^2$$
, also $x^2 = y^2$

Fall 1: $x = y \Rightarrow x_{1,2} = \pm 1 = y_{1,2} \Rightarrow P_1(1,1), P_2(-1,-1)$

Fall 2:
$$x = -y \Rightarrow x_{3,4} = \pm 2 = -y_{3,4} \Rightarrow P_3(2,-2), P_4(-2,2)$$

Da laut Aufgabenstellung ein Minimalpunkt existiert, muss dies einer von P_1,\ldots,P_4 sein. Da Abstand von P_1 und P_2 zum Koordinatenursprung gleich $\sqrt{2}$ und Abstand von P_3 und P_4 zum Koordinatenursprung gleich $2\sqrt{2}$, sind P_1 und P_2 die gesuchten Minimalpunkte.

Bemerkung: Die Untersuchung der hinreichenden Optimalitätsbedingungen ist nicht notwendig.

(b) Bestimmen Sie x_0 so, dass der Punkt $P(x_0,1)$ auf $\mathcal E$ liegt und $x_0>0$ gilt. Geben Sie eine Gleichung derjenigen Tangente an $\mathcal E$ an, die diesen Punkt P enthält.

Lösung: Aus $5x_0^2 + 6x_0 + 5 - 16 = 0$ ($y_0 = 1$) und $x_0 > 0$ folgt $x_0 = 1$, also P(1, 1).

$$\text{Mit } y'(x_0) = -\frac{F_x(x_0,y_0)}{F_y(x_0,y_0)}, \ F_x(x,y) = 10x + 6y, \ F_y(x,y) = 6x + 10y \ \text{folgt } y'(x_0) = -1.$$

 \Rightarrow Tangente: $y(x) = 1 - 1 \cdot (x - 1) = 2 - x$

3. Sei

$$K := \{(x, y, z)^{\top} \in \mathbb{R}^3 \mid \frac{1}{9}(x - 2)^2 + \frac{1}{4}y^2 \le 1, \ 0 \le z \le 2\}$$

ein Körper. Die Massendichte $\varrho:K\to(0,\infty)$ von K sei durch $\varrho(x,y,z):=1+z$ definiert. Weiter sei $\underline{F}:\mathbb{R}^3\to\mathbb{R}^3$ ein Vektorfeld mit

$$\underline{F}(x,y,z) := \begin{pmatrix} x^2 - 4x \\ y^2 \\ -2yz \end{pmatrix}.$$

(a) Berechnen Sie die Masse von K unter Verwendung der Koordinatentransformation

$$x = 2 + 3r\cos\varphi, \quad y = 2r\sin\varphi, \quad z = z.$$

3

3

Lösung: Mit der Funktionaldeterminante

$$\begin{vmatrix} x_r & x_{\varphi} & x_z \\ y_r & y_{\varphi} & y_z \\ z_r & z_{\varphi} & z_z \end{vmatrix} = \begin{vmatrix} 3\cos\varphi & -3r\sin\varphi & 0 \\ 2\sin\varphi & 2r\sin\varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = 6r$$

erhält man:

$$M = \int\limits_{r=0}^{1} \int\limits_{\varphi=0}^{2\pi} \int\limits_{z=0}^{2} (1+z) 6r \mathrm{d}z \mathrm{d}\varphi \mathrm{d}r = \int\limits_{r=0}^{1} \int\limits_{\varphi=0}^{2\pi} (2+2) 6r \mathrm{d}\varphi \mathrm{d}r = 48\pi \int\limits_{r=0}^{1} r \mathrm{d}r = 24\pi$$

(b) Berechnen Sie den Fluss von \underline{F} durch die Oberfläche ∂K des Körpers K, d.h.

$$\int_{\partial K} \underline{F}^{\top} \underline{\mathsf{dO}} \,.$$

(Hinweis: Die Anwendung des Integralsatzes von Gauß ist zweckmäßig.)

Lösung: Wegen $\text{div}\underline{F} = 2x - 4$ erhält man durch Anwendung des Integralsatzes von Gauß:

$$\int_{\partial K} \underline{F}^{\top} \underline{dO} = \int_{K} \operatorname{div}(\underline{F}) d\mathsf{K} = \int_{r=0}^{1} \int_{\varphi=0}^{2\pi} \int_{z=0}^{2} 6r \cdot \cos \varphi \cdot 6r dz d\varphi dr = \dots = 0$$

(c) Berechnen Sie rot $\underline{F}(x,y,z)$ und ${\rm div}\,{\rm rot}\,\underline{F}(x,y,z).$

Lösung:

$$\operatorname{rot} \underline{F}(x, y, z) = \begin{vmatrix} \mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} - 4x & y^{2} & -2yz \end{vmatrix} = \begin{pmatrix} -2z \\ 0 \\ 0 \end{pmatrix}$$

Weiterhin gilt stets div rot $\underline{F}(x, y, z) = 0$ für beliebiges, hinreichend glattes \underline{F} .

4. Für $\lambda \in \mathbb{R}$ sei die Funktion $F_{\lambda} : \mathbb{R} \to \mathbb{R}$ gegeben durch

$$F_{\lambda}(x) := \left\{ \begin{array}{ll} 1 - \lambda \mathrm{e}^{-x} - (1 - \lambda) \mathrm{e}^{-2x}, & \text{falls } x > 0, \\ 0, & \text{sonst.} \end{array} \right.$$

Falls $\lambda \in [0, 2]$, so ist F_{λ} die Verteilungsfunktion einer stetigen Zufallsgröße X_{λ} .

Hinweis: Für $a \neq 0$ gilt $\int x e^{ax} dx = \frac{1}{a}(x - \frac{1}{a})e^{ax}$.

