# Nonsmooth multigrid methods for problems in mechanics

# Oliver Sander joint work with Carsten Gräser (FU Berlin)

TU Dresden, 29.2.2021





- 1 Linear Elasticity
- 2 Multigrid
- 3 Contact problems
- **4** Multigrid as a minimization algorithm
- **5** Tresca Friction
- 6 Primal Plasticity
- Fracture formation
- 8 Software aspects



#### Kinematics

- $\blacktriangleright \text{ Reference domain } \Omega$
- Deformation function  $x \mapsto \varphi(x) = x + \mathbf{u}(x)$

## Strains

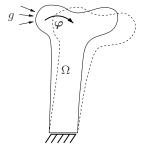
- Measure local change of shape
- ► Linear theory:

$$\varepsilon(\mathbf{u}) \coloneqq \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T).$$

 $3 \times 3$  tensor (matrix)

## Stresses

• Field of symmetric  $3 \times 3$  tensors  $\sigma$ 





#### Material laws

- In elastic materials: stress is function of strain  $\varepsilon$  (and nothing else)
- Linear theory: Hooke's law  $\sigma(\mathbf{u}) = C : \boldsymbol{\varepsilon}(\mathbf{u})$
- ▶ Fourth-order tensor *C* describes material (Hooke tensor)
- Simplest case: St. Venant-Kirchhoff material

$$\boldsymbol{\sigma} = \lambda \operatorname{tr}(\boldsymbol{\varepsilon})I + 2\mu\boldsymbol{\varepsilon}.$$

▶ Lamé constants  $\lambda, \mu$ 

#### Boundary value problem

Static equilibrium

$$-\operatorname{div}\sigma(\mathbf{u})=f$$
 in  $\Omega$ .

Boundary conditions

$$\mathbf{u} = \mathbf{u}_D$$
 on  $\Gamma_D$   
 $\boldsymbol{\sigma}(\mathbf{u})\mathbf{n} = g$  on  $\Gamma_N$ .



#### Weak formulation

- ▶ Vector-valued Sobolev spaces  $\mathbf{H}_0^1(\Omega) := H_0^1(\Omega, \mathbb{R}^3)$ ,  $\mathbf{H}_D^1(\Omega)$
- ▶ The usual trick with Green's formula: find  $\mathbf{u} \in \mathbf{H}^1_D(\Omega)$  such that

$$a(\mathbf{u}, \mathbf{v}) = l(\mathbf{v}) \qquad \forall \mathbf{v} \in \mathbf{H}_0^1(\Omega)$$

with

$$a(\mathbf{v},\mathbf{w}) := \int_{\Omega} \boldsymbol{\sigma}(\mathbf{v}) : \boldsymbol{\varepsilon}(\mathbf{w}) \, dx \qquad l(\mathbf{v}) := \int_{\Omega} f \mathbf{v} \, dx + \int_{\Gamma_N} g \mathbf{v} \, dx$$

 Symmetric, continuous and H<sup>1</sup><sub>0</sub>-elliptic: there exists a unique solution (Lax-Milgram)

#### Finite elements

- ▶ Restrict to vector-valued finite element space  $V_{h,0} \subset H_0^1$ ,  $V_{h,D} \subset H_D^1$
- Vector-valued nodal basis  $\phi_i^j$



#### Linear system of equations

Sparse, symmetric, positive definite linear system

Ax = b,

• A is  $n \times n$  block matrix with  $3 \times 3$  blocks

$$(A_{ij})_{kl} = \int_{\Omega} \boldsymbol{\sigma}(\phi_i^k) : \boldsymbol{\varepsilon}(\phi_j^l) \, dx$$
$$(b_i)_j = \int_{\Omega} f \phi_i^j \, dx + \int_{\Gamma_N} g \phi_i^j \, dx.$$

#### Solvers?

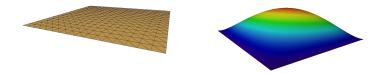
- Direct solvers: good, but need a lot of memory
- ▶ Iterative solvers: convergence rates degenerate with decreasing mesh size



#### Multigrid to the rescue

For illustration: the simpler Poisson problem

$$-\Delta u = 1 \qquad \text{on } \Omega := (0,1)^2,$$
$$u = 0 \qquad \text{on } \partial \Omega$$



#### The Gauß-Seidel method

Multigrid is based on the Gauß–Seidel method



• given an 
$$x^k \in \mathbb{R}^n$$

$$x_i^{k+1} = \frac{1}{A_{ii}} \left( b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=1+1}^n A_{ij} x_j^k \right)$$

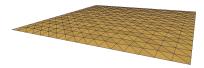


iterate 0



• given an 
$$x^k \in \mathbb{R}^n$$

$$x_i^{k+1} = \frac{1}{A_{ii}} \left( b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=1+1}^n A_{ij} x_j^k \right)$$

