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1 Introduction
A Support Vector Machine (SVM) is a binary classifier. To extend SVMs to multiclass classifi-
cation several modifications have been suggested, for example the one against all technique, the
one against one technique, directed acyclic graphs, or multiclass SVMs [Rifkin and Klautau,
2004]. A more recent approach for multiclass classification is the pairwiseclassification which
relies on two input examples instead of one and predicts whether the two input examples belong
to the same class or to different classes [Abernethy et al., 2009, Bar-Hillel et al., 2004a,b, Bar-
Hillel and Weinshall, 2007, Ben-Hur and Noble, 2005, Gao and Koller, 2011, Phillips, 1999,
Vert et al., 2007]. In this work, an SVM which is able to handle pairwise classification tasks is
called pairwise SVM.

A natural requirement for a pairwise classifier is that the order of the two examples should
not influence the classification result (symmetry). A common approach to enforce this kind of
symmetry is the use of selected kernels. In this paper we discuss relations between such kernels
and certain projections. For pairwise SVMs there is another approach to obtain symmetry. It
is based on training sets with a special symmetric structure. We will prove a strong connection
between both approaches.

A common pairwise classification task is face recognition. There, one is often interested in
a good interclass generalization. Therefore, one demands that any person in the training set is
not part of the test set. We will demonstrate that training sets with many classes (persons) are
needed to obtain a good interclass generalization. The training on such sets is computational
expensive. Additionally, most machine learning methods have a large number of parameters.
Therefore, we introduce a new heuristic model selection technique based on tasks of increasing
difficulty. Furthermore, we discuss the efficient implementation of pairwise SVMs.

This paper is structured as follows. In Section 2 we give a short introduction to pairwise
classification. Additionally, we present an overview of pairwise kernels. Subsection 3.1 dis-
cusses the symmetry of a pairwise classifier, with an emphasis on pairwise SVMs in Subsec-
tion 3.2. Then, the new connection between the two approaches for obtaining symmetry is
proved in Subsection 3.3. The new model selection technique is introduced in Section 4, while
the efficient implementation of pairwise SVMs is discussed in Section 5. Finally, in Section 6
we provide several experiments on synthetic data and on the labeled faces in the wild (LFW)
database. Those experiments confirm our theoretical results and demonstrate the benefits of the
model selection technique. In particular, a performance is achieved which is superior to the
current state of the art.

2 Pairwise Classification
Given are m training examples xi ∈Rn with i∈MB {1, . . . ,m}. The class of a training example
might be unknown, but we demand that we know for each pair

(
xi,x j

)
of training examples

whether its examples belong to the same class or to different classes. Accordingly, we define
yi j B +1 if the examples of the pair (xi,x j) belong to the same class and call it positive pair.
Otherwise, if the examples of the pair (xi,x j) belong to different classes we define yi j B−1 and
call it negative pair.

In pairwise classification the aim is to decide whether the examples of a pair (u,v)∈Rn×Rn

belong to the same class or not. In this paper, we will make use of pairwise decision functions
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f :Rn×Rn→R. Such a function predicts whether the examples u,v of a pair (u,v) belong to
the same class ( f (u,v)> 0) or not ( f (u,v)< 0). Note that neither u,v need belong to the set of
training examples nor the classes of u,v need belong to the classes of the training examples.

A natural and desirable property of any pairwise decision function is that it should by sym-
metric in the following sense:

f (u,v) = f (v,u) for all u,v ∈Rn. (1)

A common tool in machine learning are kernels k :Rn×Rn→R. Let H denote an arbitrary
Hilbert space with scalar product 〈·, ·〉 and φ :Rn→H , then

k(e, f )B 〈φ(e),φ( f )〉

defines a standard kernel. The extension of those kernels to pairwise classification leads to
pairwise kernels K : (Rn×Rn)× (Rn×Rn)→R. For instance,

Klin
PS ((a,b),(c,d))B (〈a,c〉+ 〈b,d〉+ r)p

Klin
PT ((a,b),(c,d))B (〈a,c〉 · 〈b,d〉+ r)p

with p∈N,r ∈R. We call Klin
PS (linear) polynomial direct sum pairwise kernel and Klin

PT (linear)
polynomial tensor pairwise kernel.

Let us assume that I ⊆M×M. Frequently, a pairwise decision function f is given by

f (u,v)B ∑
(i, j)∈I

γi jK
(
(xi,x j),(u,v)

)
+b (2)

with b ∈R and γi j ∈R for all (i, j) ∈ I.
Obviously, a decision function of the form (2) which uses Klin

PS or Klin
PT will not be symmetric

in general.
Now, let us define the following pairwise kernels.

Klin
SD((a,b),(c,d))B

1
2
(〈a,c〉+ 〈a,d〉+ 〈b,c〉+ 〈b,d〉)

Klin
ML((a,b),(c,d))B

1
4
(〈a,c〉−〈a,d〉−〈b,c〉+ 〈b,d〉)2

Klin
T L((a,b),(c,d))B

1
2
(〈a,c〉〈b,d〉+ 〈a,d〉〈b,c〉)

Klin
AT ((a,b),(c,d))B

1
4
(〈a,c〉〈b,d〉−〈a,d〉〈b,c〉)2 .

Obviously, any decision function of the form (2) which uses any of these kernels is symmetric.
This motivates to call a kernel K symmetric if

K((a,b),(c,d)) = K((a,b),(d,c)) for all a,b,c,d ∈Rn.

It might be interesting to combine pairwise kernels with standard kernels [see Ben-Hur and
Noble, 2005]. For instance, we could use a polynomial or Gaussian kernel as standard kernel k.
Now, by slight abuse of notation, we calculate

Klin
PS ((φ(a),φ(b)) ,(φ(c),φ(d))) =(〈φ(a),φ(c)〉+ 〈φ(b),φ(d)〉〉+ r)p

=(k(a,c)+ k(b,d)+ r)p
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This motivates the definition

KPS((a,b),(c,d))B (k(a,c)+ k(b,d)+ r)p . (3a)

Analogously, we obtain

KPT ((a,b),(c,d))B (k(a,c) · k(b,d)+ r)p (3b)

KSD((a,b),(c,d))B
1
2
(k(a,c)+ k(a,d)+ k(b,c)+ k(b,d)) (3c)

KML((a,b),(c,d))B
1
4
(k(a,c)− k(a,d)− k(b,c)+ k(b,d))2 (3d)

KT L((a,b),(c,d))B
1
2
(k(a,c)k(b,d)+ k(a,d)k(b,c)) (3e)

KAT ((a,b),(c,d))B
1
4
(k(a,c)k(b,d)− k(a,d)k(b,c))2 . (3f)

Additionally, for later use we define

KDS((a,b,(c,d))B KSD((a,b),(c,d))+KML((a,b),(c,d)) (3g)
KT M((a,b,(c,d))B KT L((a,b),(c,d))+KML((a,b),(c,d)). (3h)

Vert et al. [2007] call KML metric learning pairwise kernel due to its close connection to the
Euclidean metric and call KT L tensor learning pairwise kernel. We call KSD symmetric direct
sum pairwise kernel and the new pairwise kernel KAT ((a,b),(c,d)) asymmetric tensor pairwise
kernel. Moreover, we call KDS direct sum pairwise kernel and KT M tensor metric learning
pairwise kernel.

