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Abstract

In the first part of the paper we discuss minimal smoothness as-
sumptions for the components of the solution decomposition which
allow to prove robust convergence results in the energy norm for linear
or bilinear finite elements on Shishkin meshes applied to convection-
diffusion problems with exponential boundary layers. In the corre-
sponding derivation the standard Lagrange interpolant is used, in gen-
eral. In the second part we discuss the question whether or not it is
possible to use the Scott-Zhang interpolant.

AMS subject classification: 65N30

1 Introduction

We shall examine the finite element method for the numerical solution of
the singularly perturbed linear elliptic boundary value problem

Lu ≡ −ε4u− b · 5u + cu = f in Ω = (0, 1)× (0, 1) (1a)
u = 0 on ∂Ω, (1b)

where ε is a small positive parameter, b and c are smooth and f is given
with f ∈ L2(Ω). Assuming

b = (b1, b2) > (β1, β2) > 0 on Ω̄ (2)

with constants β1, β2, the solution of (1) typically has exponential boundary
layers at x = 0 and y = 0. Without loss of generality we can as well assume
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c +
1
2
div b ≥ α0 > 0. (3)

In [8] we find the first analysis of the finite element method for bilinear
elements on a tensor product Shishkin mesh (see the next section for details
of the mesh). Let us introduce the ε-weighted H1 norm by

‖v‖ε := ε1/2|v|1 + ‖v‖0.

The proof of the error estimate

‖ u− uN ‖ε≤ CN−1 lnN (4)

in the ε-weighted H1 norm is based on the decomposition of the solution u
into a smooth part S and layer components (u = S + E1 + E2 + E12) which
satisfy the pointwise estimates

∣∣∣∣
∂i+jS

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C , (5a)

∣∣∣∣
∂i+jE1

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−ie−β1x/ε , (5b)

∣∣∣∣
∂i+jE2

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−je−β2y/ε , (5c)

∣∣∣∣
∂i+jE12

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−(i+j)e−β1x/εe−β2y/ε , (5d)

for all (x, y) ∈ Ω and 0 ≤ i + j ≤ 2.
Throughout the paper C denotes a generic constant that is independent

of ε and of the mesh.
In the paper [3] the authors simplified the proof of the interpolation error

estimates of [8] and extended the analysis to linear elements.
The validity of (5) is the crucial part of the analysis, see [5, 6] for a

discussion of sufficient conditions for (5). Let us only remark that u ∈
C2(Ω̄) requires additional compatibility conditions which restricts the class
of problems considered.

In Section 2 and 3 we will show that it is possible to replace the conditions
(5a)-(5d) by weaker conditions which allow us nevertheless to prove the
estimate (4). In particular, the assumption u ∈ C2(Ω̄) is not necessary
which avoids requiring compatibility conditions for f .
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In the proofs of Section 2 and 3 it is standard to use the Lagrange
interpolant. This is possible because our assumptions include u ∈ C(Ω̄). But
sometimes it would be desirable to use an interpolant with better properties
than the Lagrange interpolant. What are its disadvantageous?

• The Lagrange interpolant is not L2 stable.

• For problems with mixed boundary conditions the solution can be
of poor regularity such that u 6∈ W s,2 for any s > 3/2. Then, the
Lagrange interpolant is not defined. This is also the case for discon-
tinuous Dirichlet boundary conditions.

• In 3D the estimate (see [2])

|u− uI |1,p ≤ C
∑

|α|=1

hα|Dαu|1,p

is only valid for p > 2, but p = 2 is the natural choice in the finite
element analysis.

Therefore we ask (as a first step for treating the problems just mentioned)
in Section 4: Is it possible to replace in the finite element analysis on a
Shishkin mesh the Lagrange interpolant by some quasi-interpolant that is
defined for non-smooth functions?

2 The mesh, the analysis of Stynes and O’Riordan
and its first modification

Let us define

λx := min(q,
σε

β1
ln N) and λy = min(q,

σε

β2
lnN)

with σ > 0 (which will be fixed later) and q ∈ (0, 1) arbitrary. Divide the
domain Ω as in Figure 1: Ω̄ = Ω11 ∪ Ω12 ∪ Ω21 ∪ Ω22.