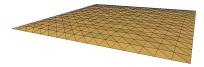


iterate 1



• given an 
$$x^k \in \mathbb{R}^n$$

$$x_i^{k+1} = \frac{1}{A_{ii}} \left( b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=1+1}^n A_{ij} x_j^k \right)$$

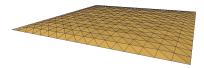


iterate 2



• given an 
$$x^k \in \mathbb{R}^n$$

$$x_i^{k+1} = \frac{1}{A_{ii}} \left( b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=1+1}^n A_{ij} x_j^k \right)$$

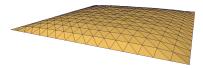


iterate 3



• given an 
$$x^k \in \mathbb{R}^n$$

$$x_i^{k+1} = \frac{1}{A_{ii}} \left( b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=1+1}^n A_{ij} x_j^k \right)$$



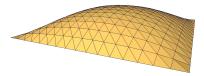




• given an 
$$x^k \in \mathbb{R}^n$$

• for each line i of A do

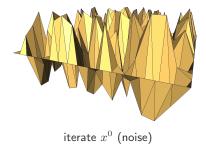
$$x_i^{k+1} = \frac{1}{A_{ii}} \left( b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=1+1}^n A_{ij} x_j^k \right)$$



iterate 50

Works, but is painfully slow!





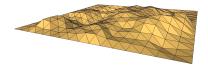


► Gauß–Seidel smoothes!



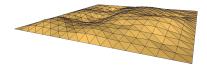
iterate  $x^1$ 





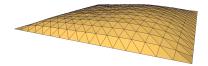
iterate  $x^2$ 





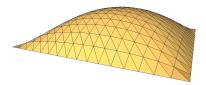
iterate  $x^3$ 





iterate  $x^{10}$ 



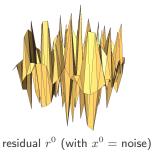


iterate  $x^{50}$ 



- ▶ In fact, Gauß–Seidel smoothes the residual  $r^k := b Ax^k$
- Consider the error equation

$$A(x^k + e) = b \qquad \Rightarrow \qquad Ae = b - Ax^k.$$





- ▶ In fact, Gauß–Seidel smoothes the residual  $r^k := b Ax^k$
- Consider the error equation

$$A(x^k + e) = b \qquad \Rightarrow \qquad Ae = b - Ax^k.$$





- ▶ In fact, Gauß–Seidel smoothes the residual  $r^k := b Ax^k$
- Consider the error equation

$$A(x^k + e) = b \qquad \Rightarrow \qquad Ae = b - Ax^k.$$





- ▶ In fact, Gauß–Seidel smoothes the residual  $r^k := b Ax^k$
- Consider the error equation

$$A(x^k + e) = b \qquad \Rightarrow \qquad Ae = b - Ax^k.$$





- ▶ In fact, Gauß–Seidel smoothes the residual  $r^k := b Ax^k$
- Consider the error equation

$$A(x^k + e) = b \qquad \Rightarrow \qquad Ae = b - Ax^k.$$





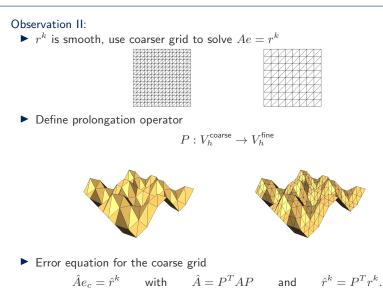
- ▶ In fact, Gauß–Seidel smoothes the residual  $r^k := b Ax^k$
- Consider the error equation

$$A(x^k + e) = b \qquad \Rightarrow \qquad Ae = b - Ax^k.$$





## Coarse grid corrections





Let  $x^0$  be an initial iterate

- ▶ Compute  $\hat{A} = P^T A P$
- ▶ For  $k = 1, 2, 3, \ldots$  do
  - Smooth:  $\nu$  steps of Gauß–Seidel (usually  $\nu = 3$ ) to obtain  $x_*^k$
  - **Restrict:** compute  $\hat{r}^k = P^T r^k = P^T (b A x_*^k)$
  - Coarse correction: solve  $\hat{A}e_c = \hat{r}^k$
  - Prolong and add:  $x^{k+1} = x^k + Pe_c$



The coarse grid problem

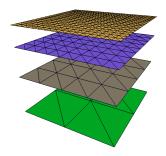
How do we solve  $\hat{A}e_c = \hat{r}^k$ ?