Remark 1. It is well known that if we add or multiply two kernels or multiply one kernel with
a positive constant, then we obtain a new kernel. If those operations are applied to symmetric
pairwise kernels then the resulting kernel is symmetric, too.

3 Pairwise Symmetry
In Subsection 3.1 we show that the symmetric pairwise kernels presented in Section 2 can be
rewritten by means of appropriate projections. In this way we can conclude that the use of
some of these kernels may lead to a loss of information. Moreover, for pairwise SVMs with
pairwise kernels based on the direct sum of two vector spaces, it has been claimed that any
symmetric set of training pairs leads to a symmetric decision function [see Bar-Hillel et al.,
2004a]. Note that a set of training pairs is called symmetric, if both (a,b) and (b,a) belong
to this set. In Subsection 3.2 we prove these results in a more general context, which includes
the tensor product of two vector spaces. Additionally, we show in Subsection 3.3 that using
symmetric training sets leads to the same decision function as the use of selected pairwise
kernels if we disregard the bias. Interestingly, the application of selected pairwise kernels leads
to significantly shorter training times.

Throughout this section we need scalar products on the direct sum H ×H and on the
tensor product H ⊗H , where H denotes an arbitrary Hilbert space. To this end, let us
assume that a,b,c,d are elements of H . Then, 〈(a,b) ,(c,d)〉B 〈a,c〉+ 〈b,d〉 defines a scalar
product on H ×H and the bilinear continuation of 〈(a⊗b) ,(c⊗d)〉B 〈a,c〉 · 〈b,d〉 defines a
scalar product on H ⊗H . Here, a⊗b denotes the tensor product of a and b.
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3.1 Pairwise Symmetric Kernels
There are several approaches to obtain pairwise symmetric kernels. Basically, those approaches
make use of a direct sum of vector spaces or of a tensor product of vector spaces. In this
subsection we will show a close relationship between symmetric pairwise kernels and their
representation by means of selected projections.

At first, we discuss pairwise kernels based on the direct sum of two vector spaces. We
start with KSD (3c). Obviously, this kernel has the desired pairwise symmetry. For a better
understanding we only take a linear kernel as standard kernel into account in this case, for
instance we use Klin

SD.
Let us consider the projection Plin

SD :Rn×Rn→Rn×Rn with

Plin
SD(a,b)B

1
2
(a+b,a+b).

If we have a closer look at the mapping Plin
SD we see that it is an orthogonal projection into the

subspace
W lin

SD B {(u,v) ∈Rn×Rn|u = v} .

Additionally, we obtain Plin
SD(a,b) = Plin

SD(b,a) and〈
Plin

SD(a,b),P
lin
SD(c,d)

〉
=

1
2
(〈a,c〉+ 〈a,d〉+ 〈b,c〉+ 〈b,d〉) = Klin

SD((a,b),(c,d)).

Therefore, Klin
SD is the scalar product of projected pairs of examples. Obviously, by definition,

Plin
SD(a,b) contains only information about the midpoint of a and b. In other words,

Plin
SD(a,b) = Plin

SD(a+ t,b− t) (4)

holds for all t ∈Rn. We will show below that this property is a drawback.

Before, we discuss the Metric Learning Pairwise Kernel Klin
ML (3d). Again, this kernel has

the desired pairwise symmetry. Let us consider the mapping Plin
ML :Rn×Rn→Rn×Rn with

Plin
ML(a,b)B

1
2
(a−b,b−a).

Again, PML is an orthogonal projection, but instead of projecting onto W lin
SD it projects onto

W lin
ML B {(u,v) ∈Rn×Rn|u =−v} .

Note that Klin
SD can be seen as counterpart of Klin

ML due to the following relationships

W lin
SD ⊕W lin

ML =Rn×Rn and W lin
SD ∩W lin

ML = {0}.

Furthermore, we obtain Plin
ML(a,b) =−Plin

ML(b,a) and〈
Plin

ML(a,b),P
lin
ML(c,d)

〉2
= . . .= Klin

ML((a,b),(c,d)). (5)
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Thus, Plin
ML(a,b) contains only information about the relative position of a and b, for instance

Plin
ML(a,b) = Plin

ML(a+ t,b+ t)

holds for all t ∈Rn. By (5) we see that Klin
ML enforces the pairwise symmetry by combining the

projection Plin
ML with a homogeneous polynomial pairwise kernel of degree 2. So, the question

arises, whether we can use other pairwise kernels and still obtain pairwise symmetry if the pairs
are projected by Plin

ML.

Theorem 2. Let us assume that K is a pairwise kernel on the direct sum Rn⊕Rn with

K((a,b),(c,d)) = K((a,b),−(c,d)). (6)

Then, by
K̃((a,b),(c,d))B K

(
Plin

ML(a,b),P
lin
ML(c,d)

)
(7)

a symmetric pairwise kernel is defined.

Proof.

K̃((a,b),(d,c)) =K
(

Plin
ML(a,b),P

lin
ML(d,c)

)
= K

(
Plin

ML(a,b),−Plin
ML(c,d)

)
=K

(
Plin

ML(a,b),P
lin
ML(c,d)

)
= K̃((a,b),(c,d))

Note that Klin
PS (3a) with r = 0 and even p fulfills property (6). Furthermore, if we replace

Plin
ML by Plin

SD in (7), then we do not need property (6) at all and still get a symmetric pairwise
kernel.