The nodes of our rectangular mesh are obtained from the tensor product
of a set of Nx points in the x-direction and Ny points in the y-direction. A
one-dimensional Shishkin mesh is characterized by an equidistant mesh size
h in [0, λx] and H in [λx, 1], at the transition point λx the mesh switches from
coarse to fine. For simplicity, we assume β1 = β2 and λx := (σε lnN)/β1,
resulting in the definition
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Ω11

Ω12

Ω21

Ω22

Ω11 := [0, λx]× [0, λy]
Ω12 := [0, λx]× [λy, 1]
Ω21 := [λx, 1]× [0, λy]
Ω22 := [λx, 1]× [λy, 1]

Figure 1: Subregions of Ω

h = 2λx/N and H = 2(1− λx)/N (6)

and the mesh points

xi = yi = ih for i = 0, 1, · · · , N/2 (7a)

xi = yi = λx + H(i− N

2
) for i = N/2 + 1, · · · , N. (7b)

With linear or bilinear finite elements and the corresponding finite element
space V N ⊂ H1

0 (Ω), the finite element method reads:
Find uN ∈ V N with

a(uN , v) = (f, v) ∀v ∈ V N . (8)

The bilinear form a(., .) is given by

a(w, v) := ε(∇w,∇v) + (−b · ∇w + cw, v);

due to property (3) the bilinear form is uniformly V -elliptic with respect to
the ε-weighted H1 norm: one has

a(w,w) ≥ α‖w‖2
ε for all w ∈ H1

0 (Ω)

with some positive α independent of ε.
With the standard Lagrange interpolant uI ∈ V N of u (its existence is

not a problem if the validity of (5) for i + j = 0 is required) we introduce
the splitting of the error into the components

η = uI − u, χ = uI − uN (9)
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and start the error estimate from

α‖uI − uN‖2
ε ≤ a(uI − uN , uI − uN ) = a(uI − u, uI − uN ) = a(η, χ). (10)

To estimate the right-hand side of (10) Stynes and O’Riordan use integration
by parts for the convective term:

a(η, χ) = ε(∇η,∇χ) + (bη,∇χ) + ((c + div b)η, χ).

To estimate the first and the third term one can simply use Cauchy-Schwarz.
For the crucial convection term the following techniques are applied:

(i) the inverse inequality on Ω22

|(bη,∇χ)| ≤ C
1
H
‖η‖0 ‖χ‖0 ≤ C

1
H
‖η‖0‖χ‖ε

(this is sufficient because one expects ‖η‖0 ≤ CH2 to be valid on the
coarse mesh)

(ii) on Ω \ Ω22:

|(bη,∇χ)| ≤ C‖η‖∞‖∇χ‖L1

≤ C‖η‖∞(meas(Ω \ Ω22))1/2ε−1/2‖χ‖ε .

This is sufficient because meas(Ω \ Ω22) ≤ Cε lnN . Equivalently, one
could estimate as follows:

|(bη,∇χ)| ≤ C‖η‖0‖∇χ‖0 ≤ C‖η‖∞(meas(Ω \ Ω22))1/2‖∇χ‖0

To estimate ‖η‖∞ the pointwise estimates (5) for the second order derivatives
are used.

Before we study interpolation error estimates in detail we modify the
error estimation technique of Stynes and O’Riordan. First, we split the in-
terpolation error into two parts: η = ηS +ηE with ηS := S−SI , for instance.
Moreover, the convective term is treated differently. For the smooth part
we estimate directly

|(b · ∇ηS , χ)| ≤ C|ηS |1‖χ‖0 ≤ C|ηS |1‖χ‖ε. (11)

For the layer part, we use again integration by parts (χ is zero at the bound-
ary). Let us study, for instance, the layer part E1. We use

(i*) on Ω22 as before an inverse inequality
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(ii*) on Ω \ Ω22:

|(bηE1 ,∇χ)Ω\Ω22
| ≤ C‖ηE1‖0,Ω\Ω22

ε−
1
2 ‖χ‖ε,Ω\Ω22

in combination with

‖ηE1‖0,Ω\Ω22
≤ Cε

1
2 (N−1 lnN)2 .

