
Nonsmooth multigrid methods for problems in
mechanics

Oliver Sander
joint work with Carsten Gräser (FU Berlin)

TU Dresden, 29. 2. 2021



Content

1 Linear Elasticity

2 Multigrid

3 Contact problems

4 Multigrid as a minimization algorithm

5 Tresca Friction

6 Primal Plasticity

7 Fracture formation

8 Software aspects



Linear elasticity

Kinematics

I Reference domain Ω

I Deformation function x 7→ ϕ(x) = x+ u(x)

Strains

I Measure local change of shape

I Linear theory:

ε(u) :=
1

2
(∇u +∇uT ).

3× 3 tensor (matrix)

Stresses

I Field of symmetric 3× 3 tensors σ

Ω

ϕ
g



Materials and the strong form

Material laws

I In elastic materials: stress is function of strain ε (and nothing else)

I Linear theory: Hooke’s law σ(u) = C : ε(u)

I Fourth-order tensor C describes material (Hooke tensor)

I Simplest case: St. Venant–Kirchhoff material

σ = λ tr(ε)I + 2µε.

I Lamé constants λ, µ

Boundary value problem

I Static equilibrium
− div σ(u) = f in Ω.

I Boundary conditions

u = uD on ΓD

σ(u)n = g on ΓN .



Weak formulation

Weak formulation

I Vector-valued Sobolev spaces H1
0(Ω) := H1

0 (Ω,R3), H1
D(Ω)

I The usual trick with Green’s formula: find u ∈ H1
D(Ω) such that

a(u,v) = l(v) ∀v ∈ H1
0(Ω)

with

a(v,w) :=

∫
Ω

σ(v) : ε(w) dx l(v) :=

∫
Ω

fv dx+

∫
ΓN

gv dx

I Symmetric, continuous and H1
0-elliptic: there exists a unique solution

(Lax–Milgram)

Finite elements

I Restrict to vector-valued finite element space Vh,0 ⊂ H1
0, Vh,D ⊂ H1

D

I Vector-valued nodal basis φji



Algebraic formulation

Linear system of equations

I Sparse, symmetric, positive definite linear system

Ax = b,

I A is n× n block matrix with 3× 3 blocks

(Aij)kl =

∫
Ω

σ(φki ) : ε(φlj) dx

(bi)j =

∫
Ω

fφji dx+

∫
ΓN

gφji dx.

Solvers?

I Direct solvers: good, but need a lot of memory

I Iterative solvers: convergence rates degenerate with decreasing mesh size



Multigrid

Multigrid to the rescue
For illustration: the simpler Poisson problem

−∆u = 1 on Ω := (0, 1)2,

u = 0 on ∂Ω

The Gauß–Seidel method

I Multigrid is based on the Gauß–Seidel method



Gauß–Seidel method

Gauß–Seidel method

I given an xk ∈ Rn

I for each line i of A do

xk+1
i =

1

Aii

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=1+1

Aijx
k
j

)

iterate 0



Gauß–Seidel method

Gauß–Seidel method

I given an xk ∈ Rn

I for each line i of A do

xk+1
i =

1

Aii

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=1+1

Aijx
k
j

)

iterate 1



Gauß–Seidel method

Gauß–Seidel method

I given an xk ∈ Rn

I for each line i of A do

xk+1
i =

1

Aii

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=1+1

Aijx
k
j

)

iterate 2



Gauß–Seidel method

Gauß–Seidel method

I given an xk ∈ Rn

I for each line i of A do

xk+1
i =

1

Aii

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=1+1

Aijx
k
j

)

iterate 3



Gauß–Seidel method

Gauß–Seidel method

I given an xk ∈ Rn

I for each line i of A do

xk+1
i =

1

Aii

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=1+1

Aijx
k
j

)

iterate 10



Gauß–Seidel method

Gauß–Seidel method

I given an xk ∈ Rn

I for each line i of A do

xk+1
i =

1

Aii

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=1+1

Aijx
k
j

)

iterate 50

Works, but is painfully slow!