Now, we want to discuss the application of Klin
SD and Klin

ML to the (synthetic) checker board
task. In this task the input space is R2. Furthermore, the examples a and b belong to the same
class if and only if bac = bbc where the floor operator b·c is applied elementwise. Now, let
us assume that we use Klin

SD. Then, due to (4) one would expect a very bad performance since
the midpoint of a and b contains almost no relevant information about the classes. Now, let us
assume that we use Klin

ML. Obviously, we can obtain the Euclidean distance between a and b by
Plin

ML(a,b). Hence, for large distances we know that the examples belong to different classes.
For smaller distances this becomes more difficult. Nevertheless, we would expect to achieve a
better performance by using Klin

ML than by using Klin
SD. Empirical evidence is given in Figure 1b.

Note that it is possible to reconstruct (a,b) if Plin
ML(a,b) and Plin

SD(a,b) are known. Hence, it
might be interesting to use the direct sum pairwise kernel KDS B KSD +KML (3g). However, in
Section 6 it is shown that KDS does not lead to good results for the checker board task.

Remark 3. Here, let us mention an approach of Bar-Hillel et al. [2004a]. There, it is proposed
to use a representation of (a,b) as(

a+b
sgn(a1−b1)(a−b)

)
.

Here, a+ b is connected to Plin
SD while sgn(a1− b1)(a− b) is connected to Plin

ML. However, by
multiplying sgn(a1− b1) the symmetry is enforced and more general pairwise kernels can be
used. For instance,

K̄((a,b),(c,d))B
〈

a+b
sgn(a1−b1)(a−b) ,

c+d
sgn(c1−d1)(c−d)

〉
.
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Remark 4. Note that one can easily adapt the discussions presented above to arbitrary stan-
dard kernels instead of linear standard kernels.

Now, we are going to deal with pairwise kernels which are based on the tensor product of
two vector spaces instead of the direct sum of two vector spaces.

We begin this discussion with KT L (3e). Let us define PT L : H ⊗H →H ⊗H with
PT L(z)B 1

2 (z+ z̄). Here, z ∈H ⊗H and z̄ denotes the adjoint of z. Especially, for p,q ∈H it
holds that p⊗q ∈H ⊗H and PT L(p⊗q) = 1

2 (p⊗q+q⊗ p). One can easily check that PT L
is an orthogonal projection onto the subspace

WT L = span{p⊗q+q⊗ p|p,q ∈H } .

Analogously to Plin
ML it holds that

〈PT L(φ(a)⊗φ(b)),PT L(φ(c)⊗φ(d))〉= . . .= KT L((a,b),(c,d)).

Again, by using KT L an implicit projection is made and an information loss might occur.
Before discussing this information loss we look at KAT (3f). Let us define PAT : H ⊗

H →H ⊗H by PAT (z)B 1
2 (z− z̄) with z ∈H ⊗H . Especially, for p,q ∈H it holds that

PAT (p⊗q)= 1
2 (p⊗q−q⊗ p) . Obviously, PAT (p⊗q)=−PAT (q⊗ p) and PAT is the orthogonal

projection onto the subspace

WAT = span{p⊗q−q⊗ p|p,q ∈H } .

We obtain
WT L⊕WAT = H ⊗H and WT L∩WAT = {0}.

Then, analogously to Plin
ML

〈PAT (φ(a)⊗φ(b)),PAT (φ(c)⊗φ(d))〉2 = . . .= KAT ((a,b),(c,d)).

Note that Theorem 2 can be transferred easily to the case of tensor products by replacing Plin
ML

with PAT .
To analyze the loss of information of PT L for a linear standard kernel we start with the

following lemma.

Lemma 5. For some x,y ∈Rn \{0} and u,v ∈Rn let B ∈Rn×n be defined as BB xy>. Then,
uv> = B holds, if and only if there is some λ ∈R\{0} so that

(u,v) = (λx,λ−1y).

Proof. Obviously, for (u,v) = (λx,λ−1y) it holds that uv> = B. Thus, we need to prove that no
other choice of (u,v) exists.

As y 6= 0 there is k ∈ {1, . . . ,n} with yk 6= 0. Hence, the k-th column of B is ykx. Hence, u
and x must be linearly dependent. Similar arguments show the linear dependence of v and y.
Thus, there are λ1,λ2 ∈R\{0} so that

uv> = λ1x(λ2y)> = B.

This is true if and only if λ1 = λ
−1
2 .
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Remark 6. Let the examples u,v ∈Rn be given. Lemma 5 shows that some information about
the norm of the examples is lost if uv> is given instead of (u,v). For instance, if we want to
decide whether

b‖u‖2c= b‖v‖2c

or not, then we cannot answer this question by means of uv>.
Note that the information loss on the norm can be reduced if we have the additional infor-

mation that each example has the same norm.

Now, we analyze the loss of information of PT L for a linear standard kernel.

Theorem 7. For some x,y ∈Rn \{0} and u,v ∈Rn let A ∈Rn×n be defined as AB xy>+yx>.
Then, uv>+ vu> = A holds, if and only if there is some λ ∈R\{0} so that

(u,v) = (λx,λ−1y) or (u,v) = (λy,λ−1x).

Proof. Obviously, for (u,v) = (λx,λ−1y) we have uv>+ vu> = A and for (u,v) = (λy,λ−1x)
we have uv>+ vu> = A, too. Thus, we need to prove that no other choice of (u,v) exists.

Firstly, let us assume that y = δx for some δ ∈ R \ {0}. Then, A has rank 1. Hence, the
image Im(A) of A has dimension 1. Due to Ax = 2δ 〈x,x〉x we have Im(A) = span{x}. Hence,
u and v depend linearly on x as otherwise Im

(
uv>+ vu>

)
6= Im(A). Thus, u = λ1x and v = λ2x

for some λ1,λ2 ∈R\{0}. From

uv>+ vu> = 2λ1λ2xx> = A = 2δxx>

we have λ1 = δ/λ2. Then, we obtain u = λ1x = (δ/λ2)x = λ
−1
2 y and v = λ2x, or u = λ1x and

v = λ2x = (δ/λ1)x = λ
−1
1 y.

Secondly, let us assume that x does not linearly depend on y. Then, it is easy to verify that
A has rank 2. Hence, Im(A) has dimension 2. To obtain this image let us analyze whether

z1 B Ax = 〈x,y〉x+ 〈x,x〉y and z2 B Ay = 〈y,y〉x+ 〈x,y〉y

do linearly depend or not. Therefore, we consider rz1 + sz2 = 0 for unknown r,s ∈ R. This
yields

r(〈x,y〉x+ 〈x,x〉y)+ s(〈y,y〉x+ 〈x,y〉y) = 0
⇔ (r〈x,y〉+ s〈y,y〉)x+(r〈x,x〉+ s〈x,y〉)y = 0.