Small  $\hat{A}$ 

Direct solver

Large  $\hat{A}$ 

- Multigrid!
- We don't have to solve  $\hat{A}e_c = \hat{r}^k$  exactly!
- Recursively do one multigrid iteration for  $\hat{A}e_c=\hat{r}^k$



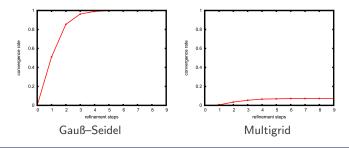


## Theorem ([Hackbusch, Xu, Yserentant])

For a multigrid cycle with  $\nu$  smoothing steps and l grid levels we have

$$|x^{k+1} - x|| \le \rho_l ||x^k - x||$$
$$\rho_l \le \rho_\infty := \left(\frac{c}{c+2\nu}\right)^{1/2}$$

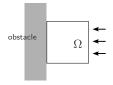
with c a constant independent of l and  $\nu.$ 





## One-body contact problems

Model contact with rigid obstacle



• Contact boundary  $\Gamma_C$ 

Define normal and tangential displacement

 $\mathbf{u}_n(x) := \mathbf{u}(x)\mathbf{n}(x) \qquad \text{and} \qquad \mathbf{u}_T(x) := \mathbf{u}(x) - \mathbf{u}_n \cdot \mathbf{n}(x).$ 

(n: the unit outer normal to  $\Omega$ )

 $\blacktriangleright$  Normal stress  $oldsymbol{\sigma} \mathbf{n} \in \mathbb{R}^d$ , and its normal component

$$\sigma_n := \mathbf{n}^T \boldsymbol{\sigma} \mathbf{n} \in \mathbb{R}.$$



#### Contact conditions

Conditions for the normal displacement/stress

 $\mathbf{u}_n \leq 0, \qquad \sigma_n \geq 0, \qquad \mathbf{u}_n \sigma_n = 0 \qquad \text{on } \Gamma_C.$ 

"complementarity conditions"

## Tangential components

- Boundary conditions for  $\mathbf{u}_T$ ,  $\boldsymbol{\sigma}_T$
- Describe friction effects
- Simplest case: no friction

$$\sigma_T = 0$$
 on  $\Gamma_C$ .



#### Variational inequality of the first kind

 $\blacktriangleright$  Find  $\mathbf{u} \in \mathcal{K}$  such that

$$a(\mathbf{u}, \mathbf{v} - \mathbf{u}) \ge l(\mathbf{v} - \mathbf{u}) \qquad \forall \mathbf{v} \in \mathcal{K}$$

with

$$\mathcal{K} := \{ \mathbf{v} \in \mathbf{H}_D^1(\Omega) \mid \mathbf{v}_n \le 0 \text{ a.e.} \}$$

 $\blacktriangleright~\mathcal{K}$  closed and convex: There exists a unique solution

#### Finite elements

- Replace  $\mathbf{H}_D^1$  by finite element subspace  $V_{h,D}$ .
- Find  $\mathbf{u}_h \in \mathcal{K}_h$  such that

$$a(\mathbf{u}_h, \mathbf{v}_h - \mathbf{u}_h) \ge l(\mathbf{v}_h - \mathbf{u}_h) \qquad \forall \mathbf{v}_h \in \mathcal{K}_h$$

•  $\mathcal{K}_h$ : suitable approximation of the admissible set  $\mathcal{K}$ 



#### Minimization problem

The variational inequality is equivalent to minimizing

$$J(\mathbf{v}) = \frac{1}{2}a(\mathbf{v}, \mathbf{v}) - l(\mathbf{v}) + \chi_{\mathcal{K}}(\mathbf{v})$$

in  $\mathbf{H}_D^1(\Omega)$ 

•  $\chi_{\mathcal{K}}$  is the indicator functional

$$\chi_{\mathcal{K}}(\mathbf{v}) := \begin{cases} 0 & \text{if } \mathbf{v} \in \mathcal{K}, \\ \infty & \text{otherwise.} \end{cases}$$

► The functional J is strictly convex, coercive, and lower semicontinuous. Therefore it has a unique minimizer on H<sup>1</sup><sub>D</sub>.

#### **Finite Elements**

Minimize

$$J(\mathbf{v}_h) = \frac{1}{2}a(\mathbf{v}_h, \mathbf{v}_h) - l(\mathbf{v}_h) + \chi_{\mathcal{K}_h}(\mathbf{v}_h),$$

in FE space  $\mathbf{V}_h$ .



Algebraic minimization problem

Find a minimizer  $x \in (\mathbb{R}^d)^n$  of

$$J(x) = \frac{1}{2}x^T A x + \chi_{\bar{K}}(x),$$

where

$$A \in (\mathbb{R}^{d \times d})^{n \times n}, \qquad (A_{ij})_{kl} = \int_{\Omega} \boldsymbol{\sigma}(\phi_{i,k}) : \varepsilon(\phi_{j,l}) \, dx$$

is the stiffness matrix of the linear elasticity problem.

#### Algebraic admissible set

In suitable coordinates the algebraic admissible set  $\bar{K}$  has the form

$$\bar{K} = \prod_{i=1}^{dn} (-\infty, a_i), \quad \text{with } a_i \in \mathbb{R} \cup \{\infty\} \text{ for all } 1 \le i \le dn$$



#### Multigrid revisited

- Let  $A \in \mathbb{R}^{n \times n}$  be symmetric and positiv definite, and  $b \in \mathbb{R}^n$ .
- Let's look at the linear multigrid method again!