Smoothing properties

Important observation I:

I Gauß–Seidel smoothes!

iterate x0 (noise)



Smoothing properties

Important observation I:

I Gauß–Seidel smoothes!

iterate x1



Smoothing properties

Important observation I:

I Gauß–Seidel smoothes!

iterate x2



Smoothing properties

Important observation I:

I Gauß–Seidel smoothes!

iterate x3



Smoothing properties

Important observation I:

I Gauß–Seidel smoothes!

iterate x10



Smoothing properties

Important observation I:

I Gauß–Seidel smoothes!

iterate x50



Smoothing properties

Gauß–Seidel smoothes

I In fact, Gauß–Seidel smoothes the residual rk := b−Axk

I Consider the error equation

A(xk + e) = b ⇒ Ae = b−Axk.

I Residual is smooth after a few (e.g. 3) iterations.

residual r0 (with x0 = noise)



Smoothing properties

Gauß–Seidel smoothes

I In fact, Gauß–Seidel smoothes the residual rk := b−Axk

I Consider the error equation

A(xk + e) = b ⇒ Ae = b−Axk.

I Residual is smooth after a few (e.g. 3) iterations.

residual r1



Smoothing properties

Gauß–Seidel smoothes

I In fact, Gauß–Seidel smoothes the residual rk := b−Axk

I Consider the error equation

A(xk + e) = b ⇒ Ae = b−Axk.

I Residual is smooth after a few (e.g. 3) iterations.

residual r2



Smoothing properties

Gauß–Seidel smoothes

I In fact, Gauß–Seidel smoothes the residual rk := b−Axk

I Consider the error equation

A(xk + e) = b ⇒ Ae = b−Axk.

I Residual is smooth after a few (e.g. 3) iterations.

residual r3



Smoothing properties

Gauß–Seidel smoothes

I In fact, Gauß–Seidel smoothes the residual rk := b−Axk

I Consider the error equation

A(xk + e) = b ⇒ Ae = b−Axk.

I Residual is smooth after a few (e.g. 3) iterations.

residual r10



Smoothing properties

Gauß–Seidel smoothes

I In fact, Gauß–Seidel smoothes the residual rk := b−Axk

I Consider the error equation

A(xk + e) = b ⇒ Ae = b−Axk.

I Residual is smooth after a few (e.g. 3) iterations.

residual r50



Coarse grid corrections

Observation II:
I rk is smooth, use coarser grid to solve Ae = rk

I Define prolongation operator

P : V coarse
h → V fine

h

I Error equation for the coarse grid

Âec = r̂k with Â = PTAP and r̂k = PT rk.



The Two-Grid Method

Let x0 be an initial iterate

I Compute Â = PTAP

I For k = 1, 2, 3, . . . do

I Smooth: ν steps of Gauß–Seidel (usually ν = 3) to obtain xk∗

I Restrict: compute r̂k = PT rk = PT (b−Axk∗)

I Coarse correction: solve Âec = r̂k

I Prolong and add: xk+1 = xk + Pec



The coarse grid problem

How do we solve Âec = r̂k?

Small Â
I Direct solver

Large Â
I Multigrid!
I We don’t have to solve Âec = r̂k exactly!
I Recursively do one multigrid iteration for Âec = r̂k



Multigrid is fast!

Theorem ([Hackbusch, Xu, Yserentant])

For a multigrid cycle with ν smoothing steps and l grid levels we have

‖xk+1 − x‖ ≤ ρl‖xk − x‖

ρl ≤ ρ∞ :=
( c

c+ 2ν

)1/2

with c a constant independent of l and ν.

Gauß–Seidel Multigrid



Contact problems (Signorini problems)

One-body contact problems

I Model contact with rigid obstacle

obstacle
Ω

I Contact boundary ΓC

I Define normal and tangential displacement

un(x) := u(x)n(x) and uT (x) := u(x)− un · n(x).

(n: the unit outer normal to Ω)

I Normal stress σn ∈ Rd, and its normal component

σn := nTσn ∈ R.



Contact conditions

Contact conditions

I Conditions for the normal displacement/stress

un ≤ 0, σn ≥ 0, unσn = 0 on ΓC .

“complementarity conditions”

Tangential components

I Boundary conditions for uT , σT

I Describe friction effects

I Simplest case: no friction

σT = 0 on ΓC .



Weak formulation

Variational inequality of the first kind

I Find u ∈ K such that

a(u,v − u) ≥ l(v − u) ∀v ∈ K

with
K := {v ∈ H1

D(Ω) | vn ≤ 0 a.e.}
I K closed and convex: There exists a unique solution

Finite elements

I Replace H1
D by finite element subspace Vh,D.