By the linearly independence of x and y this is equivalent to(
〈x,y〉 〈y,y〉
〈x,x〉 〈x,y〉

)(
r
s

)
=

(
0
0

)
. (8)

For the determinant of the matrix in (8) we obtain by the Cauchy Schwarz inequality and the
linear independence of x and y

〈x,y〉2−〈x,x〉〈y,y〉< 0.

Hence, r = s= 0 is the only solution of (8) and z1 is linearly independent of z2. As the dimension
of Im(A) is 2 we conclude that Im(A) = span{z1,z2}= span{x,y}. Therefore, u,v must belong
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to span{x,y} since otherwise Im
(
uv>+ vu>

)
6= Im(A). Thus, with u = r1x+ s1y and v = r2x+

s2y we obtain

A = xy>+ yx> = (r1x+ s1y)(r2x+ s2y)>+(r2x+ s2y)(r1x+ s1y)>

= (2r1r2)xx>+(2s1s2)yy>+(r1s2 + r2s1)xy>+(r2s1 + r1s2)yx>.

Note that the four occurring matrices xx>,yy>,xy>, and yx> are linearly independent. Hence,
by equating the coefficients we have the system

2r1r2 = 0 r1s2 + r2s1 = 1 2s1s2 = 0

with the solution set

{(r1,s1,r2,s2) = (λ ,0,0,λ−1),λ ∈R\{0}}∪{(r1,s1,r2,s2) = (0,λ ,λ−1,0),λ ∈R\{0}}.

Hence, (u,v) = (λx,λ−1y) or (u,v) = (λy,λ−1x).

The last theorem shows that if PT L(ab>) is known instead of ab>, then no information is
lost except the ordering, in other words ab> is regarded the same as ba> (see also Remark 6).

Remark 8. Lemma 5 and Theorem 7 can be extended to the use of arbitrary standard kernels.
The extension to standard kernels based on finite dimensional Hilbert spaces is straightfor-
ward. However, to extend those results to standard kernels based on infinite dimensional Hilbert
spaces, more technical details would be needed.

Now, we show that some additional information might be lost when PAT (ab>) is used instead
of ab>. To this end, let a,b ∈R2 be given and let us define the rotation matrix

R(θ)B
(

cosθ −sinθ

sinθ cosθ

)
for some θ ∈ [0,2π).

Then, we get PAT

(
(R(θ)a)(R(θ)b)>

)
= PAT (ab>) for all θ . Hence, by PAT (ab>) we cannot

answer whether a,b belong to the same orthant, in other words whether a1b1 > 0∧a2b2 > 0.
As conclusion of this subsection we propose that if a symmetric pairwise kernel should be

selected, then KDS (3g) should be considered. If all examples have the same norm, then KT L
(3e) should also be considered, too. Note that this is a general rule and that in particular cases
other symmetric pairwise kernels could have a superior performance.

3.2 Pairwise Symmetry and Pairwise SVMs
In the last subsection we presented an approach to obtain a symmetric decision function by
means of certain projections. For pairwise SVMs another approach for ensuring a symmetric
decision function is known. It is not based on symmetric pairwise kernels but on specially
structured training sets. Obviously, if a symmetric kernel is used, then we can exclude the pair
(b,a) from the training set if the pair (a,b) is contained. Now, let us assume that we have
symmetric training sets for the training of pairwise SVMs, that is if (a,b) is a training pair then
(b,a) is a training pair, too. Then, we obtain a symmetric decision function [see Bar-Hillel
et al., 2004a, Wei et al., 2006, and Lemma 9 below].
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Let xi ∈ Rn, i ∈ M B {1, . . . ,m} be given and let us assume that I ⊆ M×M with (i, j) ∈
I⇒ ( j, i) ∈ I. Obviously, I leads to a symmetric training set. Additionally, let us define IR ⊆ I
with IRB {(i, i)|(i, i)∈ I} and IN B I \ IR. Furthermore, let us assume that K is a pairwise kernel
with

K((a,b),(c,d)) = K((b,a),(d,c)). (9)

Not that (9) holds for any symmetric pairwise kernels, but also for other pairwise kernels. For
instance, for K = KPS (3a) or K = KPT (3b). Now, let us consider the dual pairwise SVM

g(α)B
1
2 ∑
(i, j),(k,l)∈I

αi jαklyi jyklK((xi,x j),(xk,xl))− ∑
(i, j)∈I

αi j −→min
α

s. t. 0≤ αi j ≤C for all (i, j) ∈ IN

0≤ αii ≤ 2C for all (i, i) ∈ IR

∑
(i, j)∈I

yi jαi j = 0.

(10)

Lemma 9. Let us assume that (9) holds. Then, there is a solution α̂ of (10) with α̂i j = α̂ ji for
all (i, j) ∈ I. We call such a solution symmetric.

Proof. By the theorem of Weierstrass there is a solution α∗ of (10). Let us define another
feasible point α̃ of (10) by

α̃i j B α
∗
ji for all (i, j) ∈ I.

For easier notation let us define Ki j,kl B K((xi,x j),(xk,xl)). Then,

2g(α̃) = ∑
(i, j),(k,l)∈I

α
∗
jiα
∗
lkyi jyklKi j,kl−2 ∑

(i, j)∈I
α
∗
ji.

Note that yi j = y ji holds for all (i, j) ∈ I. By (9) we further obtain

2g(α̃) = ∑
(i, j),(k,l)∈I

α
∗
jiα
∗
lky jiylkK ji,lk−2 ∑

(i, j)∈I
α
∗
ji

= 2g(α∗)

The last equality follows by the symmetry of the set I. Hence, α̃ is also a solution of (10). From
SVM theory it is known that problem (10) is convex. Therefore,

α
λ B λα

∗+(1−λ )α̃

solves (10) for any λ ∈ (0,1). Thus, α1/2 is a symmetric solution.

Note that Wei et al. [2006] present a similar result for regression. However, they claim that
any solution has the described symmetry. This does not hold in general.

Theorem 10. Each solution α of the optimization problem (10) leads to a symmetric decision
function f :Rn×Rn→R. In other words f (a,b) = f (b,a) holds for any (a,b) ∈Rn×Rn.
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Proof. For any solution α let us define gα :Rn×Rn→R by

gα(a,b)B ∑
(i, j)∈I

αi jyi jK((xi,x j),(a,b)).