For the smooth part S the desired estimates for the interpolation error are
available for S ∈ H2(Ω). We have still to investigate sufficient conditions
for the validity of the estimates

ε1/2|E − EI |1 ≤ CN−1 lnN (12a)

‖E − EI‖0,Ω22 ≤ CN−2, ‖E − EI‖0,Ω\Ω22
≤ Cε1/2(N−1 ln N)2 (12b)

and shall do that in the next section.

3 The interpolation error for Lagrange interpola-
tion

For w ∈ H2(Ω), the linear or bilinear interpolant on our tensor product
mesh satisfies on each element e the estimates

‖w − wI‖0,e ≤ C
∑

|α|=2

hα‖Dαw‖0,e (13a)

‖(w − wI)x‖0,e ≤ C
∑

|α|=1

hα‖Dαwx‖0,e (13b)

‖(w − wI)y ‖0,e ≤ C
∑

|α|=1

hα ‖ Dαwy ‖0,e , (13c)

here e has the lengths of the orthogonal sides hx, hy and hα = hα1
x hα2

y ,
α = (α1, α2) with |α| = α1 + α2.

For the smooth part S the desired interpolation error estimates follow
immediately. Let us now consider the layer part E1, for instance.
To estimate the L2 error, we estimate as follows:

• on Ω11: using |E1|2 ≤ Cε−3/2 we conclude

‖E1 −EI
1‖0 ≤ Ch2|E1|2 ≤ Cε

1
2 (N−1 lnN)2.
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• on Ω12: (13a) results in

‖E1 − EI
1‖0 ≤ C(h2‖(E1)xx‖0 + Hh‖(E1)xy‖0 + H2‖(E1)yy‖0)

≤ Cε1/2(N−1 ln N)2

assuming

‖(E1)xx‖0 ≤ Cε−3/2, ‖(E1)xy‖0 ≤ Cε−1/2; ‖(E1)yy‖ ≤ Cε1/2.

• on Ω22 ∪ Ω21 one hopes to use the smallness of E1:

‖E1 − EI
1‖0 ≤ ‖E1‖0 + ‖EI

1‖0.

But, unfortunately, the Lagrange interpolant is not L2 stable. Therefore, we
introduce the stronger L∞ norm and choose the parameter σ of the mesh in
such a way that

‖EI
1‖0 ≤ ‖EI

1‖∞ ≤ ‖E1‖∞ ≤ CN−2 for x ≥ λx. (14a)
Then, it follows as well

‖E1 − EI
1‖0,Ω21 ≤ ‖E1 − EI

1‖∞,Ω21(measΩ21)1/2 ≤ Cε1/2N−2(lnN)1/2.
(14b)

Next we study ‖(E1 − EI
1)x‖, the decisive part of the H1 semi-norm of E1:

• on Ω11:
‖(E1 − EI

1)x‖0 ≤ Ch|E1|2 ≤ Cε−1/2N−1 lnN

based on |E1|2 ≤ Cε−3/2.

• on Ω12: (13b) leads to

‖(E1 − EI
1)x‖0 ≤ C(h‖(E1)xx‖0 + H‖(E1)xy‖0) ≤ Cε−1/2N−1 lnN

• on Ω21 ∪ Ω22: an inverse inequality results in

‖(E1 −EI
1)x‖0 ≤ ‖(E1)x‖0 + CH−1‖EI

1‖0

Thus, (14b) and ‖(E1)x‖0 ≤ Cε−1/2N−1 on Ω21∪Ω22 are sufficient for
the desired estimate (12a).
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Concerning the corner layer one expects no difficulties at all but if one
wants to estimate the interpolation error of E12 with respect to the x-
derivative in the subdomain Ω12, it is not optimal to use the anisotropic
estimate

‖(E12 −EI
12)x‖0 ≤ C( h‖(E12)xx‖0 + H‖(E12)xy‖0)

because the mixed derivative yields the factor ε−1 and not the desired ε−1/2.
Instead, the estimate

‖(E12 −EI
12)x‖0,Ω12 ≤ ‖(E12)x‖0,Ω12 +

C

h
(measΩ12)1/2‖E12‖∞,Ω12

works.
Summarizing: In the derivation of the interpolation error estimates we

never used pointwise estimates for the second-order derivatives but only

‖(E1)xx‖0 ≤ Cε−3/2, ‖(E1)xy‖0 ≤ Cε−1/2, ‖(E1)yy‖0 ≤ Cε1/2. (15)

Moreover, it is as well sufficient to have for the first-order derivatives of the
layer components

‖(E1)x‖0,Ω21∪Ω22 ≤ Cε−1/2N−1 (16)

and the corresponding estimates for E2 and E12. It seems possible to prove
(16) directly without using pointwise information on the first-order deriva-
tives (with (5) for i + j = 1 the estimate (16) follows easily).