I Find uh ∈ Kh such that

a(uh,vh − uh) ≥ l(vh − uh) ∀vh ∈ Kh

I Kh: suitable approximation of the admissible set K



Minimization problem

Minimization problem

I The variational inequality is equivalent to minimizing

J(v) =
1

2
a(v,v)− l(v) + χK(v)

in H1
D(Ω)

I χK is the indicator functional

χK(v) :=

{
0 if v ∈ K,
∞ otherwise.

I The functional J is strictly convex, coercive, and lower semicontinuous.
Therefore it has a unique minimizer on H1

D.

Finite Elements

I Minimize

J(vh) =
1

2
a(vh,vh)− l(vh) + χKh(vh),

in FE space Vh.



Algebraic minimization problem

Algebraic minimization problem
Find a minimizer x ∈ (Rd)n of

J(x) =
1

2
xTAx+ χK̄(x),

where

A ∈ (Rd×d)n×n, (Aij)kl =

∫
Ω

σ(φi,k) : ε(φj,l) dx

is the stiffness matrix of the linear elasticity problem.

Algebraic admissible set
In suitable coordinates the algebraic admissible set K̄ has the form

K̄ =

dn∏
i=1

(−∞, ai), with ai ∈ R ∪ {∞} for all 1 ≤ i ≤ dn



Multigrid as an minimization algorithm

Multigrid revisited

I Let A ∈ Rn×n be symmetric and positiv definite, and b ∈ Rn.

I Let’s look at the linear multigrid method again!

Minimization view

I Instead of thinking about how to solve

Ax = b

I Think about how to minimize

J(x) =
1

2
xTAx− bx

I . . . or even directly

J(vh) =
1

2
a(vh,vh)− l(vh)



Gauß–Seidel as a minimization algorithm

Gauß–Seidel as we know it: One iteration of Gauß–Seidel is:

I given an xk ∈ Rn

I for each line i of A do

xk+1
i =

1

Aii

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=1+1

Aijx
k
j

)
Equivalent minimization formulation:

I given an xk ∈ Rn

1. Set w0 = xk

2. For each line i of A do

wi = arg min
α∈R

J(wi−1 + αei)

3. Set xk+1 = wn



Gauß–Seidel as a minimization algorithm

Gauß–Seidel as we know it: One iteration of Gauß–Seidel is:

I given an xk ∈ Rn

I for each line i of A do

xk+1
i =

1

Aii

(
bi −

i−1∑
j=1

Aijx
k+1
j −

n∑
j=1+1

Aijx
k
j

)
Gauß–Seidel for a contact problem:

I given an xk ∈ Rn

1. Set w0 = xk

2. For each line i of A do

wi = arg min
wi−1

i +α≤ai

J(wi−1 + αei)

3. Set xk+1 = wn



Gauß–Seidel as a minimization algorithm

Nonlinear Gauß–Seidel

I Minimization view frees us from linearity assumption

I Even frees us from differentiability assumption!

I Let H be the set of all points where J is not differentiable.

Theorem ([Glowinski])

Let J be strictly convex, coercive, and lower semicontinuous.
Let the admissible set K̄ be the tensor product of closed intervals.
Then the nonlinear Gauß–Seidel method converges for any initial iterate.

I + globally convergent!

I + solve contact problems without penalty parameters!

I - very slow



Multigrid

What about multigrid?

Ideas:

I Do nonlinear Gauß–Seidel on all grid levels
−→ Checking for admissibility is too expensive!

I Construction of admissible coarse grid spaces [Tai]:
I A priori construction

I Monotone multigrid [Kornhuber]:

Construct situation-dependent coarse grid obstacles
I Provably convergent
I Fast convergence
I Challenging implementation



Towards TNNMG: Problem Generalization

Gauß–Seidel for a contact problem:

I given an xk ∈ Rn

1. Set w0 = xk

2. For each line i of A do

wi = arg min
wi−1

i +α≤ai

J(wi−1 + αei)

3. Set xk+1 = wn

Generalization:
Replace minimization problem in 2. by

wi = arg min
α∈R

J(wi−1 + αei)+χ(−∞,ai−w
i−1
i ]

(α)

with χ again the indicator functional.



Block-separability

Let J : Rn → R ∪ {∞} be the objective functional of a minimization problem.