#### Minimization view

Instead of thinking about how to solve

$$Ax = b$$

Think about how to minimize

$$J(x) = \frac{1}{2}x^T A x - bx$$

▶ ... or even directly

$$J(\mathbf{v}_h) = \frac{1}{2}a(\mathbf{v}_h, \mathbf{v}_h) - l(\mathbf{v}_h)$$



Gauß-Seidel as we know it: One iteration of Gauß-Seidel is:

- $\blacktriangleright$  given an  $x^k \in \mathbb{R}^n$
- $\blacktriangleright \text{ for each line } i \text{ of } A \text{ do}$

$$x_i^{k+1} = \frac{1}{A_{ii}} \left( b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=1+1}^n A_{ij} x_j^k \right)$$

Equivalent minimization formulation:

- $\blacktriangleright$  given an  $x^k \in \mathbb{R}^n$
- 1. Set  $w^0 = x^k$
- 2. For each line i of A do

$$w^{i} = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}} J(w^{i-1} + \alpha e_{i})$$

3. Set  $x^{k+1} = w^n$ 



Gauß-Seidel as we know it: One iteration of Gauß-Seidel is:

- $\blacktriangleright$  given an  $x^k \in \mathbb{R}^n$
- $\blacktriangleright \ \, \text{for each line } i \ \, \text{of } A \ \, \text{do}$

$$x_i^{k+1} = \frac{1}{A_{ii}} \left( b_i - \sum_{j=1}^{i-1} A_{ij} x_j^{k+1} - \sum_{j=1+1}^n A_{ij} x_j^k \right)$$

Gauß-Seidel for a contact problem:

- $\blacktriangleright$  given an  $x^k \in \mathbb{R}^n$
- 1. Set  $w^0 = x^k$
- 2. For each line i of A do

$$w^{i} = \underset{w_{i}^{i-1} + \alpha \leq a_{i}}{\arg\min} J(w^{i-1} + \alpha e_{i})$$

3. Set 
$$x^{k+1} = w^n$$



### Nonlinear Gauß-Seidel

- Minimization view frees us from linearity assumption
- Even frees us from differentiability assumption!
- Let H be the set of all points where J is not differentiable.

## Theorem ([Glowinski])

Let J be strictly convex, coercive, and lower semicontinuous. Let the admissible set  $\bar{K}$  be the tensor product of closed intervals. Then the nonlinear Gauß–Seidel method converges for any initial iterate.

- + globally convergent!
- + solve contact problems without penalty parameters!
- very slow



What about multigrid?

### Ideas:

- ► Do nonlinear Gauß–Seidel on all grid levels
  - $\longrightarrow$  Checking for admissibility is too expensive!
- Construction of admissible coarse grid spaces [Tai]:
  - A priori construction
- Monotone multigrid [Kornhuber]:

Construct situation-dependent coarse grid obstacles

- Provably convergent
- Fast convergence
- Challenging implementation



## Gauß-Seidel for a contact problem:

- given an  $x^k \in \mathbb{R}^n$
- 1. Set  $w^0 = x^k$
- 2. For each line i of A do

$$w^{i} = \underset{w_{i}^{i-1} + \alpha \leq a_{i}}{\operatorname{arg\,min}} J(w^{i-1} + \alpha e_{i})$$

3. Set  $x^{k+1} = w^n$ 

### Generalization:

Replace minimization problem in 2. by

$$w^{i} = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}} J(w^{i-1} + \alpha e_{i}) + \chi_{(-\infty, a_{i} - w_{i}^{i-1}]}(\alpha)$$

with  $\chi$  again the indicator functional.



Let  $J: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$  be the objective functional of a minimization problem.

We call J block-separably nonsmooth if it has the form

$$J(x) = J_0(x) + \sum_{i=1}^M \varphi_i(x_i),$$

where

- $J_0: \mathbb{R}^n \to \mathbb{R}$  is coercive and continuously differentiable,
- ▶ there is a decomposition  $\mathbb{R}^n$  with  $\prod_{i=1}^M \mathbb{R}^{n_i}$ , with  $\sum_{i=1}^M n_i = n$ ,
- ▶ the functionals  $\varphi_i : \mathbb{R}^{n_i} \to \mathbb{R} \cup \{\infty\}$ , i = 1, ..., M are convex, proper, lower semi-continuous, and continuous on their domains.