Then, the obtained decision function can be written as

fα(a,b) = gα(a,b)+ c

for some appropriate c ∈ R. From SVM theory it is known that if α1 and α2 are solutions of
(10) then gα1 = gα2 . According to Lemma 9 there is always a solution α∗ of (10) with α∗i j = α∗ji
for all (i, j) ∈ I. Obviously, such a solution leads to symmetric functions gα∗ and fα∗ . As gα is
the same function for all solutions α of (10) we obtain that gα and therefore fα are symmetric
for all solutions.

3.3 Connecting Pairwise Kernels and Symmetric Training Sets
To obtain a symmetric decision function we discussed in Subsection 3.1 that if we present
projected pairs to a learning machine, then a loss of information may occur. Thereafter, in Sub-
section 3.2 we used symmetric training sets in pairwise SVMs to obtain a symmetric decision
function and presented all the available information to the learning machine. Now, we show in
Theorem 11 that the same decision function is obtained, regardless whether a symmetric train-
ing set is used or a certain projection is made to enforce symmetry. Hence, even if a symmetric
training set is presented to a pairwise SVM and no projection is made the same information loss
as in the case of projections occurs. It is known that the needed training time of SMO scales
quadratically with the number of training points [see Platt, 1999]. For symmetric training sets
the number of training pairs is nearly doubled compared to the number in the case of symmet-
ric kernels. Simultaneously, the cost of symmetric kernels is computationally four times more
expensive compared to the corresponding non symmetric kernel. Hence, we expected that both
approaches need the same training time. However, Table 1 shows that the approach of using
symmetric kernels is significantly faster. Therefore, for pairwise SVMs the approach of using
certain projections supersedes the approach of using symmetric training sets. Note that to gen-
erate the results in Table 1 the technique of caching the standard kernel values as described in
Section 5 is used for both approaches.

Number Symmetric Training Set Symmetric Kernel
of examples (t in hh:mm)

500 0:03 0:01
1000 0:46 0:17
1500 3:26 0:56
2000 9:44 2:58
2500 23:15 6:20

Table 1: Training Time of Symmetric Training Sets vs. Training Time of Symmetric Kernels.
The technique described in Section 5 is also used for those measurements.
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Let J denote a subset of I with maximal cardinality and with the property (i, j) ∈ J ∧ j 6=
i⇒ ( j, i) /∈ J. Furthermore, JR B IR and JN B J \ JR. Let us consider the optimization problem

1
2 ∑
(i, j),(k,l)∈J

βi jβklyi jyklK̂i j,kl− ∑
(i, j)∈J

βi j −→min
β

s. t. 0≤ βi j ≤ 2C for all(i, j) ∈ J

∑
(i, j)∈J

yi jβi j = 0

(11)

with K̂i j,kl B
1
2

(
Ki j,kl +K ji,kl

)
, where K is a pairwise kernel which fulfills (9). For instance, if

K = KPS (3a) with r = 0 and p = 1 then K̂ = KSD (3c) or if K = KPT (3b) with r = 0 and p = 1
then K̂ = KT L (3e).

Theorem 11. Let the functions gα :Rn×Rn→R and hβ :Rn×Rn→R be defined by

gα(a,b)B ∑
(i, j)∈I

αi jyi jK((xi,x j),(a,b)),

hβ (a,b)B ∑
(i, j)∈J

βi jyi jK̂((xi,x j),(a,b)),

where α is a feasible point of (10) and β is a feasible point of (11). Then, for any solution α∗

of (10) and for any solution β ∗ of (11) it holds that gα∗ = hβ ∗ .

Proof. Due to Lemma 9 and Theorem 10 we can assume that α∗ is a symmetric solution of
(10). Let us define

ᾱi j B


β ∗i j/2 if (i, j) ∈ JN

β ∗ii if (i, i) ∈ JR
β ∗ji/2 else

and β̄i j B

{
α∗i j +α∗ji if (i, j) ∈ JN

α∗ii if (i, i) ∈ JR
.

Obviously, ᾱ is a feasible point of (10) and β̄ is a feasible point of (11). Then, by α∗i j = α∗ji we
obtain for

(i, j) ∈ JN : β̄i jK̂i j,kl =
β̄i j

2
(Ki j,kl +K ji,kl) =

α∗i j +α∗ji
2

(
Ki j,kl +K ji,kl

)
= α

∗
i jKi j,kl +α

∗
jiK ji,kl

(i, i) ∈ JR : β̄iiK̂ii,kl =
β̄ii

2
(Kii,kl +Kii,kl) = α

∗
iiKii,kl

This implies gα∗ = h
β̄

. Additionally, we obtain for

(i, j) ∈ JN : ᾱi jKi j,kl + ᾱ jiK ji,kl =
β ∗i j

2
(Ki j,kl +K ji,kl) = β

∗
i jK̂i j,kl

(i, i) ∈ JR : ᾱiiKii,kl =
β ∗ii
2
(Kii,kl +Kii,kl) = β

∗
ii K̂ii,kl.

Hence, gᾱ = hβ ∗ follows.
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In a second step we prove that ᾱ and β̄ are solutions of problem (10) and (11), respectively.
To this end, note that for any solution of (10) or (11) a corresponding Karush-Kuhn-Tucker
(KKT) point exists and, vice versa, that each KKT point corresponds to a solution. Therefore,
let us compare the KKT systems of both problems. The KKT system of (10) is

∑
(k,l)∈I

yi jyklαklKi j,kl−1−ui j + vi j +wyi j = 0 for all (i, j) ∈ I

ui j ≥ 0 for all (i, j) ∈ I
vi j ≥ 0 for all (i, j) ∈ I

ui jαi j = 0 for all (i, j) ∈ I
vi j(C−αi j) = 0 for all (i, j) ∈ IN

vii(2C−αii) = 0 for all (i, i) ∈ IR

C ≥ αi j ≥ 0 for all (i, j) ∈ IN

2C ≥ αii ≥ 0 for all (i, i) ∈ IR

∑
(i, j)∈I

yi jαi j = 0.

Note that by exchanging the summation index in the definition of gα from (i, j) to (k, l) we can
rewrite the first line by

yi jgα(xi,x j)−1−ui j + vi j +wyi j = 0 for all (i, j) ∈ I.