Consequently, we can formulate the following sufficient conditions for
proving (4).

Theorem 1 : Let us assume that u allows a decomposition into a smooth
part S ∈ H2(Ω) and layer components E1, E2, E12 which satisfy the pointwise
estimates (5) only for i + j = 0 and the estimates (15) and (16) (and the
corresponding estimates for E2 and E12). Then,

‖u− uN‖ε ≤ CN−1 ln N. (17)

If one wants to prove supercloseness results, more smoothness of the
solution is required, see [7].

4 The Scott-Zhang interpolant on Shishkin meshes

In many textbooks on finite elements only standard interpolants are dis-
cussed; detailed representations of interpolants for non-smooth functions
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are rare. A good source is the book of Ern and Guermond [4] with a discus-
sion of the interpolants of Clément, Scott-Zhang and some projectors. But
most references discuss these interpolants only on shape-regular meshes.

In [1], however, the reader can find precise information on the validity
of certain estimates on anisotropic meshes. In particular Table 17.2 of the
book compares the validity of the stability estimate

(S) ‖Qhu‖W m,q(e) ≤ C(meas e)
1
q
− 1

p

∑

|α|≤l−m

hα|Dαu|W m,p(Se)

and the approximation error estimate

(A) ‖u−Qhu‖W m,q(e) ≤ C(meas e)
1
q
− 1

p

∑

|α|=l−m

hα|Dαu|W m,p(Se)

on tensor-product meshes for several quasi-interpolants Qhu of u. Here Se

denotes some macroelement around the given element e which is typical for
generalized interpolants.

While for Lagrange interpolation with p = q = 2 the case m = l, in
particular m = l = 0 is not allowed, the Clément interpolant satisfies (S)
and (A) for m = 0 and 0 ≤ l ≤ 2 with p, q ∈ [1,∞]. But for the Clément
interpolant m = 1 is not allowed on anisotropic meshes, thus it makes no
sense to use Clément interpolation on two-dimensional Shishkin meshes.

However, there are interpolants of Scott-Zhang type for which (S) and
(A) are valid for 0 ≤ m ≤ l − 1, 1 ≤ l ≤ 2 and (p, q) ∈ [1,∞] even for
certain anisotropic meshes. Therefore we ask the question: can Scott-Zhang
interpolants be used on Shishkin meshes?

A basic difficulty lies in the fact that most authors who discuss these
interpolants assume the mesh to be locally uniform, i.e., they assume that
there is no abrupt change in the element size (this simplifies the notation
significantly, because the error on some given element is estimated by some
norm on a macroelement which contains certain adjacent elements as well
and for all these elements the same mesh width h can then be used). Con-
sequently, on our Shishkin mesh we have to look very carefully at elements
with x ∈ [λx − h, λx + H] or y ∈ [λy − h, λy + H] because such elements do
have neighbours with very different element sizes.

A Scott-Zhang operator allows several possibilities for defining an edge
σi responsible for the value in a vertex Pi (the value is then the L2 projec-
tion on the finite element space restricted to σi). In [1] for the validity of
anisotropic estimates the edges are defined in the following way: the opera-
tor Sh introduced in [1] uses small sides, the operator Lh large sides with a
geometric projection property.
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For simplicity, we only consider bilinear elements on our rectangular
Shishkin mesh. Then a careful study of the proofs in [1] for getting anisotropic
estimates shows:
On a our Shishkin mesh it is useful (and may be necessary) to define the L2

projections on edges which are all parallel ! (with exception of some edges
on the boundary)

If we do that, consequently, some defining edges are small, some large;
we assume that all defining edges are parallel to the x-axis. Every patch
now consists only of two elements. We use the notation Se = e1 ∪ e2 with
e = ek for k = 1 or k = 2. The patch sizes on Se are denoted by hS,1 and
hS,2. Now we additionally define the following rule: the function values in
some vertex are defined based on the edge to the left of that vertex. (see
Figure 2)