### Example: contact problem

$$J_0(x) = \frac{1}{2}x^T A x - b^T x, \qquad \varphi_i(x_i) = \chi_{(-\infty, a_i - w_i^{i-1}]}(x_i)$$



# Truncated Nonsmooth Newton Multigrid (TNNMG)

### The algorithm:

- 1. Nonlinear presmoothing (Gauß-Seidel)
  - ▶ For each block *i*, solve a local minimization problem for

$$J_i(v) := J_0(v) + \varphi_i(v)$$



# Truncated Nonsmooth Newton Multigrid (TNNMG)

### The algorithm:

- 1. Nonlinear presmoothing (Gauß-Seidel)
  - ▶ For each block *i*, solve a local minimization problem for

$$J_i(v) := J_0(v) + \varphi_i(v)$$

- 2. Truncated linearization
  - Freeze all variables where the  $\varphi_i$  are not differentiable.
  - Linearize everywhere else



- 1. Nonlinear presmoothing (Gauß-Seidel)
  - ▶ For each block *i*, solve a local minimization problem for

$$J_i(v) := J_0(v) + \varphi_i(v)$$

- 2. Truncated linearization
  - Freeze all variables where the  $\varphi_i$  are not differentiable.
  - Linearize everywhere else
- 3. Linear correction
  - E.g., one linear multigrid step,
  - or solve lineared problem exactly.



- 1. Nonlinear presmoothing (Gauß-Seidel)
  - ▶ For each block *i*, solve a local minimization problem for

$$J_i(v) := J_0(v) + \varphi_i(v)$$

- 2. Truncated linearization
  - Freeze all variables where the  $\varphi_i$  are not differentiable.
  - Linearize everywhere else
- 3. Linear correction
  - E.g., one linear multigrid step,
  - or solve lineared problem exactly.
- 4. Projection onto admissible set
  - Simply in the  $\ell^2$ -sense / block-wise



- 1. Nonlinear presmoothing (Gauß–Seidel)
  - ▶ For each block *i*, solve a local minimization problem for

$$J_i(v) := J_0(v) + \varphi_i(v)$$

- 2. Truncated linearization
  - Freeze all variables where the  $\varphi_i$  are not differentiable.
  - Linearize everywhere else
- 3. Linear correction
  - E.g., one linear multigrid step,
  - or solve lineared problem exactly.
- 4. Projection onto admissible set
  - ▶ Simply in the ℓ<sup>2</sup>-sense / block-wise
- 5. Line search
  - Id nonsmooth minimization problem: use bisection



## Introduce (inexact) local minimization operators

$$\mathcal{M}_i(\cdot) = \operatorname*{arg\,min}_{v \in (\cdot) + e_i \otimes \mathbb{R}^{n_i}} J(v)$$

## Theorem (Gräser, S. 2017)

Let  $v^0 \in \text{dom } J$  and assume that the inexact solution local solution operators  $\mathcal{M}_i$  satisfy:

- Monotonicity:  $J(\mathcal{M}_i(w)) \leq J(w)$  for all  $w \in \operatorname{dom} J$ .
- Continuity:  $J \circ \mathcal{M}_i$  is continuous.
- ▶ Stability:  $J(M_i(w)) < J(w)$  if J(w) is not minimal in the *i*-th block.

Then the iterates produced by the TNNMG method converge to a stationary point of J.



## Introduce (inexact) local minimization operators

$$\mathcal{M}_i(\cdot) = \underset{v \in (\cdot) + e_i \otimes \mathbb{R}^{n_i}}{\arg \min} J(v)$$

# Theorem (Gräser, S. 2017)

Let  $v^0 \in \text{dom } J$  and assume that the inexact solution local solution operators  $\mathcal{M}_i$  satisfy:

- Monotonicity:  $J(\mathcal{M}_i(w)) \leq J(w)$  for all  $w \in \operatorname{dom} J$ .
- Continuity:  $J \circ \mathcal{M}_i$  is continuous.
- Stability:  $J(\mathcal{M}_i(w)) < J(w)$  if J(w) is not minimal in the *i*-th block.

Then the iterates produced by the TNNMG method converge to a stationary point of J.

# Corollary (Gräser, S. 2017)

If J is strictly convex and coercive, then the TNNMG method converges to the unique minimizer of J.

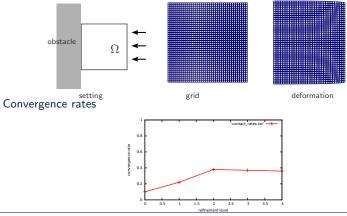


# Contact problems: Results

## Geometry

- Domain:  $\Omega = [0, 1]^2$
- Obstacle: negative half space

$$H = \{ x \in \mathbb{R}^d : x_0 < 0 \}.$$





#### Boundary conditions for the normal component

$$\mathbf{u}_n \leq 0, \qquad \sigma_n \leq 0, \qquad \mathbf{u}_n \sigma_n = 0.$$

## Boundary conditions for the tangential components

Previously: no friction

$$\sigma_T = 0$$
 on  $\Gamma_C$ .