We call J block-separably nonsmooth if it has the form

J(x) = J0(x) +

M∑
i=1

ϕi(xi),

where

I J0 : Rn → R is coercive and continuously differentiable,

I there is a decomposition Rn with
∏M
i=1 R

ni , with
∑M
i=1 ni = n,

I the functionals ϕi : Rni → R ∪ {∞}, i = 1, . . . ,M are convex, proper,
lower semi-continuous, and continuous on their domains.

Example: contact problem

J0(x) =
1

2
xTAx− bTx, ϕi(xi) = χ

(−∞,ai−w
i−1
i ]

(xi)



Truncated Nonsmooth Newton Multigrid (TNNMG)

The algorithm:

1. Nonlinear presmoothing (Gauß–Seidel)
I For each block i, solve a local minimization problem for

Ji(v) := J0(v) + ϕi(v)

in the ith block.

2. Truncated linearization
I Freeze all variables where the ϕi are not differentiable.
I Linearize everywhere else

3. Linear correction
I E.g., one linear multigrid step,
I or solve lineared problem exactly.

4. Projection onto admissible set
I Simply in the `2-sense / block-wise

5. Line search
I 1d nonsmooth minimization problem: use bisection



Truncated Nonsmooth Newton Multigrid (TNNMG)

The algorithm:

1. Nonlinear presmoothing (Gauß–Seidel)
I For each block i, solve a local minimization problem for

Ji(v) := J0(v) + ϕi(v)

in the ith block.

2. Truncated linearization
I Freeze all variables where the ϕi are not differentiable.
I Linearize everywhere else

3. Linear correction
I E.g., one linear multigrid step,
I or solve lineared problem exactly.

4. Projection onto admissible set
I Simply in the `2-sense / block-wise

5. Line search
I 1d nonsmooth minimization problem: use bisection



Truncated Nonsmooth Newton Multigrid (TNNMG)

The algorithm:

1. Nonlinear presmoothing (Gauß–Seidel)
I For each block i, solve a local minimization problem for

Ji(v) := J0(v) + ϕi(v)

in the ith block.

2. Truncated linearization
I Freeze all variables where the ϕi are not differentiable.
I Linearize everywhere else

3. Linear correction
I E.g., one linear multigrid step,
I or solve lineared problem exactly.

4. Projection onto admissible set
I Simply in the `2-sense / block-wise

5. Line search
I 1d nonsmooth minimization problem: use bisection



Truncated Nonsmooth Newton Multigrid (TNNMG)

The algorithm:

1. Nonlinear presmoothing (Gauß–Seidel)
I For each block i, solve a local minimization problem for

Ji(v) := J0(v) + ϕi(v)

in the ith block.

2. Truncated linearization
I Freeze all variables where the ϕi are not differentiable.
I Linearize everywhere else

3. Linear correction
I E.g., one linear multigrid step,
I or solve lineared problem exactly.

4. Projection onto admissible set
I Simply in the `2-sense / block-wise

5. Line search
I 1d nonsmooth minimization problem: use bisection



Truncated Nonsmooth Newton Multigrid (TNNMG)

The algorithm:

1. Nonlinear presmoothing (Gauß–Seidel)
I For each block i, solve a local minimization problem for

Ji(v) := J0(v) + ϕi(v)

in the ith block.

2. Truncated linearization
I Freeze all variables where the ϕi are not differentiable.
I Linearize everywhere else

3. Linear correction
I E.g., one linear multigrid step,
I or solve lineared problem exactly.

4. Projection onto admissible set
I Simply in the `2-sense / block-wise

5. Line search
I 1d nonsmooth minimization problem: use bisection



Convergence

Introduce (inexact) local minimization operators

Mi(·) = arg min
v∈(·)+ei⊗Rni

J(v)

Theorem (Gräser, S. 2017)

Let v0 ∈ dom J and assume that the inexact solution local solution operators
Mi satisfy:

I Monotonicity: J(Mi(w)) ≤ J(w) for all w ∈ dom J .

I Continuity: J ◦Mi is continuous.

I Stability: J(Mi(w)) < J(w) if J(w) is not minimal in the i-th block.

Then the iterates produced by the TNNMG method converge to a stationary
point of J .

Corollary (Gräser, S. 2017)

If J is strictly convex and coercive, then the TNNMG method converges to the
unique minimizer of J .



