Geometric finite elements for director shell models

Oliver Sander joint work with Lisa Nebel

CMM-SolMech, Świnoujscie, 6.9.2022

Nonlinear shell models

Dimensional reduction

- Object is virtually 2-dimensional \Rightarrow model it by 2d equation

Director theories:

- 1 director: Shearing
- 3 directors: Shearing and torsion

Nonlinear shell models

Dimensional reduction

- Object is virtually 2-dimensional \Rightarrow model it by 2d equation

Director theories:

- 1 director: Shearing
- 3 directors: Shearing and torsion

Nonlinear shell models

Dimensional reduction

- Object is virtually 2-dimensional \Rightarrow model it by 2d equation

Director theories:

- 1 director: Shearing
- 3 directors: Shearing and torsion

Manifold-valued boundary value problems

Partial differential equations for functions

 $\phi: \Omega \to M$

Domain Ω :

• ... can be Euclidean or non-Euclidean.

Codomain *M*:

• Riemannian manifold

Finite elements for manifold-Valued problems

The challenges:

- Nonlinear function spaces
- No norms, no scalar products, no linear functional analysis
- No polynomials
- No finite elements

Finite elements for manifold-Valued problems

Find a discretization that:

- is geometrically conforming
- is *H*¹-conforming
- works for any reasonable Riemannian manifold M
- · allows for high approximation orders
- preserves frame indifference

Main problem: Generalize polynomial interpolation

Construction 1: Projection-based FE

Work with an embedding:

- Interpolate in \mathbb{R}^N
- Project back onto M

 $I^{\operatorname{proj}}(v,\xi) := P_M\left(\sum_{i=1}^m v_i \varphi_i(\xi)\right)$

Properties:

- Well-defined and differentiable
- Nested spaces
- Affine family of finite elements
- Equivariant under isometries Q of M

$$QI^{\text{proj}}(v,\xi) = I^{\text{proj}}(Qv,\xi)$$

only if Q can be extended to an isometry of \mathbb{R}^N .

Construction 2: Geodesic interpolation

Intrinsic definition?

Lagrange interpolation revisited:

- Values $v_1, \ldots, v_m \in M$ given at the Lagrange nodes
- If M is a vector space, interpolation between the v_i can be written as

$$\sum_{i=1}^m \mathsf{v}_i arphi_i(\xi) = rgmin_{q \in M} \sum_{i=1}^m arphi_i(\xi) \| \mathsf{v}_i - q \|^2.$$

Construction 2: Geodesic interpolation

Idea: Replace

$$\left\| \mathbf{v}_{i} - \mathbf{q} \right\|^{2}$$

by the Riemannian distance on M

 $\mathsf{dist}(v_i,q)^2$

Define: Geodesic interpolation [S. (2011, 2013), Grohs (2012)]

$$I^{\text{geo}}(v,\xi) := rgmin_{q \in M} \sum_{i=1}^{m} \varphi_i(\xi) \operatorname{dist}(v_i,q)^2$$

Construction 2: Geodesic interpolation

Idea: Replace

$$\left\| v_i - q \right\|^2$$

by the Riemannian distance on M

 $dist(v_i, q)^2$

Define: Geodesic interpolation [S. (2011, 2013), Grohs (2012)]

$$I^{\mathsf{geo}}(\mathbf{v},\xi) \coloneqq \operatorname*{arg\,min}_{q\in M} \sum_{i=1}^m arphi_i(\xi) \operatorname{\mathsf{dist}}(\mathbf{v}_i,q)^2$$

Properties:

- Well-posed under reasonable conditions
- Differentiable in v and ξ
- Equivariant under isometries of M
- \implies Discretizations of frame-indifferent models are frame-indifferent.

Global finite element spaces

Definition (Geometric finite elements)

A geometric finite element function is a continuous function $v_h : G \to M$ such that for each element T of G, $v_h|_T$ is given by a geometric interpolation rule on T.

Discretization error measurements Minimize harmonic energy:

$$\phi:\Omega
ightarrow S^2,\qquad {\it E}(\phi)=\int_\Omega \|
abla \phi\|^2\,dx$$

Lemma

The inverse stereographic map minimizes E in its homotopy class.

Setup

• Domain
$$\Omega = [-5, 5]^2$$

- · Dirichlet boundary conditions
- Discretization error for orders p = 1, 2, 3:

Evaluation of geodesic finite elements Definition:

$$I^{\text{geo}}(v;\xi) = rgmin_{q\in M} \sum_{i=1}^m arphi_i(\xi) \operatorname{dist}(v_i,q)^2$$

Values:

Minimize

$$f_{\xi}(q) := \sum_{i=1}^m arphi_i(\xi) \operatorname{dist}(v_i,q)^2$$

by a Newton-type method on M

Evaluation of geodesic finite elements Definition:

$$I^{\text{geo}}(v;\xi) = \operatorname*{arg\,min}_{q\in M} \sum_{i=1}^m arphi_i(\xi)\, { ext{dist}}(v_i,q)^2$$