Tresca friction model

$$egin{aligned} & \| \sigma_T \| \leq \mu ar{\sigma}_N. \ & \mathbf{u}_T = \lambda oldsymbol{\sigma}_T, & ext{ with } egin{cases} & \lambda = 0 & ext{if } \| oldsymbol{\sigma}_T \| < \mu ar{\sigma}_N, \ & \lambda \geq 0 & ext{if } \| oldsymbol{\sigma}_T \| = \mu ar{\sigma}_N. \end{aligned}$$

- $\mu \in \mathbb{R}$ ,  $\mu > 0$  is called the *coefficient of friction*.
- $\bar{\sigma}_N > 0$  fixed parameter (approximation to the normal stress)
- Simple stick–slip friction



## Tresca friction functional

$$j_T(\mathbf{v}) = \int_{\Gamma_C} \mu \bar{\sigma}_N \|\mathbf{v}_T\| \, da, \qquad \forall \mathbf{v} \in \mathbf{H}_D^1.$$

### Weak formulation

Variational inequality of the second type: Find  $\mathbf{u} \in \mathcal{K} \subset \mathbf{H}_D^1(\Omega)$  such that

$$a(\mathbf{u}, \mathbf{v} - \mathbf{u}) + j_T(\mathbf{v}) - j_T(\mathbf{u}) \ge l(\mathbf{v} - \mathbf{u}) \qquad \forall \mathbf{v} \in \mathcal{K}$$

## Minimization formulation

Find minimizer in  $\mathbf{H}_D^1$  of

$$J(\mathbf{v}) = \frac{1}{2}a(\mathbf{v}, \mathbf{v}) - l(\mathbf{v}) + \chi_K(\mathbf{v}) + j_T(\mathbf{v})$$

Functional is strictly convex, coercive, and lower semicontinuous

There exists a unique minimizer



### Naive approach:

• Find minimizers in  $\mathbf{V}_{h,D}$  of

$$J(\mathbf{v}_h) = \frac{1}{2}a(\mathbf{v}_h, \mathbf{v}_h) + \chi_{K_h}(\mathbf{v}_h) + j_T(\mathbf{v}_h),$$

 $\blacktriangleright$  integral for the nonsmooth term  $j_T$  over each element involves the degrees of freedom of all corners of that element

Structure of the nondifferentiable points not suitable for TNNMG

## Modified approach:

• Find minimizers in  $\mathbf{V}_{h,D}$  of

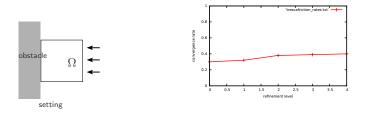
$$J(\mathbf{v}_{h}) = \frac{1}{2}a(\mathbf{v}_{h}, \mathbf{v}_{h}) + \chi_{K_{h}}(\mathbf{v}_{h}) + \sum_{i=1}^{n} \mu \bar{\sigma}_{N} \| (\mathbf{v}(p_{i}))_{T} \| \int_{\Gamma_{C}} |\lambda_{i}| \, dx.$$

- Interpretation: lumped quadrature rule
- ▶ First-order FE: functional still strictly convex, coercive, l.s.c.



### Behavior:

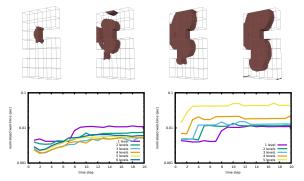
- ▶ Functional is strictly convex, coercive, and lower semicontinuous.
- Set of nondifferentiable points has correct block-separable structure
- The TNNMG method converges for all initial iterates
- Convergence rate independent of the grid resolution





# Small-Strain Primal Plasticity (with Patrick Jaap)

- $\blacktriangleright$  Primal formulation: displacement u, plastic strain p
- Von Mises and Tresca yield laws (and others)
- Kinematic and isotropic hardening



Normalized wall-time per time step: TNNMG (left) vs. predictor-corrector (right)

Low-hardening case still problematic



Phase-field model of brittle fracture: [Miehe, Welschinger, Hofacker, 2010]

▶ Unknowns: displacement  $\mathbf{u}: \Omega \to \mathbb{R}^d$ , fracture phase field  $d: \Omega \to [0,1]$ 

# Variational model:

Rate potential

$$\Pi(\dot{\mathbf{u}},\dot{d}) \mathrel{\mathop:}= \dot{E}(\dot{\mathbf{u}},\dot{d}) + D(d,\dot{d}) - P_{\mathsf{ext}}(\dot{\mathbf{u}}).$$

### Dissipation potential

- ▶ Regularized crack surface density:  $\gamma(d) = \frac{1}{2l}(d^2 + l^2 \|\nabla d\|^2)$
- Dissipation potential

$$D(\dot{d};d) = \int_{\mathcal{B}} g_c \dot{\gamma}(d, \nabla d) + \chi_{[0,\infty)}(\dot{d}) \, dV$$

•  $\chi_{[0,\infty)} = \text{indicator functional of } [0,\infty)$ 



### Elastic energy degraded in tension:

Elastic bulk energy density

$$\psi_0(\mathbf{u}) = \frac{\lambda}{2} (\operatorname{tr} \boldsymbol{\varepsilon}(\mathbf{u}))^2 + \mu \operatorname{tr}(\boldsymbol{\varepsilon}(\mathbf{u}))^2$$

• Split into tensile/compressive parts  $\psi_0^{\pm}$ .