Accordingly, the KKT system of problem (11) is

yi jhβ (xi,x j)−1−λi j +µi j +κyi j = 0 for all (i, j) ∈ J

λi j ≥ 0 for all (i, j) ∈ J
µi j ≥ 0 for all (i, j) ∈ J

λi jβi j = 0 for all (i, j) ∈ J
µi j(2C−βi j) = 0 for all (i, j) ∈ J

2C ≥ βi j ≥ 0 for all (i, j) ∈ J

∑
(i, j)∈J

yi jβi j = 0.

Let (α∗,u∗,v∗,w∗) be a KKT point of problem (10) and (β ∗,λ ∗,µ∗,κ∗) be a KKT point of
problem (11). Moreover, let us define

λ̄i j B u∗i j for all (i, j) ∈ J, µ̄i j B v∗i j for all (i, j) ∈ J, κ̄ B w∗,
and

ūi j B

{
λ ∗i j
λ ∗ji

for all (i, j) ∈ J,
for all (i, j) ∈ I \ J, ṽi j B

{
µ∗i j
µ∗ji

for all (i, j) ∈ J,
for all (i, j) ∈ I \ J, w̄B κ∗.

Then, using h
β̄
= gα∗ it can be verified by lengthy calculations that (ᾱ, ū, v̄, w̄) is a KKT point

of (10). Similarly, it can be shown that (β̄ , λ̄ , µ̄, κ̄) is a KKT point of (11), too. Hence, ᾱ is a
solution of (10) and β̄ is a solution of (11).

From SVM theory it is known that independently of the chosen solution α∗ of (10) or β ∗ of
(11) we obtain the same gα∗ or hβ ∗ , respectively. This implies gα∗ = gᾱ = h

β̄
= hβ ∗ .
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Note that the proof shows how to construct a solution of (10) by a solution of (11) and vice
versa.

4 A Technique for Model Selection
Now, we discuss an approach for model selection for pairwise classification. To this end, let
us introduce several sets. In Section 2 we did not demand to know the explicit classes of the
training examples. Here, assume for model selection that the explicit classes are known. Let a
set of training examples be given. Then, the set consisting of all classes of the training examples
is called set of training classes. Furthermore, the set of training pairs is a chosen subset of the
pairs of training examples. Unless otherwise noted, the set of training pairs consists of all
possible pairs of training examples. Finally, the set of test examples, the set of test classes, and
the set of test pairs are defined accordingly.

Let us now describe three tasks which can be used for model selection. In the interclass task
the intersection of the set of training classes and the set of test classes is empty. For instance, let
us consider face recognition. Then, the interclass task is to classify pairs of images of unknown
persons. However, if we use the interclass task to measure the quality of a pairwise classifier,
we cannot determine whether a bad result is caused by badly chosen SVM or kernel parameters,
by a bad example per class ratio (EPCR) in the set of training examples, or by an undersized
number of classes in the set of training examples. The EPCR denotes the average number of
examples belonging to a single class in a given set of training or test examples. If the number
of examples belonging to a given class is equal for all classes, then we call this constant EPCR.

In addition to the interclass task it will turn out that the next two tasks can be used for model
selection, too. In the interexample task the intersection of the set of training examples and the
set of test examples is empty while the set of training classes and the set of test classes are
equal. Thus, in face recognition the interexample task is to classify pairs of unknown images
of known persons. In the pair task, the set of training examples and the set of test examples
are equal while the intersection of the set of training pairs and the set of test pairs is empty.
Therefore, the set of training pairs is a real subset of all pairs of the training examples for this
task. Furthermore, the union of the set of training pairs and the set of test pairs equals the set of
all pairs of the training examples. Hence, in face recognition the pair task is to classify unknown
pairs of known images.

Assume that a pairwise classification task is given. Then, the interclass task seems harder
than the interexample task which again seems harder than the pair task. Thus, if we achieve a
bad result on the pair task or interexample task, we cannot expect a good result on the interclass
task. Therefore, we suggest using the pair task to find sufficiently good parameters of the
learning machine like the used kernels or the used penalty parameter of a pairwise SVM, the
interexample task to find a sufficient EPCR in the training set, and the interclass task to find a
sufficiently large set of training classes. Empirical evidence for using the described technique is
given in Section 6. Moreover, it seems important to specify the used task for any measurement
of the quality of a pairwise classification task.

Detection error trade-off curves (DET curves) will be used in the following to measure
the quality of a pairwise classifier. Such a curve shows for any false match rate (FMR) the
corresponding false non match rate (FNMR). A special point of interest of such a curve is the
(approximated) equal error rate (EER), that is the value for which FMR=FNMR holds [Gamassi
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et al., 2004].

5 Implementation
Much effort has been put into solving SVMs efficiently. One of the most widely used techniques
is the sequential minimal optimization (SMO) [Platt, 1999]. A well known implementation of
this technique is LIBSVM [Chang and Lin, 2011]. Let us assume for the moment that we want
to solve a pairwise SVM with kernel Klin

ML (3d). To create a training set which can be used by
the LIBSVM we calculate Plin

ML(a,b) for all used training pairs (a,b) explicitly and save those
projected pairs in a file for training. However, this approach leads to superfluously large files as
all examples are part of many pairs and therefore are saved repeatedly. For example, to store all
pairs of 10,000 examples of dimension 1,000 in an ASCII file, one needed at least 5GB. This
situation becomes even worse for other kernels. Therefore, we decided to modify the LIBSVM
code.

In a first attempt the examples were stored in RAM and each standard kernel was calculated
on demand. This modification suffered from a bad computational performance. One reason
for this seems the empirically known fact that the SMO scales quadratically with the number
of training points [Platt, 1999]. Note that in our case the training points are the training pairs.
For the interclass task and the interexample task the number of training pairs grows quadrati-
cally with the number of training examples. If we use n examples, then there are n(n+1)/2
pairs. Hence, the runtime of the LIBSVM scales at least quartically with the number n of
used training examples. Using 500 training examples already results in 125,250 training pairs
and corresponding pairwise SVMs would need several hours to be solved. Therefore, we will
present a technique to reduce the needed training time.

Kernel evaluations are crucial for the performance of LIBSVM. If we could cache the whole
kernel matrix we would get a huge increase of speed. Today, this seems impossible for signifi-
cantly more than 125,250 training pairs as storing the (symmetric) kernel matrix for this number
of pairs in double precision needs approximately 59GB. However, we describe now how the
costs of kernel evaluations can be drastically reduced. In Section 2 we have introduced several
kernels. For example, let us select KT L (3e) and an arbitrary standard kernel. For a single evalu-
ation of KT L the standard kernel has to be evaluated four times with vectors of Rn. Afterwards,
four arithmetic operations are needed.