Convergence

Introduce (inexact) local minimization operators

Mi(·) = arg min
v∈(·)+ei⊗Rni

J(v)

Theorem (Gräser, S. 2017)

Let v0 ∈ dom J and assume that the inexact solution local solution operators
Mi satisfy:

I Monotonicity: J(Mi(w)) ≤ J(w) for all w ∈ dom J .

I Continuity: J ◦Mi is continuous.

I Stability: J(Mi(w)) < J(w) if J(w) is not minimal in the i-th block.

Then the iterates produced by the TNNMG method converge to a stationary
point of J .

Corollary (Gräser, S. 2017)

If J is strictly convex and coercive, then the TNNMG method converges to the
unique minimizer of J .



Contact problems: Results

Geometry
I Domain: Ω = [0, 1]2

I Obstacle: negative half space

H = {x ∈ Rd : x0 < 0}.

obstacle
Ω

setting grid deformation
Convergence rates

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

co
n
v
e
rg

e
n
ce

 r
a
te

refinement level

'contact_rates.txt'



Friction problems

Boundary conditions for the normal component

un ≤ 0, σn ≤ 0, unσn = 0.

Boundary conditions for the tangential components

I Previously: no friction
σT = 0 on ΓC .

I Tresca friction model

‖σT ‖ ≤ µσ̄N .

uT = λσT , with

{
λ = 0 if ‖σT ‖ < µσ̄N ,

λ ≥ 0 if ‖σT ‖ = µσ̄N .

I µ ∈ R, µ > 0 is called the coefficient of friction.

I σ̄N > 0 fixed parameter (approximation to the normal stress)

I Simple stick–slip friction



Weak/minimization formulation

Tresca friction functional

jT (v) =

∫
ΓC

µσ̄N‖vT ‖ da, ∀v ∈ H1
D.

Weak formulation
Variational inequality of the second type: Find u ∈ K ⊂ H1

D(Ω) such that

a(u,v − u) + jT (v)− jT (u) ≥ l(v − u) ∀v ∈ K

Minimization formulation

I Find minimizer in H1
D of

J(v) =
1

2
a(v,v)− l(v) + χK(v) + jT (v)

I Functional is strictly convex, coercive, and lower semicontinuous

I There exists a unique minimizer



Discrete formulation

Naive approach:

I Find minimizers in Vh,D of

J(vh) =
1

2
a(vh,vh) + χKh(vh) + jT (vh),

I integral for the nonsmooth term jT over each element involves the degrees
of freedom of all corners of that element

I Structure of the nondifferentiable points not suitable for TNNMG

Modified approach:

I Find minimizers in Vh,D of

J(vh) =
1

2
a(vh,vh) + χKh(vh) +

n∑
i=1

µσ̄N‖(v(pi))T ‖
∫

ΓC

|λi| dx.

I Interpretation: lumped quadrature rule

I First-order FE: functional still strictly convex, coercive, l.s.c.



Multigrid for Tresca friction

Behavior:

I Functional is strictly convex, coercive, and lower semicontinuous.

I Set of nondifferentiable points has correct block-separable structure

I The TNNMG method converges for all initial iterates

I Convergence rate independent of the grid resolution

obstacle
Ω

setting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

co
n
v
e
rg

e
n
ce

 r
a
te

refinement level

'trescafriction_rates.txt'



Small-Strain Primal Plasticity (with Patrick Jaap)

I Primal formulation: displacement u, plastic strain p
I Von Mises and Tresca yield laws (and others)
I Kinematic and isotropic hardening

 0.001

 0.01

 0.1

 0  2  4  6  8  10  12  14  16  18  20

n
o
rm

a
liz

e
d
 w

a
ll-

ti
m

e
 (

se
c)

time step

1 level
2 levels
3 levels
4 levels
5 levels
6 levels

 0.001

 0.01

 0.1

 0  2  4  6  8  10  12  14  16  18  20

n
o
rm

a
liz

e
d
 w

a
ll-

ti
m

e
 (

se
c)

time step

1 level
2 levels
3 levels
4 levels
5 levels

Normalized wall-time per time step: TNNMG (left) vs. predictor–corrector (right)

I Low-hardening case still problematic



Phase-field models of brittle fracture [with C. Gräser & D. Kienle]

Phase-field model of brittle fracture: [Miehe, Welschinger, Hofacker, 2010]

I Unknowns: displacement u : Ω→ Rd, fracture phase field d : Ω→ [0, 1]

Variational model:

I Rate potential

Π(u̇, ḋ) := Ė(u̇, ḋ) +D(d, ḋ)− Pext(u̇).