Values:

Minimize

$$f_{\xi}(q) := \sum_{i=1}^m arphi_i(\xi) \operatorname{dist}(v_i,q)^2$$

by a Newton-type method on M

Derivatives wrt. ξ :

Total derivative of $F(\xi, q) := \frac{\partial f_{\xi}}{\partial q} = 0$ yields

$$\frac{\partial F(\xi, q)}{\partial q} \cdot \frac{\partial I^{\text{geo}}}{\partial \xi} = -\frac{\partial F(\xi, q)}{\partial \xi}$$

- 1. Evaluate $q := I^{geo}(v; \xi)$
- 2. Solve a small linear system

Higher derivatives

Newton-type PDE solvers require:

- First and second derivatives of $I^{geo}(v_1, \ldots, v_m; \xi)$ wrt. to the v_i
- First and second derivatives of $\frac{\partial}{\partial \xi} I^{\text{geo}}(v_1, \ldots, v_m; \xi)$ wrt. to the v_i

Total derivative again:

$$\frac{\partial F}{\partial q} \cdot \frac{\partial^2 I^{\text{geo}}}{\partial v_i \partial \xi} = -\frac{\partial^2 F}{\partial v \partial q} \cdot \frac{\partial q}{\partial \xi} - \frac{\partial^2 F}{\partial q^2} \cdot \frac{\partial q}{\partial v} \cdot \frac{\partial q}{\partial \xi} - \frac{\partial^2 F}{\partial v_i \partial \xi} - \frac{\partial^2 F}{\partial q \partial \xi} \cdot \frac{\partial q}{\partial v_i}$$

Higher derivatives

Newton-type PDE solvers require:

- First and second derivatives of $I^{geo}(v_1, \ldots, v_m; \xi)$ wrt. to the v_i
- First and second derivatives of $\frac{\partial}{\partial \xi} I^{\text{geo}}(v_1, \dots, v_m; \xi)$ wrt. to the v_i

Total derivative again:

$$\frac{\partial F}{\partial q} \cdot \frac{\partial^2 I^{\text{geo}}}{\partial v_i \partial \xi} = -\frac{\partial^2 F}{\partial v \partial q} \cdot \frac{\partial q}{\partial \xi} - \frac{\partial^2 F}{\partial q^2} \cdot \frac{\partial q}{\partial v} \cdot \frac{\partial q}{\partial \xi} - \frac{\partial^2 F}{\partial v_i \partial \xi} - \frac{\partial^2 F}{\partial q \partial \xi} \cdot \frac{\partial q}{\partial v_i}.$$

Algorithmic differentiation:

- More convenient
- Less error-prone
- I use ADOL-C [Griewank, Walther]

Projection-based FE: Algorithmic issues

The sphere S^d

- Interpolation: $I^{\text{proj}}(v,\xi) = \frac{\sum_{i=1}^{m} \varphi_i(\xi) v_i}{\|\sum_{i=1}^{m} \varphi_i(\xi) v_i\|}$
- Gradient $\nabla I^{\text{proj}} := \frac{\partial I^{\text{proj}}}{\partial \xi}$: Available in closed form.

Projection-based FE: Algorithmic issues

The sphere S^d

- Interpolation: $I^{\text{proj}}(v,\xi) = \frac{\sum_{i=1}^{m} \varphi_i(\xi) v_i}{\|\sum_{i=1}^{m} \varphi_i(\xi) v_i\|}$
- Gradient $\nabla I^{\text{proj}} := \frac{\partial I^{\text{proj}}}{\partial \xi}$: Available in closed form.

The orthogonal matrices SO(3)

- Projection onto O(3) is the polar decomposition
- Iterative construction: [Higham; Gawlik, Leok (2018)]

$$Q_0 := A$$
 $Q_{k+1} := \frac{1}{2}(Q_k + Q_k^{-T})$

• Similar construction for ∇I^{proj}

Projection-based FE: Algorithmic issues

The sphere S^d

- Interpolation: $I^{\text{proj}}(v,\xi) = \frac{\sum_{i=1}^{m} \varphi_i(\xi) v_i}{\|\sum_{i=1}^{m} \varphi_i(\xi) v_i\|}$
- Gradient $\nabla I^{\text{proj}} := \frac{\partial I^{\text{proj}}}{\partial \xi}$: Available in closed form.

The orthogonal matrices SO(3)

- Projection onto O(3) is the polar decomposition
- Iterative construction: [Higham; Gawlik, Leok (2018)]

$$Q_0 := A$$
 $Q_{k+1} := \frac{1}{2}(Q_k + Q_k^{-T})$

• Similar construction for ∇I^{proj}

The symmetric positive definite matrices:

No projection!

Rigorous discretization error bounds

H¹ errors:

- Ellipticity + Céa's lemma + the four conditions
- [technical stuff]

Theorem ([Hardering, S (2018)])

Optimal errors!