It is easy to see that each standard kernel value is needed for many different evaluations
of KT L. In general, it is possible to cache the standard kernel values for all pairs of examples
in the training set. For example, to cache the standard kernel values for 10,000 examples one
needs 400MB. Thus, if all standard kernel values are cached, then each kernel evaluation of KT L
costs four arithmetic operations. This does not depend on the chosen standard kernel. Using
other pairwise kernels is at most slightly more expensive. Furthermore, we could free memory
by deleting the examples after computing the standard kernel values as we do not need them
anymore. Additionally, the dimension of the examples does not influence the costs of a single
pairwise kernel evaluation in any case. Only the time needed to calculate all standard kernel
values depends on the dimension n of the examples. However, if a linear standard kernel is
used, then in case of 10,000 examples of dimension 1,000, one needs about 1011 operations to
calculate all such values. This can be done in less than a minute.

Tables 2a and 2b compare the training times with and without the described technique. For
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this measurement examples from the Double Interval Task (cf. Subsection 6.2) are used with a
constant EPCR of 5, Klin

T L as pairwise kernel, a cache size of 100MB, and all pairs are used for
training. In each run of Table 2a 250 examples are used for different dimensions n. Table 2b
shows results for different numbers of examples of dimension n = 500. The speedup factor by
the described technique is up to 100.

Dimension n normal improved
of examples (t in mm:ss)

200 2:08 0:07
400 4:31 0:07
600 6:24 0:07
800 9:41 0:08

1000 11:27 0:09
(a) Different dimensions n of examples

Number normal improved
of examples (t in hh:mm)

200 0:04 0:00
400 1:05 0:01
600 4:17 0:02
800 12:40 0:06

1000 28:43 0:13
(b) Different numbers of examples

Table 2: Training time

6 Experiments
In this section we will present results of applying pairwise SVMs to two synthetic datasets
and to one real world dataset. Before we come to those datasets we introduce the pairwise
kernel Klin

T M B Klin
T L+Klin

ML (3). Furthermore, let K poly
SD denote KSD with homogenous polynomial

standard kernel of degree two. In analogy to K poly
SD the kernels K poly

ML , K poly
T L , and K poly

T M are
defined.

6.1 Checker Board Task
As described in Subsection 3.1 an example x of this task has the following form:

x ∈
(

x1
x2

)
with x1,x2 ∈ [0,m)

and m ∈N arbitrary but fixed. The class c of an example x is determined by

c(x)B floor(x1)m+floor(x2).

In other words each square of the checker board is a single class of the m2 classes.
For our measurements we selected m = 25 and set the penalty parameter C = 1. For model

selection we used the technique described in Section 4. To keep this work short, we only present
selected results. In the pair task we created a set consisting of 50 classes with a constant EPCR
of 5. Using the pair task we excluded many kernels as they led to bad results in this task. As test
set for the interexample and interclass task we used the whole set used in the pair task and call
this set Test Set 1. In the interexample task we trained on newly generated training sets with
different EPCRs (5,10,15,20,25). We observed that the EPCR does not significantly influence
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the performance for the checker board task. Hence, we chose an EPCR of 5. Furthermore, we
obtained by the interexample task that Klin

ML (3d) and K poly
ML have the best performance. Then, we

tested different numbers (50,75, . . . ,200) of training classes within the interclass task. Again,
the results differed only slightly. Hence, we selected the two models with 50 classes. Figure 1a
presents the performance of the models with Klin

ML and K poly
ML on Test Set 1. Additionally, we

tested the performance on two newly generated test set (Test Set 2 and Test Set 3) with the same
properties as Test Set 1 (interclass task, 50 classes, EPCR=5). This shows the robustness of the
model selection technique. In Figure 1b we also present the performance for different kernels
in the interclass task to complete the discussion of Section 3.
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Figure 1: DET curves for checker board task. In (b) Klin
SD and K poly

SD (3c) provide almost the same
curve.

6.2 Double Interval Task
Let us define the double interval task of dimension n. To draw an example x ∈ {−1,1}n of the
double interval task one draws i, j,k, l ∈N so that 2≤ i≤ j, j+2≤ k ≤ l ≤ n and sets

xp B

{
1 p ∈ {i, . . . , j}∪{k, . . . , l},
−1 otherwise.

The class c of such an example is defined by c(x) B (i,k). Note that the pair ( j, l) does not
influence the class. Hence, there are (n−3)(n−2)/2 classes.

Obviously, all examples have the same Euclidean norm. For our measurements we selected
n = 500. In the pair task we created an initial set consisting of 750 examples out of 50 classes
with a constant EPCR of 15. Then, we used 75% of all pairs for training and tested on the
remaining ones. By the pair task several parameters were selected. Firstly, it turned out that the
penalty parameter C should be set to 1,000 independently of the other parameters. Secondly, the
kernels Klin

ML, K poly
ML , Klin

T L, K poly
T L , Klin

T M, and K poly
T M (3) were selected due to their superior perfor-

mance. In Figure 2a, we present the performance of those kernels in the pair task. Afterwards,
the whole set of the pair task is used as test set for the interexample and interclass task and
is called Test Set 1. In the interexample task, we tested different EPCRs (5,10,15,20,25). In
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Figure 2: DET curves for double interval tasks
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Figure 2b it is shown that increasing the EPCR leads to better results in the interexample task.
This holds for all kernels selected. Due to space limitations we only present results for Klin

ML
and K poly

T M . Note, that we chose as trade-off between performance and needed training time an
EPCR of 15. In Figure 2c we show that an increasing number of used classes increases the
performance in the interclass task. Again, this holds for all kernels mentioned above but we do
only present results for Klin

ML and K poly
T M . Furthermore, using six different test sets we show in

Figure 2d that the heuristic model selection technique led to robust results for the interclass task
for kernel K poly

T M .
By Figures 2a, 2e, and 2f it can be seen for a fixed kernel that the DET curve of the pair task

is below the DET curve of the interexample task, which again is below the DET curve of the
interclass task. In the interexample task (Figure 2e) a training set consisting of 50 classes with
a constant EPCR of 15 is used, while a training set consisting of 200 classes with a constant
EPCR of 15 is used in the interclass task (Figure 2f). One obtains that Klin

ML is the best kernel
in the pair task and interexample task. However, compared to the other selected kernels it leads
to bad results in the interclass task. At the same time the performance of K poly

T M in the pair task
and interexample task is worse than most of the other used kernels. However, K poly

T M leads to the
best performance in the interclass task.