Dissipation potential

I Regularized crack surface density: γ(d) = 1
2l

(d2 + l2‖∇d‖2)

I Dissipation potential

D(ḋ; d) =

∫
B
gcγ̇(d,∇d) + χ[0,∞)(ḋ) dV

I χ[0,∞) = indicator functional of [0,∞)



Phasefield models of brittle fracture

Elastic energy degraded in tension:

I Elastic bulk energy density

ψ0(u) =
λ

2
(tr ε(u))2 + µ tr(ε(u))2

I Split into tensile/compressive parts ψ±0 .

I Strain-based split

ψ±0 (ε) :=
λ

2

〈 d∑
i=1

Eig(ε)i
〉2

±
+ µ

[ d∑
i=1

〈Eig(ε)i〉2±
]
.

I Degraded elastic energy

E(u, d) =

∫
Ω

((1− d2) + k)ψ+
0 (u) + ψ−0 (u) dx



Discretization

Time discretization

I Integrate rate potential over time interval [tk, tk+1)

I Next iterate (uk+1, dk+1) minimizes

Πτ
k(u, d) =

∫
Ω

(
(1− d)2 + k

)
ψ+

0 (u) +ψ−0 (u) + gcγ(d,∇d) +χ[dk,1](d) dV

The indicator functional χ[dk,1](d)

I No regularization

I No H-field

Space discretization

I First-order Lagrange finite elements

Algebraic increment problem

I Nonsmooth, biconvex, coercive, lower-semicontinuous



Discretization

Time discretization

I Integrate rate potential over time interval [tk, tk+1)

I Next iterate (uk+1, dk+1) minimizes

Πτ
k(u, d) =

∫
Ω

(
(1− d)2 + k

)
ψ+

0 (u) +ψ−0 (u) + gcγ(d,∇d) +χ[dk,1](d) dV

The indicator functional χ[dk,1](d)

I No regularization

I No H-field

Space discretization

I First-order Lagrange finite elements

Algebraic increment problem

I Nonsmooth, biconvex, coercive, lower-semicontinuous



Block-separable form

Algebraic increment energy

Πalg
k (u, d) =

∫
Ω

(
(1− d)2 + k

)
ψ+

0 (u) + ψ−0 (u) + gcγ(d) + χ[dk,1](d) dV

is of the form

Πalg
k (u, d) =

# elements∑
i=1

γi(Biv) + 〈Av, v〉︸ ︷︷ ︸
=:Π0(v)

+

# vertices∑
i=1

χ[dki ,1](di)︸ ︷︷ ︸
=:ϕi(di)

with

Biv = (ε(u), d)
∣∣

element i

γi(ε(u), d) =
(
(1− d)2 + k

)
ψ+

0 (ε(u)) + ψ−0 (ε(u))

I Π0 is coercive, continuously differentiable, and biconvex.
I Indicator functionals χ[dki ,1](·) are convex, proper, and lower

semicontinuous.



Abstract problem setting

Nonsmooth bi-convex minimization problem:

u∗ ∈ Rn : J(u∗) ≤ J(v) ∀v ∈ Rn

Block structure:
I m blocks of sizes n1, . . . , nm

Rn =

m⊗
i=1

Rni

I Canonical restriction operators Ri : Rn → Rni

Block-separable form:

J(v) = J0(v) +
n∑
i=1

ϕi(Riv)

I Coercive, continuously differentiable functional J0 : Rn → R
I Convex, proper, lower semi-continuous functionals ϕi : Rni → R ∪ {∞}
I The TNNMG algorithm converges against a solution!



Truncated Nonsmooth Newton Multigrid (TNNMG)

The algorithm:

1. Nonlinear presmoothing (Gauß–Seidel)
I For each block i, solve a local minimization problem for

Ji(v) := J0(v) + ϕi(v)

in the ith block.

