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1 Introduction

In the past signal processing algorithms for mo-
bile communications systems were implemented in
hardware using a single chip solution, usually a
Digital Signal Processor (DSP). But due to the
increased and still increasing complexity of these
signal processing algorithms, the computational
power of single chip solutions is not sufficient any
more. In addition the number of algorithms to
be processed simultaneously is rising. For exam-
ple owners of mobile phones nowadays want to use
WLAN, WiMAX and DVB-H at the same time.

To tackle this increasing computational demand,
there are two competing approaches in chip design.
On the one hand dedicated hardware design like
application specific integrated circuits (ASICs), on
the other hand so-called systems-on-chip (SoC) de-
sign. SoCs can consist of several general purpose
processors as well as DSPs and ASICs. In general
terms ASIC-based solutions are smaller and more
energy efficient [1] than SoC-based solutions, but
not as flexible, because once the chip is developed,
the possibility to modify the behavior of the system
is very limited. Another advantage of SoCs is, that
components can be reused from existing processor
designs. Thus, from now on we will concentrate on
SoCs.

There are several contradicting objectives for de-
signing SoCs. These objectives can be area (die
size), performance, energy consumption as well as
rather soft defined goals like programmability or
flexibility. Since chip design and verification is very
time consuming, the designer wants to know at
a very early design stage, how the system should
look like, how the application behaves on the de-
termined architecture and what the performance
figures would be. An idea presented in [2] is to de-

termine a first system at a very high abstraction
level neglecting some details and in this way reduc-
ing the set of remaining candidate systems. With
the gained solution the designer can proceed with
the next lower abstraction level and refine the sys-
tem step by step. Figure 1 illustrates this method.
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Figure 1: Using multiple abstraction levels in SoC
design

2 Applications of Linear Pro-
gramming

One methodology to determine a suitable SoC-
architecture is the Y-Chart approach [3]. It is based
on the idea of modeling architecture and applica-
tions separately, performing a mapping step and
iterating over different architectures, applications
and mappings until a suitable architecture is found
(Fig. 2)

Since manual iteration over different architec-
tures and mappings would be very time consuming,
there is a need for systematic exploration of the de-
sign space. Automating the iterations by solving it
via linear programming can be one solution for this
problem.

As there are two nested iteration loops for a given
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Figure 2: Illustration of the Y-Chart approach

set of applications, this leads to nested optimiza-
tion problems. The outer loop iterates over archi-
tectures, the inner loop optimizes the temporal and
spatial mapping for each architecture.

When optimizing the architecture, several as-
pects have to be considered. For example not only
the number and kinds of processors have to be cho-
sen. Also memory hierarchy (local, shared, global
memories) and the interconnection network have to
be selected.

Optimization of the mapping includes the spatial
and temporal assignment of the sub-functions of
the application to processors of the given system
(resource allocation and scheduling) as well as the
allocation of data in memories and the scheduling
of data transfers between memories and processors.
Thus, the whole mapping process can be considered
again as a set of nested optimization problems.

An example for a formulation as mixed-integer
linear programs (MILP) for both aspects can be
found in [4].

3 Using Packing for Optimiz-
ing Mappings of Applica-
tions to Architectures

Mapping of applications to architectures deals with
resource constraints. Thus, packing problems are
very related to the subproblems arising. As an ex-
ample, we want to introduce in this section, how
allocation of data in memory is related to a pack-
ing problem. We will show, that solutions for this
special kind of packing problem can be retrieved

fast by existing solvers. This subproblem can be
expanded by including other aspects of the map-
ping process and is described in [5]. For applying
it to other aspects of the mapping process, see [4].

If a temporal and spatial mapping of tasks to pro-
cessors is selected and the data is assigned to mem-
ories, the remaining question is, how much memory
resources are needed. Minimizing these needed re-
sources can be formulated as strip-packing problem
[6].

In strip-packing, boxes of fixed length and width
have to be arranged into a strip of fixed width in
such a manner, that total height is minimized. Ap-
plying this to the problem of minimizing total mem-
ory requirements, we face a set of packing problems
(one for each memory in the system), which can be
solved simultaneously. The width of all strips is the
total execution time determined by the mapping of
tasks and transfers. The heights are the amount of
resources needed for the respective memory. The
boxes to be packed are the data. The width of
such a box is defined by the time the data is alive.
The height is given by the required size of the data
in the selected memories.

Note, that due to the given temporal mapping,
the horizontal positions of the boxes are fixed. An-
other important property is, that some boxes can
overlap. Since the application can take different
branches during execution caused by switch/case
of if/then statements, there are some data, that
cannot exist simultaneously. Thus, these data can
overlap in packing terms.

Let yk
i be the starting address of variables i in

memory k and hk
i its storage requirements. For

non-overlapping we introduce uk
i,j := 1, if variable

i is placed below variable j (0 otherwise).

Memory usually is available in discrete sizes, e.g.
64K, 128K, etc. Therefore, not total height but
memory capacity steps have to be optimized. Let
zk
l ∈ {0, 1} be the memory capacity step and Ck

l

the respective capacity of this capacity step.
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The MILP can now be stated as follows:∑
l,k

lzk
l → min (1)

subject to ∑
l

zk
l = 1 (2)

yk
i + hk

i ≤
∑

l

zk
l Ck

l (3)

yk
i + hk

i −Huk
j,i ≤ yk

j (4)

yk
i + hk

j −Huk
i,j ≤ yk

i (5)

uk
j,i + uk

i,j = 1 (6)

with yk
i ∈ R≥0 and uk

i,j , zk
l ∈ B. (2) assures that

exactly one capacity step is chosen, and (3) that
all variables are placed within the memory. Thus,
both equations are stated for all variables. Remain-
ing constraints (4)–(6) ensure non-overlapping, if
needed, and are stated only for a appropriate sub-
set of variables. H is a constant big enough to make
one of the constraints (4) and (5) redundant with
yk

j ≥ 0 and yk
i ≥ 0, respectively (dependent on the

values of uk
i,j and uk

j,i).
For this problem we generated a set of 100 ran-

domly generated test-instances and solved them us-
ing CPLEX 9.1. The results showed the interesting
property, that a first solution was found compara-
bly fast. In addition, the quality of the solution (de-
fined by current objective value

optimal objective value ) was improved mainly
at the very beginning of the solution process. For
our test cases the exact solution was always found
in less than a second, the proof of optimality took
in worst case more than 3000 seconds. Although
an exact solution could be found for rather small
problems, this property can be utilized to apply
the methodology on bigger problems in favor of a
heuristic approach. The solution process can in this
way be individually controlled with a time limit.

4 Conclusion

We have shown by an example, how linear opti-
mization can be applied in embedded systems de-
sign. Although these problems are rather complex,
they can be split into subproblems in a very natural
way. In most cases these still complex subproblems
cannot be solved in acceptable time. But during

the solution progress, first solutions and quick im-
provements allow us to employ mixed-integer linear
optimization as a heuristic in some cases.
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