Strain-based split

$$\psi_0^{\pm}(\boldsymbol{\varepsilon}) := \frac{\lambda}{2} \Big\langle \sum_{i=1}^d \operatorname{Eig}(\boldsymbol{\varepsilon})_i \Big\rangle_{\pm}^2 + \mu \Big[ \sum_{i=1}^d \langle \operatorname{Eig}(\boldsymbol{\varepsilon})_i \rangle_{\pm}^2 \Big].$$

Degraded elastic energy

$$E(\mathbf{u}, d) = \int_{\Omega} ((1 - d^2) + k)\psi_0^+(\mathbf{u}) + \psi_0^-(\mathbf{u}) \, dx$$



### Time discretization

- Integrate rate potential over time interval  $[t_k, t_{k+1})$
- Next iterate  $(\mathbf{u}^{k+1}, d^{k+1})$  minimizes

$$\Pi_{k}^{\tau}(\mathbf{u},d) = \int_{\Omega} \left( (1-d)^{2} + k \right) \psi_{0}^{+}(\mathbf{u}) + \psi_{0}^{-}(\mathbf{u}) + g_{c}\gamma(d,\nabla d) + \chi_{[d^{k},1]}(d) \, dV$$

# The indicator functional $\chi_{[d^k,1]}(d)$

- No regularization
- ► No *H*-field



### Time discretization

- Integrate rate potential over time interval  $[t_k, t_{k+1})$
- Next iterate  $(\mathbf{u}^{k+1}, d^{k+1})$  minimizes

$$\Pi_{k}^{\tau}(\mathbf{u},d) = \int_{\Omega} \left( (1-d)^{2} + k \right) \psi_{0}^{+}(\mathbf{u}) + \psi_{0}^{-}(\mathbf{u}) + g_{c}\gamma(d,\nabla d) + \chi_{[d^{k},1]}(d) \, dV$$

# The indicator functional $\chi_{[d^k,1]}(d)$

- No regularization
- ► No *H*-field

# Space discretization

First-order Lagrange finite elements

### Algebraic increment problem

Nonsmooth, biconvex, coercive, lower-semicontinuous



Algebraic increment energy

$$\Pi_k^{\mathsf{alg}}(\mathbf{u}, d) = \int_{\Omega} \left( (1-d)^2 + k \right) \psi_0^+(\mathbf{u}) + \psi_0^-(\mathbf{u}) + g_c \gamma(d) + \chi_{[d^k, 1]}(d) \, dV$$

is of the form

$$\Pi_k^{\mathsf{alg}}(\mathbf{u}, d) = \underbrace{\sum_{i=1}^{\# \text{ elements}} \gamma_i(B_i v) + \langle A v, v \rangle}_{=:\Pi_0(v)} + \sum_{i=1}^{\# \text{ vertices}} \underbrace{\chi_{[d_i^k, 1]}(d_i)}_{=:\varphi_i(d_i)}$$

with

$$\begin{split} B_i v &= (\boldsymbol{\varepsilon}(\mathbf{u}), d) \big|_{\mathsf{element } i} \\ \gamma_i(\boldsymbol{\varepsilon}(\mathbf{u}), d) &= \left( (1 - d)^2 + k \right) \psi_0^+(\boldsymbol{\varepsilon}(\mathbf{u})) + \psi_0^-(\boldsymbol{\varepsilon}(\mathbf{u})) \end{split}$$

- $\Pi_0$  is coercive, continuously differentiable, and biconvex.
- $\blacktriangleright$  Indicator functionals  $\chi_{[d_i^k,1]}(\cdot)$  are convex, proper, and lower semicontinuous.



Nonsmooth bi-convex minimization problem:

$$u^* \in \mathbb{R}^n$$
:  $J(u^*) \le J(v)$   $\forall v \in \mathbb{R}^n$ 

### Block structure:

• *m* blocks of sizes  $n_1, \ldots, n_m$ 

$$\mathbb{R}^n = \bigotimes_{i=1}^m \mathbb{R}^{n_i}$$

• Canonical restriction operators  $R_i : \mathbb{R}^n \to \mathbb{R}^{n_i}$ 

Block-separable form:

$$J(v) = J_0(v) + \sum_{i=1}^n \varphi_i(R_i v)$$

- Coercive, continuously differentiable functional  $J_0: \mathbb{R}^n \to \mathbb{R}$
- Convex, proper, lower semi-continuous functionals  $\varphi_i : \mathbb{R}^{n_i} \to \mathbb{R} \cup \{\infty\}$
- The TNNMG algorithm converges against a solution!