Note that the model selection technique is based on the assumption that a DET curve of the
pair task is below a corresponding DET curve of the interexample task, which again is below
a DET curve of the interclass task. This does neither mean that a good result in the pair task
implies a good result in the interexample task nor that a good result in the interexample task
implies a good result in the interclass task.

6.3 Labeled Faces in the Wild
The labeled faces in the wild (LFW) dataset [Huang et al., 2007] consists of 13,233 images
of 5,749 persons. Several remarks on this dataset are in order. Firstly, the dataset is very
inhomogeneous. There are only 1,680 persons with two or more images. Moreover, there
are persons with up to 530 images. Secondly, Huang et al. [2007] suggest two standard test
procedures for this dataset. Here, the unrestricted test procedure is used. This test procedure
is a fixed tenfold cross validation in the interclass setting, where each test set consists of 300
positive pairs and 300 negative pairs. Thirdly, there are several feature vectors available for
the LFW dataset. For the presented measurements we mainly followed Prince et al. [2011] and
used the scale-invariant feature transform (SIFT)-based feature vectors for the funneled version
[Guillaumin et al., 2009] of LFW. In addition, the aligned images [Wolf et al., 2009] are used as
well. Again, following Prince et al. [2011], the aligned images are cropped to 80×150 pixels and
are then normalized by passing them through a log function (log(x+1)). Afterwards, the local
binary patterns (LBP) [Ojala et al., 2002] and three-patch LBP (TPLBP) [Wolf et al., 2008]
are extracted. In contrast to Prince et al. [2011] the pose is neither estimated nor swapped.
Furthermore, no PCA is applied to the data. As the norm of the LBP feature vectors is not the
same for all images we scaled those features to unit norm.

For models selection, the View 1 partition of the LFW database is recommended [Huang
et al., 2007]. Using this partition, we obtained that K poly

T M works best independently of the
chosen type of feature vector. Additionally, we applied our model selection technique to the
LFW database. Due to the inhomogeneity of the dataset the model selection technique is only
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Figure 3: DET curves for LFW Dataset

used to select the pairwise kernel. We obtained by the pair task and the interexample task
the same results as by the View 1 partition. It seems that K poly

T M will work best in this dataset
independently of the chosen feature vector.

In addition, using the idea of the model selection technique in Section 4 we present an
interesting analysis about the EPCR by means of the SIFT-based feature vectors. In Figure 3a
42 classes are used. There, it is shown that the performance in the interexample task increases
with an increasing EPCR. Especially, we see that a constant EPCR of 5 seems too small. Hence,
we conclude that this dataset suffers from a small EPCR (2.3 in average). Fortunately, using an
EPCR of 5 and increasing the numbers of classes in the training set increases the performance
in the interexample setting, too (see Figure 3b).

Now, we analyze the interclass task by the tenfold cross validation mentioned above. Due
to the speed up technique presented in Section 5 we were able to train with large numbers of
training pairs. However, if all pairs are used for training, then any training set would consist
of approximately 50,000,000 pairs and the training would still need too much time. Hence,
whereas in any training set all positive training pairs are used, the negative training pairs are
randomly selected in such a way that any training set consist of 2,000,000 pairs. The training
of such a model took less than 24 hours. In Figure 3c we present the average DET curves
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for feature vectors based on SIFT, LBP, and TPLBP. Inspired by Prince et al. [2011] we added
decision function values of these pairwise SVMs and obtained two further DET curves. This led
to very good results (see Figure 3c). Furthermore, we concatenated the SIFT, LBP, and TPLBP
feature vectors. Surprisingly, the training of some of those models needed longer than a week.
Therefore, we do not present these results.

In Table 6.3 the mean equal error rate (EER) and standard error of the mean (SEM) for
several types of feature vectors are provided. Note, that many of our results are state of the
art or even better. The current state of the art can be found on the homepage of Huang et al.
[2007] and in the publication of Prince et al. [2011]. If only SIFT-based feature vectors are used,
then the best result is 0.125±0.0040 (EER±SEM). Pairwise SVMs achieve the same EER but
a higher SEM 0.1252± 0.0062. If we add the decision function values corresponding to the
LBP and TPLBP feature vectors, then our result 0.1210± 0.0046 is slightly worse compared
to 0.1050± 0.0051. One possible reason for this fact might be that we did not swap the pose.
Finally, for the added decision function values, our performance 0.0947±0.0057 is significantly
better than 0.0993±0.0051. Furthermore, it is worth noting that our standard errors of the mean
are comparable to the other presented learning algorithms although most of them use a PCA to
reduce noise and dimension of the feature vectors. Only for the SIFT based feature vectors our
SEM is larger. Note that the commercial system uses outside training data.

SIFT LBP TPLBP L+T S+L+T CS
Pairwise Mean 0.1252 0.1497 0.1452 0.1210 0.0947 -

SVM SEM 0.0062 0.0052 0.0060 0.0046 0.0057 -
State of Mean 0.1250 0.1267 0.1630 0.1050 0.0993 0.0870
the Art SEM 0.0040 0.0055 0.0070 0.0051 0.0051 0.0030

Table 3: EER and SEM for LFW Dataset. Abbreviations: S=SIFT, L=LBP, T=TPLBP,
+=adding decision function values, CS=Commercial system face.com r2011b

7 Final Remarks
In this paper we suggested the SVM framework for handling pairwise classification problems.
We analyzed two approaches to enforce the symmetry of the obtained classifiers. To the best of
our knowledge, we give the first proof that symmetry is indeed achieved. Then, we prove that
for each parameter set of one approach there is a corresponding parameter set of the other one
such that both approaches lead to the same classifier. Additionally, we showed that the approach
based on projections leads to shorter training times.

Although the number of parameters might be a pitfall of pairwise SVMs, its coincident
flexibility might be a strength. To handle this pitfall a technique for model selection is proposed.
We discussed details of the implementation of a pairwise SVM solver and presented numerical
results. Those results show that pairwise SVMs are capable of successfully treating large scale
pairwise classification problems and that the heuristic model selection technique leads to robust
and promising results. Furthermore, we showed that pairwise SVMs compete very well for a
real world dataset.
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We would like to underline that some of the discussed techniques could be transferred to
other approaches for solving pairwise classification problems. For example, it is easy to apply
most of the results to One Class Support Vector Machines [Schölkopf et al., 1999, Tax and
Duin, 2004]. Moreover, the presented model selection technique can be used for other pairwise
learning algorithms.
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