(a) Zeigen Sie, dass F_{λ} für $\lambda=-1$ nicht Verteilungsfunktion einer Zufallsgröße sein kann. **Lösung:** Damit F_{λ} Verteilungsfunktion sein kann, muss F_{λ} monoton wachsend (nicht fallend) sein, d.h. $F'_{\lambda}(x) \geq 0$ muss gelten.

 $\lambda=-1 \colon F'_{-1}(x)=-\mathrm{e}^{-x}+4\mathrm{e}^{-2x}=\mathrm{e}^{-x}(4\mathrm{e}^{-x}-1)<0 \text{ für hinreichend große } x,$ also ist F_λ für $\lambda=-1$ keine Verteilungsfunktion.

(b) Bestimmen Sie die Dichtefunktion f_{λ} zur Zufallsgröße X_{λ} .

1

2

1

Lösung:

$$f_{\lambda}(x) = F_{\lambda}'(x) = \left\{ \begin{array}{ll} \lambda \mathrm{e}^{-x} + 2(1-\lambda)\mathrm{e}^{-2x}, & \text{falls } x > 0, \\ 0, & \text{sonst.} \end{array} \right.$$

(c) Bestimmen Sie den Erwartungswert $E(X_{\lambda})$.

Lösung:

$$E(X_{\lambda}) = \int_{-\infty}^{\infty} x f_{\lambda}(x) d\mathsf{x} = \int_{0}^{\infty} x (\lambda \mathsf{e}^{-x} + 2(1-\lambda)\mathsf{e}^{-2x}) d\mathsf{x} = \dots = \frac{\lambda+1}{2}$$

(d) Ermitteln Sie die Wahrscheinlichkeit $P(-1 \le X_{\lambda} \le 1)$.

Lösung:

$$P(-1 \le X_{\lambda} \le 1) = F_{\lambda}(1) - F_{\lambda}(-1) = 1 - \lambda e^{-1} - (1 - \lambda)e^{-2} - 0$$

5. Gegeben sei die partielle Differentialgleichung (PDGL)

$$\frac{1}{2}u_t = u_{xx}$$

mit den Randbedingungen

$$u_x(0,t) = u_x(1,t) = 0$$
 für $t \ge 0$

und der Anfangsbedingung

$$u(x,0) = 2 + \cos(2\pi x)$$
 für $x \in [0,1]$.

Aus dem Produktansatz (Separationsansatz)

$$U(x,t) = X(x)T(t)$$

erhält man durch Einsetzen in die PDGL die folgende Gestalt der Funktionen X und T:

$$X(x) = A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x), \qquad T(t) = Ce^{-2\lambda t}.$$

Dabei sind $\lambda \geq 0$ und $A,B,C \in \mathbb{R}$ Parameter.

(a) Bestimmen Sie alle nichtnegativen Werte des Parameters λ , so dass U auch den Randbedingungen genügt.

Lösung: Wegen $U_x(x,t) = X'(x)T(t)$ ergeben sich die Randbedingungen X'(0) = 0 und X'(1) = 0.

$$\Rightarrow X'(x) = A\sqrt{\lambda}\cos(\sqrt{\lambda}x) - B\sqrt{\lambda}\sin(\sqrt{\lambda}x) \stackrel{!}{=} 0 \text{ für } x = 0 \text{ und } x = 1$$

$$x = 0$$
: $A\sqrt{\lambda} \stackrel{!}{=} 0 \implies A = 0$ oder $\lambda = 0$.

$$x = 1$$
: $A\sqrt{\lambda}\cos(\sqrt{\lambda}) - B\sqrt{\lambda}\sin(\sqrt{\lambda}) \stackrel{!}{=} 0$

Falls $\lambda = 0$, dann X(x) = B.

Falls $\lambda > 0$, dann A = 0 und $B\sqrt{\lambda}\sin(\sqrt{\lambda}) \stackrel{!}{=} 0$.

Für B=0 folgt X(x)=0 für alle x, also $B\neq 0$, und damit $\sin(\sqrt{\lambda}) \stackrel{!}{=} 0$.

Für $\sqrt{\lambda}=n\pi$, $n=1,2,\ldots$ ist dies erfüllt.

Insgesamt: Für $\lambda=\lambda_n=n^2\pi^2$ mit $n=0,1,2,\ldots$ erfüllt U auch die Randbedingungen.

(b) Ermitteln Sie eine Funktion u, die der PDGL, den Randbedingungen und der Anfangsbedingung genügt. 4

Lösung: Entsprechend (a) gehört zu jedem $n=0,1,2,\ldots$ eine Funktion $U_n:=X_nT_n$ mit

$$X_n(x) := B_n \cos(n\pi x), \qquad T_n(t) := C_n e^{-2n^2 \pi^2 t}.$$

Durch Linearkombination der U_n ($n=0,1,2,\ldots$) erhält man einen Ansatz für u:

$$u(x,t) := \sum_{n=0}^{\infty} D_n \cos(n\pi x) e^{-2n^2\pi^2 t} = D_0 + \sum_{n=1}^{\infty} D_n \cos(n\pi x) e^{-2n^2\pi^2 t}$$

Aus den Anfangsbedingungen ergibt sich

$$u(x,0) = D_0 + \sum_{n=1}^{\infty} D_n \cos(n\pi x) \stackrel{!}{=} 2 + \cos(2\pi x)$$

Koeffizientenvergleich liefert $D_0=2$, $D_2=1$ und $D_n=0$ sonst, also

$$u(x,t) = 2 + \cos(2\pi x)e^{-8\pi^2 t}$$