- 1. Nonlinear presmoothing (Gauß–Seidel)
  - ▶ For each block *i*, solve a local minimization problem for

$$J_i(v) := J_0(v) + \varphi_i(v)$$

- 2. Truncated linearization
  - Freeze all variables where the  $\varphi_i$  are not differentiable.
  - Linearize everywhere else
- 3. Linear correction
  - E.g., one linear multigrid step,
  - or solve lineared problem exactly.
- 4. Projection onto admissible set
  - ▶ Simply in the ℓ<sup>2</sup>-sense / block-wise
- 5. Line search
  - Id nonsmooth minimization problem: use bisection



#### Smoother:

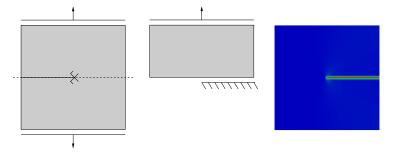
For each vertex:

- 1. Solve displacement minimization problem for this vertex only
  - Only 2 or 3 variables
  - Strictly convex, coercive, C<sup>1</sup>
  - Second derivatives exist in a generalized sense
  - Nonsmooth Newton method
- 2. Solve phase-field problem for this vertex only
  - Scalar coercive strictly convex minimization problem
  - Quadratic + indicator functional

#### Inexact smoothers:

- Solve local problems inexactly
- Can save lots of wall-time





#### Problem

- Pre-fractured 2d square
- Loaded under pure tension

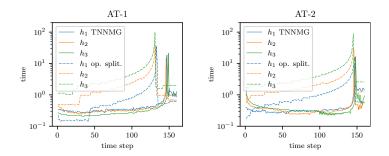
## Solvers

- ► TNNMG vs. Operator Split with *H*-field
- Operator split alternates between displacement and damage problem





# Numerical example: Notched square

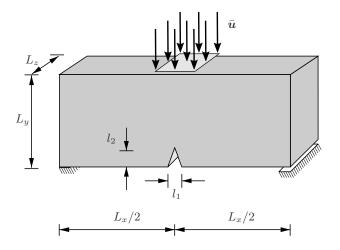


Wall-time per degree of freedom per time step

|       | AT-1    |          |        | AT-2    |          |        |
|-------|---------|----------|--------|---------|----------|--------|
|       | TNNMGEX | TNNMGPRE | OS     | TNNMGEX | TNNMGPRE | OS     |
| $h_1$ | 86.85   | 70.92    | 155.32 | 76.82   | 66.75    | 186.58 |
| $h_2$ | 73.61   | 63.83    | 353.63 | 61.63   | 54.91    | 387.06 |
| $h_3$ | 74.55   | 54.98    | 672.26 | 80.25   | 63.27    | 760.48 |



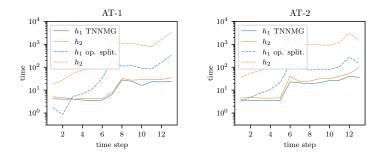








# Numerical example: Three-Point Bending



Wall-time per degree of freedom per time step

|       | AT-1    |          |          | AT-2    |          |          |
|-------|---------|----------|----------|---------|----------|----------|
|       | TNNMGEX | TNNMGPRE | OS       | TNNMGEX | TNNMGPRE | OS       |
| $h_1$ | 168.47  | 94.18    | 1158.98  | 231.08  | 112.79   | 1058.21  |
| $h_2$ | 216.32  | 120.18   | 10762.81 | 366.24  | 195.85   | 12309.42 |





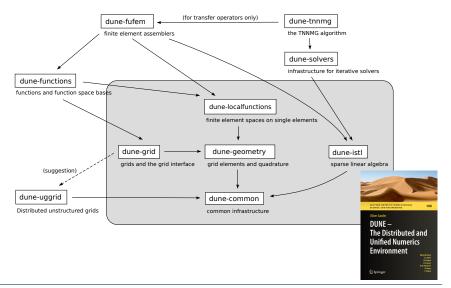
### TNNMG implementation challenges:

- Nonlinear smoother
- Gradients and tangent matrices
- Line search
- Direct sparse solver for linear correction problems
- ▶ For non-quadratic smooth parts: Caching of shape function values

### Multigrid steps:

- Hierarchy of finite element grids
- Assembly of prolongation/restriction operators









### C. Gräser, R. Kornhuber.

Multigrid Methods for Obstacle Problems. Journal of Computational Mathematics, 27(1):1–44, 2009.



#### C. Gräser, O. Sander.

Truncated Nonsmooth Newton Multigrid Methods for Block-Separable Minimization Problems.

IMA Journal of Numerical Analysis, 39(1):454-481, 2018.



#### O. Sander, P. Jaap.

Solving primal plasticity increment problems in the time of a single predictor-corrector iteration.

Computational Mechanics, 65:663-685, 2020.



#### C. Gräser, D. Kienle, O. Sander.

Truncated Nonsmooth Newton Multigrid for phase-field brittle-fracture problems.

arXiv, 2007.12290, 2020. (complete article on request)



#### O. Sander.

DUNE — The Distributed and Unified Numerics Environment Springer, 2020.