---- - - - ----- - - - ----- - - - ----- - - - ----- - - - -

---- - - - -

---- - - - -

---- - - - -

---- - - - -

¾¾¾¾¾ ¾ ¾ ¾¾¾¾¾¾ ¾ ¾ ¾¾¾¾¾¾ ¾ ¾ ¾¾¾¾¾¾ ¾ ¾ ¾¾¾¾¾¾ ¾ ¾ ¾

¾¾¾¾¾ ¾ ¾ ¾

¾¾¾¾¾ ¾ ¾ ¾

¾¾¾¾¾ ¾ ¾ ¾

¾¾¾¾¾ ¾ ¾ ¾

Figure 2: left defining and right defining edges

Consequently, the patch of some element contains the element and its
left neighbor. That means, small elements have small neighbors, and only
the large elements in the strip [λx, λx + H] have small neighbors belonging
to the patch Se. Why do we use the left neighbors and not the right ones?
In the derivation of the estimates (S) and (A) for m = 1 one needs the
property that the quantities

hS,1

he,1
and

hS,2

he,2

are uniformly bounded, therefore for small elements also the mesh sizes of
the patch have to be small. With our choice now the estimates (A) and (S)
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on a rectangular Shishkin mesh look as follows:

(Sm) ‖Qhu‖W m,q(e) ≤ C
|e|1/q

mink |ek|1/p

∑

|α|≤l−m

hα
S |Dαu|W m,p(Se)

and

(Am) ‖u−Qhu‖W m,q(e) ≤ C
|e|1/q

mink |ek|1/p

∑

|α|=l−m

hα
S |Dαu|W m,p(Se).

We need m = 0, 1; assume l = 1, 2, then p, q ∈ [1,∞] have to satisfy
W l,p(e) ↪→ Wm,q(e).

Based on the approximation error estimate (Am) we now try to get
estimates for the interpolation error on Shishkin meshes using Scott-Zhang
that are similar to those obtained previously for the Lagrange interpolant.
For the Lagrange interpolant we got for the smooth part S ∈ H2(Ω) without
any problems

‖S − SI‖0 ≤ C N−2, |S − SI |1 ≤ C N−1.

However, with our Scott-Zhang interpolant QNS we have difficulties for
p = q = 2 in the strip [λx, λx + H] because the small neighbors of large
elements generate the factor 1/(ε ln N)1/2.
While we can live with the estimate

ε1/2|S −QNS|1 ≤ C N−1,

for handling the convection term we see no alternative using

‖S −QNS‖0 ≤ C N−2 or ‖S −QNS‖∞ ≤ C N−2.

But if we assume more smoothness, i.e., S ∈ W 2,∞(Ω), we get the desired
L∞ estimate and the L2 estimate follows.

For each layer term, for instance E1, we want to use its smallness for
x ≥ λx. If E1 ∈ W 1,1 ∩ L∞, we can use

‖QNE1‖∞ ≤ C ‖E1‖∞. (18)

The stability estimate (18) follows from the representation

(QNw)(Pi) =
∫

σi

w ψi
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for the values of our Scott-Zhang interpolant at some vertex Pi. Here for
the function ψi we have ψi ∈ V N |σi and with the nodal basis ϕj in the finite
element space one has ∫

σi

ψiϕj = δij .

In the region x ≤ λx we can use (Am) to estimate the interpolation error of
E1 in the same way as for the Lagrange interpolant.

Summarizing, we observed the following:

• The property that the Shishkin mesh is not locally uniform leads to
difficulties proving for the smooth part of the solution

‖S −QNS‖0 ≤ C N−2 for S ∈ H2(Ω).

Alternatively, one could assume more smoothness of S or introduce
a ”smoothing” region to introduce a modified mesh which is locally
uniform; then the number of mesh points used would depend slightly
on ε.

• The smallness of the Scott-Zhang interpolant of layer functions in re-
gions where the layer terms are small can be shown; together with
the anisotropic interpolation error estimates the estimate of the influ-
ence of the layer terms causes less trouble than the smooth part of the
solution.

It is an interesting problem to study in the future whether or not the finite
element approximation of the solution of problems with singularities, for
instance, hidden in the corner layer and leading to non-smooth solutions,
can be analyzed based on Scott-Zhang interpolants.
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