2. Truncated linearization
I Freeze all variables where the ϕi are not differentiable.
I Linearize everywhere else

3. Linear correction
I E.g., one linear multigrid step,
I or solve lineared problem exactly.

4. Projection onto admissible set
I Simply in the `2-sense / block-wise

5. Line search
I 1d nonsmooth minimization problem: use bisection



Nonlinear Gauß–Seidel smoother

Smoother:

For each vertex:

1. Solve displacement minimization problem for this vertex only
I Only 2 or 3 variables
I Strictly convex, coercive, C1

I Second derivatives exist in a generalized sense
I Nonsmooth Newton method

2. Solve phase-field problem for this vertex only
I Scalar coercive strictly convex minimization problem
I Quadratic + indicator functional

Inexact smoothers:

I Solve local problems inexactly

I Can save lots of wall-time



Numerical example: Notched square

Problem

I Pre-fractured 2d square

I Loaded under pure tension

Solvers

I TNNMG vs. Operator Split with H-field

I Operator split alternates between displacement and damage problem



Numerical example: Notched square

0 50 100 150

time step

10−1

100

101

102

ti
m
e

AT-1

h1 TNNMG

h2

h3

h1 op. split.

h2

h3

0 50 100 150

time step

10−1

100

101

102

ti
m
e

AT-2

h1 TNNMG

h2

h3

h1 op. split.

h2

h3

Wall-time per degree of freedom per time step

AT-1 AT-2
TNNMGEX TNNMGPRE OS TNNMGEX TNNMGPRE OS

h1 86.85 70.92 155.32 76.82 66.75 186.58
h2 73.61 63.83 353.63 61.63 54.91 387.06
h3 74.55 54.98 672.26 80.25 63.27 760.48



Numerical example: Three-Point Bending

Lz

Ly

ū

Lx/2 Lx/2

l1

l2



Numerical example: Three-Point Bending

2 4 6 8 10 12

time step

100

101

102

103

104
ti
m
e

AT-1

h1 TNNMG

h2

h1 op. split.

h2

2 4 6 8 10 12

time step

100

101

102

103

104

ti
m
e

AT-2

h1 TNNMG

h2

h1 op. split.

h2

Wall-time per degree of freedom per time step

AT-1 AT-2
TNNMGEX TNNMGPRE OS TNNMGEX TNNMGPRE OS

h1 168.47 94.18 1158.98 231.08 112.79 1058.21
h2 216.32 120.18 10762.81 366.24 195.85 12309.42



Software aspects

TNNMG implementation challenges:

I Nonlinear smoother

I Gradients and tangent matrices

I Line search

I Direct sparse solver for linear correction problems

I For non-quadratic smooth parts: Caching of shape function values

Multigrid steps:

I Hierarchy of finite element grids

I Assembly of prolongation/restriction operators



Support in Dune

dune-tnnmg

the TNNMG algorithm

dune-fufem

finite element assemblers

dune-functions

functions and function space bases

dune-istl

sparse linear algebra

dune-geometry

grid elements and quadrature

dune-localfunctions

finite element spaces on single elements

dune-grid

grids and the grid interface

dune-uggrid

Distributed unstructured grids

dune-common

common infrastructure

(suggestion)

dune-solvers

infrastructure for iterative solvers

(for transfer operators only)



Further Reading

C. Gräser, R. Kornhuber.

Multigrid Methods for Obstacle Problems.
Journal of Computational Mathematics, 27(1):1–44, 2009.

C. Gräser, O. Sander.

Truncated Nonsmooth Newton Multigrid Methods for Block-Separable
Minimization Problems.
IMA Journal of Numerical Analysis, 39(1):454–481, 2018.

O. Sander, P. Jaap.

Solving primal plasticity increment problems in the time of a single
predictor-corrector iteration.
Computational Mechanics, 65:663–685, 2020.

C. Gräser, D. Kienle, O. Sander.

Truncated Nonsmooth Newton Multigrid for phase-field
brittle-fracture problems.
arXiv, 2007.12290, 2020. (complete article on request)

O. Sander.

DUNE — The Distributed and Unified Numerics Environment
Springer, 2020.

https://www.jstor.org/stable/43693490
https://academic.oup.com/imajna/advance-article/doi/10.1093/imanum/dry073/5153291
https://academic.oup.com/imajna/advance-article/doi/10.1093/imanum/dry073/5153291
https://doi.org/10.1007/s00466-019-01788-y
https://doi.org/10.1007/s00466-019-01788-y
https://arxiv.org/abs/2007.12290
https://arxiv.org/abs/2007.12290
https://www.springer.com/gp/book/9783030597016