Rigorous discretization error bounds

H¹ errors:

- Ellipticity + Céa's lemma + the four conditions
- [technical stuff]

Theorem ([Hardering, S (2018)])

Optimal errors!

L² errors:

- Redo Aubin–Nitsche trick
- For "predominantly quadratic" energies only
- Generalize Galerkin orthogonality

Theorem ([Hardering, S (2018)])

Optimal errors!

Wrinkling of polyimide sheets

Wong, Pellegrino 2006:

- Shearing of a rectangular plastic sheet
- 380 mm x 128 mm x 25 μ m
- $E = 71240 \text{ N/mm}^2$, $\nu = 0.31$
- Prescribed displacement at horizontal edges
- 3 mm shear

Geometrically nonlinear Cosserat plates

Kinematics:

- $\Omega \subset \mathbb{R}^2$
- Midsurface deformation: $m: \Omega \to \mathbb{R}^3$
- Microrotation field: $R : \Omega \rightarrow SO(3)$

Strain measures:

- Deformation gradient: $F := (\nabla m | R_3) \in \mathbb{M}^{3 \times 3}$
- Translational strain: $U := R^T F$
- Rotational strain: $\Re := R^T \nabla R$

Geometrically nonlinear Cosserat plates

Hyperelastic material law: [Neff] (*h* = shell thickness)

$$J(m,R) = \int_{\Omega} \left[h W_{\text{memb}}(U) + \frac{h^3}{12} W_{\text{bend}}(\mathfrak{K}) + h W_{\text{curv}}(\mathfrak{K}) \right] dx$$

Membrane energy:

 $W_{\text{memb}}(U) = \mu \|\text{sym}(U-I)\|^2 + \mu_c \|\text{skew}(U-I)\|^2 + \frac{\mu\lambda}{2\mu + \lambda} \frac{1}{2} \left((\det U - 1)^2 + (\frac{1}{\det U} - 1)^2 \right)$ Bending energy:

$$W_{\mathsf{bend}}(\mathfrak{K}_b) = \mu \|\mathsf{sym}(\mathfrak{K}_b)\|^2 + \mu_c \|\mathsf{skew}(\mathfrak{K}_b)\|^2 + rac{\mu\lambda}{2\mu+\lambda} \operatorname{tr}[\mathsf{sym}(\mathfrak{K}_b)]^2$$

Curvature energy:

$$W_{\operatorname{curv}}(\mathfrak{K}) = \mu L_c^{1+
ho} \|\mathfrak{K}\|^{1+
ho}$$

Theorem ([Neff et al.])

Under suitable conditions, the functional J has minimizers in $H^1(\Omega, \mathbb{R}^3) \times W^{1,1+p}(\Omega, SO(3))$.

Wrinkling of plastic sheets Experiment:

Distributed and Unified Numerics Environment

Wrinkling of plastic sheets Experiment:

Distributed and Unified Numerics Environment

Simulation:

Nonplanar reference configurations

With P. Neff, M. Bîrsan

- Stress-free configuration has curvature
- Nontrivial topologies

Model

Kinematics:

- Abstract two-dimensional manifold ω
- Midsurface deformation: $m: \omega \to \mathbb{R}^3$
- Microrotation field: $R: \omega \rightarrow SO(3)$

Hyperelastic energy:

- Similar to planar case, but with h⁵-terms
- Involves curvature of stress-free embedding

Theorem (Ghiba, Bîrsan, Lewintan, Neff (2020))

The shell energy has a minimizer in $H^1(\omega, \mathbb{R}^3 \times SO(3))$.

Proof: Direct method in the calculus of variations.

Existence of discrete solutions

Theorem (Nebel, S. (2022))

For any grid G of ω and polynomial order k, the shell energy has a minimizer in the GFE spaces $V_{h,p}^{proj}$ and $V_{h,p}^{geo}$.

Proof:

- GFE spaces are conforming.
- Coercivity and convexity properties of shell energy can be used.
- GFE-Function spaces are weakly H¹-complete.
- Direct method in the calculus of variations.

Buckling of a cylinder

Hunt, Ario (2004)

Nonorientable surfaces

Literature

Geometric finite elements:

📔 H. Hardering and O. Sander: Geometric Finite Elements, in: Handbook of Variational Methods for Nonlinear Geometric Data, Springer (2020)

Application to shells and rods:

- O. Sander, P. Neff and M. Bîrsan: Numerical Treatment of a Geometrically Nonlinear Planar Cosserat Shell Model, Comp. Mech. (2016), 57(5), 817-841

🗐 O. Sander: Geodesic Finite Elements for Cosserat Rods, Int. J. Num. Meth. Eng. (2010), 82(13), 1645-1670

📔 A. Müller and M. Bischoff: A Consistent Finite Element Formulation of the Geometrically Non-linear Reissner-Mindlin Shell Model, Arch. Computat. Methods Eng. (2022), DOI: 10.1007/s11831-021-09702-7

